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The waue model for longitudinal dispersion, published elsewhere as an alternative to 

the commonly used dispersed plug-flow model, is applied to the classic case of the 
laminar-flow tubular reactor. The results are compared in a wide range of situations to 
predictions by the dispersed plugflow model as well as to exact numerical calculations 
with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-0  model of the reactor and to other available methods. In many practical 
cases, the solutions of the waue model agree closely with the exact data. The waue 
model has a much wider region of validity than the dispersed plug-flow model, has a 
distinct physical background, and is easier to use for reactor calculations. This provides 
additional support to the theory developed elsewhere. The properties and the applicabil- 
ity of the waue model to situations with rapidly changing concentration fields are dis- 
cussed. Constraints to be satisfied are established to use the new theory with confidence 
for arbitrary initial and boundary conditions. 

Introduction 

In a recent article by Westerterp et al. (1995a) a new one- 
dimensional modei for the residence time distribution in 
flowthrough contactors and chemical reactors has been de- 
veloped as an alternative to the commonly used dispersed 
plug-flow model, also called the standard dispersion model 
(SDM). A qualitative analysis of the proposed wave model 
has been made in a second article (Westerterp et al., 1995b). 
The wave model differs fundamentally from the SDM and is 
not afflicted with the physical contradictions of the SDM. In 
contrast to the SDM, which works only with an average con- 
centration, the wave model contains a second independent 
state variable, the dispersion flux, characterizing the devia- 
tion from plug-flow conditions. The equation relating the dis- 
persion flux to the area mean concentration has the same 
form as Maxwell's constitutive law for viscoelastic fluids. From 
a mathematical point of view the wave model appeared to be 
simpler than the SDM for many practical purposes. The wave 
model gives the same results as the SDM for slow processes, 
although not for all of them. For rapidly varying concentra- 
tion fields, where the SDM definitely produces wrong results, 
the wave model gives a qualitatively correct description of 
the phenomena. The wave model correctly predicts the re- 
versibility of longitudinal dispersion with respect to a change 
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in the flow direction and distinguishes between apparent and 
real backmirring. The essential advantage of the wave model 
-if compared to other known alternatives to the SDM-is 
that it does not depend on the type of equipment under con- 
sideration. These features of the new model and its simplicity 
are an essential advantage for a wide class of problems, if 
compared to the Fickian dispersion models. However, the 
quantitative accuracy of the wave model for rapid processes 
has not been checked in the papers just mentioned, nor has 
its ability to represent adequately actual multidimensional 
phenomena occurring in the case of rapidly varying concen- 
tration fields, as in reactors with rapid chemical reactions. 
Therefore, in the present article we will test quantitatively 
the applicability of the wave model over a wide range of con- 
ditions. This can be done, of course, by comparing experi- 
mental reactor data with the model predictions. Eventually, 
this is probably the best approach, but because of the many 
experimental problems in obtaining accurate kinetics, in many 
cases it is difficult to achieve a high precision. In other words, 
it is often difficult to decide whether discrepancies are be- 
cause of the model or the data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an alternative a mathe- 
matical comparison between the wave model, the SDM, and 
more precise multidimensional calculations presents itself. 

The laminar-flow tubular reactor is considered in this arti- 
cle in order to test certain concepts regarding the wave model. 
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This application has the great virtues of mathematical 
tractability and practical experimental execution. The predic- 
tions of the theory can be compared with numerical solutions 
of the exact multidimensional equation and with numerous 
results obtained by other methods. It is the most investigated 
reactor problem and is often used as a test example for sim- 
plifying approaches to reactor modeling. The problem is also 
of practical interest, particularly for high-viscosity fluids. 
Moreover, this relatively simple problem is also of interest 
because it contains many of the essential features of disper- 
sion in various flowing systems and provides a considerable 
insight into the effect of velocity shear on axial dispersion. 

After the initial work by Taylor (19531, Aris (1956), and 
Cleland and Wilhelm (1956), diffusion with or without a 
chemical reaction when there is a fully developed laminar 
flow in a straight tube has been the subject of a large number 
of theoretical investigations. Numerical steady-state solutions 
for the case of a homogeneous first-order chemical reaction 
have been reported, among others, by Cleland and Wilhelm 
(1956), Vignes and Trambouze (19621, and Bailey and Go- 
garty (1962). Exact series solutions of the same problem have 
been presented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHsu (196.51, Dang and Steinberg (1977), 
and Dang (1978). 

Different analytical approaches to the residence time dis- 
tribution during laminar flow in a tube have been reported by 
Farrel and Leonard (1963), Philip (1963), Gill (19671, Chatwin 
(19701, Gill and Sankarasubramanian (1970, 1971, 1972), 
Whitaker (1971), Tseng and Besant (1970, 19721, Fife and 
Nicholes (1975), DeGance and Johns (19801, Smith (1981, 
1987a,b), Barton (1983), Yamanaka (19831, Shankar and 
Lenhoff (1989), and Stokes and Barton (1990). Short-time 
asymptotic solutions to the pulse-input problem have been 
proposed by Lighthill (19661, Chatwin (1977) and Vrentas and 
Vrentas (1988). Numerical solutions of the same problem have 
been utilized by Ananthakrishnan et al. (19651, Gill and 
Ananthakrishnan (1967), Mayock et al. (1980), Yu (1981), 
Wang and Stewart (1983, 1989) and Takahashi et al. (1990). 
Dynamic behavior of a tubular reactor with a first-order reac- 
tion has been analyzed by Subramanian et al. (1974) and 
Nigam and Vasudeva (1976). The laminar-flow tubular reac- 
tor with a first-order homogeneous reaction was used as an 
example to examine the applicability of the SDM to the oth- 
erwise two-dimensional situation by a number of investiga- 
tors (Bischoff, 1968; Wissler, 1969; Mashelkar, 1973; Kul- 
karni and Vasudeva, 1976; Carbonell and McCoy, 1978). 

Experimental results have been presented by Cleland and 
Wilhelm (1956), Vignes and Trambouze (1962), Nigam and 
Vasudeva (1976), and Korenaga et al. (1989). 

Publications with respect to the investigation of the nonlin- 
ear systems are quite scarce. Houghton (1962) and Wan and 
Ziegler (1970) investigated the conditions under which Taylor 
diffusion can be applied with steady systems in the presence 
of a reaction with a power-law rate equation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn analysis of 
the propagation of an injected pulse through a system in which 
a second-order chemical reaction takes place, has been made 
by Barton (1986) and Smith (1989). A diffusional type of 
equation for the area averaged concentration with an effec- 
tive flow velocity, which depends on the concentration, for 
systems involving weak nonlinear reactions was recently de- 
rived by Yamanaka and Inui (1994) on the basis of the pro- 
jection operator technique. 
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In this article the accuracy of the wave model is examined 
over the whole range of reaction rates for the steady-state 
behavior qf a laminar flow reactor, in which a homogeneous 
reaction with first- or second-order irreversible kinetics takes 
place. The transient behavior of the reactor is investigated 
only for a first-order irreversible reaction. The first three spa- 
tial moments of the concentration-mean, variance, and 
skewness, as well as the mean and the variance of the resi- 
dence time distribution-for uniform and nonuniform pulse 
injections are calculated for arbitrary moments of time. The 
theoretical predictions are compared to numerical, exact, and 
experimental results and to the predictions with the SDM 
and plug flow model. Many different theoretical approaches 
can be used to explore the laminar flow reactor (see the pa- 
pers just cited). We engage in the comparison of two of them: 
the generalized dispersion theory of Gill and Sankarasubra- 
manian (1970, 1972) and the orthogonal collocation method 
as frequently used for the analysis of various convective diffu- 
sion problems. It will be shown for a rather wide variety of 
problems that the wave model provides a good approxima- 
tion to the more exact, but also more complicated two-di- 
mensional equations. For instance, the maximum error in the 
calculated bulk concentrations for arbitrary values of the re- 
action constants and a conversion of 99% as determined with 
the exact solution does not exceed 8.7% in the case of a 
steady-state reactor with a first-order chemical reaction and 
16.7% for a second-order reaction. 

The examples considered also demonstrate that the wave 
model, having a clear physical significance and being more 
general, is simpler from the mathematical point of view and 
has a much wider region of validity for reactor calculations 
than a Fickian-type dispersed plug-flow model. 

For the application considered an explanation is given for 
why the wave model with parameters as obtained in Wester- 
terp et al. (1995a) for asymptotic conditions is also applicable 
to rapid processes. 

It was found that the wave model gives results close to 
those of the collocation method when used to handle the ra- 
dial gradients in a reactor. The model corresponds to the 
two-point collocation that, as shown by Wang and Stewart 
(1983, 1989), in many cases closely approximates the fine-grid 
computations. This well-known procedure may serve as an 
additional justification of the wave model. It also provides a 
useful approach to obtain a one-dimensional equation. 

The wave model fails when the radial concentration distri- 
bution at the reactor inlet or at the initial moment of time is 
essentially nonuniform. Restrictions to the value of the dis- 
persion flux are derived in order that this theory can be used 
with confidence for arbitrary initial and boundary conditions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Different Approaches for the Investigation of the 
Laminar-Flow Reactor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Exact description zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the problem chosen for comparison 

We assume that the concentration variation in the 
laminar-flow tubular reactor can be described by the two- 
dimensional convective diffusion equation: 
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along with the following initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = Cinit(x,r) ( 2 )  

and boundary conditions 

dC 

dr 
x = O ,  c =  l 0 ( r , t ) ;  r=O and a ,  - = O .  (3) 

The molecular diffusion coefficient D in Eq. 1 is considered 
to be independent of the solute concentration. We have ne- 
glected the molecular diffusion in the axial direction on the 
assumption that the longitudinal mixing is completely domi- 
nated by the combined effects of the nonuniform convection 
and transverse diffusion. 

Standard dispersion model 

The commonly encountered one-dimensional model for 
chemical reactors is the longitudinally dispersed plug-flow 
model. We also call it the standard dispersion model (SDM). 
The model equation is usually written as: 

d c  dF d2F 
- + E- + q ( F ) =  D e 7  
dt dx dX 

(4) 

with the boundary conditions known from Danckwerts (1953): 

- d c  d c  

dX dX 
X = O ,  EC,=EF- De-; x = L ,  - = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

Here and throughout this article an overbar on a quality de- 
notes its cross-sectionally averaged value as defined for an 
axisymmetrical problem in a tube by 

The value of the dispersion coefficient for laminar flow in a 
circular tube is well known from Taylor (1953) as being D, = 

a2ii2/48D. The peculiarity of this model is the presence 
of an additional parameter-the reactor length L-that is 
absent in the multidimensional model of Eqs. 1-3. The 
appearance of this parameter is due to the description of the 
hydrodynamical axial dispersion by an equation of the 
parabolic type. Thus, the application of the SDM is burdened 
with the uncertainty of choosing the reactor length L. Differ- 
ent recommendations are known at this point. To be con- 
crete we will assume the reactor is infinitely long as often 
recommended-see, for example, Wissler (1969) and Subra- 
manian et al. (1974)-so L +m. 

Convective dispersion theory of Gill and 
Sankarasu bramanian 

This theory, later called the G-S theory, is frequently used 
for the analysis of different convective diffusion equations. It 
gives the solution of multidimensional convective diffusion 
equations-in our case Eq. 1 with 4 =0-in terms of an 
area-averaged concentration C,(x ,  t ) ,  when the concentration 

is specified at the initial moment of time t = 0 in the form of 
Cinit(x, r )  = $(x)Y(r ) ,  see Gill and Sankarasubramanian 
(1970, 1971). For practical reasons the shortened two-term 
approximation of this theory is used, and the previously men- 
tioned solution is found from the equation: 

(6) 

where K,(t) and K,(t) are known functions of time that also 
depend on the initial transverse concentration distribution 
Y(r ) .  

For the solution of linear problems with other initial and 
boundary conditions different variants of the superposition 
technique have been developed using the solution of the ba- 
sic equation Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 (Gill and Sankarasubramanian, 1972; Sub- 
ramanian et al., 1974). 

Wave model 

This model has been proposed as an alternative to the 
SDM. A quasi-linear hyperbolic system of two first-order 
equations for the average concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and the dispersion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
flux j was obtained (Westerterp et al., 1995a): 

(7) 

with the following initial and boundary conditions: 

x = 0, c = c , ( t )  = i O ( t ) ,  j = j o ( t )  = ( u  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU)L,,. (10) 

Here the prime indicates the derivative with respect to c, so 
q’ = dq/dc. The dispersion flux-the second unknown vari- 
able-is defined as 

i = ( u - E ) c .  (11) 

The wave model contains three parameters-the longitudinal 
dispersion coefficient 0,; the relaxation time T ;  and the pa- 
rameter of velocity asymmetry u,. In Eqs. 7 and 8 the disper- 
sion coefficient 0, is the Taylor dispersion coefficient, the 
same as in the SDM. For laminar flow in a tube the parame- 
ters of the wave model were calculated in an earlier article by 
Westerterp et al. (1995a), and are 

a2 E 

15D ’ 4 
7=-*  u r n = - - .  (12) 

a2E2 

4 8 0  ’ 
0, = -. 

For nonlinear chemical reaction rates more refined equations 
may be used instead of Eqs. 7 and 8 (Westerterp et al., 1995a): 
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a? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa j  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- + E- + - + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(? )+  -q“(C)Lj2 = 0 
at d x  dx  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

(13) 

2 u  

= - De-.  ac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d X  

This system compared to Eqs. 7 and 8 contains an additional 
parameter u, which is equal to 7E/1,558 for laminar flow in a 
round tube. For a linear reaction rate q”(c)  = 0, and Eqs. 13 
and 14 coincide with Eqs. 7 and 8. Equations 13 and 14 con- 
tain a more exact representation of the averaged reaction rate, 
or take into account that q(c )  # q ( C )  for nonlinear chemical 
reactions. 

Orthogonal collocation technique 

The well-known orthogonal collocation technique with two 
interior radial nodes will also be involved in the comparison, 
according to the variant given by Wang and Stewart (1983). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Application of the Different Approaches to the 
Laminar Flow Reactor 

the capabilities of the different approaches. 
In this section we consider some typical examples showing 

Steady-state reactor pe$ormance 
We restrict ourselves to a simple but practical problem, 

namely, the reactor with a constant and uniform inlet con- 
centration. In this case the boundary condition at the reactor 
inlet for Eq. 1 is 

x = o c = co = co = constant. (15) 

We present the results in the form of the area average con- 
centration ? and bulk concentration cb that is defined as 

4 
cb = --2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ii( 1 - $ ) c r  dr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

ua U 

The solution of the SDM is well known. The dispersion 
flux is related to the concentration by j = - D,d?/dx. The 
G-S theory is applicable only for a first-order reaction with 
q = k,c and is described by Subramanian et al. (1974). In this 
case the two coefficients K, ( t )  and K,(t) of Eq. 6 should be 
found for the initial transverse concentration distribution 
Y(r )  = 1 - r?a2 and the solution of Eq. 6 should be obtained 
for the initial condition t = 0, T I  = coUS(x), where 6 ( x )  is a 
Dirac delta function. The bulk average concentration is cal- 
culated as (Gill, 1975) 

This is a rather tedious procedure especially at small dis- 
tances from the reactor inlet and for high reaction rates, be- 

cause of singular behavior of C,(x,  t )  at x = 0 and the slow 
convergence of the series for K, ( t )  and K,(t) .  

The equations of the wave model for the problem consid- 
ered are 

di? dj 

d r h  
u- + - + q ( a  = 0 (16) 

with the following boundary conditions: 

- 
x = O ,  ? = ~ , = c , ,  j = ( u - U ) ~ o = O .  (18) 

For a first-order chemical reaction with q = k,c and a posi- 
tion-independent rate constant k , ,  Eqs. 16 and 17 can be 
combined to one equation of the second order for the aver- 
age concentration 

with boundary conditions: 

which follows from Eqs. 16-18. The bulk concentration in 
this case also obeys Eq. 19 but with different boundary condi- 
tions: 

For a first-order chemical reaction the analytical solutions of 
the SDM and the wave model are straightforward. The gen- 
eral properties of these solutions have been considered in a 
previous article (Westerterp et al., 1995b). Both these solu- 
tions are much simpler than the G-S solution. In the case of 
a nonlinear chemical reaction rate the numerical solution of 
the wave model can easily be obtained by “marching” numer- 
ically through the reactor from the inlet to the end, as for the 
simple plug-flow model, whereas in this case the SDM needs 
iterative calculations. 

The dimensionless area-mean concentration ?/co for a 
first-order reaction as a function of the dimensionless axial 
distance X ,  = k,x/U is presented in Figure 1. The ratio of 
the bulk concentration calculated by different approximate 
methods to the numerical solution of the steady-state form of 
Eq. 1 with the inlet boundary condition of Eq. 15 is given in 
Figures 2 and 3 for the values a1 = k,a2/D = 100 and a, = 

k,coa2/D = 100. For a second-order reaction with q = k2c2 
the results calculated with Eqs. 13 and 14 are also given in 
Figure 3. 

It is seen that the agreement between the wave model and 
the two-dimensional equation Eq. 1 is far better than ob- 
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plug flow model 

wave model 

exact solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.......... G-S theory 

0.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cb 

Cb,exact 1.4 

0.2 

0.01 0.1 1 10 

plug flow model 

wave model 
refined ./.'. wave model 

/ '. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I '.\ 

XI 
Figure 1. Steady-state area-mean concentrations for a 

first-order reaction as a function of X, = k,x/li 
and for k,a2/D = 100. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

tained with conventional models. In spite of the wide varia- 
tion of yield values, the magnitude of the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACb/Cb,exact re- 
mains within narrow limits along the reactor. It is noteworthy 
that the wave model also gives satisfactory results in the case 
of no diffusion in the radial direction or of infinitely fast 
chemical reactions with a,,2 --$ M, that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis for purely convective 
mass transfer. The maximum absolute error in cb for the wave 
model does not exceed 16.7%, when the concentration 
changes from 1 to 0.01-over a hundredfold concentration 
change-and for arbitrary reaction rates. The SDM gives ad- 
equate results only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1,2 I 15, as is well known. On the con- 
trary, we would like to point out that for high reaction rates 
the SDM becomes even less accurate than the plug-flow 
model, which is a simplest variant of the wave model. Despite 
the large error the plug-flow model, in contrast to the Fick- 

2 

c b  

'b, exact 

plug flow model 

wave model 
G-S theory 

- -  
.......... 

/ 
; 
; 

_-  - - -- ..-... . 
1 k-1 ......................................... 

I .  I 

0 '  I I I 
0 2 4 6 0 

Xl 
Figure 2. Values of Cb/C,,exact for a first-order reaction 

as a function of X,=k,xlD and for k,a2/D= 
loo. 
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'. '*.. 
'. '. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I! 
/--------. 

1 ..-..-.. 

- - - - _ _ _ _ _ _ _ _ 7 - - - - -  

0.8 
0 5 10 15 20 

x2 
Figure 3. Values of Cb/Cb,exaet for a second-order reac- 

tion as a function of X2=k2coxlli and for 
k,coa2/D=100. 

ian dispersion model, remains qualitatively correct, whereas 
the SDM completely fails in the limiting cases of a1,2 +m 

and fixed values of This also shows an inherent weak- 
ness of the SDM for reactor calculations. Agreement be- 
tween the one-dimensional Fickian-type equation and the ex- 
act two-dimensional model can be reached only with an em- 
pirical reaction-dependent dispersion coefficient (Kulkarni 
and Vasudeva, 1976) or through empirical manipulation with 
the boundary conditions. 

Spatial moments 

The spatial moments of the concentration distribution of a 
solute injected into a stream can directly be calculated by 
means of the wave model for arbitrary methods of the solute 
injections. Ejramples of the application of the wave model for 
the calculations of the moments are presented in Westerterp 
et al. (1995b). The analytical calculation of the moments us- 
ing the SDM is only possible for infinite and semi-infinite 
media. Besides that the analytical solutions are not available 
for all initial and boundary conditions (Kreft and Zuber, 
1978). 

For convenience we define the following dimensionless 
quantities: 

C - ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi e = -  tD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx=-, XD p = - ,  r 

a* ' iia2 a 
C = -  , .I=- 

c r  UCr  

where cr is a reference concentration; its value is not impor- 
tant. 

In order to test the accuracy of the wave model for the 
calculation of the first spatial moments we will consider two 
initial distributions of tracer material: 
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Table 1. Second Spatial Moments 1,000m2 for the Initial 
Condition G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ( X )  at Different Moments of Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExact Wave Model Collocation SDM 

0.01 0.03121 0.02974 0.03162 0.4166 
0.05 0.6296 0.6177 0.6493 2.083 
0.10 2.024 2.009 2.088 4.167 
0.20 5.702 5.694 5.835 8.333 
0.40 13.90 13.90 14.07 16.67 
1.00 38.89 38.89 39.06 41.67 

case A 
8 = 0  C = G ( X , p ) =  

These particular initial distributions have been used as exam- 
ples by Chatwin (1977) and Wang and Stewart (1983) and 
represent situations where the initial distribution is uniform 
in case A or increasing monotonically from the axis to the 
wall in case B. The expressions of the first three spatial mo- 
ments of the mean, variance, and skewness for the wave model 
are presented in Westerterp et al. (1995b). 

The simple and accurate calculations of the moments for 
developed laminar flow of a Newtonian fluid can be made by 
means of the orthogonal collocation method with as few as 
two radial collocation points, as shown by Wang and Stewart 
(1983). These computations as well as the predictions of the 
SDM and G-S procedure are also included in the compari- 
son. 

We present the spatial moments around the mean as de- 
fined by 

In the important case A the second and third central spa- 
tial moments m2 and m3 are compared to the exact solutions 
derived by Aris (19561, Chatwin (19771, and Barton (1983). 
The first moment m, in this case is equal to 1 according to 
all approaches. Table 1 and Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 show the spatial vari- 
ance and skewness as a function of dimensionless time 8. 

In case B the calculation of the first moment is also of 
interest. Table 2 shows the calculated mean and variance for 
the nonuniform initial solute distribution in comparison to 

2 

m3* 103 
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0.5 

a 

wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel 

exact solution 

0 0.2 0.4 0.6 0.8 1 

0 
Figure 4. r n , ( B ) :  predicted by the wave model vs. the 

exact solution by Barton (1 983). 

the exact results given by Chatwin (1977) and Barton (1983). 
The moments by the collocation method differ from the ones 
of Wang and Stewart (1983) who presented the exact value of 
the second moment in a coordinate system moving with the 
mean fluid velocity and not relative to the center of gravity of 
the pulse. Moreover, we use the mean velocity as the refer- 
ence velocity, whereas Wang and Stewart used the maximum 
velocity. 

The SDM cannot handle any initial radial concentration 
distribution-m, = 8 and m2 = 8/24 for arbitrary initial 
transverse concentration distributions-and is not valid for 
the initial period before the equalization of the concentration 
over the cross section has been attained. The SDM, of course, 
gives m3 = 0 whatever 8 is. The truncated two-term disper- 
sion equation, Eq. 6, has the remarkable property that two of 
the spatial moments are exact. However, it predicts a sym- 
metric distribution around the center of gravity of the tracer 
and the third central moment is zero. Thus there is a need to 
retain higher-order terms in the application of the general- 
ized dispersion theory, in order to predict the results ob- 
served. The orthogonal collocation method used by Wang and 
Stewart (1983) gives m3 = 0 independent of the initial con- 
centration distribution. To our knowledge no results for the 

Table 2. Spatial First Moments 100(m, - f?) and Second Moments 1,000rn2, Respectively, for the Initial Condition 
G = 2 p 2 6 ( X )  at Different Moments of Time 8 

100 ( m ,  - 0)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e Exact Wave Model Collocation 

0.01 - 0.3022 - 0.3095 - 0.3080 
0.05 - 1.1082 - 1.1725 - 1.1472 
0.10 - 1.6172 - 1.7264 - 1.6627 
0.20 - 1.9760 -2.1116 - 1.9984 
0.40 - 2.0776 - 2.2167 - 2.0799 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.oo - 2.0834 - 2.2222 -2.0833 

1,000 m ,  

Wave Model Collocation Exact 

0.02035 0.02220 0.4167 
0.4328 0.4893 2.083 
1.517 1.681 4.167 
4.794 5.101 8.333 

12.79 13.17 16.67 
37.76 38.15 41.67 

~ 
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skewness for the case of a nonuniform pulse have been pre- 
sented in the literature, with which we can make a compari- 
son. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs pointed out by Barton (1983) “the calculation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m3 in the general case is very laborious and the resulting 
expression is too long and complicated to reproduce.” 

It is notable that the large-time asymptotic values of the 
first three moments given by the wave model are exact (West- 
erterp et al., 1995b). The model does not correctly predict 
the time dependence of the third moment at 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0 accord- 
ing to the wave model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn3 - @’ in this limit, whereas from 
the exact expression of rn3 as obtained by Barton (1983) 
d3m3/dO3 = 0 should hold at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 0. However, such a small 
difference hardly can be detected in an experiment. Note that 
at 0 + 0 or if dispersion is caused by convection alone, we 

find rn3 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 3 ( u  - but for the parabolic velocity profile 

we have ( u  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU) = 0. 3 

Temporal moments 

The most common approach in experimental work is based 
on measuring the distribution of residence times as a func- 
tion of the axial distance, that is, on the measurement of the 
concentration variations as a function of time at fixed loca- 
tions. Therefore, as a further test of the wave model, we will 
calculate the temporal moments of the residence time distri- 
bution. Such calculations can also be made directly by the 
wave model for arbitrary tracer injections (Westerterp et al., 
1995b). The results available for comparison are given by 
Houseworth (1984). This author has analyzed the residence 
time distribution in laminar flow in a tube with a Monte Carlo 
method, based on an analytical solution of the diffusion 
equation over the tube cross section. 

We consider, as Houseworth did, the case of an instanta- 
neous injection of a small amount of tracer arbitrarily dis- 
tributed over the cross section of the tube at the point X = 0, 
whereas at the initial moment @ = 0 the concentration is zero 
all over the tube. The initial and boundary conditions for the 
two-dimensional equation, Eq. 1, in our case can be written 
in dimensionless form as 

where the function F( p ) ,  describing the concentration distri- 
bution over the inlet cross section, has been normalized such 
that = 1. These boundary conditions describe the problem 
of tracer injection proportional to the fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux along a given 
streamline rather than introducing the material uniformly 
over the cross section, as we did for the calculation of the 
spatial moments. The corresponding initial and boundary 
conditions for the wave model of Eqs. 7 and 8 with no reac- 
tion or q = 0 in dimensionless form are 

where w = ( u  - i i)F/U. Let: 

be the temporal moments of the residence time distribution 
of the solute in the tube. The calculation of the first mo- 
ments with the wave model gives the following results: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 0  Xaa2 

y = z  and y = r .  
a 

Using these expressions we can calculate the mean v 1  and 
the variance a; of the residence time distribution, which are 

For a tracer input uniform over the cross section w 
= ( u  - i i )F/ i i  = 0 and the variance can be represented in the 
form: 

Note that there are some errors in the same formula in the 
earlier article by Westerterp et al. (1995b). In order to illus- 
trate the theory we consider two special forms for F( p) ,  the 
distribution of the tracer over the inlet cross section: the first 
one where the inlet distribution is uniform or F( p )  = 1, and 
the second where the tracer is supplied through a point source 
situated in the tube axis or F( p )  = S( p)/(2p). Tables 3 and 
4 show the mean v 1  and variance at2 of the residence time 
distribution for the two inlet conditions obtained by House- 
worth (1984), the wave model and the SDM. For the SDM 
the following boundary conditions were used: 

From Table 3 we see that the wave-model solution is accu- 
rate in the case of a uniform radial distribution and not too 
close to the inlet. The predictions of the SDM are inde- 
pendent of the inlet concentration distribution and therefore 
they are not shown in Table 4. A point source is an extreme 
case of a nonuniform inlet concentration and it is evident 
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Table 3. Mean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlOOv, and Variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,000a: of the Residence Time Distribution as a Function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= xD/a2ii for the Inlet 
Condition F(  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

100v, 1,00ou,z 

Monte Wave Monte Wave 
X Carlo Model SDM Carlo Model SDM 

0.01 0.9813 1.308 3.083 0.04706 0.03413 1.687 
0.05 4.920 6.147 7.083 0.6995 0.7169 3.225 
0.10 9.978 11.66 12.08 2.117 2.307 5.148 
0.20 19.96 21.99 22.08 5.534 6.299 8.994 
0.30 29.97 32.07 32.08 9.631 10.48 12.84 
0.50 50.06 52.08 52.08 18.35 18.84 20.53 

that a one-dimensional reactor model cannot be a suitable 
tool for the investigation of such a problem. This case is in- 
cluded in Table 4 to explore the region of applicability of the 
wave model. The unrealistic negative values of the variance 
for small distances as predicted by the wave model is ex- 
plained later. 

Transient behavior of the reactor 
Consider the problem of a tubular reactor where the react- 

ing component enters at the inlet of the tube with a constant 
uniform concentration co. Initially, the tube contains no reac- 
tant. If the reaction is of the first order with a rate constant 
k, ,  the concentration of reactant satisfies the equation: 

The initial and boundary conditions to be applied are 

(22) 

(23) 

where H ( t )  is the Heaviside unit step function. These condi- 
tions are the direct consequence of the Eqs. 7 and 8 and their 
initial and boundary conditions: 

Table 4. Mean 100 v l  and Variance 1,000 a: of the 
Residence Time Distribution as a Function of X = xD/a2ii 

for the Inlet Condition F( p )  = S( p ) / ( 2 p )  

l O O V ,  

Monte Wave 
X Carlo Model 

0.01 0.5052 0.4347 
0.05 2.661 3.681 
0.10 5.919 8.626 
0.20 14.37 18.81 
0.30 24.01 28.91 
0.50 43.75 48.96 

1,000 0; 

Monte Wave 
Carlo Model 

0.005200 0.09790 
0.2061 0.9911 
2.274 4.141 
5.764 8.038 

0.0000017 -0.02530 

14.01 16.30 
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t=O c=O,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = O ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = O  c=c ,H( t ) ,  j = O .  

The solution of Eq. 22 can be written as 

where E ( t )  is the solution of Eq. 22 for an instantaneous 
source of unit strength injected at time zero at the reactor 
inlet, that is for the initial and boundary conditions: 

This solution was presented in Westerterp et al. (199513). It is 
not equal to zero for u,t I x I ult,  where u1 and u2 are the 
characteristic velocities of the hyperbolic system of Eqs. 7 and 
8, which for laminar flow in a tube are 

Figure 5 shows the bulk concentration as a function of the 
axial position as calculated by the different methods and for 
the parameter values used in the experiments of Nigam and 
Vasudeva (1976). The analytical solution of the unsteady-state 
SDM with a first-order reaction term probably has not yet 
been presented. Therefore the simplified boundary condi- 
tions of the form 

x = o  c=c*,  x'a c + o  

have been used, as in the articles of Subramanian et al. (1974) 
and Nigam and Vasudeva (1976). 

Breakthrough curve for a pulse input specified at the 
initial moment of time 

The problem of dispersion in laminar flow through a 
straight tube for a pulse input specified at the initial moment 
has been the subject of a large number of theoretical investi- 
gations. Because the exact analytical solution of the partial 
differential equation is difficult to obtain, a number of inves- 
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Figure 5. Breakthrough for a step change of the inlet 
concentration in a laminar flow reactor for Dl 
(k,a2)= 0.037 and k,xlD = 1.59 calculated by 
different methods vs. experimental data of 
Nigam and Vasudeva (1976). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

tigators have attempted to develop approximate analytical or 
numerical solutions. Comprehensive numerical calculations 
have been made by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYu (1981), Shankar and Lenhoff (1989) 
and by Takahashi et al. (1990). These numerical solutions 
agree very well with the experimental results by Korenaga et 
al. (1989) for a finite slug of a dye solution dispersed in wa- 
ter. The analytical solution of the wave model for the initial 
condition of the two-dimensional equation, Eq. 1, in the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t = 0 ,  c = - S ( x )  

r a 2  

is given in Westerterp et al. (1995b), where M is the amount 
of material injected. This solution can be used to handle 
problems with any radially uniform initial conditions through 
the conventional superposition integral similar to those as in 
the previous example. An example of the calculated break- 
through curve at a small distance from the inlet in the case of 
a rectangular, radially uniform initial concentration profile is 
presented in Figure 6a and compared to the experimental 
data of Korenaga et al. (1989) and to the predictions of the 
G-S theory and the SDM. For the small initial slug length 
used in the experiments of Korenaga et al. (1989) the solu- 
tions are very close to those with initial conditions approxi- 
mated by the delta function. 

The wave model predicts unrealistic concentration peaks 
that, however, correspond to the double-peaked behavior of 
the experimental breakthrough curves. These concentration 
spikes were observed only at an early stage of the dispersion 
for delta Dirac type or other sharp initial distributions. At a 
later stage in the dispersion process the area under the spikes 
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Figure 6. Breakthrough for an initial rectangular pulse 
calculated by different methods. 
(a) x = 40 cm, the calculated curves are compared to experi- 
mental data of Korenaga et al. (1989); (b) x = 200 cm. Other 
parameters are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.403 mm; ii = 0.545 cm/s; D = 3.78 
cmys; the initial slug length is 0.39 cm. The numbers near 
the spikes indicate the fractions of the amount of tracer un- 
der the spikes. 

becomes relatively small and the solution of the wave model 
closely corresponds to the exact solution. The breakthrough 
curves at a long distance from the inlet calculated by the wave 
model, G-S theory, and by the SDM are presented in Figure 
6b. All solutions are close to each other in the central part of 
the concentration cloud, but differ near the front and the 
end. In contrast to the other approximate solutions the solu- 
tion of the wave model is permanently zero outside the re- 
gion x/ul I t I x/u2. For a smoother initial distribution, as 
in experimental work, the results of the hyperbolic model are 
not unrealistic anymore at any stage of dispersion. The solu- 
tion of the wave model after a short period of time or at 
small distances is easily understood and has been explained 
in an earlier article by Westerterp et al. (1995b). One should 
realize that the prediction of the concentration profile of a 
solute initially injected into a stream over a short time is a 
very difficult problem. Although a number of special analyti- 
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cal and numerical approximations have been developed, there 
are only a few solutions that are valid for arbitrary moments 
of time, as was shown by Yu (1981). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Limitations of the Wave Model 

In most practical systems molecular diffusion in the axial 
direction can be neglected and axial mass transport occurs 
due to convection. This results in restrictions to the value of 
the dispersion flux: 

where urnin and urn, are minimum and maximum values of 
the axial velocities. According to the SDM the dispersion flux 
is proportional to concentration gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX / d x  and can 
have arbitrary values, including zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf m. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA signal can never travel 
faster than the velocity of the “fastest streamline” if molecu- 
lar diffusion in the axial direction is negligible. This physical 
contradiction also exposes the shortcomings of the SDM and 
narrows the limits of its applicability. According to the wave 
model axial mass transport occurs by two convective flows 
with the velocities u1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 of Eq. 24. Therefore the disper- 
sion flux in the wave model can be represented as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j =  u,cl + u2c2 - t ic= (u l  - U)c1 + ( u 2  - E)c2, (26) 

where c ,  and c2 are the concentrations in the first and sec- 
ond wave and c1 + c2 = C. Taking into consideration the in- 
equalities 0 I c1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C and 0 I c2 I C, we conclude that the dis- 
persion flux of the wave model must obey the constraints: 

So the wave model predicts confined values of the dispersion 
flux for any concentration gradient: this is as it should be. 
However, the restrictions of the wave model to the value of 
the dispersion flux as given in Eq. 27 are only approximations 
and narrower than the exact restrictions of Eq. 25; this leads 
to some limitations of the model. For laminar flow in a round 
tube urnin = 0, urn, = 2 U,  and from Eq. 24 we have u, = 1.698 
U and u2 = 0.552 E. So for the wave model: 

-0.448 ZiF I j I 0.698 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi i C ,  (28) 

whereas allowed values of j are 

- i i C  I j I iiic. (29) 

The discrepancies of the constraints of Eqs. 28 and 29 may 
lead to physically unrealistic results: if j is higher than 0.698 
iiic or lower than -0.448 EZ, the concentration in one of the 
waves will be negative, as follows from Eq. 26. Fortunately, 
such contradictions occur only in extreme situations with es- 
sentially nonuniform radial concentration profiles, where the 
application of a one-dimensional model obviously does not 
make sense. Such situations arise for example in the case of a 
point injection of solute in the center of the tube, where the 
initial or inlet value of the dispersion flux is equal to i iC. This 
explains the negative values of the variance of the residence 
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time distribution for a point injection in the tube axis at short 
distances from the injection point with X << 1 or x << i ir; see 
Table 4. In the case of spatial moments such contradictions 
have not been observed even for point injections. 

Unrealistic negative values of the variance of the residence 
time distribution are found due to an inconsistency of the 
approximate Eqs. 7 and 8 and the exact boundary condition 
for essentially nonuniform, inlet radial concentration pro- 
files. The dispersion flux in the equations is approximate, 
whereas its boundary value is exact and can exceed the ap- 
proximate constraints. A simple way to exclude this contra- 
diction, whenever the exact values exceed the permissible 
limits, is to bring the boundary values of the dispersion flux 
in line with the model equations, that is to use the limiting 
values of the dispersion flux instead of its exact values. 

The second reason for the decrease in the accuracy of Eqs. 
7 and 8 is the approximate representation of the nonlinear 
consumption rate averaged over cross-section, through the 
mean concentration. The approximation used-where the 
consumption rate is represented through the first term only 
of a Taylor expansion about the mean concentration (West- 
erterp et al., 1995a)-may be insufficient for nonlinear rapid 
chemical reactions with characteristic times lower than the 
relaxation time. In this case the transverse concentration pro- 
files are very steep and a more refined cross-sectional averag- 
ing of the source term becomes necessary. This can be seen 
from Figure 2, which shows that for the second-order reac- 
tion, Eqs. 13 and 14 are considerably more accurate than Eqs. 
7 and 8. Regretfully Eqs. 13 and 14 are not suitable to de- 
scribe the reactor because of the additional parameter u. 

Discussion 

We have tested the accuracy of the wave model by compar- 
ing it to known solutions of only certain standard problems 
for laminar flow in a circular tube. The results of the compar- 
ison show that the wave model gives a fair approximation to 
the exact solutions in a wide range of situations and is defi- 
nitely preferable to the SDM. Similar results were obtained 
for many other problems of mass transfer in laminar flows of 
Newtonian and non-Newtonian fluids and for turbulent flows 
in tubes, between parallel plates, in Couette flow and in open 
channels. 

The main parameters of the wave model-the dispersion 
coefficient 0, and relaxation time T, which make it different 
from the SDM-must also be known for the application of 
the SDM. 0, is a parameter of the basic equation, Eq. 4, and 
T is a measure for the applicability of the SDM. The SDM is 
only applicable if T is much smaller than other characteristic 
times of the system, like the average residence time and the 
chemical reaction time constant. Therefore the beauty of the 
wave model is that it can be used on the basis of the same 
information as needed for the SDM. More precise determi- 
nations of r and of the velocity asymmetry u, are desirable 
but not absolutely necessary. In particular, many results pre- 
sented in this article could be obtained, although with some 
loss of accuracy, using only the findings of Taylor (1953), who 
determined 0, and in fact introduced and estimated the re- 
laxation time, called by him the “time of decay” being 
~’/[(3.8)~0], and further the value of u, in his case would 
have been set to zero. 
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It is important from the mathematical point of view that 
the more general wave model is simpler than the SDM for 
reactor calculations for all situations where the boundary 
conditions are important. For linear steady-state and un- 
steady-state problems the analytical solutions of the wave 
model can be obtained by standard methods and for arbitrary 
initial and boundary conditions. For nonlinear systems the 
solutions of the wave model can be obtained by “marching” 
through the reactor from the inlet to the outlet, whereas the 
SDM needs iterative calculations. 

The parameters of the wave model in Eq. 12 were obtained 
on the basis of a modification of Taylor’s (1953) analysis of 
the asymptotic behavior, where the concentration is approxi- 
mately uniform over the cross section and varies only slowly 
with respect to both time and the axial coordinate. Therefore 
the wave model as well as Taylor’s model is also asymptotic, 
only with different properties and it is not surprising that the 
hyperbolic model gives excellent quantitative results for slow 
processes and, for instance, gives the exact asymptotic values 
of the first three spatial moments. Moreover, the results pre- 
sented here demonstrate that the model also gives reasonably 
accurate descriptions under conditions of rapidly changing 
concentrations. The moments of the concentration distribu- 
tion, the predictions of the steady-state reactor behavior at 
high reaction rates or kla2/D, k2cOa2/D+m, and the de- 
scription of the transient behavior of the reactor are exam- 
ples of these. This is not obvious. Some considerations why 
the wave model with the asymptotic parameters gives good 
results over a wide range of situations are given below. 

The procedure used in a previous particle by Westerterp et 
al. (1995a) to obtain Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 and 8 with the parameters of Eq. 
12 is the same closure procedure as that based on Taylor’s 
(1953) original ideas: to find the expression relating the dis- 
persion flux to the average concentration, some appropriate 
radial concentration distribution should be used. Instead of 
the radial concentration distribution used by Taylor, we have 
taken a more universal form of this distribution, namely: 

(30) 

where 

Such a simple modification of Taylor’s procedure allows us to 
introduce the second state variable-the dispersion flux-and 
it leads to an essential change in the final result. It is obvious 
that Eq. 30 cannot be universally adequate, and sometimes a 
more refined approximation is necessary. To this end the 
concentration, as a continuous function, can be approximated 
uniformly by a polynomial: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr/a and a,,(x, t ) ,  n = 0, 1, 2, ... , are unknown 
functions of the axial position and time. This approximation 
satisfies the boundary condition in Eq. 3 at the reactor axis. 
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Also taking the boundary condition Eq. 3 at the reactor wall 
into account and introducing the concentration averaged over 
the cross section, Eq. 31 can be rewritten as 

where the unknown functions jn(x, t ) ,  with n = 2, 3, . . . , are 
normalized such that 

m 

(33) 
n = 2  

and can be considered as the corresponding components of 
the dispersion flux in the series of Eq. 32 for the radial con- 
centration distribution. If only the first term in the series in 
Eq. 32 is used we exactly have Eq. 30 again. The use of the 
exact representation of the concentration profile of Eq. 32 
instead of Eq. 30 in the procedure described in Westerterp et 
al. (1995b) leads to a new equation instead of Eq. 8: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ac 
= -  De-, d X  (34) 

where D, is the Taylor dispersion coefficient and parameters 
T,, and u,, with n = 2, 3, . . . are easily calculated through 
known formulas. It is remarkable that for laminar flow in a 
tube the values of T, change only from a2/15D to a2/16D 
and the values of u,, from E/4 to E/8 when n varies from 2 
to m. The same trends are also observed for other velocity 
profiles. Equation 33 and a weak dependence of the parame- 
ters of Eq. 34 on n may serve, at least on an intuitive basis, 
as a justification to use Eq. 8 instead of the exact Eq. 34 for 
processes with concentration fields rapidly changing with re- 
spect to time and coordinates: that is for those with a charac- 
teristic time of an order of magnitude of T or lower. in  addi- 
tion, it easily can be checked that the use of any values of T, 

and u,,, n = 2, 3, ... , instead of T and up, does not influ- 
ence essentially the steady-state concentration profiles calcu- 
lated by Eqs. 16 and 17. 

The comparisons presented earlier as well as other exam- 
ples show that in many cases the results given by the wave 
model are in close agreement with those of the collocation 
method. This agreement can be easily explained. 

In the case of two interior collocation points the applica- 
tion of the collocation procedure of Wang and Stewart (1983, 
1989) to Eq. 1 with boundary conditions Eq. 3 gives rise to 
equations that can be rewritten as 
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These equations are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEqs. 7 and 8 of the wave models, but 
with different parameter values: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7=- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,=o. (35) 

a2ii2 

480 ’ 1 6 0  ’ 
0,=-. 

The relation u, = 0 is a reason why the collocation method 
rn2 does not depend on the initial concentration distribution; 
see Tables 1 and 2, as well as m3 = 0. These disadvantages 
can be avoided by using other collocation points than the ze- 
ros of the shifted Legendre polynomial. The collocation 
method does not tell us how to choose the “best”col1ocation 
points in the first approximations. However, this powerful 
method, as well as other variants of the method of weighted 
residuals (Finlayson, 1972), are very useful in obtaining the 
structure of one-dimensional equations that should be used 
for the description of longitudinal dispersion; see, as an ex- 
ample, Dil’man and Kronberg (1983). Thus, all these well- 
known procedures may serve as additional mathematical jus- 
tifications of the wave model. For many calculations the dif- 
ference between the parameters in Eqs. 12 and 35 is not very 
important. 

Here we remark on a terminological contradiction in the 
work of Wang and Stewart (1983, 1989). It is generally as- 
sumed that the area averaging of multidimensional convec- 
tive-diffusion equations gives rise to a diffusional-type one- 
dimensional equation. These authors oppose radial averaging 
and favor the collocation method; they stated that radially 
averaged equations have only a limited predictive power. But 
orthogonal collocation is also a way of averaging radially, 
which results in equations essentially different from the com- 
monly used diffusional equations, and has a high predictive 
power. 

We have neglected molecular diffusion in the axial direc- 
tion in Eq. 1 because for most practical problems, including 
the laminar-flow reactor, the transport in the axial direction 
is dominated by shear dispersion and by other hydrodynami- 
cal mechanisms. For more complex problems than dispersion 
in laminar flow, we also have to consider the combined ac- 
tion of different hydrodynamical mechanisms through the ap- 
plication of the wave approach to each individual mecha- 
nism. The axial molecular diffusion, if necessary, can be in- 
corporated into the wave model. This incorporation changes 
the type of governing equations and leads to mathematical 
complications. It should be noted that, as was shown by Wang 
and Stewart (1983), the solution of linear dispersion prob- 
lems with axial molecular diffusion incorporated, and in an 
infinitely long tube with the concentration specified at the 
initial moment, can be obtained as a convolution of the con- 
centration profile for the case where the axial molecular dif- 
fusion is neglected. 

One should realize that the total variety of multidimen- 
sional situations cannot be represented only in terms of a few 
averaged characteristics, like the average concentration and 
the dispersion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux. Therefore there is no reason to expect 
that the wave model will predict arbitrary multidimensional 
distributions well. The wave model fails in the detailed de- 
scription of processes with essentially nonuniform transverse 
concentration distributions. More complex models are needed 
to describe such complex situations. A more detailed repre- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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sentation needs more one-dimensional equations-an infi- 
nite number of coupled equations for the exact representa- 
tion-but such refinements can hardly be justified in reactor 
engineering practice because of the mathematical complexi- 
ties and the many additional parameters, which cannot be 
evaluated in sufficient detail from experimental data in a way 
useful for design or scale-up purposes. 

It should be stressed that the wave model should not be 
confused with a mathematical tool for the approximate solu- 
tion of the partial differential equations, as it may seem from 
this article. First of all it should be considered as a simple 
alternative to the conventionally used dispersed plug-flow 
model or SDM and as a basic method for reactors with a 
complex flow behavior. This is an important difference of the 
wave approach in comparison to other known dispersion the- 
ories. 

Conclusions 

The validity of the wave model has been tested through a 
comparison with available solutions for the laminar-flow re- 
actor. The results obtained provide additional support for the 
theory described in previous papers by Westerterp et al. 
(1995a,b) and clearly demonstrate the advantages of the wave 
model over the conventionally used standard dispersion 
model. The solutions of the wave model in a wide range of 
situations are in very reasonable agreement to the exact data. 
Hyperbolic-type equations are definitely preferable to 
parabolic ones for the description of hydrodynamical disper- 
sion. If the necessary restrictions to the values of the disper- 
sion flux are imposed the model can be used for almost all 
situations. 

Notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a =tube radius 

q =consumption rate of component per unit of reactor volume 
r =radial coordinate 
u = axial velocity 
x =axial coordinate 

5 =inlet or initial concentration 

k ,  =constant of second-order chemical reaction 

X ,  =dimensionless axial coordinate, k,cox/ii 

Subscript 
0 =inlet, at x = 0 
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