
WAVE INDUCED PRESSURES ON SUBMERGED PLATES  
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INlRODUCnON 

The prediction of forces, or more precisely, the pressure distributions, 

experienced by submerged structures due to the passage of gravity waves has 

become important with the advent of large offshore structures. If the size of 

a structure is small compared to the wavelength then the forces can be evaluated 

by the assignment of suitable drag and inertia coefficients using an approach 

similar to that of Morison (6) in which case it is necessary to determine the 

coefficients experimentally for any given geometry (2). If the size of the structure 

is a significant fraction of the wavelength, the preceding method is invalid and 

a more complicated analysis such as the diffraction theory of Garrison and 

Rao (1) is needed. Unfortunately, the application of diffraction theory for a 

given geometry is exceedingly difficult unless one assumes that the structure 

size is small compared to the wavelength, which may not be realistic. 

In order to circumvent the evaluation problems of diffraction theory an 

approximate analysis based on thin airfoil theory was developed. The analysis 

to be presented is developed for a thin horizontal flat plate, although extension 

to other objects is not difficult. One applicable physical situation is that of 

a protective cap over a vertical water intake. Typically such a cap might be 

50 ft (15 m) wide submerged approximately mid-depth in water 25 ft (8 m) 

deep. Also typically, wavelengths of the order of 200 ft (61 m) would be 

experienced making the plate width of the order of one-fourth the wavelength. 

The question of wave induced loadings on such structures associated with nuclear 

power stations prompted the investigation presented herein. 
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In the analysis, the plate is considered as a thin airfoil in an oscillating flow 

and as such is replaced by a vortex sheet. It is assumed that since the frequency 

of oscillation is relatively high no vortices are shed from the plate [this condition 

is similar to the small wave amplitude to structure size ratio of Garrison and 

Rao (I)]. Further, the free surface and bottom boundary conditions are approxi

mately satisfied in the sense that the Froude number, based on frequency and 

submergence, is taken as small and only a few images of the sheet in surface 

and bottom are considered. Robertson (7) presents the small Froude number 

approximation and points out that it implies a rigid surface which, in this case, 

means the original waveform can again be found some distance downstream 

from the plate. 

The evaluation of the strength distribution of the vortex sheet is carried out 

for the case of sinusoidal waves wherein the resulting integral equations are 

solved numerically by replacing them with two sets of N simultaneous linear 

equations (N = lOis sufficient and can be performed easily with a small computer). 

Finally the differential pressure distribution is found using Euler's equation. 

In the computer scheme used for the present evaluation, only the wavelength, 

depth, and submergence all normalized with respect to plate width are needed, 

and the results are given as pressure coefficient distributions for various wave 

positions over the plate. 

In order to test the accuracy, measurements of the pressure distribution due 

to the passage of waves over a flat plate were made using a wave flume facility. 

The flat plate, instrumented with pressure sensors, was rigidly supported beneath 

the water surface and subjected to waves of various amplitude and wavelength. 

Similar experiments were carried out on a proposed octagonal plate and the 

measurements compared to those predicted theoretically using the two-dimen

sional theory. 

A force coefficient is calculated to facilitate maximum force calculation and 

to compare with typical values of the hydrodynamic mass. 

THEORETICAL FORMULATION 

The flow field is considered as potential and two-dimensional. A gravity wave, 

represented by the velocity potential, <P ' moves to the right with speed c 
w 

and amplitude a in fluid of mean depth d as shown in Fig. I. The wave encounters 

a submerged horizontal plate of width I located a distance, s, below the mean 
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fluid surface which can be represented by a perturbation potential, G> j' The 

central problem is to find G>i such that Laplace's equation, the free-surface 

condition, and the bottom boundary condition are satisfied simultaneously. 

To effect a solution, the flat plate is replaced by a vortex sheet (3) of strength 

"{(x, t) so that the potential due to the plate alone is 

G>, = ~f'  -y tan-I (y + s) d~  (I) 
2'IT 0 X - ~  

in which sis a dummy integration variable. 

The no-penetration condition at the bottom requires an image vortex system 

located a distance, d - s, below the bottom given by the potential 

G>2=_1_J' -ytan-' (Y+2d- S) d~  : . . . . . . . . . . (2) 
2'11" 0 X - S 

Representing the free-surface by the linearized condition 

(Jq" I a2¢ i 
- + - - == O ' (3) 
ay g at 2 

we will consider only sinusoidal waves of circular frequency 0' and situations 

where the Froude number, F = O'VSfg, is small, therefore, Eq. 3 can be 

approximated as a<j)J ay = O. Under these conditions an image system a distance, 

s, above the free-surface is required (7) and the potential is 

G>J == _1 J' -y tan-I (y - s) ds (4) 
2'11" 0 x - s 

The bottom image now reflects through the surface to form another surface 

image while the surface image reflects through the bottom to form another 

bottom image. The reflections repeat indefinitely but, for the sake of brevity, 

all those not already listed will be represented by L. Thus, the perturbation 

potential can be written 

<p, = cP1+ cP2 +cPJ + L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)  

Two conditions are necessary to fix the strength distribution of the vortex 

sheet. First, that there be no velocity in the y direction at the plate, i.e. 

v=I'.,+vj==O;y=-s; O:5X:5/ (6) 

in which v, == -a4>,/ ay; and Vw = -a<pw/ iJy. The second condition is that the 

total circulation about the plate be stipulated. The latter condition is lIsually 

taken to be the Kutta condition of forcing the trailing edge to be a stagnation 

point. In this case, we express the circulation condition as no starting vortices 

shed from the plate. Mathematically this requirement can be expressed as

L'Y dx = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)  

On substitution of appropriate expressions, Eqs. 6 and 7 form a pair of integral 

equations that can be solved giving the strength distribution of the vortex sheet, 

y. 



The horizontal velocities at the plate are then given by (5) 

.. (8) 

+ _ 'Y 
in which u:- = +-. .. (9) 

I 2 

and the positive superscript refers to the upper surface and the negative to 

the lower. Finally, the pressure can be found by direct substitution into Euler's 

equation evaluated at the plate 

ap'" au'" 
-= -p- (10) 

iJx iJt 

in which the convective terms have been dropped consistent with small amplitude 

wave theory. Defining Ap = p- - p+ and substituting Eq. 9 into Eq. 10 

iiAp iJ'Y 
- = -p - , (II) 

iJx iJt 

Since there are no shed vortices, the gradient may be integrated around the 

leading edge of the plate yielding 

Ap = -p f: :~  d~  .. , , , , , , , . , , , (12) 

as the induced differential pressure on the plate. 

If the oncoming waves are sinusoidal, the potential function may be written 

7) 

ag cosh ked + y)
<1>",=- cos (kx-ut) (13) 

(j cosh kd 

in which k = 2Ti 1'10.; and (j = kc. The vertical velocity due to the wave at y = -s 
is 

iJ<p", ag sinh ked - s) 
v... = -- = -- cos (kx - u t) .... , .. , .. , ... (14) 

iJy c cosh kd 

Upon substitution of the appropriate expressions for V 
w 

and vi' Eq, 6 becomes 

ag sinh ked -. s) 1 JI 
---- cos (kx - ut) - - 'Y (~,  t) G ( ~ , x )  d ~  = 0, , ... (15) 

c cosh kd 2'lT 0 

in which 

I x-~  x-~  
G(~,  x) =-- - - + other images (16) 

x-~  (x-02+4(d-s)2 ( x - ~ ) 2 + 4 s 2  

I 
I 'Y (~'  t ') 

Rearranging cos (k' x' - t') = 'G(~"IX')  d~'  , (17)  

o U 

2Ti ag sinh ked - s) 2'lT 
in which U= k' = -; t' =ut 

c cosh kd A' 



and other primes denote nondimensionalization with respect to /, e.g., x' 

xii. Eq, 7 becomes 

JI 'Y (x', tt) dx l = 0 (18) 

o . 

Eqs; 17 and 18 which define the strength distribution, 'Y, of the vortex sheet 

may be simplified by noting that 'Y is separable in the form 

"f(X', t') 
---- = A(x') sin t' + B(x') cos t' (19) 

U 

from which { A ( ~ ' )  G ( ~ / ,  Xl) d ~ 1  - sin k' Xl = 0 .... , , ..... ,(20a) 

J ~  B ( ~ / )  G ( ~ ' , x ' )  d ~ 1  - cos k
l 

Xl = 0 , , . , . , ,(20b) 

{A(~/)  d~'  = 0 , .. , (2Ia) 

I: B(~/)  d~1  = 0 (2Ib) 

Eqs. 20 and 21 are now in a form suitable for determination of A and B. 

Once A and B are found the pressure is found from Eq. 12 which gives, after 

some rearrangement 

~ p  (2'1l')2 sinh 27T(d' - s/)/A' IX' 
- = --- 0 [A(~/)  cos t' - B(f) sin ( ] dl;' (22' 
p ga A' cosh 2'1T d'/A' 

EXPERIMENTAL STUDIES 

Experiments were conducted using a water-wave flume 40 ft (12 m) long 

by 4 ft (1.2 m) wide in which waves were generated by a piston type wave 

maker executing sinusoidal motion of adjustable frequency and amplitude. A 

wave absorber, composed of metal lathe turnings, occupied the opposite end 

of the flume minimizing reflection of the incident wave train. 

The horizontal flat plate, shown in Fig. I, was 1.1 ft (0.34 m) wide, spanned 

the width of the flume, and was supported on a number of 0.25-in. (6.35-mm) 

round columns. The 0.375-in. (9.53-mm) thick plate was constructed of plastic 

with the central portion hollow to facilitate installation of pressure transducers 

as can be seen in Figs. 2 and 3. 'The transducers, three on the upper surface 

and three on the bottom surface, were of the pressure sensitive transistor type. 

They were connected to appropriate biasing, balancing, and amplification circuits 

necessary for adjustment and to provide drive to the galvanometers of the 



recording oscillograph. Calibration was effected by pressurization and evacuation 

of the hollow central portion of the plate. The wave amplitude was measured 

with a calibrated parallel wire resistance type wave probe also connected to 

the oscillograph. 
The experimental data were retrieved from the recorder chart by dividing 

the record between two wave crests into eight equal parts beginning when the 

crest was over the leading edge of the plate. The pressure at a point on the 

upper surface was subtracted from the pressure on the corresponding point 

on the lower surface thus giving Ii.P for comparison with the theory. In plotting 

FIG. 2.-Flat Plate in Flume 

the results a phase shift was made that alined the crest to crest experimental 

data with the at = 0 base used in the analysis. 

COMPARISON OF EXPERIMENT AND THEORY 

A first series of experiments was performed with d = 0.8 ft (0.24 m) and· 

s = 0.6 ft (0.18 m) corresponding to d' = 0.727 and s' = 0.545, respectively. 

Figs. 4(a), 4(b), and 4(c) show results for frequencies of 0.92 Hz, 1.15 Hz, 

and 1.38 Hz which correspond to 'A' = 4.29, 3.17, and 2.35, respectively, the 

latter calculated with the aid of the intermediate water wave speed relation, 

C = V gj k tanh kh. The corresponding Froude numbers, F, in the same sequence, 

are 0.8, 1.0, and 1.2. In Fig. 4 the data points represent pressure coefficient 

t1pjpga distributions for the wave positions shown in Fig. 5. 



Pressure coefficient distributions calculated from the theory are shown as 

solid curves on the same figures. The sets of integral equations (Eqs. 20 and 

21) were replaced by 10 simultaneous linear equations that were solved numerically 

with the aid of a computer. In this case six reflections in both surface and 

bottom were considered, thus 13 terms of G (~',X')  were used. 

In all cases, the general shape of the pressure distributions varies similarly 

with wave positions. When at = 0, the crest has just passed over the plate 

and a node is over the leading edge. In this case tip is negative over the entire 

plate; the plate is being thrust down. When at = 'IT/2, the trough is over the 

FIG. 3.-Construction of Plate 

leading edge and /::"p is greater (positive) over the first portion of the plate 

and smaller or negative over the remainder. At at = 'IT, the trough has passed 

over the plate and a node is over the leading edge. The plate is thrust upward 

as tip is positive over the entire plate. When at = 3'IT /2, the crest is over 

the leading edge and /::,.p is greater or negative over the first portion and smaller 

or positive over the remainder, 

For the cases depicted in Figs. 4(a) and 4(b) the agreement between experiment 

and theory is quite good. These correspond to Froude numbers of 0.8 and 

1.0, respectively. In Fig. 4(c), Froude number 1.2, the agreement is beginning 

to deteriorate although the general shape of the pressure distribution is correct. 

Thus, it is likely that the small Froude number approximation breaks down 

somewhere near unity. 

A second series of experiments was conducted with d = 0.4 ft (0,12 m) and 
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FIG. 5.-Positions of Leading Edge Relative to Wave 

s = 0.2 ft (0.06 m) corresponding to d' = 0.364 and s' = 0.182, respectively. 

Fig. 4(d) shows the results for a frequency of 0.83 Hz corresponding to >.. / = 3.78 

and F= 004. Again, the agreement between experiment and theory is good, 

except at 5'TT / 4 and 3'TT /2. It should be pointed out that the waveforms were 

not as near sinusoidal in this case as the previous case. The surface profiles 

were somewhat triangular, undoubtedly contributing to the discrepancy. 

Finally, a series of experiments were conducted using only the octagonally 

shaped central portion of the plate visible in Figs. 2 and 3. Fig. 4(e) shows 

results of a single test condition where d = 0.49 ft (0.15 m) and s = 0.25 It 

(0.08 m) corresponding to d' = 0.44 and s' = 0.22. The dimensionless wavelength 

was A' = 4.25 and the Froude number, F = 0.3. It can be seen from Fig. 4(e) 

that the agreement between experiment and theory is quite good qualitatively 

but that quantitatively some of the measured pressures are somewhat lower 

than predicted by the two-dimensional theory. This is to be expected, however, 

because of pressure venting around the edges of the plate. Also, the wave 

amplitude was quite large compared to the submergence, which results in 

asymmetry in the magnitude of the velocity distributions for wave positions 

one-half cycle apart. 

Utilizing the hydrodynamic mass concept, the force coefficient can be defined 

as 

av", av",
F= C'M--= m -- .. (23) 

at hat 

in which C/ = force coefficient; M = mass of the displaced fluid; and mil 

== hydrodynamic mass. 

The force per unit width can be obtained by integrating the pressure along 

the plate Le. 

: = I{ f::,.p dx' . . . . . . . . . . . . . . . . (24)  

By substitution of Eqs. 14 and 24 into Eq. 23, the force coefficient can 

be evaluated 

c/ = _A_/ _c_o_sh_2'TT_d-..:'/_>..-/---I: .PCx' ,I') dx' .  
2'TT sinh 2'TT (d' - s' )/>..' p ga  

=: -21T 0
I JX'

0 [A(~')  cos t' - B(n sin t'] d ~ '  dx' (25)I



Using the maximum absolute value 

C'm= !C'!max (26) 

we can examine the dependence of the maximum force On various parameters. 

In comparing Eq. 23 and the results of Meyerhoff (4), the hydrodynamic 

mass is 
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Since the factor, 17r/4, corresponds to C'm and J ~  I as L~  co, we should 

expect C'm =  0.78 usif.)g this approach. 

The force coefficient, C'm, has been plotted with the wavelength to plate 

length ratio, A', in Figs. 6 and 7. Curves are plotted for various values of 

relative depth d' and submergence s'. All curves show independence of A

for large. AI,  reflecting a more uniform velocity distribution. At the greater 

I 



relative depths, when the plate is not near the surface or bottom, it can be 

seen that C' m ~  0.78 for large A' as would be expected in the absence of 

boundary effects. 

Fig. 6 shows that for fixed A' and d' the force coefficient increases as the 

relative submergence is increased from 0.5 to 0.75 and that for fixed A' and 

s' the coefficient increases as the relative depth is decreased from 3.0 to 1.0. 

The curves in Fig. 7 have been computed holding s/ d == 0.75. Here, again, 

the force coefficient increases for decreasing relative depth for fixed A'. 

CONCLUSIONS 

The two-dimensional theory predicts the pressure distribution, induced by 

sinusoidal gravity waves, on a thin two-dimensional horizontal plate the width 

of which is not small compared to the wavelength. Because the theory is physically 

based on the concept of a vortex sheet and because of the subsequent approximate 

satisfaction of the free surface boundary condition, F small, the mathematical 

complexity of the wave force problem is greatly reduced making application 

feasible. A comparison of the two-dimensional theory with measured pressures 

on an octagonal flat plate showed that the theory slightly overestimates the 

magnitude of the differential pressures. 

The force coefficient, C'm, becomes constant for large A' at fixed d', s' 

and agrees with typical hydrodynamic masses provided surface and bottom effects 

are not too important. 

Because the theory is linear, solutions are additive. More complex waveforms 

could, therefore, be accommodated by decomposing the waves into Fourier 

components. Further, the method could be applied to forms of finite thickness 

by the inclusion of suitable distributions of sources, sinks, and doublets. 
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ApPENDIX n.-NOTATION 

The following symbols are used in this paper: 

A,B functions defined by Eq. 19;  

a wave amplitude;  

C' force coefficient;  

C'm maximum absolute value of C';  
c wave speed;  

d fluid depth;  

d' = d' /1 dimensionless depth;  

F force;  

F = aVi!i = Proude number;  

G function defined by Eq. 16;  

g gravitational acceleration;  

J added mass coefficient;  

k = 27T/A wave number;  

k' = h/A' dimensionless wave number;  

L plate length;  

I plate width;  

M mass of displaced fluid;  

mil hydrodynamic mass;  

p pressure;  
p+ pressure on upper surface;  

P pressure on lower surface;  

s plate submergence;  

s' = s/ I dimensionless submergence;  

t time;  

t' = crt di,mensionless time;  

U function defined in text;  

U = velocity in x direction;  

Uj velocity in x direction due to perturbation;  

U velocity in x direction due to wave; w 
V velocity in y direction; 

VI = velocity in y direction due to perturbation; 

V velocity in y direction due to wave; w 

X horizontal coordinate; 

x' = x/ I dimensionless horizontal coordinate;  

y vertical coordinate;  

'Y strength of vortex sheet;  
!1p = p- - p+ differential pressure; 

A wavelength; 

A' = 'A/I dimensionless wavelength; 

dummy variable;  

f = ~/1  dimensionless dummy variable;  

p fluid density;  

~  



~  

cr = kc 

<l>j 

<l>w 

<1>1 

(~2  

<1» 

represents additional images; 

angular frequency; 

perturbation potential; 

potential of incident wave; 

potential due to plate; 

potential of first image in bottom; and 

potential of first image in surface. 
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