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Abstract. In this paper, wave interaction with a porous cylindrical breakwater is studied9

analytically by linear potential wave theory. The breakwater is assumed to have a thin skin,10

is bottom-mounted and surface-piercing. The porosity of the breakwater is uniform vertically11

but varies in the circumference direction. This allows the choice of a partially impermeable12

wall or a vertical slot in the breakwater. Three different basic configurations of the breakwater13

are investigated, namely, (1) uniformly porous cylinder; (2) porous cylinder with partial im-14

permeable wall; and (3) porous cylinder with an opening. The performance of these types of15

breakwaters is studied versus wave parameters and breakwater configurations including angle16

and position of opening or partial impermeable wall as well as porosity. Parametric studies17

with regard to the wave amplification factor, wave forces, and elevation contours are made.18

The results should be found useful in the design of coastal and offshore structures.19

Keywords: short-crested wave, wave diffraction, circular breakwater, porous structure20

1. Introduction21

Porous breakwaters are often constructed to reduce the wave impact on coastal22

and offshore structures. They can also reduce resonance more effectively than23

an impermeable breakwater [1]. Since the early work of Jarlan [2], wave in-24

teraction with a porous breakwater has attracted the attention of many coastal25

and offshore researchers. In one instance among many, Dalrymple et al. [3]26

studied the reflection and transmission of a wave train at an oblique angle of27

incidence by an infinitely long porous breakwater. Subsequently, Huang and28

Chao [4] reported the inertial effect of the porous breakwater based on Biot’s29

theory of poroelasticity.30

Following the porous wavemaker theory of Chwang [5] and subsequent31

works, investigations have primarily been concentrated on the hydrodynamic32

effects of a porous structure on the incoming wave trains, or wave impact on33

porous structures as a breakwater in a harbour (e.g., [1, 6, 7]). In most cases,34

Darcy’s law for a homogeneous porous medium has been applied. Yu and35

Chwang [6] investigated the resonance in a harbour with porous breakwaters36

subjected to an arbitrary wave angle followed by an extensive study on the37

c© 2008 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Tao et al.

wave transmission characteristics past a porous structure [7]. They also in-38

vestigated the behaviour of waves within the porous medium. It was found39

that there is an optimum thickness for a porous structure beyond which any40

further increase in the thickness may not lead to an appreciable improvement41

in reducing its transmission and reflection characteristics. Wang and Ren [8]42

studied the performance of a flexible porous breakwater, and found that hy-43

drodynamic forces on the interior cylinder as well as wave amplitudes around44

the windward side of the interior cylinder are reduced when compared to the45

case of a direct wave impact on the interior cylinder. More related works can46

be found in the review article of Chwang and Chan [1].47

The aforementioned studies on the interaction of ocean surface waves48

with a vertical porous breakwater have generally been two-dimensional. In49

reality, however, the ocean waves are more complex, and better described by50

three-dimensional (3D) short-crested waves. They also commonly arise, for51

example, from the oblique interaction of two travelling plane waves or inter-52

secting swell waves, or from the reflection of waves at non-normal incidence53

off a vertical seawall, as well as from the diffraction about the surface bound-54

aries of a structure of finite length. These multi-directional, multi-component55

waves are of paramount importance in coastal and offshore engineering de-56

sign. In contrast to plane waves propagating in a single direction, and the57

standing waves fluctuating vertically in a confined region, short-crested waves58

can be doubly periodic in two horizontal directions, one in the direction of59

propagation and the other normal to it [9].60

Theoretical analysis on short-crested wave interaction with a vertical cylin-61

der can be found in [10–12]. Zhu [10] presented an analytic solution to the62

diffraction problem for a solid circular cylinder in short-crested waves us-63

ing linear potential wave theory and found that the pressure distribution and64

wave run-up on the cylinder were quite different from those of plane incident65

waves. Their patterns become very complex as ka (i.e., total incident wave66

number k times cylinder radius a) becomes large. The hydrodynamic forces67

on the cylinder become smaller as the short-crestedness of the incident waves68

increases. Subsequently, Zhu and Moule [11] observed that the hydrodynamic69

force induced by short-crested waves varies with the phase angle perpen-70

dicular to the direction of wave propagation. Later, Zhu and Satravaha [12]71

extended the analytical solution for the velocity potential to second-order.72

Although efforts have been made on wave interaction with porous cylin-73

ders and breakwaters, there is no relevant work on the wave interaction with74

a perforated cylindrical breakwater having variable porosity and opening. In75

this paper, analytical solutions are derived to study this problem in a quan-76

titative manner. Detailed numerical results are presented over a broad range77

of incident short-crested wave parameters as well as structural configurations78

including the porosity of the breakwater and the angle and position of the79

impermeable wall and opening. In particular, their effects on wave amplifica-80
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Wave interaction with a perforated circular breakwater of non-uniform porosity 3

tion factors, wave forces, and wave elevation contours near the structure are81

discussed.82

2. Theoretical Consideration83

2.1. PROBLEM DESCRIPTION84

It is worth noting that theoretical derivation can be made on 2D plane waves,85

and the linear solutions of 3D short-crested waves can be obtained by linear86

superposition of two plane waves. We intend to extend this study to include87

nonlinear effects. Therefore, in this section, the mathematical formulae are88

derived for a general case of interaction of 3D short-crested waves with a89

porous cylindrical breakwater of variable porosity. Note that the solutions for90

the 2D limiting cases, i.e., a plane incident wave and a standing wave, can be91

instantly recovered from it by letting ky = 0 and kx = 0 (kx = wave number92

in x direction, ky = wave number in y direction) respectively.93

Consider a monochromatic short-crested wave train propagating in the94

direction of the positive x axis. A perforated cylindrical breakwater extends95

from the sea bottom to above the free surface of the ocean along z axis. The96

origin is placed at the centre of the cylindrical breakwater on the mean water97

surface (see Fig. 1). A partially impermeable wall or opening is located at98

θ ∈ (ε1, ε2) in cylindrical coordinates (r, θ, z). The whole fluid region is99

divided into two regions - the region inside the breakwater, Ω1 and the region100

outside the breakwater, Ω2. The following notation are used in the paper:101

Φj = total velocity potential, ΦI
j = velocity potential of incident wave,102

ΦS
j = velocity potential of scattered wave, k = total wave number, ω =103

wave frequency, h = water depth, A = amplitude of incident wave, a =104

radius of the cylindrical breakwater, t = time, ρ = mass density of water, and105

g = gravitational acceleration. The subscripts j(j = 1, 2) denote the physical106

parameters in the region Ωj(j = 1, 2).107

Assume that the fluid is inviscid and incompressible, and the flow is ir-108

rotational. Then the fluid flow can be described by a velocity potential Φj ,109

which satisfies the Laplace equation110

∇2Φj = 0 in Ωj , (1)

subject to the combined linearised free surface boundary condition111

Φj,tt + gΦj,z = 0 at z = 0, (2)

and the bottom condition112

Φj,z = 0 at z = −h, (3)
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Figure 1. Definition sketch of short-crested waves on a porous cylindrical breakwater.

where the comma in the subscript designates partial derivative with respect113

to the variable following it.114

The total velocity potential in region Ω2 can be expressed by the summa-115

tion of the incident and scattered wave velocity potentials116

Φ2 = ΦI
2 + ΦS

2 in Ω2, (4)

where ΦI
2 and ΦS

2 also satisfy (1) - (3).117

The velocity potential of the linear short-crested incident wave [13] trav-118

elling principally in the positive x direction is given by the real part of119

ΦI
2 = − igA

ω
f(z, h)ei(kxx−ωt) cos(kyy) in Ω2, (5)

where k2 = k2
x + k2

y , and120

f(z, h) =
cosh k(z + h)

cosh kh
. (6)

The term f(z, h) leads to the sea bottom condition being automatically121

satisfied, while the linearised free surface boundary condition is satisfied122

using the following dispersion relationship123

ω2 = gk tanh kh. (7)
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Wave interaction with a perforated circular breakwater of non-uniform porosity 5

Assuming that the fluid flow passing through the perforated breakwater124

as a porous boundary obeys Darcy’s law [14], the boundary condition on125

perforated breakwater can be expressed as [5]126

Φ1,r = Φ2,r = iG(θ)k(Φ1 − Φ2) on r = a, (8)

ΦS
2,r = iG(θ)k(Φ1 − ΦS

2 − ΦI
2) − ΦI

2,r on r = a, (9)

where r is the radial axis, i =
√
−1, G(θ) = ρωd(θ)

µ is a measure of the127

porosity, µ is the coefficient of dynamic viscosity, d(θ) is a material constant128

having the dimension of length. The porous effect parameter G is a dominant129

parameter in the present study. Its value depends on the geometrical parame-130

ters of the permeable wall and wave factors [15]. The geometrical parameters131

of a permeable wall consist mainly of geometrical porosity, plate thickness132

and porous shape. In engineering practices, the geometrical porosity is about133

20% and can reach as high as 60% or higher in some circumstances. Sev-134

eral porous shapes are common in coastal or offshore structures, including135

slit, screen and circular or rectangular holes. Detailed method of estimate of136

G could be found in [15]. In addition, the scattered potential satisfies the137

Sommerfeld radiation condition at infinity as follows:138

lim
kr→∞

(kr)1/2
(

ΦS
2,r − ikΦS

2

)

= 0 in Ω2. (10)

Therefore, the scattered wave velocity potential ΦS
2 in Ω2 is governed139

by the Laplace equation (1) with the boundary conditions (2) and (3), the140

boundary condition at the interface of fluid and breakwater at r = a (8) and141

(9), and the radiation condition (10).142

The velocity potential Φ1 in the interior domain Ω1 is governed by the143

Laplace equation (1) with the boundary conditions (2) and (3), and the bound-144

ary conditions at the interface of fluid and breakwater at r = a:145

Φ1,r = iG(θ)k(Φ1 − ΦS
2 − ΦI

2) on r = a. (11)

These constitute two sets of the governing equation and corresponding146

boundary conditions for the diffraction of short-crested waves by a vertical147

perforated cylindrical breakwater with nonuniform porosity, corresponding148

to boundary-value problems in a bounded domain and an unbounded domain149

respectively. After obtaining ΦS
2 , Φ2 and Φ1 by solving the above boundary-150

value problems, all the physical quantities including the fluid particle velocity,151

free surface elevation and the dynamic pressure can be calculated respectively152

from153

vj = ∇Φj , (12)
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6 Tao et al.

ηj =
iω

g
Φj |z=0,t=0, (13)

pj = −ρΦj,t. (14)

2.2. ANALYTICAL SOLUTION154

The incident wave potential (5) can be written in the cylindrical coordinates155

as156

ΦI
2 = − igA

ω
f(z, h)e−iωt

[

+∞
∑

m=0

εmimJm(kxr) cos(mθ)

] [

+∞
∑

n=0

εnJ2n(kyr) cos(2nθ)

]

,

(15)

where157

εm =

{

1 for m = 0
2 for m 6= 0

, (16)

and the Jm and J2n are Bessel functions of mth and 2nth order respec-158

tively.159

Splitting the product of the two trigonometric functions, and truncating160

the infinite series at m = M and n = N , (15) becomes161

ΦI
2 = − igA

2ω
f(z, h)e−iωt

M
∑

m=0

N
∑

n=0
εmεnimJm(kxr)J2n(kyr)

· [cos(m + 2n)θ + cos(m − 2n)θ] . (17)

(17) can be further simplified as162

ΦI
2 = − igA

ω
f(z, h)e−iωt

L
∑

l=0

ψl(kxr, kyr) cos(lθ), (18)

where L = M + 2N , and163

ψl(kxr, kyr) =
1

2

{

∑min{N,⌊l/2⌋}

n=max{0,⌈(l−M)/2⌉}
εl−2nεnil−2nJl−2n(kxr)J2n(kyr)

+
∑min{N,⌊(M−l)/2⌋}

n=0
εl+2nεnil+2nJl+2n(kxr)J2n(kyr)

+
∑min{N,⌊(M+l)/2⌋}

n=⌈l/2⌉
ε2n−lεni2n−lJ2n−l(kxr)J2n(kyr)

}

,(19)
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in which ⌈ ⌉ is a function giving the greatest integer less than or equal to164

its argument and ⌊ ⌋ is a function returning the smallest integer greater than165

or equal to its argument.166

According to [6] and [10], the evanescent waves do not exist in the ab-167

sence of related boundary conditions. The solution of the scattered velocity168

potential in region Ω2 can be constructed by the following expression169

ΦS
2 = − igA

ω
f(z, h)e−iωt

{

L
∑

l=0

A1
l cos(lθ)Hl(kr) +

L
∑

l=1

A2
l sin(lθ)Hl(kr)

}

,

(20)

which satisfies the Laplace equation (1), boundary conditions (2) and (3),170

and the Sommerfeld radiation condition (10) for all A1
l and A2

l , where Hl is171

the Hankel functions of the first kind, and A1
l and A2

l are unknown complex172

coefficients.173

Similarly, the solution of the velocity potential in the interior region Ω1174

can be constructed as175

Φ1 = − igA

ω
f(z, h)e−iωt

{

L
∑

l=0

B1
l cos(lθ)Jl(kr) +

L
∑

l=1

B2
l sin(lθ)Jl(kr)

}

,

(21)

where B1
l and B2

l are unknown complex coefficients.176

Substituting (18), (20) and (21) into the body boundary conditions (8) and177

(11), and noting the orthogonality property of the trigonometric functions, we178

have179

B1
l J ′

l (ka) = ψ′
l(kxa, kya)/k + A1

l H
′
l(ka), (22)

B2
l J ′

l (ka) = A2
l H

′
l(ka), (23)

L
∑

l=0
[B1

l Jl(ka) − A1
l Hl(ka) − ψl(kxa, kya)] cos(lθ)

+
L
∑

l=1
[B2

l Jl(ka) − A2
l Hl(ka)] sin(lθ)

= 1
iG(θ)

{

L
∑

l=0
B1

l J ′
l (ka) cos(lθ) +

L
∑

l=1
B2

l J ′
l (ka) sin(lθ)

}

(G 6= 0),(24)

where the prime denotes the derivative with respect to r.180

It should be noted that (24) is not appropriate when G = 0. However, if181

a very small value (e.g. 1e−12) is assigned to G(θ), representing the case of182

impermeable wall, (24) still applies and leads to highly accurate results.183
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8 Tao et al.

From (22) and (23), we have184

B1
l =

ψ′
l(kxa, kya) + kH ′

l(ka)A1
l

kJ ′
l (ka)

, l = 0, 1, 2, . . . , L, (25)

B2
l =

H ′
l(ka)

J ′
l (ka)

A2
l , l = 1, 2, . . . , L. (26)

Multiplying both sides of (24) by cos(jθ) (j = 0, 1, 2, . . . , L) and sin(jθ)185

(j = 1, 2, . . . , L), integrating with respect to θ from 0 to 2π, and further186

simplifying by the orthogonality property of the trigonometric functions, the187

following set of linear equations is obtained.188

DA + EB + C = 0, (27)

in which189

A = [A1
0, A

1
1, · · · , A1

L, A2
1, · · · , A2

L]T , (28)

B = [B1
0 , B1

1 , · · · , B1
L, B2

1 , · · · , B2
L]T , (29)

C = −QΨ, (30)

D = −QH, (31)

E = QJ + iSJ′, (32)

Q = diag[2π, π, π, · · · , π], (33)

H = diag[H0(ka),H1(ka), · · · ,HL(ka),H1(ka), · · · ,HL(ka)], (34)

Ψ = diag[ψ0(kxa, kya), ψ1(kxa, kya), · · · , ψL(kxa, kya), 0, · · · , 0], (35)

J = diag[J0(ka), J1(ka), · · · , JL(ka), J1(ka), · · · , JL(ka)], (36)

J′ = diag[J ′
0(ka), J ′

1(ka), · · · , J ′
L(ka), J ′

1(ka), · · · , J ′
L(ka)], (37)
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Sjl =























∫ 2π
0

1
G(θ) cos(jθ) cos(lθ)dθ 0 ≤ j ≤ L, 0 ≤ l ≤ L,

∫ 2π
0

1
G(θ) cos(jθ) sin(l − L)θdθ 0 ≤ j ≤ L,L + 1 ≤ l ≤ 2L + 1,

∫ 2π
0

1
G(θ) sin(j − L)θ cos(lθ)dθ L + 1 ≤ j ≤ 2L + 1, 0 ≤ l ≤ L,

∫ 2π
0

1
G(θ) sin(j − L)θ sin(l − L)θdθ L + 1 ≤ j ≤ 2L + 1, L + 1 ≤ l ≤ 2L + 1,

,

(38)

where “diag” denotes a diagonal matrix with the elements in the square190

brackets on the main diagonal.191

(25), (26) and (27) constitute a set of linear equations for A1
l , A2

l , B1
l ,192

and B2
l . Once the values of these coefficients are obtained, all the physical193

quantities can be calculated accordingly.194

2.3. PHYSICAL QUANTITIES195

The elevations in the interior and exterior regions are196

η1 = A

{

L
∑

l=0

B1
l Jl(kr) cos(lθ) +

L
∑

l=1

B2
l Jl(kr) sin(lθ)

}

, (39)

η2 = A

{

L
∑

l=0

[ψl(kxr, kyr) + A1
l Hl(kr)] cos(lθ) +

L
∑

l=1

A2
l Hl(kr) sin(lθ)

}

.

(40)

The pressures on the boundary (interior and exterior) are197

p1 = ρgAf(z, h)e−iωt

{

L
∑

l=0

B1
l Jl(ka) cos(lθ) +

L
∑

l=1

B2
l Jl(ka) sin(lθ)

}

,

(41)

p2 = ρgAf(z, h)e−iωt

{

L
∑

l=0

[ψl(kxa, kya) + A1
l Hl(ka)] cos(lθ) +

L
∑

l=1

A2
l Hl(ka) sin(lθ)

}

.

(42)

The total force per unit length in the direction of s (s = x, y) is198

dFs

dz
= a

[
∫ 2π

0
(p1 − p2) · ϕsdθ

]

= Ps(kx, ky, k, a) · ρgaA · f(z, h)e−iωt,

(43)

where the function Ps(kx, ky, k, a) is a nondimensional parameter of dFs

dz199

without the constant term ρgaA · f(z, h)e−iωt, and200
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10 Tao et al.

ϕx = cos(θ), ϕy = sin(θ). (44)

By the orthogonality of the trigonometric functions, only the term l = 1201

in the series (41) and (42) remains, so that the function Ps(kx, ky, k, a) can202

be expressed explicitly as203

Px(kx, ky, k, a) = π ·
[

B1
1J1(ka) − ψl(kxa, kya) − A1

1H1(ka)
]

, (45)

Py(kx, ky, k, a) = π ·
[

B2
1J1(ka) − A2

1H1(ka)
]

. (46)

The function Ps(kx, ky, k, a) determines the first-order total force in s204

(s = x, y) direction on the perforated cylindrical structure, Fs, which can205

be obtained by integrating (43) with respect to z,206

Fs =

∫ 0

−h

dFs

dz
dz = Ps(kx, ky, k, a) · ρghaAe−iωt · tanh(kh)/kh. (47)

The total moments about an axis parallel to the y and x axis passing207

through the bottom of the cylindrical structure respectively are208

My =
∫ 0
−h(z + h)dFx

dz dz = Px(kx, ky, k, a)ρgh2aAe−iωtZ(kh), (48)

Mx = −
∫ 0
−h(z + h)

dFy

dz dz = −Py(kx, ky, k, a)ρgh2aAe−iωtZ(kh),(49)

where209

Z(kh) = [kh tanh(kh) + sech(kh) − 1]/(kh)2. (50)

It is noted from (47) - (49) that only the function Ps(kx, ky, k, a) needs to210

be determined in order to derive all the subsequent results.211

2.4. LIMITING CASE212

For uniform porous cylinder, i.e. G(θ) = G0, matrix S becomes a diagonal213

matrix and the solution can be expressed explicitly as214

A1
l = − iπkaG0[ψlJ

′
l (ka) − ϕ′

lJl(ka)/k] + πaϕ′
lJ

′
l (ka)

2G0 + πkaJ ′
l (ka)H ′

l(ka)
, (51)

B1
l =

−iπkaG0[ψlH
′
l(ka) − ϕ′

lHl(ka)/k]

2G0 + πkaJ ′
l (ka)H ′

l(ka)
, (52)

A2
l = B2

l = 0. (53)
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Wave interaction with a perforated circular breakwater of non-uniform porosity 11

3. Results and Discussion215

Fig. 2 shows the variations of wave amplification factor (|η|/A) at the origin216

r = 0 (left) and nondimensional wave forces on the breakwater (right) vs.217

ka, where Figs. 2(a) and 2(d) correspond to the case of a breakwater with218

a uniform porosity (G0 = 1), and Figs. 2(b & e) and 2(c & f) correspond219

to the cases of a breakwater with a partial solid wall and a partial opening220

respectively at 175◦ < θ < 185◦ with the balance of the porosity remaining221

at G0 = 1. Cases comprising of five different wave spread angles at β = 0,222

π/8, π/4, 3π/8, and π/2 (where β = arctan(ky/kx)) are calculated and223

the results are plotted. As can be seen in Fig. 2(a), all the curves represent-224

ing wave amplification factors of different wave spread angles coincide with225

one another. This is a clear indication that the wave amplification factor at226

origin is independent of the wave spread angle β for breakwaters with a227

uniform porosity. The wave amplification factor at origin is seen to decrease228

monotonically from 1 to approximately half as ka increases up to about 2.2,229

and then increase monotonically to about 1 before ka reaches around 3.8230

and afterwards fluctuate again. As shown in Fig. 2(b), the variation of wave231

amplification factor for a breakwater with a partial solid wall is very similar232

to that of a breakwater with a uniform porosity. However, waves of different233

β values result in slightly different amplification factors. It is seen that a234

standing wave (β = π/2) tends to result in the highest amplification factor235

whilst the incident short-crested wave with kx = ky produces the lowest236

amplification factor for a large range of ka. As indicated in Fig. 2(c), the237

variation of amplification factor for the breakwater with a partial opening238

is similar to that for the breakwater with a uniform porosity at large ka. A239

distinct feature of the variation of amplification factor is that an additional240

peak is clearly observed for each short-crestedness at around ka = 0.2, and241

the maximum amplification factor at origin is about 1.15. Furthermore, as242

one would expect, a plane wave is seen to result in the highest amplification243

factor, while a standing wave tends to result in its lowest value for ka ≤ 3.244

For a breakwater with a uniform porosity, the nondimensional wave force245

in the direction of wave propagation (Figs. 2(d)-2(f)), decreases as the short-246

crestedness increases. In fact, the wave force becomes zero when the short-247

crestedness arrives at its maximum value (i.e., standing waves), since the248

configuration is symmetric about the y-axis. Peaks and troughs occur at ap-249

proximately the same ka value for different short-crestedness. However, for250

the breakwater with a partial solid wall (Fig. 2(e)) or an opening (Fig. 2(f)),251

the wave forces induced by a standing wave are no longer zero, since now252

the configuration is nonsymmetric about the y-axis and the peaks and troughs253

for different short-crestedness tend to occur at slightly different values of ka.254

More specifically, the peaks and troughs occur at larger ka for the partial255

solid wall, while they occur at smaller values of ka for the opening. Due to256
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the asymmetry in the configuration, the breakwater with a partial solid wall257

yields the largest wave force and the one with a partial opening gives the258

smallest wave force, except for the case of standing incident wave.259

Fig. 3 shows the influence of the porosity on the wave amplification factor260

at the origin r = 0 (left) and wave forces on the breakwater (right) for a break-261

water with uniform porosity G0, a partial solid wall and a partial opening at262

175◦ < θ < 185◦ with porosity of the remaining part G0. As can be seen from263

Figs. 3(a)-3(c), wave spreading angles have little effect on the amplification264

factor for all the breakwater configurations. The amplification factors at origin265

increase monotonically towards their asymptotic values. Also, Figs. 3(d)-3(f)266

show that a larger wave spreading angle clearly results in a smaller wave force267

except for the case of standing incident waves.268

Many coastal and offshore structures are commonly designed with non-269

uniform porosity along the circumferential direction. Fig. 4 shows the wave270

amplification factor at the origin and wave forces vs. opening area angle for271

breakwaters with a partial solid wall (left) and a partial opening (right) located272

at θ = 180◦, and the porosity of the remaining part at G0 = 1. For the break-273

water with a partial solid wall (Fig. 4(a)) the amplification factors at origin274

generally decrease monotonically as the angle of the solid area increases with275

largest value for a standing wave, and reaches zero at θ ≈ 345◦. For the276

case of partial opening, Fig. 4(c) shows that the amplification factor at origin277

initially increases to a peak at the opening area reaching approximately half of278

the circumference then decreasing to 1 with increasing opening area angle. A279

plane incident wave is clearly seen to produce the largest amplification factor,280

while a standing wave generates the smallest. It clearly indicates that more281

surface disturbance occurs within the interior for the opening area angle in282

the range of 180◦ ∼ 360◦ depending on the short-crestedness of the incident283

waves.284

As clearly shown in Figs. 4(b) and 4(d), a general trend of increasing285

wave forces with decreasing short-crestedness is observed for breakwaters286

with either a partial solid wall or an opening. Though fluctuating with the287

solid or opening area angles, larger wave forces occur for the breakwater288

with a partial solid wall than that with uniform porosity without the solid289

part, while the breakwater with an opening tends to experience smaller wave290

forces. The largest wave forces occur when the solid area angle varies in the291

neighbourhood of 180◦ for a plane incident wave. As the short-crestedness292

increases, the wave force for the breakwater with a partially solid wall peaks293

for the breakwater with a larger proportion of solid wall. In contrast, for294

the breakwater with a partial opening, the largest wave force always occurs295

at zero opening area, i.e., the breakwater of uniform porosity without any296

opening.297

Fig. 5 shows the variation of wave amplification factor at the origin and298

wave forces on the breakwater for the cases of breakwaters with a partial solid299
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Figure 2. Variation of wave amplification factor at r = 0 (left) and nondimensional wave

force on the breakwater (right) with porosity G0 = 1 vs. ka.
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Figure 3. Variation of wave amplification factor at r = 0 (left) and nondimensional wave

force on the breakwater (right) at ka = 1 vs. G0.
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Figure 4. Variation of wave amplification factor at r = 0 and nondimensional wave force on

the breakwater with solid (left) or opening (right) centre at θ = 180
◦, ka = 1 and G0 = 1

vs. solid or opening area angle.

wall (left) and a partial opening (right) vs. their centre location with a solid300

or an opening area angle of 10◦ with the remaining part at G0 = 1. As the301

location of the solid or opening centre varies, the amplification factor fluctu-302

ates whilst the largest amplification factor is often induced by either plane303

or standing incident waves. At some positions, different short-crestedness304

results in almost the same amplification factor (e.g., 70◦ for breakwater with305

a solid wall, and 40◦ and 120◦ for breakwater with an opening). As for the306

wave forces in the x direction, the earlier observations about smaller short-307

crestedness and solid wall inducing larger wave forces still hold. However,308

the variation of the location of the solid or opening centre does not affect the309

magnitude of the inline force much. When the solid or opening centre are at310

θ = 90◦, the breakwater becomes symmetric along the y axis leading to zero311

wave force in the x direction due to standing waves. The wave force in the312
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y direction is rather small compared to its counterpart in the x direction, and313

the largest wave force often occurs in either plane or standing incident waves.314

Fig. 6 shows equi-amplitude (left) and equi-phase (right) contours for the315

interior region of the breakwater generated by incident plane, short-crested,316

and standing waves corresponding to the wave spreading angles β = 0, π/4317

and π/2 respectively. The breakwater has a partial opening at 175◦ < θ <318

185◦, and porosity of the remaining part is at G0 = 1. Also wave number319

k = 1 m−1 and a = 5 m. It can be seen that the wave patterns for short-320

crested and standing incident waves are much more complex than the one for321

plane incident waves. The surface elevation within the breakwater is seen to322

decrease as β increases. In addition to symmetry to the x-axis, wave elevation323

pattern due to a standing wave is seen almost symmetric to the y-axis as324

well. In this case, the slightly asymmetry to the y-axis is introduced by the325

small opening. The thick lines in phase contours represent changes from π326

to −π. The amphidromic points, where equi-phase lines converge and the327

wave amplitude vanishes, clearly form for short-crested and standing inci-328

dent waves. The phases near two adjacent amphidromic points rotate from329

−π to +π clockwise and counter-clockwise around the points respectively.330

For the standing incident wave component, the amplitudes in the transverse331

directions are small compared to their inline values, with a faster variation in332

the corresponding phase contours.333

4. Conclusions334

A general 3D short-crested wave interaction with a porous cylindrical break-335

water is studied analytically by linear potential wave theory. Three basic con-336

figurations of the breakwater are investigated. The performance of the break-337

water is examined by the effects of short-crested wave parameters, structural338

porosity, and the angle and position of the partial impermeable wall and open-339

ing on wave amplification factor, wave forces, and wave elevation contours.340

It is found that by making the porosity nonuniform, the amplification factor,341

wave forces, and elevation contours become more complex than its counter-342

part of uniform porosity. Incident waves with smaller short-crestedness along343

with solid walls generally result in larger wave forces, whilst an opening344

on the breakwater and limiting incident waves, i.e. plane or standing waves345

clearly lead to larger amplification factors within the breakwater. The effect346

of the location of the solid or opening centre appears to be insignificant on347

the inline wave force (Px), but rather significant on the transverse wave force348

(Py). However, since Py is one order smaller than Px, we can conclude that349

the wave force is insensitive to the location of the solid or opening centre. Due350

to asymmetrical geometry, wave forces induced by standing incident waves351
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Figure 5. Variation of wave amplification factor at r = 0 and nondimensional wave force on

the breakwater with solid (left) or opening (right) area angle 10
◦ at ka = 1 and G0 = 1 vs.

the location of the solid or opening centre.
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Figure 6. Equi-amplitude (left) and Equi-phase (right) contours for incident short-crested

wave with short-crestedness angles β = 0, π/4, π/2 and k = 1 m−1, and breakwater with

partial opening at 175
◦ < θ < 185

◦, a = 5 m, and porosity G0 = 1.
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are no longer zero. Here the component in the direction perpendicular to the352

incident wave may come forth, though the magnitude is normally small.353

It is hoped that the analysis presented and the results of the parametric354

study in the paper will be found useful in the design of coastal and offshore355

structures. They should be useful in selecting a suitable circular breakwater356

for a particular application.357
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