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Abstract. We investigate the wave optics in the Schwarzschild spacetime. Applying

the standard formalism of wave scattering problems, the Green function represented

by the sum over the partial waves is evaluated using the Poisson sum formula. The

effect of orbiting scattering due to the unstable circular orbit for null rays is taken

into account as the contribution of the Regge poles of the scattering matrix and the

asymptotic form of the scattering wave is obtained in the eikonal limit. Using this wave

function, images of the black hole illuminated by a point source are reconstructed. We

also discuss the wave effect in the frequency domain caused by the interference between

the direct rays and the winding rays.
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1. Introduction

Physics of wave propagation and wave excitation in black hole spacetimes has been

investigated as a tool to comprehend properties of black hole spacetimes. Especially,

the quasi-normal mode of black holes is directly related to the structure of black

hole spacetimes and is expected to be confirmed observationally in near future using

gravitational waves. In the high frequency eikonal limit, the quasi-normal mode is

connected to the wave scattering in the vicinity of the peak of the effective potential

and thus related to the existence of the unstable circular orbit for null rays around the

black hole. The geometric interpretation of the quasi-normal frequency is as follows; its

real part corresponds to the period for a massless particle or null rays in the unstable

circular orbit and its imaginary part represents the decay rate from the unstable circular

orbit [1, 2, 3, 4].

On the other hand, also related to the existence of the unstable circular orbit,

properties of “shadows” of black holes [5, 6, 7] have been studied in detail recently. The

main motivation of this subject is direct verification of black hole spacetimes using VLBI

radio telescopes. The shadow of the black hole is defined as the region of absorption on

the observer’s screen and its rim corresponds to the unstable circular orbit of null rays

around the black hole projected on the observer’s screen. Its shape can be drawn by

integrating null geodesics in the black hole spacetime (ray tracing). Recently, we have

investigated the imaging of black holes using waves [8, 9]; instead of applying the ray

tracing method, the image of the black hole is obtained using the Fourier transformation

of the scattering wave at the observer. In this method, wave effects such as interference

can be included in images of black hole shadows.

Wave optical treatment of the gravitational lensing has already done and

detectability of the interference effect is discussed for the weak gravitational lensing [10,

11, 12, 13]. For ordinal astrophysical sources, we cannot expect to observe the spatial

interference fringe pattern because the coherent time of the source is too short compared

to the path difference in the gravitational lensing system. However, even for such a case,

the interference effect can be observable in the frequency domain as the oscillation of

the power spectrum. The period of the oscillation in the power spectrum is determined

by the mass of the gravitational source which gives rise to the gravitational lensing [14].

For the gravitational lensing by the black hole, a new interference effect associated with

the existence of the unstable photon orbit is expected; null rays can go around the black

hole arbitrary number of times (orbiting) and direct rays and these winding rays can

interfere and the beat appears in the power spectrum. We expect that the period of

the beat is related to the mass of the black hole and the radius of the unstable circular

orbit.

In this paper, we consider wave optics in the Schwarzschild spacetime using a

massless scalar field to investigate wave effects peculiar to black hole spacetimes. The

massless scalar field is adopted as the benchmark treatment for the wave scattering

problem by black holes and we do not consider polarization degrees of freedom which
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is necessary for the electro magnetic waves and gravitational waves. We follow the

standard treatment of the wave scattering problem by black holes [15, 16, 19] and derive

the asymptotic form of the scattered wave at sufficiently far from the black hole in the

high frequency eikonal limit. The wave is represented by the sum over the partial waves

which include the WKB phase shift. Comparing to the standard treatment of the wave

scattering theory, our formulation retains the next to leading order contribution in the

phase of the scattering wave at large r, and this refinement makes the sum over partial

waves converge even for the scattering caused by the long range 1/r potential.

We shows that the gravitational lens equation in the black hole spacetime can

be derived by taking the short wavelength limit of the scattering wave. This lens

equation is an extension of the relation between the scattering angle and the derivative

of the WKB phase shift which is derived by the stationary phase method [20, 21]. To

evaluate the sum over partial waves, we apply the complex angular momentum (CAM)

method [22, 23, 17, 18, 19]. The scattering wave is decomposed to the direct part and

the winding part. The winding part can be evaluated using Regge poles which are

associated with the existence of the unstable circular orbit around the black hole.

The outline of this paper is as follows. In Sec. II, we introduce the WKB Green

function and derive the lens equation from the Green function by the stationary phase

method. In Sec. III, we shortly review the S-matrix and the Regge poles. We evaluate

the sum over partial waves and obtain the asymptotic form of the scattering wave in

Sec. IV. As applications, we consider images of the black hole and the interference effect

in the power spectrum in Sec. V. Sec. VI is devoted to summary. We use units in which

c = ~ = G = 1 throughout this paper.

2. Wave scattering by a black hole

We investigate the wave scattering problem by the black hole in the high frequency

eikonal limit. The high frequency condition is Mω ≫ 1 where M is the mass of a black

hole. Thus this condition states that the wave length is sufficiently shorter than the

size of the black hole. The eikonal limit is the angular quantum number ℓ of the wave

is larger than unity ℓ≫ 1. Under these conditions, we follow the standard approach of

the wave scattering theory; decompose scattered waves to the sum over partial waves

and introduce the phase shift which represents the properties of the scatterer.

2.1. Wave equation and the WKB phase shift

Let us consider the scalar wave equation �Φ = 0 in the Schwarzschild spacetime. The

metric is

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dΩ2. (1)
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As the geometry has the spherical symmetry, for the wave configuration with axial

symmetry about the z-axis, the scalar field Φ is separable as

Φ = e−iωtRℓ(r)Pℓ(cos θ). (2)

The radial wave function Rℓ and the angular wave function Pℓ satisfy

d

dr

(

∆
dRℓ

dr

)

+

(

r4ω2

∆
− ℓ(ℓ+ 1)

)

Rℓ = 0, (3)

1

sin θ

d

dθ

(

sin θ
dPℓ

dθ

)

+ ℓ(ℓ+ 1)Pℓ = 0, (4)

where ∆ = r2 − 2Mr. We consider the WKB solution of the radial equation with the

assumption of the high frequency eikonal limit Mω ≫ 1, ℓ ≫ 1. By introducing a new

radial function ψℓ = rRℓ and the tortoise coordinate r∗ =
∫

dr r
2

∆
= r+2M ln(r/(2M)−

1), the radial equation becomes

d2ψℓ

dr2∗
+Qψℓ = 0, (5)

Q = ω2 −
(

ℓ(ℓ+ 1)

r2
+

2M

r3

)(

1− 2M

r

)

.

The lowest order WKB solution of this equation is

ψℓ = Q−1/4 exp

[

i

∫ r∗

dr∗Q
1/2

]

∝ eiSr . (6)

For the angular wave function, which is the Legendre function in the present case, it

also can be written in the WKB form Pℓ ∝ eiSθ . For ℓ,Mω ≫ 1, the phase functions Sr

and Sθ satisfy the following Hamilton-Jacobi equations
(

dSr

dr

)2

− 1

∆2

(

r4ω2 − ℓ(ℓ+ 1)∆
)

= 0, (7)

(

dSθ

dθ

)2

− ℓ(ℓ+ 1) = 0. (8)

These equations are the same as the Hamilton-Jacobi equations for null rays in the

Schwarzschild spacetime. The solutions of these equations are

Sr(r) =

∫ r

dr

√
R
∆

, Sθ(θ) =

∫ θ

dθ L = Lθ, (9)

where R(r) = ω2r4 − L2∆ and we have replaced ℓ(ℓ + 1) by L2 ≡ (ℓ + 1/2)2, which

improves the accuracy of the WKB approximation; this replacement ensures the phase

shift introduced in (16) zero for the flat limit M = 0. Following the standard Hamilton-

Jacobi theory, by differentiating the function Sr + Sθ with respect to the angular

momentum L, the equation for the trajectory of null rays is derived as

− L

∫ rf

ri

dr√
R

= −(θf − θi). (10)

From this equation, the deflection angle for null rays is obtained by taking ri, rf → ∞:

Θ = π − (θf − θi) = π − 2L

∫ ∞

r0

dr√
R
, (11)
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where r0 is the radial turning point determined by R(r0) = 0.

We rewrite the WKB radial function using the phase shift. For this purpose, we

consider the solution of the radial equation (5) with the following boundary condition:

uin ∼
{

e−iωr∗ , r∗ → −∞,

Aout e
iωr∗ + Ain e

−iωr∗ , r∗ → +∞.
(12)

The phase shift is defined by

e2iδℓ = −(−)ℓ
Aout

Ain

. (13)

Then the wave at r → +∞ is expressed as

uin ∼ Aout e
iωr∗ + Ain e

−iωr∗

∝ sin

(

ωr∗ + δℓ −
πℓ

2

)

. (14)

For δℓ = 0, uin corresponds to the spherical wave in the flat spacetime jℓ(ωr) ∼
sin(ωr − πℓ/2). Within the WKB approximation, the analytic continuation around

the turning point yields the radial function for large r as

uin(r) ≈ sin

[
∫ r∗

rt

dr∗Q
1/2 +

π

4

]

= sin

[

ωr∗ + δℓ −
πℓ

2
−
∫ ∞

r

dr
r2

∆

(

Q1/2 − ω
)

]

, (15)

where rt is the turning point determined by Q(rt) = 0. Hence the WKB phase shift in

the Schwarzschild spacetime is obtained as [16]

δℓ =

∫ ∞

rt

dr
r2

∆

(

Q1/2 − ω
)

− ωrt∗ +
π

2

(

ℓ+
1

2

)

. (16)

For small ℓ less than a some critical value ℓc, there exists no real solution for Q(r) = 0

and (16) has no meaning. However, by performing a suitable analytic extension of the

formula, it can be shown that the phase shift acquires an imaginary part which represents

the absorption of waves by the black hole. In the eikonal limit ℓ ≫ 1, Q(r) ≈ R(r)/r4

and the phase shift is

δℓ =

∫ ∞

r0

dr

(√
R
∆

− r2

∆
ω

)

− ωr0∗ +
π

2

(

ℓ+
1

2

)

, (17)

and by differentiating with respect to the angular momentum ℓ,

dδℓ
dℓ

≈ π

2
−
(

ℓ+
1

2

)
∫ ∞

r0

dr√
R
. (18)

Comparing to Eq. (11), we thus obtain the well known relation between the classical

deflection angle and the WKB phase shift [22]

Θ = 2
dδℓ
dℓ
. (19)
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For large r, the integral in the phase of the radial wave function (15) can be approximated

to be

−
∫ ∞

r

dr

(

1 +
2M

r

)

(

Q1/2 − ω
)

≈
∫ ∞

r

dr
(ℓ+ 1/2)2

2ωr2
= −(ℓ+ 1/2)2

2ωr
, (20)

where we assume that the functionQ1/2 is real so ℓmust satisfies
√
2ωr ≥ ℓ+1/2 to make

this approximation have meaning. This imposes the maximal upper limit ℓmax ≈
√
2ωr

for a fixed value of ωr when we take the partial wave sum.

In the standard formulation of the wave scattering problem, this term is treated as

zero because it vanishes as r → ∞ and does not contribute to the scattering amplitude

and the differential cross section. However, as we will see, this term is necessary

to reproduce the lens equation from the wave function in the eikonal limit and also

necessary for convergence of the sum over partial waves.

After all, for sufficiently large r, we obtain the following form of the radial function

in the eikonal limit

uin(r) ∝ sin

[

ωr∗ +
(ℓ+ 1/2)2

2ωr
+ δℓ −

πℓ

2

]

with ℓ ≤
√
2ωr. (21)

2.2. Green function

We aim to obtain the scattered wave by a black hole; the scalar wave is emitted from
a point source and scattered by the Schwarzschild black hole (see Fig. 1). For this
purpose, let us consider the Green function for the scalar wave.

BH obs

r

✓rs

source

z

Figure 1. Configuration of wave scattering by a black hole.

For a monochromatic stationary wave with time dependence e−iωt, the Green function

satisfies

− g00ω2Φ +
1√−g∂j(

√−ggjk∂kΦ) = −δ3(x, xs). (22)

where δ3(x, xs) denotes the invariant delta function 1√−g
δ3(x − xs). By separating the

wave function as

Φ(r, θ; rs, θs) =
∞
∑

ℓ=0

2ℓ+ 1

4πrrs
ψℓ(r, rs)Pℓ(cos θ)Pℓ(cos θs), (23)



Wave Optics in Black Hole Spacetimes 7

the radial Green function ψℓ(r, rs) obeys‡
d2ψℓ

dr2∗
+Q(r)ψℓ = −δ(r∗ − rs∗). (24)

The solution of this equation can be constructed from a pair of linearly independent

solutions of the radial equation; one is given by uin in (12) and the other has the following

asymptotic behavior

uup ∼
{

Bin e
−iωr∗ +Bout e

iωr∗ , r∗ → −∞,

eiωr∗ , r∗ → +∞.
(25)

Using these two independent solutions uin, uup, the radial Green function can be written

as

ψℓ(r, rs) = −uin(r<) uup(r>)
W

, (26)

where r> = max(r, rs), r< = min(r, rs) and the Wronskian W is

W = uin
duup
dr∗

− uup
duin
dr∗

= 2iωAin. (27)

For large r, rs with rs < r, the radial Green function is

ψℓ(r, rs) ≈
i

2ω
eiωr∗

(

e−iωrs∗ − (−)ℓe2iδℓ eiωrs∗
)

. (28)

Assuming that the point source of the wave is located on −z axis (θs = π), the full

Green function for the scattering problem is

Φ(r, θ; rs, θs) =
iω

4πrrs

∞
∑

ℓ=0

(2ℓ+ 1)(−)ℓψℓ(r, rs)Pℓ(cos θ). (29)

For M = 0 (free propagating wave in the flat spacetime), ψℓ(r, rs) = rrsjℓ(ωrs)h
(1)(ωr)

and this formula reduces to the Green function of the freely propagating wave in the

flat spacetime:

Φ0 =
iω

4π

∞
∑

ℓ=0

(2ℓ+ 1)(−)ℓjℓ(ωrs)h
(1)
ℓ (ωr)Pℓ(cos θ) =

1

4π

eiω|x−xs|

|x− xs|
. (30)

Including the term (ℓ+1/2)2

2ωr
in the phase of the radial function (28), the asymptotic form

of the Green function at large r is

Φ(r, θ) ≈ eiωr∗

8iπωrrs

∞
∑

ℓ=0

(2ℓ+ 1)

[

e
i

(

ωrs∗+
(ℓ+1/2)2

2ω
( 1
r
+ 1

rs
)+2δℓ

)

− (−)ℓe
−i

(

ωrs∗+
(ℓ+1/2)2

2ω
(− 1

r
+ 1

rs
)

)
]

Pℓ(cos θ)

= Φ0 +
eiω(rs∗+r∗)

4πrs

1

2iωr

∞
∑

ℓ=0

(2ℓ+ 1)ei
(ℓ+1/2)2

2ωr̃ (e2iδℓ − 1)Pℓ(cos θ), (31)

where Φ0 ≡ Φ|δ=0 represents the incident spherical wave from the point source and we

defined
1

r̃
≡ 1

r
+

1

rs
. (32)

‡ We use the relation
∑

∞

ℓ=0
(ℓ+ 1

2
)Pℓ(cos θ)Pℓ(cos θs) = δ(cos θ − cos θs).
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Following the standard prescription of preparing the plane wave in the black hole

spacetime [24], the spherical wave from the point source placed at sufficiently far from

the black hole is obtained by replacing r, rs in the phase factor of (30) to their tortoise

coordinate r∗, rs∗:

Φ0 ≈
eiω(rs∗+r∗)

4π(r + rs)
e−iωr̃ θ2

2 for θ ≪ 1 and large r, rs. (33)

At this stage, we apply the Poisson sum formula§ to the sum in (31) which does not

contain the phase shift:
∞
∑

ℓ=0

(2ℓ+ 1)ei
(ℓ+1/2)2

2ωr̃ Pℓ(cos θ) (34)

= 2
+∞
∑

m=−∞

∫ ∞

0

dλ λ ei
λ2

2ωr̃Pλ−1/2(cos θ) e
2imπ(λ−1/2)

≈ 2

∫ ∞

0

dλ λ ei
λ2

2ωr̃J0(λθ) + 4
+∞
∑

m=1

∫ ∞

0

dλ λ ei
λ2

2ωr̃J0(λθ) cos(2mπ(λ− 1/2))

= 2iω
rrs
r + rs

e−iωr̃ θ2

2 +O((ωr̃)0), for θ ≪ 1,

where we used the asymptotic formula for the Legendre function

Pλ−1/2(cos θ) ≈
(

θ

sin θ

)1/2

J0(λθ) for λ≫ 1, θ 6= π, (35)

and consider the scattering with small θ (forward direction) in the present analysis.

We neglect O(ω0) contribution which is higher order in the eikonal approximation.

Therefore, for large r, the Green function in the form of the partial wave sum is

Φ ≈ eiω(r∗+rs∗)

4π(r + rs)

[

e−iωr̃ θ2

2 − e−iωr̃ θ2

2 +
r + rs
iωrrs

∑

ℓ

(

ℓ+
1

2

)

ei
(ℓ+1/2)2

2ωr̃ e2iδℓJ0((ℓ+ 1/2) θ)

]

=
eiω(r∗+rs∗)

4πiωrrs

∞
∑

ℓ=0

(

ℓ+
1

2

)

ei
(ℓ+1/2)2

2ωr̃ e2iδℓJ0((ℓ+ 1/2) θ), for θ ≪ 1. (36)

In this formula, the factor ei
(ℓ+1/2)2

2ωr̃ is essential to make the infinite sum over ℓ finite.

Without this factor, the sum does not converge; this is well known property of the

partial wave sum for long range potential which falls off as 1/r at large distances. We

will discuss the issue of convergence of the partial wave sum (34) and (36) in the next

subsection.

§ The Poisson sum formula is

∞
∑

ℓ=0

F (ℓ+ 1/2) =

+∞
∑

m=−∞

(−)m
∫

∞

0

F (λ) ei2πmλdλ.
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We take a look at the scattering of the plane wave in the weak gravitational field of

a point mass and check the formula (36) indeed works well. In this case, the deflection

angle is given by the Einstein formula for light deflection

Θ(b) = −4M

b
≈ −4Mω

ℓ
, (37)

where b = (ℓ+ 1/2)/ω is the impact parameter for the partial wave. The phase shift is

obtained by integrating the relation (19)

δℓ =
1

2

∫ ℓ

dℓΘ(ℓ) = −2Mω ln ℓ+ const. (38)

By taking rs → ∞, the incident spherical wave reduces to the plane wave. Renormalizing

the over all factor as eiωrs∗/(4πrs) → 1 and applying the Poisson sum formula to (36),

Φ =
eiωr∗

iωr

∞
∑

ℓ=0

(

ℓ+
1

2

)

ei
(ℓ+1/2)2

2ωr e−i4Mω ln ℓJ0((ℓ+ 1/2)θ) (39)

=
eiωr∗

iωr

∫ ∞

0

dλ λ ei
λ2

2ωr λ−i4MωJ0(λθ) +O(1/(ωr))

= e−i2Mω ln(4Mω) eiωr(1−θ2/2) eπMωΓ(1− i2Mω) 1F1

(

2iMω, 1,
i

2
rωθ2

)

.

The phase factor e−i2Mω ln(4Mω) can be absorbed to the constant of the phase shift. Then

the obtained wave function has the following asymptotic form for ωrθ2 ≫ 1,

Φ ≈ eiωz−2iωM ln(ω(r−z)) +M
Γ(1− 2iMω)

Γ(1 + 2iMω)

(

θ

2

)−2+4iMω
eiω(r+2M ln(2ωr))

r
, (40)

where z ≈ r(1− θ2/2), r− z ≈ rθ2/2. The first term is the incident plane wave and the

second term is the scattering wave. Thus (39) reproduces the scattering wave function

for 1/r potential (Coulomb scattering). For Mω ≫ 1, rωθ2 = finite, corresponding to

the scattering toward the forward direction θ ∼ 0,

Φ ≈ eiωr(1−θ2/4) eπMω Γ(1− i2Mω) J0(
√
4Mrωθ). (41)

2.3. Convergence of partial wave sum

Here we comment on convergence of the partial wave sum (36). We truncate the infinite

sum up to ℓmax and the phase shift is evaluated by the WKB formula (16). As we have

mentioned in the last paragraph in Sec. 2.1, the upper bound of the partial wave sum

in the eikonal approximation must be ℓmax =
√
2ωr, and this value becomes infinity in

the eikonal limit. To check the convergence of this sum, we first consider (34) which is

δℓ = 0 case of (36). Let us consider the following quantity:

I(θ, ℓmax) =
1

2ωr

ℓmax
∑

ℓ=0

(2ℓ+ 1) ei
(ℓ+1/2)2

2ωr J0((ℓ+ 1/2)θ). (42)

The relation (34) implies this sum becomes

|I(θ)| = 1 +O((ωr)−1) (43)
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in the eikonal limit ωr ≫ 1. We present converging behavior of this sum for θ = 0 case
(Fig. 2).

1 10 100 1000

0.001

0.100

10

1000

ℓmax

A
b
s
[I
]

!r D 10

!r D 100

!r D 1000

Figure 2. The partial wave sum (34) as a function of ℓmax for ωr = 10, 100, 1000.

For ℓmax ≈
√
2ωr, we can observe the absolute value of the sum oscillates around the

true value predicted by the formula (34). This oscillation is due to interference between

O((ωr)0) and O((ωr)−1) terms and the amplitude of the oscillation is expected to be

reduced in ωr ≫ 1 limit. Thus we expect that the partial wave sum with ℓmax =
√
2ωr

converges in the eikonal limit.
We then checked numerically the convergence of the sum of (36) for the weak

gravitational field case that is equivalent to the Coulomb scattering. We truncate the
infinite sum up to the value ℓmax and the phase shift is evaluated by the formula (38).
The convergence of the sum (39) for θ = 0 is shown in Fig. 3:

1 5 10 50 100 500

10
-4

0.001

0.010

0.100

1

lmax

E
x
p
[-
πMω

]

Γ(1-
2
iM
ω)

A
b
s
[Φ sum

] !r D 100

!r D 200

!r D 300

!r D 500

Figure 3. The convergence behavior of the sum (39) for θ = 0.
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We expect the absolute value of this sum becomes eπMω|Γ(1−2iMω)|. Fig. 3 shows the
sum converges to the correct value if we set ℓmax =

√
2ωr and take ωr ≫ 1 limit. We

also check the sum reproduces correct θ dependence of the scattering wave function.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

θ

A
b
s
[Φ sum

]

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

θ
A
b
s
[Φ sum

]

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

θ

A
b
s
[Φ sum

]

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

θ

A
b
s
[Φ]

`max D 100 `max D 200

`max D 300

ˇ

ˇ

ˇ

e⇡M!
� .1 � 2iM!/1F1.2iM!; 1; ir!✓

2=2/
ˇ

ˇ

ˇ

Figure 4. Behaviors of the wave function obtained by the partial wave sum up to

ℓmax(ωr = 200, r = 20M). The dotted lines are the partial wave sum without the

factor ei
(ℓ+1/2)2

2ωr . The last panel is behavior of the analytic function that the partial

wave sum converges in the eikonal limit.

Fig. 4 shows behavior of the wave function (39) obtained by taking the partial wave sum

up to ℓmax (ωr = 200, r = 20M). For ℓmax = 300 ∼
√
2ωr, the obtained wave function

has a good agreement with the asymptotic analytic formula.
For the Schwarzschild black hole case, the WKB phase shift is evaluated by the

formula (16).
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Figure 5. The WKB phase shift of the Schwarzschild black hole for Mω = 10.

Fig. 5 shows appearance of the critical angular number ℓc ≈ 51 corresponding to the
critical impact parameter bc = ℓc/ω = 3

√
3M for null rays. To make connection with

the geometric optics, we plot the deflection angle introduced by the relation (19):

0 50 100 150 200 250 300
-6

-4

-2

0

2

ℓ

Θ

Figure 6. The deflection angle for null rays in the Schwarzschild spacetime calculated

from the WKB phase shift (Mω = 10). The critical angular number is ℓc ≈ 51.

Near the critical angular number ℓc, the deflection angle can have arbitrary negative
values and null rays can go around the black hole arbitrary times (orbiting, Fig. 6).
This feature is peculiar to black hole spacetimes that have event horizons. Fig. 7 shows
the wave function calculated by taking the partial wave sum (r = 20M).
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Figure 7. Behavior of the scattering wave function in the Schwarzschild spacetime

obtained by the partial wave sum. The top left panel shows convergence of the wave

function for θ = 0 (r = 20M). The other panels are θ dependence of the wave function

with Mω = 10, r = 20M and ℓmax = 100, 200, 300.

We expect the optimal value of ℓmax forMω = 10, r = 20M is
√
2ωr ≈ 280. Indeed, the

value of the wave function for θ = 0 is converging to the expected value for ℓmax > 200

(the top left panel in Fig. 7).

To summarize, base on these examples investigated in this subsection, we conclude

that the partial wave sum formula (36) is applicable to black hole spacetimes if we set

the upper limit of the sum as ℓmax =
√
2ωr and take the eikonal limit ωr ≫ 1. In this

paper, we try to evaluate this sum analytically.

2.4. Derivation of lens equation

Applying the Poisson sum formula again to (36), the asymptotic form of the Green

function is

Φ ≈ eiω(r∗+rs∗)

4πiωrrs

+∞
∑

m=−∞

∫ ∞

0

dλ λ ei
λ2

2ωr̃ e2iδλ−1/2 J0(λθ) e
i2πm(λ−1/2), for θ ≪ 1. (44)

Changing the integration variable to the semi-classical impact parameter b = (ℓ+1/2)/ω,

the wave function (44) becomes

Φ ∝
+∞
∑

m=−∞

∫ ∞

0

db b eiω
b2

2 (
1
r
+ 1

rs
) e2iδbω−1/2 J0(bωθ) e

i2πm(bω−1/2). (45)
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As the integrand is the rapidly oscillating function of b for Mω ≫ 1, the integral can

be evaluated by the stationary phase method. Using the asymptotic form of the Bessel

function‖, the stationary phase condition for the integrand yields

b

(

1

r
+

1

rs

)

= −Θ(b)− 2πm± θ, Θ(λ) ≡ 2
dδλ
dλ

. (46)

Θ(b) is the deflection function which coincides with the classical deflection angle (11).
This is the lens equation for the black hole spacetime. For a given position of the source
and the observer (r, rs, θ), this equation provides the impact parameter b and determines
the trajectory of null rays connecting the source and the observer. The integer m has
the meaning of the winding number for null rays orbiting around the black hole. The
geometric interpretation of this equation is shown in Fig. 8:

lens

obs

source

�⇥

✓˛

ˇ

b
b r

rs

lens

obs

source
�⇥

✓
˛

ˇ

b b

r

rs �

Figure 8. Configuration of the gravitational lensing in the geometric optics. Angles

in the figure satisfy α+ β = −Θ+ θ in the left panel and α+ β = −Θ− θ in the right

panel.

Angles α, β satisfies the relation

α + β = −Θ± θ, (47)

where + sign corresponds to the left panel and − sign corresponds to the right panel in

Fig. 8. Using α ≈ b
rs

≪ 1 and β ≈ b
r
≪ 1, we obtain

b
rs + r

rrs
= −Θ± θ. (48)

This is the lens equation (46) with m = 0. For −Θ > 2π, the null ray goes around the

black hole more than one times (orbiting). In such a case, the winding number m is

defined so as the condition 0 < −Θ− 2πm < 2π is satisfied.

3. S-matrix and Regge poles for wave scattering by black holes

For the partial waves with impact parameter b ∼ 3
√
3M , the scattering occurs in the

vicinity of the peak of the effective potential (Fig. 9).

‖

J0(x) ∼
√

2

πx
cos(x− π/4) for |x| ≫ 1.



Wave Optics in Black Hole Spacetimes 15

�1 C1

IIIIII

r⇤

e
i!r⇤

e
�i!r⇤

Aout

Ain

1

e
�i!r⇤

rp⇤

Figure 9. The effective potential Q(x) around the unstable circular orbit rp. The

quasi-normal mode satisfies Aout/Ain = ∞.

Using the result of the asymptotic matching of the WKB wave function around the

peak, the S-matrix Sℓ ≡ e2iδℓ is obtained as

Sℓ = −(−)ℓ
Aout

Ain

= −(−)ℓ
eiπν√
2π

(

ν +
1

2

)ν+1/2

e−(ν+1/2)Γ(−ν), (49)

where ν is determined by the relation [25]

ν +
1

2
= i

Q0
√

2Q′′
0

≈ 27M2ω2 − ℓ2

2 ℓ
. (50)

The peak of the potential for the Schwarzschild case is at rp = 3M and

Q0 = Q(rp), Q′′
0 = ∂2r∗Q

∣

∣

r=rp
. (51)

Absolute value of Sℓ represents the reflection rate of incident waves. As the black

hole absorbs waves, the phase shift acquires the imaginary part and the reflection rate

becomes smaller than unity for small impact parameters. Indeed,

|Sℓ|2 = e−2δI =
1

1 + exp
(

−π ℓ2−27(Mω)2

2ℓ

) ≈ 1

1 + exp (−π(ℓ− ℓc))
, (52)

where ℓc = 3
√
3Mω is the critical angular momentum. The waves with ℓ < ℓc are

absorbed by the black hole. bc = ℓc/ω = 3
√
3M is the critical impact parameter

(Fig. 10).
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Figure 10. The reflection rate for ℓc = 10.
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The S-matrix (49) has poles in the complex ℓ plane of which location is determined

by poles of the Gamma function Γ(−ν), ν = n, n = 0, 1, 2, · · ·. That is, poles of the

S-matrix in the complex ℓ plane are ¶

ℓn ≈ ℓc + i

(

n+
1

2

)

, ℓc = 3
√
3Mω, n = 0, 1, 2, · · · (53)

These are Regge poles [22]. In the vicinity of the nth pole ℓn, the S-matrix is

Sℓ ≈
γn

ℓ− ℓn
, γn = (−)ℓc

i√
2π

(

ℓn
ℓc

)(

n+
1

2

)n+1/2

e−(n+1/2) 1

n!
. (54)

For n≫ 1, n! ≈
√
2πn e−nnn, (1 + 1/(2n))n+1/2 ≈ e1/2, hence the residue γn is

γn ≈ (−)ℓc
i

2π

ℓn
ℓc
. (55)

4. Evaluation of scattering wave

The formula of the Green function (44) is decomposed to m = 0 and m 6= 0 parts:

Φ =
eiω(r∗+rs∗)

4πiωrrs

[

∫ ∞

0

dλ λ ei
λ2

2ωr̃ e2iδλ−1/2 J0(λθ) +
∑

m 6=0

∫ ∞

0

dλ λ ei
λ2

2ωr̃ e2iδλ−1/2 J0(λθ) e
i2πm(λ−1/2)

]

.(56)

As we have discussed in Sec. 2.3, the integer m is the winding number for null rays

orbiting around the black hole. Hence the first integral term represents contribution of

rays which directly reach the observer (direct part). By identifying the phase shift as the

lens potential of the gravitational lensing, the direct part reproduces the Kirchoff-Fresnel

diffraction formula for the gravitational lensing [10]. On the other hand, the second

integral term represents the contribution of rays go around the black hole (winding

part). We evaluate these two parts separately.

4.1. Winding part : contribution of Regge poles

As the S-matrix has poles in the complex ℓ plane, the integral of the second term in (56)

can be evaluated by applying Cauchy’s theorem. We use the contour shown in Fig. 11.

We first show that the integral along the circle |λ| = R vanishes as R → ∞. Introducing

a new integration variable y2 = −iλ2/(2ωr̃),+
∫

|λ|=R

dλλei
λ2

2ωr̃ e2iδλ−1/2J0(λθ)e
i2πm(λ−1/2)

¶ The quasi-normal frequency is given by treating ℓ as real:

ωn =
1

3
√
3M

− i

3
√
3M

(

n+
1

2

)

.

+ To show that the integral along the circle vanishes, we use the formula

e−y2

=
1√
π

∫ +∞

−∞

dk e−k2
+2iky.
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=
1√
π

∫ +∞

−∞
dke−k2

∫

|λ|=R

dλλ exp

[(

2keiα√
2ωr̃

+ i2πm

)

λ

]

e2iδλ−1/2J0(λθ)e
−iπm,

where we choose α = 5π/4 for Im(λ) > 0 and α = −π/4 for Im(λ) < 0 for convergence
of the integral. Hence, as R → ∞, the integral becomes zero.

�

�1

�2

�3

�0

m � 1

m  �1

Ci1

�i1

0

Figure 11. Poles of the S-matrix are situated in the first quadrant of the complex λ

plane.

Thus the second integral in (56) has contributions from poles and the integral along the

imaginary axis.

∞
∑

m=1

∞
∑

n=0

ℓn e
i

ℓ2n
2ωr̃ (2πiγn) J0(ℓnθ) e

i2πm(ℓn−1/2)+
∞
∑

m=1

∫ +i∞

0

dλ+
−∞
∑

m=−1

∫ −i∞

0

dλ.(57)

The integral along the positive imaginary axis is
∞
∑

m=1

∫ +i∞

0

≈
∫ +i∞

0

dλλ
i

2

eiπ(λ−1/2)

sin(π(λ− 1/2))
ei

λ2

2ωr̃ e2iδλ−1/2J0(λθ)

= − i

2

∫ ∞

0

dλ̃ λ̃
(−i)e−πλ̃

1/2(e−πλ̃ + eπλ̃)
e−i λ̃2

2ωr̃ e2iδ−iλ̃−1/2J0(iλ̃θ)

= O(ω0), (58)

and yields higher order contribution in the eikonal limit because the first integral in (56)

gives O(ω) contribution. The contribution of the integral along the negative imaginary

axis is also O(ω0). We ignore these terms in our treatment. Thus, the wave function

(56) becomes

Φ ≈ eiω(r∗+rs∗)

4πiωrrs

[

∫ ∞

0

dλ λ ei
λ2

2ωr̃ e2iδλ−1/2 J0(λθ) + 2πi
∞
∑

n=0

ℓn γn e
i

ℓ2n
2ωr̃ J0(ℓnθ) f(ℓn)

]

, (59)

where

f(ℓn) ≡
∞
∑

m=1

e2iπm(ℓn−1/2) = − e2iπℓn

e2iπℓn + 1
. (60)



Wave Optics in Black Hole Spacetimes 18

The sum over n can be evaluated by applying the Euler-Maclaurin formula and keeping

the contribution of the leading order in the eikonal limit:

2iπ
∞
∑

n=0

ℓn γn e
i

ℓ2n
2ωr̃ J0(ℓnθ) f(ℓn)

≈ −e
iπℓc

ℓc

∫ ∞

0

dn

(

ℓc +
i

2
+ in

)2

e
i

2ωr̃ (ℓc+
i
2
+in)

2

J0

[(

ℓc +
i

2
+ in

)

θ

]

f

(

ℓc +
i

2
+ in

)

≈
√

π

2
e−π−iπ/4+i3πℓce

iℓ2c
2ωr̃ ℓc

√
ωr̃ J0(ℓcθ) +O

(

1√
ωr̃

)

. (61)

We have used

f

(

ℓc +
i

2

)

≈ −e2iπℓce−π. (62)

After all, we obtain

Φ ≈ eiω(r∗+rs∗)

4πiωrrs

[
∫ ∞

0

dλ λ ei
λ2

2ωr̃ e2iδλJ0(λθ) +

√

π

2
e−π−iπ/4+i3πℓce

iℓ2c
2ωr̃ ℓc

√
ωr̃J0(ℓcθ)

]

. (63)

4.2. Direct part and total wave function

We evaluate this term assuming that impact parameters of corresponding null rays are

not so small and gravitational field can be approximated by the Newtonian weak field.

Within such an assumption, the phase shift can be approximated by that of the weak

field form (38) and the direct part can be obtained as (39). Therefore, the formula for

the total scattering wave is summarized as follows:

Φ ≈ eiω(r∗+rs∗)

4π(r + rs)

[

c1J0(bEωθ) + c2J0(bcωθ)
]

, for θ ≪ 1, (64)

c1 = e−i2Mω ln 2MωeπMωΓ(1− i2Mω)e−
i
4
ωr̃θ2 , c2 = −i

√

π

2ωr̃
ℓc e

−π e
i

(

ℓ2c
2ωr̃

+3πℓc−π
4

)

,

where bE =
√
4Mr̃ is the Einstein radius and bc = 3

√
3M is the critical impact parameter

for null rays. This formula is applicable for r, rs ≫ 2M and Mω ≫ 1. Let us assume

that the point source is near the black hole and the observer is sufficiently far from the

black hole (r ≫ rs). Then r̃ ≈ rs. Of course the location of the source must be far

from the black hole to apply (64), we dare to consider such a situation to investigate

the wave optical image and the interference effect by the black hole. As the impact

parameters for the direct rays must be larger than those of the winding rays, we must

require bE > bc which constrains the distance of the point source from the black hole in

our approximation:

rs >
27

4
M ≡ rc ∼ 6.8M. (65)

The ratio of two coefficients is

|c2|
|c1|

=
3

2

√

3M

rs
× e−π = e−π

(

rs
rc

)−1/2

≈ 0.043×
( rs
6.8M

)−1/2

. (66)
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In the geometrical optics, it is known that the intensity of the winding ray reduces to

the factor e−2π ≈ 0.0019 compared to the direct ray [5]. In terms of the amplitude of

the wave, this value corresponds to e−π ≈ 0.043 and is consistent with the obtained

value |c2|/|c1| in the eikonal limit of the scattering wave function.

5. Applications

As applications of the analytic formula (64) of the scattering wave, let us consider images

of the black hole and the interference effect in the frequency domain.

5.1. Wave optical image of black holes

Using the scattering wave function (64), we can reconstruct wave optical images of black
holes illuminated by a point source [9]. As the imaging system, we consider a detector
with a convex lens which transforms the interference fringe to the image (Fig. 12).

!0

Figure 12. The configuration of the imaging system with a convex lens.

The location of the lens of the detector is Z = 0 in the detector’s coordinates and the

wave function just in front of the lens is Φ(X, Y, 0). Using the Fresnel-Kirchoff diffraction

formula [26], the wave on the detector’s focal plane Z = f is given by

ΦI(XI , YI) ∝
∫

X2+Y 2≤a2
dXdY Φ(X, Y, 0) e−iωX2+Y 2

2f × eiωℓ

ℓ
(67)

where XI , YI are coordinates on the focal plane, a is a radius of the lens and ℓ is the path

length between a point on the lens plane and a point on the focal plane. The function

e−iωX2+Y 2

2f in (67) represents the action of the convex lens which transform incident plane

waves to spherical waves focusing at the focal point. Assuming that the focal length is

sufficiently larger than the radius of the lens,

ℓ =
√

(X −XI)2 + (Y − YI)2 + f 2 ≈ f +
(X −XI)

2 + (Y − YI)
2

2f
, (68)

and we obtain

ΦI(XI , YI) ∝
∫

X2+Y 2≤a2
dXdY Φ(X, Y, 0) e−iω

f
(XIX+YIY ). (69)
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Thus the wave function ΦI on the focal plane is the Fourier transformation of the wave

function Φ. The relation between the world coordinates (x, y, z) and the detector’s

coordinates (X, Y, Z) is

x = r sin θ cosφ = X cos θ0 − Z sin θ0,

y = r sin θ sinφ = Y, (70)

z = r cos θ = X sin θ0 + Z cos θ0, X2 + Y 2 + Z2 = r2.

It is possible to obtain cos θ as a function of X, Y :

cos θ =

(

X

r

)

sin θ0 +

√

1−
(

X

r

)2

−
(

Y

r

)2

cos θ0. (71)

Fig. 13 shows an example of images of the Schwarzschild black hole illuminated
by a point source. Images are obtained by drawing |ΦI | which is the amplitude of the
Fourier transformation of Φ.

Figure 13. Images of the black hole for different viewing angles θ0 =

0.0, 0.02, 0.05, 0.09 (from the left to the right panels). Parameters are rs = 10M, r = ∞.

Mω = 800 and a = 0.03.

In our previous paper [9], we numerically solved the Helmholtz equation in the

Schwarzschild spacetime and images of the black hole are reconstructed using the

obtained wave function. Due to limited resolution of the numerical calculation, it was

difficult to perform simulation with high frequency waves corresponding to the eikonal

limit and it was hard to resolve the fine structure of black hole images. In the present

analysis, as we have obtained the analytic form of the scattering waves, it is possible to

acquire images using high frequency waves. In Fig. 13, we can observe a bright outer

ring which corresponds to the Einstein ring by direct rays and a thin inner ring which

corresponds to the rim of the black hole shadow (photon ring). It was not easy to

recognize this structure of the black hole images in our previous paper [9].

5.2. Interference effect in wave scattering by black holes

We can examine the interference effect in the frequency domain using (64); that is caused

by the interference between the direct rays and the winding rays. For bEωθ, bcωθ ≫ 1,

using the asymptotic form of the Bessel function, the scattering wave (64) can be written

as

Φ ∼ d1 cos(bEωθ0) + d2 cos(bcωθ0), (72)
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where d1, d2 represent numerical factors independent of ω with their ratio

|d2|
|d1|

= e−π

(

rs
rc

)−1/2

. (73)

After averaging the amplitude of the wave over rapidly oscillating frequency scale

∼ 1/(Mθ0), the power spectrum is

I(ω) = |Φ|2 ∼ |d1|2
2

+
|d2|2
2

+
d1d

∗
2 + d∗1d2
2

cos [(bE − bc)ωθ0] . (74)

The first term and the second term represent the intensity of the direct wave and the
winding wave, respectively. The third term represents the interference between the direct
wave and the winding wave. For the point source at rs ∼ 7M , the impact parameters
for the direct rays and the winding rays become nearly equal and the interference term
results in the “beat” in the frequency domain. The modulation due to the interference
appears in the power spectrum (Fig. 14).

✓0 D 0:1 ✓0 D 0:2 ✓0 D 0:3 ✓0 D 0:4

Figure 14. The power spectrum of the scattering wave with rs = 7M . The amplitude

of the modulation is ∆I/I ∼ 0.1. The period of the modulation depends on the viewing

angle θ0.

The period of the modulation in the power spectrum is

M∆ω =
2π

θ0

1

3
√
3

(
√

rs
27M/4

− 1

)−1

. (75)

As the typical value for the viewing angle θ0, if the Einstein angle θE =
√

4M/rs is

assumed, we obtain

M∆ω =
π

2− 3
√

3M
rs

, rs >
27M

4
. (76)

For rs ∼ rc, the visibility of the modulation is

V ≡ Imax − Imin

Imax + Imin

=
d1d

∗
2 + d∗1d2

|d1|2 + |d2|2
∼ 2e−π ∼ 0.08. (77)

This value is not so small and we may have the possibility to detect this interference
effect observationally, which means direct verification of the black hole spacetime.

galactic core BH intermediate mass BH stellar mass BH

mass 106M⊙ 103M⊙ 10M⊙
∆ω 40Hz 40kHz 4MHz

Table 1. The typical frequency of the modulation in the power spectrum.
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Table I shows the frequencies ∆ω for black holes with different masses. For intermediate

mass black holes and stellar mass black holes, the modulation in the power spectrum is

expected to be detectable using sub-mm radio telescopes with suitable band width and

the frequency resolution.

6. Summary

We investigated the wave optics in the Schwarzschild spacetime following the standard

treatment of the wave scattering problem and evaluated the Green function for the

stationary monochromatic point source in the eikonal limit. To make the partial wave

sum of the scattering wave converge, we retain the next to leading order contribution in

the phase of the partial waves for large r. Effect of the orbiting scattering is taken into

account as the contribution of Regge poles to the scattering wave. The wave optical

images of the black hole are obtained and the interference effect in the frequency domain

is discussed.

As the straightforward extension of the analysis performed in this paper, the

formulation of the wave optics in the Kerr spacetime is now on going. We expect

that the effect associated with the black hole spin such as the superradiance adds new

features to the scattered wave. We will report on this subject in our forthcoming paper.
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