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We present experimental results for wave numbers qs selected in a thin horizontal fluid layer heated
from below. The cylindrical sample had an interior section of uniform spacing d � d0 for radii
r , r0 (G0 � r0�d0 � 43) and a ramp d�r� for r . r0. For Rayleigh numbers R0 . Rc � 1708 in
the interior, straight or slightly curved rolls with an average �qs� � q̃c 1 ae0�e0 � R0�Rc 2 1� and
q̃c , qc � 3.117 were selected, and qs varied on two length scales approximately equal to G0 and to
four roll wavelengths. For e & 0.03 and e * 0.18 the pattern repeatedly formed defects.

PACS numbers: 47.54.+r, 47.20.Bp, 47.20.Lz, 47.27.Te
Many spatially extended nonlinear nonequilibrium sys-
tems undergo a transition from a uniform state to a state
with spatial variation (a “pattern”) when a control parame-
ter R exceeds a critical value Rc [1]. Convection in a thin,
wide horizontal fluid layer confined between two parallel
rigid plates and heated from below [Rayleigh-Bénard con-
vection (RBC)] has long been a paradigm of pattern for-
mation [2]. Here R is the Rayleigh number

R � bgd3DT�kn (1)

with b the isobaric thermal expansion coefficient, k

the thermal diffusivity, and n the kinematic viscosity.
The acceleration of gravity is g, and d and DT are
the thickness of and the temperature difference across
the layer. When DT exceeds DTc (corresponding to
R � Rc), a pattern of convection rolls forms. For e �
R�Rc 2 1 � 0 the only stable pattern is one with a
unique wave number qc; but for e . 0 a continuum of
states spanning a finite band of wave numbers is stable.
The width of that stable band depends on the Prandtl
number s � n�k. For our s � 0.87 and a laterally
infinite system, its boundaries are shown by the solid line
in Fig. 1. At large q the boundary is the skewed-varicose
(SV) instability [3] at qSV �e�. At small q and e, the
Eckhaus (E) and crossroll (CR) instabilities [3] occur very
close to each other near qE�e�.

One of the issues in pattern formation is how a given
system selects a particular wave number out of the
continuous band of stable states. This selection problem
has been studied only for a small number of specific
cases [1]. An interesting mechanism for wave-number
adjustment occurs when there is a spatial variation (a
“ramp”) of the control parameter from e � e0 . 0 in
a uniform section to e , 0 [4–7]. For the idealized
case where the ramp has a vanishing slope, one expects
that the selected wave number qs at the point where
e � 0 is equal to qc � 3.117 [8]. This is predicted to be
sufficient to fix qs everywhere along the ramp and in the
homogeneous interior and to lead to a time independent
pattern near onset. For small e0, qs in the interior is
expected to be given by
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qs � q̃c 1 ae0 (2)

with q̃c � qc and a dependent on the ramp and s [5].
In the physical system the ramp angle is finite. Even

for R , Rc this usually leads to a large-scale flow (LSF),
with a characteristic length scale much larger than a roll
wavelength, which interacts with and modifies the roll
structure above Rc. The interaction between LSF and the
rolls is a broadly important issue in pattern formation at
modest and small s [9–13] because roll curvature also
induces LSF which in turn reacts back on the roll pattern
and modifies it. In patterns like the one in Fig. 2d, for
instance, this leads to an emission of traveling waves by
the wall foci, to the compression of rolls in the pattern
interior beyond the SV instability, to repeated defect
formation, and usually to chaotic time dependence. Since
LSF and the rolls have complicated structures and are
intimately coupled, it is difficult to study quantitatively
the effect of one upon the other. The ramp offers a well
posed situation where the LSF is “externally” generated
and (at sufficiently small e) independent of the roll
pattern, and where a more detailed understanding of its
interaction with the rolls should thus be possible.
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FIG. 1. Range of stable wave numbers for s � 0.87. Solid
line: Eckhaus (E), cross roll (CR), and skewed-varicose (SV)
stability boundaries. Dashed line: the neutral curve. Solid
symbols: ramp-selected qs from two experimental runs, aver-
aged over the uniform cell interior (r # r0). Open symbols:
averages for r # r0�2.
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FIG. 2. Typical patterns from the present work for (a) e0 �
0.012 and (c) e0 � 0.205 and from Ref. [13] with rigid side-
walls and no ramp for s � 1.0 with (b) G � 43, e � 0.04 and
(d) G � 40, e � 0.21.

Here we present experimental results for a RBC cell
with circular cross section, with a uniform central section
of aspect ratio G0, and with a radial ramp of d near
the periphery. We found that q̃c , qc (see Fig. 1). The
pattern near onset repeatedly formed defects through the
Eckhaus mechanism. This is consistent with qs , qE for
e & 0.03, but we note that the stability boundaries of the
infinite system may be altered by the LSF. In the interior
qs was not uniform and the spatial variation of qs was
not rotationally symmetric even when roll curvature was
virtually absent. It varied spatially on two length scales,
one close to G0 and the other about equal to 4l [8].
The distribution of qs changed as e increased, qs being
small (large) in the cell interior at small (large) e. For
e * 0.18, qs locally exceeded the SV boundary of the
infinite system and defects formed via the SV mechanism
as seen before for rigid sidewalls [11,13]. We presume
that these interesting and unexpected phenomena are a
reflection of the interaction between the convection rolls
and the LSF induced by the ramp, even though we cannot
visualize the LSF directly.

Our apparatus was described elsewhere [14]. The fluid
was SF6 at a pressure of 20.04 bars with s � 0.87.
The sapphire top plate was at 37.50 ±C. The bottom
plate was diamond-machined aluminum [15]. Its central
section of radius r0 � 3.18 cm was optically flat and pro-
vided a section with a spacing d0 � 746 6 6 mm uni-
form within 1 mm, corresponding to G0 � r0�d0 � 42.6.
We estimated DTc � 0.85 6 0.02 ±C from Eq. (1). The
vertical thermal diffusion time ty � d2

0�k was 4.12 sec.
Over the radius range r0 , r , r1 � 4.44 cm the bot-
tom plate had a profile which yielded

d
d0

� 1 2 d

∑
1 2 cos

µ
�r 2 r0�p

r1 2 r0

∂∏
(3)
with d � 0.036. Since R ~ d3, R�R0 ~ �d�d0�3. A
paper sidewall was located immediately beyond r1 but
played no role since the pattern never reached it. We
used shadowgraph visualization [14] for 0 , r & r0. For
larger r the bottom-plate profile deflected the shadow-
graph beam and no image was formed. The distance Dx
between pixels was 211.7 6 1 mm. Overall systematic
errors of Dx�d0, and thus of q, were no larger than 1.5%
corresponding to dq � 60.045. In a typical run, we
equilibrated the bottom-plate temperature for 2 h �1750ty�
at a given e and took 128 images at intervals of 1 min
(15ty). In the interior we found DTc � 0.830 6 0.001 ±C
from the shadowgraph signal [16].

Figures 2a and 2c show the patterns which formed in
two different experimental runs for e � 0.012 and 0.205,
respectively. Within a given run the roll orientation
changed very little with time, but from one run to another
different orientations occurred. Whereas the rolls were
nearly straight for e � 0.012, there was slight curvature
for larger e. For comparison we show in Figs. 2b and
2d patterns at similar e from Ref. [13]. These were
obtained in cells without ramps and with rigid sidewalls.
The cross rolls which occurred without the ramp and at
small e near the sidewall (Fig. 2b) were absent in the
ramped case (Fig. 2a). Likewise, at larger e the wall
foci, strong roll curvature, and domain-wall defects in
the interior (Fig. 2d) did not occur in the presence of
the ramp (Fig. 2c). Two factors which contribute to the
difference come to mind. First, the ramp allows the roll
amplitude to diminish gradually in the radially outward
direction, and thus the tendency for the roll axes to
terminate orthogonally to a sidewall is greatly reduced
or eliminated. Second, LSF driven by roll curvature is
diminished by dissipation in the ramped region [17]. On
the other hand, LSF induced by the ramp itself can interact
with the pattern and lead to the interesting effects which
are central to this paper.

Mean pattern wave numbers obtained from Fourier
analysis [18] of two separate runs are shown in Fig. 1.
The solid symbols are for the entire uniform cell section
with r , r0 and the open ones were derived from
the smaller region r , r0�2. The data show that the
azimuthally averaged qs was larger (smaller) near the
periphery than near the center when e was small (large).
At the largest e, defect formation due to the SV instability
occurred and thus the average qs was shifted to smaller
values.

To study the inhomogeneity of qs, we determined the
local qs as a function of position in real space [19,20]
using the methods of Ref. [20]. The results are shown
in Fig. 3. The roll-axis orientation was from the upper
left to the lower right. At small e (Figs. 3a and 3b) qs

was relatively small in a band which extended through
the cell interior parallel to the roll axes. Within this
band, there was additional structure on a length scale of
approximately 4l [8,21]. As e increased, the distribution
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FIG. 3 (color). False-color representation of the local wave
numbers qs, each averaged over 128 images, for e � �a� 0.012,
(b) 0.048, (c) 0.084, (d) 0.120, (e) 0.157, and (f) 0.193.

of qs evolved so that for e * 0.1 the larger qs occurred
in a band which extended through the cell interior in a
direction perpendicular to the roll axes. Again there was
some structure with an intermediate length scale of about
4l. The qs variation at large e was qualitatively different
from what was found without ramps [11,13]. With rigid
sidewalls and no ramp (see Fig. 2), the largest qs occurred
in the cell center, while in the ramped case it was found
near the periphery.

For a better comparison between the patterns with
ramps and with rigid sidewalls, we show in Fig. 4 the

FIG. 4 (color). Patterns of Figs. 2a and 2b (rotated by 290±),
superimposed on the local wave number qs in false color.
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local qs for the patterns of Figs. 2a and 2b, superimposed
on the actual rolls. It is clear that the ramps yield a much
stronger qs variation than the rigid sidewalls.

The defect dynamics in the two time dependent regimes
are illustrated in Fig. 5. Figures 5a and 5b show the
dynamics at small e in the Eckhaus-unstable regime [22].
Surprisingly, a defect pair formed near the periphery
where the local qs is relatively large (see Fig. 3a). One
of the defects glided into the ramp and disappeared soon
after its birth; the other glided into the cell center as
seen in Fig. 5b. The solid (dashed) double-headed arrows
are drawn parallel (perpendicular) to the unperturbed roll
axes and reveal that the defect motion was indeed almost
perfectly in the direction of the local wave vector, i.e.,
a glide motion without a significant climb component.
After nearly reaching the cell center (not shown), this
defect changed direction and climbed toward the lower-
right periphery.

At large e (Figs. 5c and 5d) a defect pair often is
born near the cell center where qs is somewhat smaller
than near the periphery (see Fig. 3f). Again the solid
arrow in the figure is parallel to the unperturbed roll axis,
but the dashed arrow connects the defect pair. It makes
the characteristic SV angle very close to p�2 1 QSV
(QSV � 60.77 rad) with the solid one. Events with both
positive and negative QSV were observed, and the defect
pair sometimes formed closer to the periphery rather than
in the cell center. After traveling some distance in the
SV direction, the SV defects also changed direction and
climbed to the periphery.

We are grateful to Werner Pesch for the use of his
program to calculate qE�e�, qSV �e�, and QSV , and to
Eberhard Bodenschatz, Fritz Busse, and Werner Pesch for

FIG. 5 (color). Defect-containing rolls, superimposed on the
local qs in false color. (a),(b): e � 0.018, 25 min (350ty)
apart. (c),(d): e � 0.205, 1 min (15ty) apart.
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