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Abstract

In the present study, we solved the problem of diffraction in water waves with consists of a pair of vertical cylinders in 
a channel having finite width. It consists of a partially submerged floating hollow cylinder place above a fixed coaxial 
bottom-mounted obstacle. With the help of matched eigenfunction expansion, channel multipole and variables sepa-
ration methods, the analytical expression of potentials are obtained. Using these analytical expressions of diffracted 
velocity potentials, we can derive the expressions of exciting forces exerted by the cylinders. The influence of various 
parameters viz draft of the hollow cylinder, radius of the cylinders, the gap between the cylinders and the width of the 
channel walls on the exciting forces have been investigated. The results have been validated by comparing our results 
with available results. All the observations are validated through suitable graphs.
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1 Introduction

Numerous hypothetical investigations have been per-
formed to dissect the diffraction and radiation of water 
waves on a structure. Bharatkumar et al. [1] computed the 
first order forces and pressure on a pair of circular cylinders 
in a channel by using the Green’s function method and 
the method of images. Bhatta and Rahman [2] solved the 
problem of diffraction and radiation to the water waves by 
a circular cylinder in uniform water depth. Bhattacharjee 
and Soares [4] calculated wave induced force acting on a 
floating rectangular structure placed in front a vertical wall 
in water of step type bottom. Buffer and Thomas [3] used 
multipole method to compute reflection and transmission 
coefficients for an array of cylinders in a channel. Hassan 
and Bora [5, 6] analyzed the diffraction problem by a cou-
ple of vertical cylinders. They evaluated the forces acting 
on the cylinders for various draft and radii of the cylinders. 

Kashiwagi [7] used three dimensional Green’s function 
method to solve the problem of water waves by offshore 
structure in a channel. Kashiwagi [7] has also processed 
mean second-order drift forces on four truncated cylinders 
orchestrated in a square and contrasted his outcomes and 
exploratory information. Linton [8], Linton and Evans [9] 
and Mclver and Bennett [12] applied multipole expansions 
method to solve the diffraction along with radiation prob-
lems of water wave by a cylinder in a channel. Martins-
rivas and Mei [10] given linearized theory of an oscillating 
water column (OWC) on a straight coast. They evaluated 
the coefficients of apparent mass and radiation damp-
ing, and the chamber pressure. Martins-rivas and Mei [11] 
given the theoretically investigation of a single oscillating 
water column (OWC) situated at the tip of a long and thin 
breakwater. Neelamani et al. [14] approach the same prob-
lem who compared the experimental results with the the-
oretical results for a specific case of two circular cylinder. 
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Thomas [15] utilized the image method to solve scattering 
and radiation problems for a single vertical circular cylin-
der in a channel. Thorne [16] derived multipoles in two 
and three dimensions which allow the clear arrangement 
of numerous issues. MacCamy and Fuchs [13] solved the 
diffraction problem by a vertical cylinder of discretionary 
water depth and derived analytical solution of diffracted 
potential. This solution is as yet utilized as a building con-
figuration code. Wu et al. [17, 18] discussed the hydrody-
namic coefficients and wave exciting force on a float over 
an arched body whose radius was smaller or larger than 
that of the float. Yeung and Sphaier [19] used the image 
method to solve scattering and radiation problems for 
a vertical circular cylinder in a channel, at times stretch-
ing out all through the whole water profundity. Zhu and 
Mitchell [20] solved the problem of diffraction of ocean 
wave by a hollow cylinder in an ocean of uniform depth 
and they used Galkerin’s method to find the analytical 
solution of this problem. Zheng et al. [21] investigated the 
fulfilment of an oscillating water column(OWC) over a ver-
tical structure in uniform water depth. the have valodated 
their results and then model is used to study the effect of 
the thickness of the chamber wall and the radius.

The study of the diffraction problem by a fixed structure 
can provide fundamental information about wave force 
on the structure. Our present investigation is also deal-
ing with the diffraction problem by cylinderical stuctures 
which are placed on the centreline between the channel 
walls. It is thus important to understand the elucidation of 
the results of the wave tank testing of the offshore struc-
tures. Also it is necessary to evaluate how the tank walls 
impacts on quantities such as hydrodynamic forces on 
a fixed structure. In this paper, we consider two coaxial 
cylindrical structures in a channel of finite width, the upper 
one is partially submerged floating hollow cylinder which 
can be considered as oscillating water column (OWC) and 
the lower one is solid bottom-mounted obstacle which 
can be assumed solid cylindrical structure. The method to 
solve this problem is based on the construction of suitable 
multipoles for the channel problem which was developed 
by Linton and Evans [9]. Thus, when we consider a channel 
of water of uniform depth H and width 2d of channel walls, 
then suitable multipoles satisfy the Laplace’s equation in 
our identified fluid region.

2  Mathematical model

We consider a pair of coaxial cylinders placed in an infinitely 
long channel of finite width 2d and depth of water is H. The 
pair of cylinders consists of one hollow cylinder which is 
partially merged in water and one solid cylinder which is 
bottom mounted. We also consider the radius of hollow 

cylinder is r
1
 and the radius of bottom-mounted solid cylin-

der is r
2
(r
1
≤ r

2
< d) . Cartesian axes (x, y, z) are considered 

with x-axis taken parallel to the channel walls and z− axis 
taken vertically upward. The origin is chosen at O which lies 
on the centreline of the channel walls in the mean of the 
undisturbed free surface of water as shown in Fig. 1. The 
polar coordinates r and � are defined by

The regions are occupied by the hollow cylinder is 
given by r < r1, 0 ≤ 𝜃 < 2𝜋, −e1 ≤ z ≤ 0 and occu-
pied by the bottom-mounted cylinder is given by 

r < r2, 0 ≤ 𝜃 < 2𝜋, −H ≤ z ≤ −h2.
By considering the linear water wave theory, the time 

harmonic velocity potential �(x, y, z, t) can be written as

where i is an imaginary unit which is defined by its prop-
erty i =

√

−1 , t represents the time, � is the angular fre-
quency whereas Re represents the real part of the complex 
quantity in bracket and �(x, y, z) be the spatial portion 
of the total potential satisfied to the following Laplace 
equation:

Then the total velocity potential can be written as

where �
inc

 and �d are velocity potential due to incident 
wave and diffracted wave with the cylindrical structure, 
respectively. We divide the whole fluid region into three 
physical regions, namely I, II and III as indicated in Fig. 1. 
Let the velocity potentials in regions I, II and III are �I

d
 , �II

d
 

and �III

d
 , respectively.

(1)x = r cos � and y = r sin �.

(2)�(x, y, z, t) = Re[�(x, y, z)e−i�t],

(3)
�2�

�x2
+

�2�

�y2
+

�2�

�z2
= 0.

(4)� = �inc + �d ,

Fig. 1  Schematic of the device
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Using separation of variable method, we obtain the verti-
cal eigenfunctions for each region as shown in Fig. 1 and can 
be expressed as follows

where M
m
=

1

2

(

1 +
sin 2�

m
H

2�
m
H

)

 and N
m
=

1

2

(

1 +
sin 2�

m
h
2

2�
m
h
2

)

 

and the eigenvalues �
m

 and �
m

 can be determined from 
the following dispersion relations

with k is the wave numbers in region I, k′ is the wave num-
ber in II and III regions and the gravitational acceleration 
is g. Therefore the potential � describing the diffraction 
wave field which satisfy the following Helmholtz equation

in the fluid region I as shown in Fig. 1.
The analytical expression of potential due to incident 

wave with unit amplitude from [13]

where Bessel function of the first kind is J
m
(.) , and �

m
 is 

written by

3  The governing equation of the problem

The diffracted velocity potential �d(x, y, z) fulfills the follow-
ing governing equation and the boundary conditions

(5)fm(z) = M
−1∕2
m cos[�m(z + H)], for the region I,

(6)
gm(z) = N

1∕2
m cos[�m(z + h2)], for the region II and III,

(7)

{

�0 = −ik, �
2 = gk tanh(kH), m = 0

�
2 = −g�m tan(�mH), m = 1, 2, 3,… ,

(8)

{

�0 = −ik�, �
2 = gk� tanh(kh2), m = 0

�
2 = −g�m tan(�mh2), m = 1, 2, 3,… ,

(9)
�2�

�x2
+

�2�

�y2
− �2

m
� = 0

(10)�inc = −
ig cosh k(z + H)

� cosh(kH)

∞
∑

m=0

�mJm(kr) cosm�,

(11)𝜇
m
=

{

1, m = 0

2im, m > 0

(12)
∇2𝜙d = 0,

(−H < z < 0, −∞ < x < ∞, −d < y < d),

(13)
��d

�z
−

�2

g
�d = 0; (z = 0),

(14)
��d

�z
= 0; (z = −H, r ≥ r2; z = −h2, r ≤ r2),

3.1  Matching conditions

To proceed in order to determine the unknown coefficients 
of the expression of velocity potentials, we introduce the 
proper matching conditions to preserve continuity fluid 
motion along the seeming interface and cylinder’s bounda-
ries as indicated in Fig. 1. Therefore, at r = r

2
 , we have

At r = r
1
 , we have

4  Solution to the problem

To find the analytical expression for the velocity potential 
in region I, we apply the channel multipoles method given 
by Linton and Evans [9] and to find the velocity potential for 
the regions II and III, we use separation of variables method. 
Hence, the solution of the boundary-value problem for dif-
ferent regions based on the result of Linton and Evans [9] 
and Wu et al. [17] are given by

(15)

𝜕(𝜙d + 𝜙inc)

𝜕r
= 0;

(−e1 < z < 0, r = r1; − H < z < −h2, r = r2),

(16)
��d

�y
= 0; (y = ±d),

(17)lim
r→∞

√

r

�

��d

�r
− ik�d

�

= 0.

(18)�I

d
= �II

d
(−h2 ≤ z ≤ 0),

(19)
��I

d

�r
=

{

−
��inc

�r
(−H ≤ z ≤ −h2),

��II

d

�r
(−h2 ≤ z ≤ 0).

(20)�II

d
= �III

d
(−h2 ≤ z ≤ −e1),

(21)
��II

d

�r
=

{

��III

d

�r
(−h2 ≤ z ≤ −e1),

−
��inc

�r
(−e1 ≤ z ≤ 0).

(22)
�I
d
=

∞
∑

n=0

∞
∑

m=0

∞
∑

q=0

fm(z)Aq,m

[

Un(�mr)�qn

+E(n, q;m)Vn(�mr)
]

cos n�,

(23)
�II
d
= −�inc +

∞
∑

n=0

∞
∑

m=0

[

Bn,mSn(�mr)

+Cn,mTn(�mr)
]

gm(z) cos n�,
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where the eigenvalues �
m

 and �
m

 are given by Eqs. (7), (8) 
and A

n,m , B
n,m , C

n,m and D
n,m are the unknown coefficients 

which to be determined by applying appropriate match-
ing conditions. The radial functions U

n
(�

m
r) , V

n
(�

m
r) , S

n
(.) 

and T
n
(.) are given by

(24)

�III
d
= −�inc +

∞
∑

n=0

[

Dn,0Jn(k
�r)g0(z)

+

∞
∑

m=1

Dn,mIn(�mr)gm(z)

]

cos n�,

Therefore the parameter E(.,  .;  .) appeared in Eq. (22) is 
given by

and

where the integral for m = 0 is taken to be a principal 
value of integral for all the singularities which satisfies the 
Helmholtz equation (9) and also integrand considered 
as a function of complex variable z, has simple poles at 
k�d = ±j�i, j = 0, 1, 2,… , i.e. at z = ±zj we have

where l𝜋 < kd < (l + 1)𝜋.

5  Wave force

The dynamic fluid pressure in terms of velocity potential 
can be derived from Bernoulli’s equation of continuity 
which is given by

(32)a2n(z) =

{

cos(2n sin
−1

z), z ≤ 1

(−1)
n
cosh(2n cosh

−1
z), z > 1,

(33)a2n+1(z) =

{

cos (2n + 1) sin
−1

z, z ≤ 1

i(−1)
n
sinh[(2n + 1) cosh

−1
z], z > 1,

(34)b2n+1(z) =

{

sin[(2n + 1) sin
−1

z], z ≤ 1

(−1)
n
cosh[(2n + 1) cosh

−1
z], z > 1.

(35)E(2p, 2n;m) =

⎧
⎪⎪⎨⎪⎪⎩

−
2i�p

� �
∞

0

e−k�da2p(z)a2p(z)

� sinh k�d
dz +

�p

kd

�l

j=0
�jz

−1

j
a2p(zj)a2n(zj), m = 0

�p �
∞

1

e−�mdza2p(z)a2n(z)

� sinh �mdz
dz, m ≥ 1

(36)E(2p + 1, 2n + 1;m) =

⎧
⎪⎪⎨⎪⎪⎩

−
4i

� �
∞

0

e−k�db2p+1(z)b2n+1(z)

� sinh k�d
dz +

2

kd

�l

j=0
�jz

−1

j
b2p+1(zj)b2n+1(zj), m = 0

2�
∞

1

e−�mdza2p+1(z)a2n+1(z)

� sinh �mdz
dz, m ≥ 1

E(2p, 2n + 1;m) = E(2p + 1, 2n;m) = 0 for all m

zj = (1 − (j�∕kd)2)
1∕2

, j = 0, 1, 2,… , l

zj = i((j�∕kd)2 − 1)
1∕2

, j ≥ l + 1

(37)P(r, �, z, t) = − �
��(r, �, z, t)

�t
,

where H(1)
n (.)and H(2)

n (.) are the Hankel functions of first kind 
and second kind of order n, respectively and the modified 
Bessel functions of first and second kind of order n are I

n
(.) 

and K
n
(.) , respectively. Since based on the result of Linton 

and Evans [9] to construct the channel multipoles for the 
region I, we have the following functions

(25)
Un(�mr) = H

(1)

n
(kr),

Vn(�mr)(r) = Jn(kr) for m = 0,

(26)
U
n
(�

m
r) =K

n
(�

m
r),

V
n
(�

m
r) =I

n
(�

m
r) for m = 1, 2, 3,… ,

(27)Sn(�mr) =H
(1)

n
(k�r), for m = 0,

(28)S
n
(�

m
r) =K

n
(�

m
r), for m = 1, 2,… ,

(29)T
n
(�

m
r) =H(2)

n
(k�r), for m = 0,

(30)T
n
(�

m
r) =I

n
(�

m
r), for m = 1, 2,… ,

(31)𝜁(z) =

{

−i(1 − z)1∕2, z ≤ 1

(z2 − 1)
1∕2

, z > 1,
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where � is the uniform fluid density. Since wave exciting 
forces are commonly corresponding to the consolidated 
activity of incident potential �

inc
 and diffraction’s potential 

�d . Suppose F
i
 and Fd are the horizontal force due to the 

incoming and diffraction potentials, respectively. Hence 
the total force denoted by F

s
 and given by

Now the horizontal force component F
i1

 corresponding 
to incident potential and Fd2 due to diffracted potential 
acting on the upper cylinder along the x-direction are 
obtained as

and

where e
2
= h

2
− e

1
 i.e. gap between the cylinders as shown 

in Fig. 1. Now by using Eqs. (38), (40) and (42), we can 
derived the total horizontal force F

s1
 exerted by the upper 

cylinder and it can be given by

The non-dimensional horizontal force exerted by the float-
ing cylinder can be obtained divide by u

0
= �g�r

1
2 to F

s1
 

and it is given by

(38)Fs =Fi + Fd .

(39)Fi1 =i��∫
2�

0
∫

0

−e1

�inc(r1, �, z)r1 cos �d�dz,

(40)or Fi1 = −
2�i�gr1J1(kr1)

cosh(kH)

sinh(kH) − sinh[k(H − e1)]

k

(41)Fd2 =i��∫
2�

0
∫

0

−e1

�II

d
(r1, �, z)r1 cos �d�dz,

(42)

or Fd2 =
2�i�gr1J1(kr1)

cosh(kH)

sinh(kH) − sinh[k(H − e1)]

k

− i���r1

∞
∑

m=0

N
−1∕2
m ×

[

B1,mS1(�mr1) + C1,mT1(�mr1)
] sin(�mh2) − sin(�me2)

�m

,

(43)

Fs1 = −i���r1

∞
∑

m=0

N
−1∕2
m

[

B1,mS1(�mr1)

+C1,mT1(�mr1)
] sin(�mh2) − sin(�me2)

�m

.

(44)

Fs1∕u0 =
−i�

gr1

∞
∑

m=0

N
−1∕2
m

[

B1,mS1(�mr1)

+C1,mT1(�mr1)
] sin(�mh2) − sin(�me2)

�m

.

The exciting force Fd3 acting on the inner wall of the upper 
cylinder due to the diffracted potential �III

d
 in region III can 

be expressed as

 Similarly, we derived the expression for the total horizon-
tal force F

s2
 exerted by the bottom-mounted cylinder due 

to diffracted velocity potential �I

d
 and incident velocity 

potential �
inc

 in region I and it can written as

In order to make it non-dimensionalized, we divide by 

u
1
= �g�r2

2
 to F

s2
 , which gives

6  Numerical results and conclusion

From the above discussions, we have seen that to get hori-
zontal exciting forces, we have to evaluate the associated 
unknown coefficients appearing in the expressions of 
potentials given by the Eq. (22–24) with the help of match-
ing conditions (18–21). As every expression of potential is 
found to be a series with infinite terms, therefore, calculate 
the corresponding values, we must be truncated appro-
priately after some terms. For our convenience, let us trun-
cate all the infinite series into a limited number of terms 
by assuming M = 30 . Proceeding in this way, we arrived at 
a system of simultaneous linear equations with aforesaid 
unknown coefficients. Then the solutions of these 
unknown coefficients corresponding to above system of 
linear equations are obtained by using MATLAB program-
ming. Once found the unknown coefficients, then the 
velocity potentials allow to find the exciting forces exerted 

(45)

Fd3 =
2�i�gr1J1(kr1)

cosh(kH)

sinh(kH) − sinh[k(H − e1)]

k

− i���r1

∞
∑

m=0

N
−1∕2
m

× D1,mI1(�mr1)
sin(�mh2) − sin(�me2)

�m

.

(46)

Fs2 = −i���r2

∞
∑

m=0

∞
∑

q=0

Aq,mM
−1∕2
m

[

U1,m(�mr2)�q,1

+E(1, q;m)V1,m(�mr2)
]

×

sin �m(H − h2)

�m
.

(47)

Fs2∕u1 =
−i�

gr2

∞
∑

m=0

∞
∑

q=0

Aq,mM
−1∕2
m

[

U1,m(�mr2)�q,1

+E(1, q;m)V1,m(�mr2)
]

×
sin �m(H − h2)

�m

.
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by the cylinder. We discussed the influence of the various 
parameters like radius, draft of cylinder (submerged part), 
the gap between the cylinders and mainly width of the 
channel walls on the exciting forces. Let us consider the 
values of the parameters throughout our calculations as 
H = 3 m, g = 9.807 m/s2 and e

2
= 0.25H . For fixed r1 = 0.2H, 

we proceed to study the effect on the horizontal exciting 
force of the floating cylinder due to the radius of the lower 
cylinder. In Fig. 2, we plot F

s1
∕u

0
 against kr

1
 taking distinct 

values of radius to the bottom-mounted cylinder say 

r2 = 0.2H, 0.3H, 0.4H, 0.5H, 0.6H . From Fig. 2, we saw that 

no oscillation happens for those value of r
2
 when r

2
>

1

2
d . 

Also we observed oscillation for higher value of r
2
 , e.g. 

r
2
= 0.2H and 0.3H in which case r

2
≤

1

2
d . It is likewise seen 

that the oscillation, at whatever point they happen, just at 

lower values of k. Again when r
2
≤

1

2
d , it is seen that peak 

value of exciting force occurs at more than one points. For 
all values of r

2
 , the exciting force attains its most extreme 

value only at lower range of k. For higher value of k, the 
force relentlessly lesser achieving right around zero. It is to 
be noted that when the radius of lower cylinder increases, 
the force exerted by cylinder is decreases. Next we inves-
tigate the effect of width of the channel walls on the excit-
ing forces on the upper and lower cylinders. Here we fixed 
the parameters r2, r1 and e

1
 by choosing r2 = 0.4H, r1 = 0.2H 

and e
1
= 0.1H . In Figs. 3 and 4, we plot F

s1
∕u

0
 and F

s2
∕u

1
 

against kr
2
 , respectively, for different values of width of 

channel walls, d = 0.5H, 0.6H, 0.7H . From Fig.  3, we 

Fig. 2  Variation of dimensionless horizontal exciting force F
s1
∕u

0
 

versus dimensionless wave number kr
1
 for different radii of the 

lower cylinder r
2
 with e

1
= 0.1H , r

1
= 0.2H , d = 0.8H

Fig. 3  Variation of dimensionless horizontal exciting force F
s1
∕u

0
 

versus dimensionless wave number kr
2
 for different width of the 

channel walls d with r
1
= 0.2H , r

2
= 0.4H , e

1
= 0.1H

Fig. 4  Variation of dimensionless horizontal exciting force F
s2
∕u

1
 

versus dimensionless wave number kr
2
 for different width of the 

channel walls d with r
1
= 0.2H , r

2
= 0.4H , e

1
= 0.1H

Fig. 5  Variation of dimensionless horizontal exciting force F
s2
∕u

1
 

versus dimensionless wave number kr
2
 for different radius of the 

hollow cylinder r
1
 with e

1
= 0.1H , r

2
= 0.4H , d = 0.6H
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observed that the values of the exciting force increases 
with width of the channel walls decreases and Fig. 4 show 
that similar effect on exciting force on the upper cylinder. 
Remarkably both the exciting forces attains maximum 
value only for lower value of wave number k and forces are 
almost vanishing for higher value of k.

Now we determine the variation of exciting forces 
on the cylinders for different radius of the hollow cyl-
inder. When we compute the exciting forces for dif-
ferent r

1
 , we fixed the value of r2, e1 and d by taking 

r2 = 0.4H, e1 = 0.1H and d = 0.6H . In Fig. 5, we plot F
s2
∕u

1
 

against kr
2
 for distinct values of radius to the hollow cylin-

der, r1 = 0.2H, 0.3H, 0.4H . Figure 5 shows that the forces 

increases with the decreasing radius r
1
 . For r

1
= 0.2H , the 

dimensionless force F
s2
∕u

1
 attains the maximum values 

equal to 0.251901. The highest values of the forces occurs 
only at values of lower range of k.

Again for fixed r
2
 by taking r

2
= 0.4H , now proceed 

to investigate how the exciting forces on the upper 
and lower cylinders are affected by the gap between 
the cylinders. In Figs. 6 and 7, we plot F

s1
∕u

0
 and F

s2
∕u

1
 

against kr
2
 , respectively, for different values of e

2
 , say, 

e2 = 0.22H, 0.20H, 0.15H , i.e. for e1 = 0.03H, 0.05H, 0.1H , 
respectively. Figure 6 clearly shows that as the e

2
 decreases, 

the force increases only at lower values of k, i.e. the larger 
value of exciting force happen for e

2
= 0.15H , i.e. e

1
= 0.1H 

and Fig. 7 shows that deviation of exciting force is very 
negligible for different gap between the cylinders.    

Now it is reasonable to compare our results with the 
results of Yeung and Sphaier [19] for the modulus of the 
non-dimensional horizontal exciting force. All the param-

eters considered in our problem are reconsidered accord-
ing to the ones from Yeung and Sphaier’s work in order 
to have the same physical problem. So we consider the 
value of the draft e

1
= 0.0001 in order to have a single 

structure as in Yeung and Sphaier [19]. The values of the 
other parameters are considered as: r

2
∕H = 0.1 , d∕H = 0.2 

and h
2
∕H = 0.1 and draft of lower cylinder e

3
= H − h

2
 . In 

the Yeung and Sphaier [19] the parameters a, d,  w repre-
sent radius, a draft of the cylinder and the width of the 
channel wall, respectively. The comparison of both the 
results is shown in Fig. 8 and Fig. 8 shows good agree-
ment between the results of the present work and Yeung 
and Sphaier [19]. Also Table 1 shows the numerical com-
parison between the results of present work and Yeung 
and Sphaier [19]. It shows good numerical comparison 
between both the results.

Fig. 6  Variation of dimensionless horizontal exciting force 
F
s1
∕u

0
 versus dimensionless wave number kr

2
 for different gap 

( e2 = h2 − e1, for a fixed h
2
 ) between the cylinders with r

1
= 0.2H , 

r
2
= 0.4H , d = 0.6H

Fig. 7  Variation of dimensionless horizontal exciting force 
F
s2
∕u

1
 versus dimensionless wave number kr

2
 for different gap 

( e2 = h2 − e1, for a fixed h
2
 ) between the cylinders with r

1
= 0.2H , 

r
2
= 0.4H , d = 0.6H

Fig. 8  Comparison of exciting force F
s2
∕u

1
 with result of Yeung and 

Sphaier [19] with r
2
∕H = 0.1 , d∕H = 0.2 and h

2
∕H = 0.1
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Table 1  Comparison of exciting force F
s2
∕u

1
 with numerical results 

of Yeung and Sphaier [19] along with the parameters r
2
∕H = 0.1 , 

d∕H = 0.2 and h
2
∕H = 0.1

Frequency 
(f = �∕2�)

Yeung and Sphaier 
[19]

Present

0.15 0.0119 0.01254612510259

0.25 0.4154 0.38952874560142

0.37 0.9968 0.9789742150271

0.5 1.4312 1.3989512540521

0.62 1.9445 1.85915744551101

0.8 1.9801 1.90627096010328

1.0 1.1223 1.05816611655631

1.28 0.6912 0.6251542364021

1.5 0.4321 0.39853546452436

1.7 0.3801 0.34814785208

2.0 0.3412 0.32513654785256

2.4 0.3132 0.29881546010191

2.5 0.3501 0.29124564556092

2.6 0.2892 0.29125416527361

2.65 0.1512 0.16335512642084

2.75 0.2212 0.20345512642674

2.78 0.2012 0.19984657552216


	Wave loads by an oscillating water column in presence of bottom-mounted obstacle in the channel of finite width
	Abstract
	1 Introduction
	2 Mathematical model
	3 The governing equation of the problem
	3.1 Matching conditions

	4 Solution to the problem
	5 Wave force
	6 Numerical results and conclusion
	Acknowledgements 
	References


