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A general single-centre close-coupling approach based on a continuum-discretisation procedure is
developed to calculate excitation and ionization processes in ion-atom collisions. The continuous
spectrum of the target is discretised using stationary wave packets constructed from the Coulomb
wave functions, the eigenstates of the target Hamiltonian. Such continuum discretisation allows
one to generate pseudostates with arbitrary energies and distribution. These features are ideal
for detailed differential ionization studies. The approach starts from the semiclassical three-body
Schrödinger equation for the scattering wave function and leads to a set of coupled differential
equations for the transition probability amplitudes. To demonstrate its utility the method is applied
to calculate collisions of antiprotons with atomic hydrogen. A comprehensive set of benchmark
results from integrated to fully differential cross sections for antiproton-impact ionization of hydrogen
in the energy range from 1 keV to 1 MeV is provided. Contrary to previous predictions, we find
that at low incident energies the singly differential cross section has a maximum away from the zero
emission energy. This feature could not be seen without a fine discretisation of the low-energy part
of the continuum.

PACS numbers: 34.10.+x, 34.50.Gb, 25.43.+t

I. INTRODUCTION

Ion-atom collisions play an important role in many
applications from astrophysics through to cancer ther-
apy [1]. Accurate solution of the ion-atom scattering
problem is challenging due to the existence of many re-
action channels. At low energies molecular-orbital close-
coupling methods are used [2, 3]. At sufficiently high
energies perturbative methods [4–7] are accurate. In
the intermediate energy region various atomic-orbital
close-coupling [8–13], the lattice-based [14–16] and Fad-
deev [17–21] methods are used. Recently we have de-
veloped semiclassical (SC-CCC) [22, 23] and quantum-
mechanical (QM-CCC) [24, 25] versions of the conver-
gent close-coupling method. Most of the presently avail-
able close-coupling approaches are based on the expan-
sion of the scattering wave function in terms of electronic
states of the target. An adequate description of the elec-
tronic structure of the target is one of the important re-
quirements for the accurate calculations of the collision
cross sections. For instance, if we consider scattering on
atomic hydrogen, the negative energy bound states are
known exactly and suitable for calculations. However,
the true continuum wave functions, which are the ex-
act solutions of the Schrödinger equation for the atomic
hydrogen, become problematic in close-coupling calcu-
lations since they are not square-integrable. Therefore,
in order to account for channels associated with ioniza-
tion, alternative treatments of the target have been devel-
oped like the concept of pseudostates. A suitable choice
of the pseudostates can effectively discretize the target
continuum making incorporating the continuum into the
close-coupling formalism. Indeed, practically all avail-
able highly-sophisticated approaches that are valid over
a wide energy range are based on expansion of the total

scattering wave function using a certain pseudostate ba-
sis. The main difference between all these approaches is
the way how the continuum is discretised. For instance,
Hall et al. [26] used Slater orbitals, Pons [27] spherical
Bessel functions, Abdurakhmanov et al. [28], Igarashi
et al. [29] and McGovern et al. [30] Laguerre functions,
Toshima [31] Gaussian-type orbitals, Azuma et al. [32]
and Sahoo et al. [33] B-spline orbitals as basis functions.
These basis functions are used to diagonalize the target
Hamiltonian which defines the pseudostate wave func-
tions and energies.

The generated discrete basis must meet certain require-
ments. In particular, the discretisation of the continuum
must be sufficiently dense in order to achieve convergent
cross sections. As the basis size is increased the negative-
energy states converge to the true discrete eigenstates,
while the positive-energy states provide an increasingly
dense discretization of the continuum. The values of the
pseudostate energies depend on the specific choice of ba-
sis parameters and in general the energies of the highest
lying pseudostates are significantly larger than the val-
ues of lower lying pseudostates. One common feature of
all of these basis functions is that they produce pseu-
dostates with energies distributed only in a certain way
which cannot be changed arbitrarily. This can become
an issue if collisions requiring denser discretization at
various continuum regions are desired. Also, continuum
distributions for different angular momenta produced by
the available basis functions are always unaligned which
makes calculations of differential ionization cross sections
problematic.

In a two-part communication we develop a general
close-coupling approach to ion-atom collisions based on
a wave-packet continuum-discretisation procedure. The
approach allows to accurately calculate all processes tak-
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ing place in the collision system. The continuous spec-
trum of the target is discretised using stationary wave
packets constructed from the Coulomb wave functions,
the eigenstates of the target Hamiltonian. To this end we
utilize special normalized states which we call the wave
packets. The wave packets will be constructed based on
the idea of eigendifferentials developed long ago by Weyl
[34], Wigner and Griffin [35], Bethe [36] and others to
treat non-normalizable continuum states (which do not
belong to a Hilbert space) in a framework of the stan-
dard theory of Hermitian operators in a Hilbert space.
The idea has been used successfully in the continuum-
discretized coupled-channels approach to nuclear reac-
tions for a few decades [37]. Most recently the close-
coupling approach based on the wave packet expansion
has been developed by Kukulin and coworkers in the
context of the integral-equation formulation of scatter-
ing theory [38, 39]. The approach was applied to nu-
clear collisions and yielded promising results. Schiwietz
[40] used single-centre close-coupling approach based on
time-dependent wave packets to calculate stopping pow-
ers in ion-atom collisions. However, the time-dependent
wave packets are not very practical and lead to cumber-
some calculations. This could be one of the reasons why
the wave-packet continuum discretisation method has not
seen further development in atomic physics.

Here we use the stationary wave packets in the frame-
work of our single-center semiclassical convergent close
coupling (SC-CCC) approach [22, 41, 42]. The approach
starts from the semiclassical three-body Schrödinger
equation for the scattering wave function and leads to
a set of coupled differential equations for the transition
probability amplitudes. The previous implementation
was based on the Laguerre pseudostates. Wave-packet
continuum discretisation allows one to generate pseu-
dostates with arbitrary energies and distribution. These
features are ideal for detailed differential ionization stud-
ies. To demonstrate its utility the wave-packet conver-
gent close-coupling (WP-CCC) method is applied to cal-
culate collisions of antiprotons with atomic hydrogen.

Within the energy range of our interest antiproton
scattering on atomic hydrogen is the simplest single-
center three-body Coulomb problem. It serves as a test-
ing ground for new theoretical approaches under devel-
opment. The problem has been investigated using the
semiclassical close-coupling [26, 27, 29–33, 43, 44] and
lattice [45–47] methods, and quantum-mechanical CCC
method [28, 48]. The results of the aforementioned the-
ories for the total ionization cross section and other in-
tegrated cross sections (where available) are in overall
good agreement with each other and the deviation does
not exceed 10% at any considered energy. Application to
differential ionization cross sections is less certain.

In Sec. II, we give a brief outline of the formalism and
describe the procedure for generating the wave packets.
Details of the calculations are given in Sec. III and the
results are presented in Sec. IV. Finally, in Sec. V we
highlight the main findings and draw conclusions from

this work. Atomic units are used throughout unless oth-
erwise specified.

II. WAVE-PACKET APPROACH

We treat antiproton-hydrogen scattering within the
framework of the one-center semiclassical convergent-
close-coupling approach developed previously [22, 42].
The approach follows from the exact three-body formal-
ism, where the total scattering wave function Ψ+

i satisfies
the full Schrödinger equation

(H − E)Ψ+
i = 0. (1)

The total three-body Hamiltonian operator H is written
as

H = −∇
2
R

2µ
− ∇

2
r

2
− 1

r
+

1

|R− r| −
1

R
, (2)

where µ is the reduced mass of the projectile-target sys-
tem, R and r are the positions of the incident antiproton
and the orbital electron relative to the nucleus of hy-
drogen. We assume the target nucleus is located at the
origin and the projectile is moving along a classical tra-
jectory R = b+vt, where b is the impact parameter and
v is the initial velocity of the projectile relative to the
target, defined so that b · v = 0. Following Bransden
and McDowell [49] we separate the total scattering wave
function Ψ+

i into nuclear and electronic parts according
to

Ψ+
i = eiqRΨe, (3)

where q is the incident momentum of the projectile rela-
tive to the target nucleus. After inserting this into Eq. (1)
and using semiclassical approximation we obtain the
non-relativistic semiclassical time-dependent Schrödinger
equation for the electronic part of the total scattering
wave function

(Ht + V )Ψe(t, r,R) = i
∂Ψe(t, r,R)

∂t
, (4)

where Ht is the target Hamiltonian

Ht = −∇2
r/2− 1/r (5)

and

V = −1/R+ 1/|R− r| (6)

is the interaction potential between the projectile and
the target constituents. The scattering wave function
is expanded in terms of certain basis functions ψα(r),
suitably chosen to represent the full set of target states,
as

Ψe(t, r,R) =

N
∑

α=1

aα(t, b)ψα(r)e
−iǫαt, (7)
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where N is the number of basis functions and ǫα is the
energy of the target electronic state α. The latter col-
lectively denotes the full set of quantum numbers in that
state. The expansion coefficients aα(t, b) at t→ +∞ rep-
resent the transition amplitudes into the various target
states.
Substituting this representation of the scattering wave

function into the semiclassical Schrödinger equation (4),
and using the orthogonality properties of the target wave
packets, one obtains the following set of the first-order
differential equations for the time-dependent coefficients

i
daα(t, b)

dt
=

N
∑

β=1

ei(ǫα−ǫβ)t〈ψα|V |ψβ〉aβ(t, b), (8)

where α = 1, 2, . . . , N . This system is solved subject to
the initial boundary conditions

aα(−∞, b) =δαi, (9)

which assume the atom is initially in the i = 1s state.
If the basis states are known, the matrix elements
〈ψα|V |ψβ〉 can be evaluated numerically [28]. We now
consider a few kinds of target basis functions.

A. Target description

The description of the target plays an important role in
the accuracy and convergence rate of the close-coupling
calculations. Since the Coulomb interaction potential be-
tween the electron and the proton is spherically symmet-
ric we only consider a solution to the radial Schrödinger
equation for a fixed value of the orbital angular momen-
tum l. For negative and positive values of the eigenen-
ergy ε the radial Schrödinger equation has different an-
alytical solutions. For the case when ε < 0, i.e. when
the electron stays bound to the proton, the energy of the
electron energy has the discrete spectrum with values
εn = −1/(2n2), where n is the principal quantum num-
ber. For each discrete value εn the radial wave function
is given as

ϕnl(r) =

√

(n− l − 1)!

(n+ l)!
e−r/n (2r)

l+1

n2+l
L2l+1
n−l−1

(

2r

n

)

,

(10)

with L2l+1
n−l−1

(

2r
n

)

being the associated Laguerre polyno-
mials. The eigenstate wave functions ϕnl(r) satisfy the
following orthonormality condition:

〈ϕn′l|ϕnl〉 =
∫

∞

0

drϕn′l(r)ϕnl(r) = δn′n. (11)

When ε > 0, i.e. when the electron is no longer bound
to the proton, the radial Schrödinger equation has a con-
tinuum of solutions. These continuum functions are writ-

ten as

ϕκl(r) =
1√
2π

(2κr)l+1 exp
( π

2κ

) |Γ (l+ 1− i/κ)|
(2l + 1)!

× e−iκr
1F1

(

i

κ
+ l + 1, 2l+ 2, 2irk

)

, (12)

where κ =
√
2ε is the momentum of the ejected elec-

tron and 1F1 is the Kummer confluent hypergeometric
function. These functions, known as the Coulomb wave
functions, are orthogonal for different values of ε and
normalised according to

〈ϕκ′l|ϕκl〉 =
∫

∞

0

drϕκ′l(r)ϕκl(r) = δ(κ′ − κ), (13)

and satisfy 〈ϕnl|ϕkl〉 = 0. In the close-coupling for-
malism of scattering theory description of the contin-
uum using ϕκl(r) functions is not possible due to diver-
gent continuum-continuum transition matrix elements.
This is because, according to Eq. (13), the true contin-
uum states do not have a finite normalization unlike the
bound-state wave functions. For this reason, alternative
treatments of the target are used. For comparison, below
we briefly describe the Laguerre pseudostates tradition-
ally used in the CCC method, before proceeding to an
alternative way of describing the target space using wave
packets.

1. Laguerre pseudostates

As mentioned above, the target has an infinite num-
ber of bound and continuum states. In the scatter-
ing equations it is not possible to couple all the chan-
nels corresponding to these states. While one can al-
ways take a limited number of lowest bound states, the
matrix elements corresponding to continuum-continuum
transitions diverge as the continuum functions are not
square-integrable. Therefore, usually the full set of in-
finite bound and continuum states of the target is re-
placed by a suitably-chosen finite set of square-integrable
pseudostates. The use of pseudostates eliminates the
problem of divergent continuum-continuum V-matrix el-
ements. Also, this allows one to study the convergence of
calculated observables in a systematic manner by simply
increasing the basis size.
As an example here we will consider a set of pseu-

dostates ϕL
nl(r) generated using the orthogonal square-

integrable Laguerre (L) functions. Such a set can be
obtained by diagonalising the target Hamiltonian

〈ϕL
n′l|ht|ϕL

nl〉 = εnδn′n, (14)

where ht is the radial part of the target Hamiltonian Ht

ht = −
1

2

∂2

∂r2
− 1

r

∂

∂r
+
l(l + 1)

2r2
− 1

r
. (15)
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The pseudostate wave functions are taken as a linear
combination

ϕL
nl(r) =

Nl
∑

k=1

Bl
nkξkl(r) (16)

of the orthogonal Laguerre functions

ξkl(r) =

(

λ(k − 1)!

(2l + 1 + k)!

)1/2

(λr)l+1

× exp(−λr/2)L2l+2
k−1 (λr). (17)

The fall-off parameter λ is arbitrary and is chosen so that
the states with lowest values of n are good approxima-
tions for the exact hydrogen eigenfunctions defined by
Eq. (10). For convenience in this work we take λ = 2 for
all values of l. In principle, the convergence of the final
results is independent of the value of λ. However, inap-
propriately chosen values of λ can considerably reduce
the convergence rate.
Upon diagonalization of the target Hamiltonian ht us-

ing pseudostates ϕL
nl(r) one obtaines pseudostate energies

εnl. As in the case with wave functions the energies of
the lowest states are essentially equal to the exact val-
ues of eigenenergies. In scattering calculations, higher
lying negative-energy pseudostates account for the con-
tribution of the infinite number of eigenstates, whereas
the contribution of the entire continuum is taken into
account by the limited number of positive-energy pseu-
dostates. Note that the full set of the Laguerre pseu-
dostates diagonalising the full target Hamiltonian Ht is
then written as ψL

α(r) = ϕL
nl(r)Ylm(r̂)/r, α = 1, ..., N ,

where Ylm are the spherical harmonics of the unit vector

r̂. The size of the basis is N =
∑lmax

l=0 (2l + 1)Nl, where
lmax is the maximum included target orbital angular mo-
mentum.
Implementation of this basis yielded excellent results

for cross sections of various processes taking place in col-
lisions of light [50–55] and heavy [56–58] projectiles with
atomic and molecular targets.
However, in more detailed differential ionization stud-

ies of the problem of interest, one needs more dense distri-
bution of states in a particular region of continuum. In
such cases the continuum discretization using Laguerre
pseudostates becomes inconvenient. Increasing the size
of the basis allows one to cover more energies. However,
for given fall-off parameter λ, this generates pseudostates
of energies too high to be useful. In such a situation re-
ducing the fall-off parameter λ may help reduce the en-
ergy of the highest pseudostate. However, this comes at
the expense of more pseudostates going to negative ener-
gies, thus not helping to increase the density of positive-
energy pseudostates. In addition, the energies of contin-
uum pseudostates for different values of l are not aligned.
This creates extra difficulties when differential ionization
cross sections are calculated. The latter are calculated
for each l and need to be interpolated before they are
partial-wave summed [59, 60]. To overcome these diffi-
culties, in the next section we will introduce a new way

of generating the pseudostates. It allows construction of
the basis states with arbitrary energies and distribution.

2. Wave packets

To construct normalizable wave packets we first take
the continuous spectrum with some maximum value of
energy Emax and then divide the whole interval [0, Emax]

into Nc non-overlapping intervals [Ei−1, Ei]Nc

i=1 with E0 =

0 and ENc
= Emax. We call the intervals [Ei−1, Ei]Nc

i=1
the discretization bins. To obtain convergent cross sec-
tions, Emax and Nc must be sufficiently large. Every such
energy bin corresponds to the interval [κi−1, κi] in mo-
mentum space, where κi =

√
2Ei. The width of the ith

momentum bin is

wi = κi − κi−1. (18)

We define the wave packets corresponding to each of the
bins as the normalized integrals of the true continuum
functions (Eq. (12)) over the momentum bin region:

ϕWP
il (r) =

1√
wi

∫ κi

κi−1

dκϕκl(r). (19)

It is easy to show that ϕWP
il (r) states are orthonormal:

〈ϕWP
il |ϕWP

jl 〉 =
∫ ∞

0

drϕWP
il (r)ϕWP

jl (r)

=
1

√
wiwj

∞
∫

0

dr

κi
∫

κi−1

dκϕκl(r)

κj
∫

κj−1

dκ′ϕκ′l(r)

=
1

√
wiwj

∫ κi

κi−1

dκ

∫ κj

κj−1

dκ′δ(κ− κ′)

=
δij√
wiwj

∫ κi

κi−1

dκ

=δij , (20)

where we used Eq. (13). In a similar way it is possible to
prove the wave packets also satisfy the following target
diagonalization condition

〈ϕWP
il |ht|ϕWP

jl 〉 = εiδij , (21)

where εi is the middle-energy point of the ith bin, i.e.
εi = (Ei−1 + Ei)/2. It needs to be emphasized here that
the physical meanings of the true Coulomb wavefunction
ϕκl(r) and the normalized discretization-bin wave packet
with the same energy ϕWP

il (r) are totally different. The
former corresponds to a single state of the continuum,
while the latter is constructed from the infinite num-
ber of states within a certain region of the continuum.
This means the wave packet takes into account the con-
tribution of a certain continuum region, while the true
Coulomb wave only a single point which is located in the
middle of that region.
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Now, by adding Nb negative-energy eigenstates we
form a WP basis of size N , where the size of the ba-

sis is N =
∑lmax

l=0 (2l + 1)(Nb − l + Nc). The number
of necessary negative-energy eigenstates and WPs rep-
resenting the target continuum is chosen to give con-
vergent cross sections. The full set of the WP basis
states representing the target space is then written as
ψWP
α (r) = ϕWP

nl (r)Ylm(r̂)/r, α = 1, ..., N .
Fig. 1 shows a part of the continuum of atomic hy-

drogen (shaded area) and corresponding positive-energy
wave packets obtained from the energy bins and pseu-
dostates generated by diagonalizing the target Hamilto-
nian using the Laguerre functions. The displayed WP
basis consists of 30 positive-energy states (the same for
each l) covering the electron continuum region from 0.05
eV to 400 eV. For ease of comparison on a log scale we
have taken the WP bins to grow exponentially in energy,
but be the same for each l. Consequently, note that the
energy levels of the WP basis are all aligned for different
angular momentum symmetries. We also show the posi-
tive energy levels of the Laguerre pseudostate basis with
20-l states for each of the l =0 (s), 1 (p) and 2 (d) symme-
tries. As one can see, for different l the Laguerre energy
levels are distributed differently with an uneven distri-
bution of states and fewer states at low energies. This
distribution is defined by the size of the basis and the
fall-off parameter λ. In contrast, the density of contin-
uum discretization with WP basis is higher everywhere in
the covered region below 400 eV. The truncated part of
continuum above this energy is negligible since the prob-
ability of the electrons being ejected with those energies
is extremely low.

10-1

100

101

102

103

en
er

gy
 (

eV
)

energy      wave          Laguerre    Laguerre    Laguerre
bins          packets       s-states      p-states      d-states

FIG. 1. (color online) The continuum energy levels of atomic
hydrogen (shaded area), wave packet bins and resulting en-
ergies, as well as Laguerre-based pseudostate energies. The
Laguerre pseudostate energies vary with l whereas the wave
packet energies do not.

In Fig. 2 we compare the wave packets (normalized to
unity) and Laguerre pseudostates, constructed for var-
ious values of the ejected electron momentum κ, mul-

−1.0

−0.5

0.0

0.5

1.0

〈ϕ
κl

ϕ
T nl

〉ϕ
T nl

(r
)

κ=0.71384 a.u.,   l=0
 Wave packet
 Laguerre
 Coulomb

−1.0

−0.5

0.0

0.5

〈ϕ
κl

ϕ
T nl

〉ϕ
T nl

(r
)

κ=0.68587 a.u.,   l=1
 Wave packet
 Laguerre
 Coulomb
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0 20 40 60 80 100 120 140 160
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〈ϕ
κl

ϕ
T nl

〉ϕ
T nl

(r
)

κ=0.64490 a.u.,   l=2
 Wave packet
 Laguerre
 Coulomb

FIG. 2. (color online) The radial dependence of
〈ϕκl|ϕ

T
nl〉ϕ

T
nl(r) for the wave packets (T=WP) and Laguerre

pseudostates (T=L) for various values of the angular momen-
tum l and the ejected electron momentum κ. Also shown are
the corresponding true Coulomb wave functions. The wave
packets cover the continuum region confined with the bin bor-
ders, κmin (0.64505 for l = 0, 0.61988 for l = 1 and 0.58191
for l = 2) and κmax (0.78263 for l = 0, 0.75187 for l = 1 and
0.70790 for l = 2).

tiplied by their overlaps with the true Coulomb wave.
The corresponding true Coulomb wave functions are also
shown. Three values of the ejected electron momentum
κ indicated on each of the panels of Fig. 2 correspond
to the n = 10 states from l = 0, 1 and 2 bases of La-
guerre functions with the size 20 − l and λ = 2, respec-
tively. The Laguerre pseudostates and the wave packets
nearly coincide in some inner domain below r = 15 a.u..
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Above r = 40 a.u. the Laguerre pseudostates exponen-
tially decay while the wave packets continue their oscilla-
tory behaviour. The agreement between Laguerre pseu-
dostate wave functions and bin wave packets for small
values of r is achieved only when the bin boundaries
κmin = κ−(κ−κadj)/2 and κmax = κ+(κ−κadj)/2, where
κadj is the momentum of the lower adjacent Laguerre
pseudostate. They are indicated in the figure caption.
The Laguerre pseudostate corresponding to κ represents
the part of the continuum between κmin and κmax with
an underlying trapezoidal integration rule [61, 62].

B. Cross sections

To be able to calculate various differential cross sec-
tions we have to determine the scattering amplitude
Tfi(qf , qi). To this end we use the idea developed in [63].
The amplitude is written in terms of the total scattering
wave function Ψ+

i as [64]

Tfi(qf , qi) = 〈Φ−

f |
←−
H − E|Ψ+

i 〉, (22)

where Φ−

f is the asymptotic wave function describing the
final state and the arrow over the total three-body Hamil-
tonian operator H indicates the direction of its action.
Eq. (22) is general and applicable for both excitation and
breakup of the target. It is also valid for rearrangement
channels, however, in the present work we neglect them.
If the result of the scattering is excitation of the target
then Φ−

f is given as a product of a plane wave describing
the scattered projectile and a bound state wave function
of the target in the final state. If the collision leads to
ionization of the target then Φ−

f is a three-body Coulomb
asymptotic state described by incoming waves represent-
ing the three unbound particles in the final state [65, 66].
The electronic scattering wave function Ψe [see Eqs.

(4) and (7)] is a part of the total scattering wave function
Ψ+

i . As already mentioned our approach is based on the
expansion of Ψe in terms of a set of N square-integrable
pseudostates ψα. With these we form a projection oper-
ator

IN =

N
∑

α=1

|ψWP
α 〉〈ψWP

α |. (23)

Inserting this relation into Eq. (22) we get

Tfi(qf , qi) ≈〈Φ−

f I
N |←−H − E|INΨ+

i 〉
=〈qfψfI

N |V |INΨ+
i 〉

=〈ψf |ψWP
f 〉〈qfψWP

f |V |INΨ+
i 〉

≡〈ψf |ψWP
f 〉TN

fi (qf , qi), (24)

where qf is the momentum of the scattered projectile
and ψf is any given state from the full set of the tar-
get eigenstates {ψnlm, ψ

−
κ }. Here ψ−

κ is the pure incom-
ing Coulomb wave representing the continuum state of

the ejected electron with the momentum κ. In deriving
Eq. (24) we took into account that the action of the op-
erator IN leads to limiting of the target subspace by re-
placing the full set of the H states (including non-L2 con-
tinuum) with a set of L2 states. This effectively screens
the Coulomb interaction between the projectile and tar-
get constituents even in the continuum. We also used the
relation that 〈ψf |ψWP

α 〉 = δfα〈ψf |ψWP
f 〉 as by construc-

tion we take ǫf = ǫWP
f for each target orbital angular

momentum l.
We note that when ψf = ψnlm amplitude TN

fi (qf , qi)

converges to the exact scattering amplitude Tfi(qf , qi)
for excitation of the final nlm state as N → ∞. At
the same time when ψf = ψ−

κ amplitude TN
fi (qf , qi) con-

verges to

T̃κi(qf , qi) = 〈qfψ−

κ |V |Ψ+
i 〉, (25)

rather than to the exact amplitude of Eq. (22) for
breakup. However, it has been demonstrated in [67]
that in this case the only difference between the exact
amplitude of Eq. (22) and much simpler approximate
ionization amplitude of Eq. (25) is a phase factor, i.e.

|T (qf , qi)| = |T̃(qf , qi)|. Therefore, for the purpose of
calculating cross sections it is sufficient to know only
magnitude of TN

fi (qf , qi) for sufficiently large N .
Thus both excitation and ionization amplitudes are

obtained upon calculation of transition matrix elements
TN
fi (qf , qi) which are related to the impact-parameter

space transition probability amplitudes as follows [68]

TN
fi (qf , qi) =

1

2π

∫

dbeip⊥b[af (∞, b)− δfi]

=eim(ϕf+π/2)

∫

∞

0

dbb[ãf(∞, b)− δfi]Jm(p⊥b),

(26)

where p = qi − qf and ãf (t, b) = eimφbaf (t, b).
When ψf = ψnlm we have

〈ψnlm|ψWP
f 〉 = 1 (27)

by construction. When ψf = ψ−
κ after partial wave ex-

pansion of the 3-dimensional Coulomb wave we easily get

〈ψ−

κ |ψWP
f 〉 =

√

2

π
(−i)leiσlbnl(κ)Ylm(κ̂), (28)

where bnl(κ) is defined as

bnl(κ) =

∫ ∞

0

drϕκl(r)ϕ
WP
nl (r) =

1√
wn

, (29)

and σl is the Coulomb phase shift. With this it is possible
to further simplify Eq. (24) to get

Tκi(qf , qi) =

lmax
∑

l=0

l
∑

m=−l

(−i)leiσlYlm(κ̂)TN
nlm i(qf , qi)

2πκ
√
wn

.

(30)
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Index n in Eqs. (28) - (30) corresponds to the bin with
κ = κn =

√
2En.

The most detailed observable, the triply differential
cross section (TDCS), can be directly calculated using
the ionization amplitude defined in the Eq. (30) as

d3σ(κ, qf , qi)

dEdΩedΩf
= µ2 qfκ

qi
|Tκi(qf , qi)|2, (31)

where µ is the reduced mass of the projectile-target sys-
tem. This cross section is for the electron being ejected
into the solid angle dΩe with the energy in the range E
to E + dE, where E = κ2/2, when the projectile is in-
cident along the quantization axis z (qi ‖ z) and further
scattered into the solid angle dΩf .
Two types of doubly-differential cross sections (DDCS)

are usually used. The first one can be obtained by inte-
grating the TDCS over the spherical coordinates of the
scattered projectile:

d2σ(κ, qf , qi)

dEdΩe
=

∫

d3σ(κ, qf , qi)

dEdΩedΩf
dΩf

=
µ2

2πq2i κwn

lmax
∑

l=0

l
∑

l′=0

l′
∑

m=−l′

2

1 + δl′l

× Ylm(κ̂)Y ∗

l′m(κ̂)Re

[

(−i)l−l′ei(σl−σl′ )

×
∫

∞

0

dbbãnlm(∞, b)ã∗nl′m(∞, b)
]

,

(32)

where we assumed
∫

dΩf =
1

qfqi

∫ 2π

0

dϕf

∫ ∞

0

dp⊥p⊥

and used the identity

∫

∞

0

dp⊥p⊥Jm(p⊥b)Jm(p⊥b
′) =

δ(b − b′)
b

.

The DDCS defined this way shows the angular and
energy distributions of the ejected electrons. Another
DDCS can be formed by integrating the TDCS over the
spherical coordinates of the ejected electron (this can be
done analytically) and is written as

d2σ(κ, qf , qi)

dEdΩf
=

∫

d3σ(κ, qf , qi)

dEdΩedΩp
dΩe

=
µ2qf

4π2qiκwn

lmax
∑

l=0

l
∑

m=−l

|Tκi(qf , qi)|2. (33)

This cross section is differential in the angular variables
of the scattered projectile and the energy of the ejected
electron.
The singly differential cross section (SDCS) in the en-

ergy of the ejected electron can be calculated by inte-
grating Eq. (33) over Ωf . Integration of Eq. (33) over Ωf

gives us

dσ(κ, qf , qi)

dE
=

1

κwn

lmax
∑

l=0

l
∑

m=−l

σnlm, (34)

where σnlm is the cross section for excitation of the pseu-
dostate in channels f = {nlm}. The latter is calculated
as

σnlm = 2π

∫ bmax

0

dbbPnlm(b), (35)

where bmax is the upper limit for the impact parameter.
It will be specified in the next section. The transition
probability is calculated as

Pnlm(b) = |anlm(+∞, b)− δnlm,1s|2. (36)

Alternatively, the SDCS in the momentum of the ejected
electron can be defined as

dσ(κ, qf , qi)

dκ
=

1

wn

lmax
∑

l=0

l
∑

m=−l

σnlm. (37)

The SDCS in the electron ejection angle, dσ/dΩe, can be
obtained from integration of dσ/dE/dΩe over dE, i.e.

dσ

dΩe
=

µ2

2πq2i

Nb+Nc
∑

n=Nb+1

lmax
∑

l=0

l
∑

l′=0

l′
∑

m=−l′

2

1 + δl′l

× Ylm(κ̂)Y ∗

l′m(κ̂)Re

[

(−i)l−l′ei(σl−σl′ )

×
∫

∞

0

dbbãnlm(∞, b)ã∗nl′m(∞, b)
]

. (38)

Finally, the total integrated ionization cross section is
written as

σion =

Nb+Nc
∑

n=Nb+1

wn
dσ(κ, qf , qi)

dκ
=

Nb+Nc
∑

n=Nb+1

lmax
∑

l=0

l
∑

m=−l

σnlm.

(39)

III. DETAILS OF CALCULATIONS

In the previous section we derived expressions to cal-
culate various differential cross sections. Before proceed-
ing further we give some details of our calculations. To
ensure the convergence of calculations several parame-
ters associated with the target and the projectile need
to be investigated. Parameters defining the target struc-
ture are the maximum allowed orbital quantum number
lmax, the number of bound (negative-energy) eigenstates
Nb − l, the maximum energy Emax of the electron con-
tinuum covered by wave-packet bins, and the number of
bins within this interval Nc. Convergence of the final re-
sults is studied by systematically increasing each of these
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parameters while fixing the others at sufficiently large
values. This procedure is continued until the parameter-
dependent variation of the results is reduced to a level less
than one percent. At intermediate and high energies this
is achieved with lmax = 10, Nb = 10− l, Emax = 400 eV
and Nc = 30. It is this basis depicted in Figure 1. How-
ever, at lower projectile energies we had to increase the
number of wave packets and reduce Emax. To be specific,
at 2 keV we had Nc = 90 and Emax = 40 eV. With these
parameters the total number of target states N in the
present calculations was from 4015 at high energies to
11275 at low energies. The total number of basis states
also defines the size of the set of the coupled differen-
tial equations (8). To ensure that the employed basis
was sufficiently large we were also guided by the analyt-
ical first Born (FBA) results obtained in the full wave
treatment [69]. Before performing full calculations we
obtained excellent agreement with the first Born results
when coupling between discretised channels was switched
off.

The number of quadrature points for integration
within each bin was taken to provide an adequate ac-
curacy and chosen depending on the width of the bin.
Typically, at least 40 points were used for the smallest
bins and increased for larger bins as required.

It is noteworthy to comment on the structure treat-
ment implemented in our previous QM-CCC calcula-
tions [28, 48]. The QM-CCC calculations utilised the or-
thogonal Laguerre basis (16) with parametersNl = 20−l,
lmax = 5 and λ = 2. The state energies of this target ba-
sis are displayed in Fig. 1 for orbital angular-momentum
quantum numbers l = 0, 1 and 2. While both the
present bin-based WP-CCC and the previous Laguerre-
based QM-CCC approaches allow one to study the con-
vergence of the results by increasing the number of the
target states, the present formulation has the advantage
of being able to explicitly choose a specific positive en-
ergy, and for this to be the same for each l. This is helpful
in differential ionization studies where the outgoing elec-
tron energy is specified. Furthermore, the bin-based for-
mulation has considerably greater flexibility in the way
the energies can be distributed.

The convergence of calculations with varying param-
eters associated with the projectile has been carefully
studied. The set of coupled differential equations (8) was
solved by varying the z-component (z ≡ vt) of the pro-
jectile position from −200 to +200 a.u. at all energies.
The upper limit for the impact parameter bmax is propor-
tionally increased from 10 a.u. at 1 keV and to 40 a.u. at
1 MeV [70]. The radial grid required for calculations of
the matrix elements was 500 a.u. at the highest energy
and 2000 a.u. at the lowest energy.

Finally, during the calculations we always make sure
that we obtain exactly the same total ionization cross sec-
tion both by summing over the partial cross sections for
excitation of the positive-energy states (equation (39))
and by integrating the fully differential cross section
d3σ/dE/dΩe/dΩp (equation (31)) over all variables.

IV. RESULTS AND DISCUSSION

In this section we present our numerical results for
triply, doubly, and singly differential ionization cross sec-
tions, as well as the total ionization cross section. Col-
lision geometries and projectile energies are chosen in
such a way that allows the most comprehensive com-
parison with our quantum-mechanical CCC results pub-
lished in Refs. [28, 48] and other semiclassical theories
[6, 29, 30, 44]. In addition we present results for differen-
tial cross sections and kinematic regimes which have not
been previously considered.

A. Triply differential cross sections

In Figure 3 we show our results for the triply differ-
ential cross section in the collision plane. The present
WP-CCC results are compared with our previous QM-
CCC results, the Born approximation, the continuum-
distorted-wave eikonal-initial-state (CDW-EIS) calcula-
tions of Voitkiv and Ullrich [6] and coupled-pseudostate
(CP) calculations of McGovern et al. [30]. Here we fix the
direction of scattered antiprotons and show the value of
the momentum transfer p, while the electron ejection an-
gle θe runs from −180◦ to 180◦ relative to the direction of
the incident antiproton. Since the coplanar geometry is
considered the azimuthal coordinates of the ejected elec-
tron φe and the antiproton φf are set to 0. The arrow
indicates the direction of momentum transfer. We note
that the results of other approaches are transformed to
the collision geometry and coordinate frame that we have
currently adopted. The ejected electron energy is fixed
at 5 eV. The flexibility of the presently developed WP
basis in distributing positive energy states arbitrarily al-
lowed us to have a state with the energy exactly equal
to 5 eV for all l. This was not possible in the QM-CCC
calculations where we had to calculate the TDCS at 5 eV
by interpolating the TDCS at other available energies.
As one can see from the figure, for every indicated

antiproton energy and momentum transfer our current
WP-CCC and previous QM-CCC results are generally
in good agreement. As discussed earlier, slight disagree-
ment at Ep = 30 keV and 214.84 keV (corresponds to
projectile speed of 3 a.u.) is due to insufficient density of
positive-energy pseudostates around 5 eV in the Laguerre
basis (see Fig. 1) utilised in our previous QM-CCC cal-
culations. At 500 keV both WP-CCC and QM-CCC are
in good agreement with the coupled-pseudostate calcula-
tions of McGovern et al. [30], and the CDW-EIS calcula-
tions of Voitkiv and Ullrich [6]. Here even the Born ap-
proximation is reasonably accurate. At every projectile
energy all presented theories predict the binary and recoil
peaks at the same electron ejection angle which qualita-
tively describes the phenomenon of suppressed electron
ejection in the direction of the scattered antiprotons (es-
sentially zero degrees). Due to the repulsive Coulomb
force between the antiproton and electron the binary
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FIG. 3. (color online) Triply differential cross sections for
antiproton-impact ionization of the ground state of atomic hy-
drogen at various scattering angles and energies of the ejected
electron for specified projectile energies Ep. Results of the
QM-CCC, CDW-EIS and semiclassical CP approaches are
due to [48], [6] and [30], respectively. The arrows indicate
the direction of the momentum transfer.

peak is shifted to the right from the momentum transfer
direction. Note that the Born approximation is always
symmetric around the momentum transfer direction.

It is interesting to observe how drastically the TDCS at
a particular scattering angle changes as a function of the
incident energy. An example is given in Figure 4 for the
TDCS at 0◦ scattering angle of the projectile at low and
high incident energies. As one can see, at high projec-
tile energies the electron ejection peaks in both forward
and backward directions. However, as the incident en-
ergy falls the forward ejection is completely suppressed.
Again, this is due to the repulsive Coulomb interaction

 0
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FIG. 4. (color online) Triply differential cross sections for
antiproton-impact ionization of the ground state of atomic
hydrogen at specified projectile energies Ep. The ejected elec-
tron energy is 5 eV, and the antiproton is scattered to 0◦.

between ejected electron and antiproton.
Fig. 5 presents the TDCS at various scattering angles

of the projectile and ejected-electron energies for 75 keV
antiproton impact. Though the variation of the projec-
tile angle is rather small, in steps of 0.1 mrad, the effect
on the TDCS is rather large at all considered electron
ejection energies, which were chosen to correspond to en-
ergy losses of 30 eV, 40 eV, 50 eV, and 53 eV according
to the experimental setup for proton scattering DDCS
Laforge et al. [71].

B. Doubly differential cross sections

The DDCS in energy of the ejected electron and scat-
tered angle of the projectile, d2σ/dE/dΩf , are shown in
Fig. 6 at the same electron energies as for Fig. 5. The
corresponding proton-impact DDCS of [71] are rather dif-
ferent from the antiproton-impact ones shown, and are
not presented. At the intermediate energy of 75 keV
the proton-impact electron capture cross section is very
large, and so it is not surprising that the DDCS would
be very different for antiproton impact. We look forward
to calculating proton-impact TDCS and DDCS utilising
the two-centre bin-based CCC formalism for heavy pro-
jectiles.
The DDCS in energy and angle of the ejected electron,

d2σ/dE/dΩe, are presented in Figure 7 for the ejected
electron energy of Ee = 5 eV and various energies of the
incident antiproton as a function of the electron ejection
angle θe. The QM-CCC results and the results of the
coupled-pseudostate approach of McGovern et al. [30] are
also presented for comparison. Since this cross section is
formed as a result of integration of the TDCS over the
scattering angle of the projectile, the DDCS results dis-
played in Fig. 7 retain some features of the correspond-
ing TDCS shown in Fig. 3. As expected, the electron
emission is negligible at small ejection angles. The pro-
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FIG. 5. (color online) 75 keV antiproton-impact ionization of
the ground state of hydrogen TDCS at the specified scattering
angles of the projectile and ejected-electron energies Ee. The
arrows indicate the momentum transfer direction.

nounced peaks at around 80◦ and the shallow peaks at
180◦ are the integral results of the binary and recoil peaks
of the TDCS, respectively. Small difference between the
WP-CCC and QM-CCC results can again be attributed
to the lack of Laguerre pseudostates with energies close
to 5 eV in the QM-CCC calculations.
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FIG. 6. (color online) The d2σ/dE/dΩf at specified ejected-
electron energies for 75 keV antiproton impact.
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FIG. 7. (color online) The d2σ/dE/dΩe for antiproton-impact
ionization of hydrogen at 30, 200 and 500 keV for an ejected
electron of 5 eV. Results of the QM-CCC approach and the
coupled pseudostates approach of McGovern et al. [30] are
also presented for comparison.

C. Singly differential cross sections

In Fig. 8 we show our results for the SDCS in the ejec-
tion angle of the electron, dσ/dΩe, in comparison with
our other available calculations. Except for the lowest
energy considered, the cross section is lowest in the for-
ward direction has maximum around 60◦ and a mini-
mum around 120◦. The relatively large cross section in
the backward direction at all considered energies indi-
cates the propensity for the electron to be ejected in the
opposite direction to the antiproton. The agreement be-
tween the present WP-CCC results and the semiclassical
approaches of Igarashi et al. [29] and McGovern et al.

[44] is somewhat variable, but improves with increasing
energy.

The SDCS in the energy of the ejected electron is pre-
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FIG. 8. (color online) The singly differential cross section in
the electron ejection angle at incident energies of antiproton
2–200 keV. Results of semiclassical CC approaches are due
to Igarashi et al. [29] and McGovern et al. [44].

sented in Fig. 9. Previously, the QM-CCC results [48]
and the coupled-pseudostate calculations [30] predicted
cross sections to monotonically decrease with the increas-
ing electron ejected energy at all considered projectile
energies. However, the present WP-CCC results exhibit
a qualitatively different behavior at low electron ejection
energies, with the SDCS rising rapidly towards a maxi-
mum. This is most prevalent at the lowest impact ener-
gies presented. We checked this result in a model problem
which retained only s-states of hydrogen, using both the
WP-CCC and QM-CCC approaches, and such behavior
was also evident there. Absence of the low energy peaks

in our previous QM-CCC results is attributed to the fact
that in these calculations the discretization of the low-
energy part of the continuum was insufficient to reveal
the fine details. This is seen in Fig. 1 where below 2 eV
the Laguerre basis has just two states. We suppose the
same conclusion is applicable to the coupled-pseudostate
results of McGovern et al. [30] as well. As mentioned
in Section III, at low incident energies we used 90 bins
for ejected electron energy range from 0 to 40 eV. The
resulting wave-packet basis had 19 states below 2 eV.
The present Born calculations are given just as a check
that the WP basis is behaving as expected if coupling is
turned off.

D. Total ionization cross section

Finally, in Fig. 10 we show our results for the to-
tal ionization cross section in comparison with the ex-
perimental data of Knudsen et al. [72], the quantum-
mechanical CCC results and other semiclassical calcu-
lations [29, 30, 33] for the incident energies ranging from
1 keV to 1 MeV. The calculated WP-CCC cross sec-
tions are in excellent agreement both with the experi-
ment and the QM-CCC results. There is insignificant
variation between the WP-CCC and QM-CCC results
at the energy range from 2 keV to 10 keV which is a
couple of percents at most. As discussed earlier, this is
due to the deficiency of the basis used in the QM-CCC
calculations since the continuum discretization using La-
guerre pseudostates is significantly sparser than the dis-
cretisation density resulting from the present wave pack-
ets. Overall, the present results for TICS are in good
agreement with other semiclassical close-coupling calcu-
lations [29, 30, 33].

V. CONCLUSIONS AND FUTURE OUTLOOK

A new continuum-discretization approach to ion-atom
collisions based on stationary wave packets has been de-
veloped. The normalized wave packets constructed from
the radial Coulomb wave functions have been used to
discretize the continuous spectrum of the target. The
generated orthonormal wave-packet basis is used in the
target-based one-center expansion of the total scatter-
ing wave function. This converts the semiclassical three-
body Schrödinger equation into a set of coupled-channel
differential equations. One of the favorable features of
the developed method is the ability of generating target
states with arbitrary energies and distribution. This, in
addition to improving the accuracy of the calculations,
also has a particular advantage in calculating differen-
tial ionization cross sections where the energies of the
pseudostates with different orbital quantum number are
aligned naturally. The density of the continuum discreti-
sation can be as high as necessary.
The utility of the new method is demonstrated on the
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FIG. 9. (color online) The singly differential cross section in
the ejection energy of the electron at various projectile ener-
gies. Results of the QM-CCC approach and the semiclassical
coupled pseudostates approach are due to Abdurakhmanov
et al. [48] and McGovern et al. [30], respectively.

example of antiproton collisions with atomic hydrogen.

The integrated, fully differential, as well as various dou-
bly and singly differential cross sections for antiproton-
impact ionization of hydrogen have been calculated and a
comprehensive set of highly-accurate benchmark results
have been presented. Data for other channels not consid-
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FIG. 10. (color online) Total ionization cross section for
antiproton-hydrogen scattering. Present calculations (WP-
CCC) are compared with experimental data by Knudsen
et al. [72], quantum mechanical convergent-close-coupling
(QM-CCC) results [28], and various semiclassical calcula-
tions of McGovern et al. [30], Igarashi et al. [29] and Sahoo
et al. [33].

ered here, and arbitrary kinematic regimes can be pro-
vided upon request.
Extension of the developed wave-packet continuum-

discretisation approach to the two-center rearrangement
problems including electron capture will be reported in
the second part of the work. The ability of the approach
of generating target states with arbitrary energies and
distribution allows one to investigate the issues associ-
ated with the nonorthogonality of the two-center expan-
sion basis and double-counting of the continuum.
The developed wave-packet convergent close-coupling

method is not limited to hydrogen-like targets. It can
be extended to more complicated atomic and molecular
targets.
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