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ABSTRACT

The scattering of a wave packet by a finite range potential
may be described by a wave function in which the initial state is
specified at time t = 0, and the time dependence appears in functions

M(r, k, t), first obtained by Moshinsky.

The t =0 wave function is derived, following the treatment
of Rosenfeld, but using the Green's function for the radial wave equation
to simplify the calculation of the Laplace transform. The treatment is
extended to include the case of a packet initially within the potential, and
the wave function for a decaying wave packet is derived. This agrees

in form with the wave function obtained by Jeukenne in another approach.

By using an alternative expression for the Green’_s function,
it is shown that the t = 0 wave functiqn is equi.valent to ah eipansioh in
scattering states. The relationship betweeﬁ the t =0 wave funcfion
and the t » -» wave function of standard scattering theory is examined,
and the restrictions on the position and shape of the initial packet in the
latter wave function are emphasized. On the question of transients in
time-dependent scattering theory, it is pointed out that a distinction
should be drawn between plane wave treatments and those using wave

packets.



The second part of the thesis is concerned with the calculation
of time delay for an arbitrary wave packet interacting with a finite range
potential. The t =0 wave function is used, and a new method of
calculation developed, in which momentum coefficients in the wave function
are written as transforms of the initial packet, and momentum integrals
are expressed in terms of Green's functions. General expressions are
obtained for the time spent within a sphére of finite radius by the wave
packet, in the presence of the potential and with the potential removed.
The idea of time delay for a scattered packet is extended to include the
lifetime of a decaying wave packet, and corresponding expressions are

obtained when the packet is initially within the region of the potential.

Previous expressions for time delay have been derived using
the <t =+ -» wave function, and it is fouﬁd that the use of the t = 0 wave
function gives new terms, which arise from the principal part integral of
a 6(+) function, Terms of the type %% , which appear in Ohmura's
expression for time delay, are found only in the calculation of lifetime,

A discussion in one dimension shows that these terms represent the mean
arrival time of the packet at the origin, and that other terms appearing in

the various expressions have simple physical interpretétions.
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INTRODUCTION

Time-dependent scattering theory describes the development of
the scattering system from the initial state to the final state under the

action of the Hamiltonian H = Ho + V.

The scattering process is usually divided into three stages.
Initially, the particles are free and propagate according to the
Hamiltonian Ho. The coliision occurs when the particles come within the
range of interaction, and the potential V takes effect. Afte; some time,
the particles separate, and in the finél state the propagation is again

governed by Ho.

In the standard treatment of Lippmann and Schwinger (1950), the
initial and final states are actually eigenstates of Ho (plane waves), and
the interaction producing the scattering is switched on and off adiabatic-

ally,

> 0 ) “ (I.1)

¥ = ¢ + 1 ' VY ’ C(I.2)

H.® = E ¢ . ' - {I.3)
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The use of plane waves is familiar from elémentary (time-
independent) scattering theory, but it introduces the complication that
the wave functions are not readily normalised. Some artifice such as
box normalisation must be used, and this in turn makes it necessary to
treat the limiting procedures of time-dependent theory very carefully
(Gell-Mann and Goldberger 1953). It is more satisfactory to treat
scatteting in terms ofvwave packets, since normalisation is then included
automatically, and the variation of the interaction with time arises from
the approach and separation of the localised particles, rather than

switching of the potential.

Wave packet scattering has been treated by many authors

(Sunakawa 1955, Moses 1955, Jauch 1958, Low 1959, Haag 1960, Green and
Lanford 1960, Goldberger and Watson 1964) but it is generally the case
that discussion is limited to obtaining plane wave results. The treat-
ment may be suéh that it is valid only for long wave packets, or the
restriction to a narrow momentum distribution may be applied at the end
of a more general calculation, In either case, the cross section (or
some oOther quantity) is derived for a fixed value of the momentum, and
the use of wave packets in the derivation simply provides a reasonable

physical picture, or permits a mathematically rigorous treatment.

The results thus obtained are sufficient to describe most
current scattering experiments, but they do not exhaust the possibilities

of wave packet scattering. The most obvious application of wave packet

ideas is in the consideration of time-dependent experiments. If the
time at which an interaction occurs is to be well defined, the particles
involved must be strongly localised in space, and so must be described by

wave packets with broad momentum distributions.
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A model of a time-dependent scattering situation which has been
studied by several authors (Nussenzveig 1961, Dodd and McCarthy 1964,
Goebel and McVoy 1966) is that of a wave packet of resonance shape inter-
acting with a scatterer which has a resonance of similar position and
width. As the width of the packet is varied, the rise time and decay
time for the compound system also vary. If the width of £he packet, Yoo
is much less than that of the resonance, Yl' the rise fime is roughiy

2Tl (Ti « 1 ) but the decay time is 2To. This corresponds to exciting
Yi .
the resonance with a very long packet, so that the rate of decay is equal

to the rata at which the incident packet dies away. If instead Yo >> Yl'
the rise time is 2To and the decay time 2T1 - the resonance is excited

rapidly by a sharp packet, and then decays at its natural rate.

It has been suggested that wave packet experiments would provide
a means of separating direct and compound nucleus processes in nuclear
reactions, and the‘modél ﬁentioned above is felevant to discussion of such
experiments. In orxrder that the direct and compound séattered packets may
be well separated in time, the incident packet must have a very broad
momentum distribution (v  >> y;). This produces a direct packet which
leaves the scatterer almost immediately, and a compound packet which
emerges after an appropriate time delay. If the momentum distribution
is too narrow (YO<< yl), the duration of the incideﬁt packet is so long
that there is still a‘direct component present when the compound packet

emerges, and it is not possible to separate the two by time resolution.

An important quantity in the consideration of such time-dependent
experiments is the time delay suffered by the particle as it interacts with
the scatterer. If the particle is captured in a resonance it is delayed for
a long time before being emitted from the compound nucleus, whereas if it

undergoes a direct reaction it is delayed very little relative to the



(4)
corresponding free particle. The idea of separating compound nucleus and
direct processes in a wave packet experiment depends, of course, on the

fact that the two types of scattering give vastly different time delays.

This thesis is concerned with the question of time delay in
scattering situations, and in particular, with the calculation of the time
delay experienced by an arbitrary wave packet as it interacts with an

arbitrary finite range potential.

It should be mentioned that the notion of time delay is closely
linked with the idea of measuring the mean arrival time of the wave packet
at a point or at a surface. The measurement of arrival times in quantum
mechanics has recently been the subject of an intensivé investigation by
Allcock (1969), but the questions and problems raised by Allcock's paper
are quite beyond the scope of our discussion. We shali be content raﬁher
to start from a generally accepted definition of time delay, and to
compare our results with those of other authors who have used the same, or

a similar, definition.

Previous discussions of wave packet scattering have generally
been based on the wave function of standard scattering theory, which
involves the asymptotic limit t » -= . The initial state of the system
is defined b& aufree wave packet, ®(r,t), such that the total wave function
for the interacting system, Y(r,t), approaches ¢(r,t) as t » - . The use
of this wave function imposes ceftain restrictions on the position and

shape of the initial packet, however, as may be seen by examining a free

wave packet in one dimension.

Let us consider a free particle of mass u, described by a wave

X
packet ikx - ihk%t

o (x,t) = (2n)_% f dk A(k) e 2u , (I.4)
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with the normalisation

*

dk A (k) A(k)

1 . (1.5)

g — 38

The mean position of the wave packet at time t is given by

x(t)

[ dx ¢*(x,t) x d(x,t)

® o -ikx + ihk%t
- *
= [ dx (2m) 5 J dk A (k) e 2u
® ik'x - ihk'Zt
. ox (2m® J ak' A(k') e 2u

-0

It

f dk A"(k) i d A(k) + J dk A" (k) hk A(k) . t
oo dk o ’ H

x(0) + v t . (I.6)

il

3 L}
In deriving Eq. (6) we have expressed x elk ¥ in the second line

3 )
as -i d elk % , and used integration by parts within the k' integral

T L
dk -ihk'2t
to transfer the derivative to A(k') e Zu Since the integral (4)

converges, the integrated part vanishes at the uypper and lower limits.
The expression for x(0) may be shown to be real by taking the complex

conjugate, integrating by parts, and noting that Eq. (5) converges.
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The mean value of x2(t) may be calculated similarly:

X2 (t) = f ax o (x,t) x2 0 (x,t)

o

fdkA*(k)ic_i_ hk +nk i d | AKk) .t
. dk u u dk

*
fdkA(k)[i

}2 a(k) +

+ f ak A" (k) [hk]z A(k) . t2
i H

= x2(0) + [x(@)lv + wx{o) ]t + 2 +t2 . (1.7)

Then the mean square deviation of x is

-2
Af{(t) X2 () - X (%)

Ai(o) + [.x(o)v + wvx(o) = 2x(0)v ]t + A%tz .

(I.8)

From Eqg. (6), if we assume ¥ is posifive it will be seen that
x(t) > = as t > -» , so the centre of the packet is situated at an
infinite distahce.from gﬁe origin. From Eq.(8), since A% is‘positive,
Ai(t)'+ +o as t + -» , so the width of the packet increases indefinitely
in this limit. Since the wave packet remains normalised, as the width of
the packet increases fﬁe amélitude at a given point decreases, and in the
limit the packet is "thinly spread" over all space. In general, for a
wave packet which containsbno bound étate components, the probability of

D . . . . . : -3,
finding the particle in any finite region goes to zero as t in the
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limit +t > *» (Haag 1960).

The sense in which the wave functions ¢(r,t) and Y¥Y(r,t)
approach each other in the initial state must be defined with some care,
since the wave functions at any point r go to zero individually as
t > -, The notion of pointwise convergence is inadequate in this
situation, and it must be shown instead that Y(r,t) converges strongly

to ¢(r,t), i.e.

lim [arlwr,t) - o(r,t) |2 = o . (1.9)

t »+ -

The use of the asymptotic limit in scattering theory is
usually justified on the grounds that scattering experiments ;nﬁolve
distances and times which are large on the quantum scale - the initial
packet is prepared in the source of an accelerator, and the time of
travel down the accelerator tube is long compared to the time taken to
cross a reglon of nuclear dimensions. However, scattering cen be
studied in situations which do not involve large distances and times.
As an example we mention proximity scattering (Fox 1962), in which the

incident and target particles are produced by sequential nuclear decay.

Proximity scattering occurs when the final state of a nuclear
reaction contains three particles, and the kinematics are such that two

of the particles may subsequently rescatter. In the reaction

a+b =+ B + c¢+D =~ c+d+ e ' (I.10)

if the energy and angular distribution of (say) particle d are suitable,
it is possible for d to catch up with ¢ and produce the proximity
scattering

c+d > c+4d . (r.11)
prox
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The lifetime T of D* and the c~-d scattering cross section may be
related to the observed energy and angular correlation of ¢ and d.
Lifetimes of the order of 10-20 sec have been measured by this method
(Lang et al 1966), and it also presents a way of obtaining cross

sections when either ¢ or d is unstable.

Since ¢ and 4 are the products of decay processes, they do
not have well defined momenta, but may be represented by exponentially
decaying wave packets whose momentum widths are inversely proportional
to the respective lifetimes. From the mean energies of ¢ and 4, and

the order of magnitude of T it is possible to estimate the distance

D’
travelled by d before it interacts with ¢, and in the examples considered
by Fox this is typically =400 fm. The initial state of the reaction (11)
thus consists of two exponential wave packets, separated by a distance of
several hundred fermis, and the proper treatment of such a reaction

requires a scattering theory which is not limited to long wave packets or

to infinite separation of the incident and target particles.

Wave packet scattering can in fagt be %reaﬁed as a simple-
initial-value problem, with the initial state specified at time t = 0.
In such a treafment the initial packet, of arbitrary shape, may be
localised in a finite region and éituated at a finite distance from the
scatterer. We shall use the t = 0 wave function in the calculation of
time delay in order to obtain expreésions valid for an arbifrary initial

packet, without restriction on its position or shape.

Apart from allowing the initial packet to be quite general,
the use of the t = 0 wave function opens up the possibility of carrying

out a calculation in which transient effects in the scattering process
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are taken into account. In discussions of time-dependent scattering
theory, mention is often made of "transients" in the wave function.
Gell-Mann and Goldberger (1953), for instance, represent the initial
state of the scattering system as a train of waves fed in over a period
of time in order to avoid "undesirable transients”", which would arise
if the incident waves were released all at once. The method of‘
adiabatic switching may also be viewed as a device for avoiding transients,
It is understandable fhat transient effects should be removed or avoided
if the system under consideration is essentially stationary, but this
does not seem reasonable if we are dealing with a situation which is
time-dependent. Transients usually reflect the rate at which an
interaction is switched on, or an excitation produced, so a discussion
of a time-dependent scattering situation should include a proper treat-

ment of transient effects.

In the t = 0 wave function, t;ansient effects are found to be
described by certain functions M{r,k,t) of position,>momentum and time,
whose form is known explicitly. By using this wave functioﬁ in the
calculation of time delay, therefore, we aiﬁ to obtain an expression
for time delay containing terms representing transient effects, from
which the importance of such effects in a particular scattering

situation can be gauged.

Chapters 1 and 2 of the thesis are devoted to the derxivation

and discussion of the t = 0 wave function.
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CHAPTER 1

THE t =0 WAVE FUNCTION
la. Introduction

In early treatments of scattering (Dirac 1926, 1927) the initial
state of the system was specified at time t = O. The wave function for
subsequent times was obtained by time-dependent perturbation theory,
however, and so was accurate only to some order in the perturbation. The
first exact solution of a scattering problem with the initial state at
t = 0 seems to have been given by Moshinsky (1951, 1952 a), who considered
the situation of a scatterer suddenly inserted into a beam of particles.
Moshinsky obtained the space and time dependence of the wave functicn for
+t > 0 in terms of functions M(r,k;t) (in Moshinsky's notation x(r,k,t) )
related to the complementary error function. In subsequent papers
Lozano (1953, 1954) treated thé scattering of an arbitrary wave pacget'
by a finite range potential, and the transmission of a wave packet through
a potential barrier, with the wave function in each case being expressed
in terms Qf the functions M(r,k,t). Sasakawa (1959) examihed the s-wave
scattering problem independently, and solved the time-dependent Schrﬁdinger
equation by the Laplace transform method. He obtained functions denoted

by G which are essentially the M functions of Moshinsky.

A detailed exposition of initial-value prbbiems in both classical
and quantum physics has been given by Beck and Nussenzveig (1960). They
show that the problem of the "expanential catastrophe", which arises in
discussiohs of scattering and decay, is eliminated by taking into account

the initial éxcitation of the system at time t .= O. In guantum mechanics,
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the exponentially increasing Gamow states are replaced by the functions M,
and Beck and Nussenzveig discuss the properties cof these functions in some

detail.

With the initial packet spedified at t = 0, it is nb longer .
necessary to treaﬁ scattering and decay on different footings {cf Heitler
1954, pp 150, 1l63). A unified treatment is possible, in which the two
processes differ only in the position of the initial packet. If the pécket
is completely outside the interaction region at t = 0, the wave function‘for
subsequent times describes its scattering by the potential. If the packet
is completely inside the potentialvat t = 0, the wave funcﬁion describes the
decay of the wave packet as it leaks through the potential. Nussenzveig
(1961) has considered the interaction of an arbitrary wave packet with a
partially transparent sphere, and followed the behaviour in time of the wave
function in the cases when the packet is scattered by the sphere and when it

is decaying from within the sphere.

~All the previous work on thé scattering problem is brought together
in a paper by Rosenfeld (1965), and more recently Jeukenne (1967 a,b, 1968)
has studied examples of scattering and decay. Our treatment is similar to
that of Rosenfeld, though we shall make explicit use of the Green's fﬁnétion
for the radial wave equation, since this simplifies the derivation of the
Laplace transform. By allowing thé initial wave packet to be non-zero
within the potential, we shall be able to extena Rosenféld'é treafment, and
derive the wave function for the decay problem in a form similar to his

scattering wave function.

The wave functions for scattering and decay may be obtained in

two different, but equivalent, forms. In the first, the initial packet is

written as a function of the spatial co-ordinates r only, and the wave
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function for t > 0 is expressed as an integral over r of the product of
the initial packet and a space-time propagator. The wave functions in
the papers of Nussenzveig and Jeukenne are given in this form. Alter-
natively, the initial packet may be expanded in terms of plane waves, and
then the wave functions are obtained as inﬁegrals over momentum, contain-
ing the coefficienﬁs of the expansion and functions of r, k and t. This

method has been used by Lozano, Sasakawa, and Rosenfeld.

We shall adopt the second approach, as this will allow us, in
Chapter 2, to derive a simpler expression for the wave function and to
relate it to the wave function of standard scattering theory, which is
based on the asymptotic limit t + == , Since we are interested only in
the general features of the wave function, we shall retain the Mittag -
Leffler expansion used by Rosenfeld. In applications involving the
single-level approximation, Jeukenne (1967a) has shown that a»Cauchy
expansion (Humblet aﬁd Jeukenne 1966), which‘ayoids the infinite power

series in the background term, is more useful.

1b.  Derivation of the t = 0 Wave Function

We consider a wave packet, representing a spinless particie of

mass Y, interacting with a real spherical potential V(r), of finite range a,

Vir) = 0 , ‘r>a . (1.1)

The initial packet is arbitrary, and in particular we shall allow it to
overlap the region of the potential. The wave function for time £ > 0
will be found to contain two components. The first represents the

propagation of that part of the packet which is initially outside the
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potential, and is the wave function appropriate to the scattering problem.
The second represents the propagation of that part of the packet initially

inside the potential, and is the wave function for the decay problem.

The initial packet may be expanded in plane waves,

ik.r _
P(r) = f dk A(k) e 7 ' (1.2)
and in terms of partial waves
e(x) = thﬁm 1o, () . (1.3
Lm r :
where .
¢2m(r) = J dk Azm(k) Jz(kr) . (1.4)
o

The functions ng(ﬂ) are spherical harmonics, with the normalisation

*
j Y, @ Y, @ = 88 . (1.5)

[l

The Jg(kr) are Riccatti - Bessel functions+, related to the usual spherical

Bessel functions jz by

3,0) = e 3,(p) , (1.8

and they satisfy the orthogonality relation

Sk - k") . ' (1..7)

J dr Jg(kr) Jz(k'r) = | g
o

+ In Rosenfeld's paper, and also in Humblet and Rosenfeld 1961, the
Riccatti - Bessel functions are denoted by a script } . Since this
symbol was not available to us, we use JZ for the Riccatti - Bessel
functions. ‘

Note that Bessel functions of the first kind, for which the symbol J

. . L
is normally reserved, do not appear anywhere in the thesis.,
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Using Eq. (7) in Eq. (4) we have

A (k) =

Lm

f dr QZm(r) Jg(kr) ’ (1.8)
0

2
i

and the packet is normalised so that

f &k A (k) A (k) = 1 i (1.9)
m £m

By retaining the factor m in Eq.(9), we avoid the appearance of factors

Y 2
(g] in the wave functions derived later.

We wish to solve the time-dependent Schrddinger equation

ih 3 ¥(r,t) = [-32 vz o+ V(r)] Y(x,t) , (1.10)

9
It 2u

subject to the initial condition

¥(r,0) = ¢&(x) . , - (1.11)

Let us dlefine'Jr

(1.12)

T = ht R
u
v(r) = 2y V(x) ’ o (1.13)
72

t We shall make frequent use of the variable T throughout the thesis, since
: -ihk2t -ik?1
this simplifies the appearance of the time factor e AL > e 2

Integrals over T in later chapters will be referred to loosely as

"time integrals".
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and expand the wave function Y(r,1) in partial waves,

¥, o= Y, @ Ly, (1) . (1.14)
- 2m r

Then wzm(r,r) satisfies the radial wave equation

: - 2 : ] }
2i 3 wzm(r,T) = 1.3 + %2 +1) + v(r) wzm(r,r) , (1.15)
oT 32 r2 : . .

subject to the boundary conditions

wlm(O'T) = 0 ' (lf16)
lim wlm(r,r) = 0 R (1.17)
r > @
and the initial condition
wzm(r,O) = ¢2m(r) . o fl.;a)

Eq. (16) is the condition that the wave function be regular at the origin,

and Eg. (17) is necessary for the wave function to be normalised.

The solution of Egs (15) to (18) may be obtained by means of the

Laplace transform. Let
$;m(r,p) = f dt e—p1¢im(r,r) ‘ ' (1,19)

be the Laplace transform of wzér,T), and let there be positivevconstants

M, a and T such that

|¢£m(r,r)| < M e

for 1 > . Then E&m(r,p) is an analytic function of the complex variable

p in the half-plane Re p > a. We know however that the wave function must
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remain finite for all times, so in fact o = 0, and E;m(r.p) is analytic

for Re p > O.

Applying the transform (19) to Eq. (15), and using Egs (16) to

(18) ;, we have

-a_{zzb—gm(r,p) + (2 ; 1) ag,m(r'f") + v(r) ;P—zm(r,p) - 2ip@—1m(r.p) = -2i¢2m(r) -
or r

(1;20)

with
Yom(0P) = 0 (1.21)
and lim -ﬂ;zm(r,p) = 0 . (1.22)

Yy > »

. . ‘ 5
The homogeneous part of Eq.(20) is just the radial wave equation with k

replaced by 2ip. Let us define a compléx wave number kp by

ijg+ = ,
kp = V2|p|‘ e |2 4 R 0 = axg p ' (1.23)
so that k; = 2ip, and let Gz(k : r,r') denote the Green's function for the

radial wave equation,

-32  + 28+ 1) + v(r) - k2 Gy (k : r,x') = &(r - ") .

ar? r?
: (1.24)
Then the solution of Egq. (20) is
o
T - a9 ' R ' ' Py
Yo (TP} = -2i [ dr Gz(kp s r,r') o, (') . (1.25)
o
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We define regqular and irregular solutions, ¢£(k,r) and fz(k,r),

of the radial wave equation by (Newton 1960)

lim (20 + 1) t! %t 6, (k,r) = 1 , (1.26)
r ¥+ 0
lim e K¥ £, (k,r) = i* , (i.27)
r-»m
and the Jost function fz(k) by
£,00 = Lin ko' £ 0,n/(20 -1 1t C (1.28)

r+o

(The potential V(r) is assumed to satisfy the condition
o0
j dr r [V(r)| & »
0

in éddifion to (1), so that the regular solution ¢z(k,r) does in fact exist.)
Then the Green's function appropriate to the boundary conditions (21) and

(22) is

- (]
Gl(kp : x,x')

1}

RN :
()7 kg bk ex I E (=K r) oy (1.29)
£,(~k) '
P

where i< is the lesser, and r, the greater, of r and r'.

Note that for Re p > 0, the argument of kp lies between O and 7 , and
2

Imk > 0.
P

We shall use the following relations, which may be derived from

the differential equation for'¢2 and £,, and the: corresponding equation

2"

with v(r) = 0 for JL :

Y
f dr' ¢Z(kp,r') J, (ke')
(o]

r
= - 1 - {WE?R(kr),¢z(kp,riJ - J dr! v(r‘)¢£(kp,r') Jl(kr‘)} . (1.30a)

(k< = k%) o v
p
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1 — (] ]
dr fi( kp,r ) Jl(kr )

R *~—38

= 1 -W Jz(kr),fg(-k ,ri - J dr' v(r')fg(-k ,r') Jz(kr') , (1.30b)

N k2) p : P
(ks -

P

where the Wronskian is defined as

W[g(r), h(r)] = gl(r) 3 h(r) - 3 g{r) h(r) . (1.31)
9

3
r ar

By direct expansion of the Wronskians, and using Eq. (4.3) of Newton 1960,

we also have

fg(-kp,r) W[%Z(kr)'¢2(kp'r{] - ¢2(kp,r) W[§2(kr), fz(-kp,r{]

W[%z(-kp,r).¢2(kp,ri} Jz(kr)

L
(-) fl(-k ) Jl(kr) . (1.22)

k
p

Inserting (4) and (29) into Eg. (25), and using (30) and (32), we

obtain for the Laplace transform

LTINS
o r
.... s - (= 2 2 1 [l 1 ' '
= f dk Azm(k) 2i {Jl(kr) (=)"7 k fg( kp,r) f dr' v(r )¢£(kp,r )Jz(kr )
o (k2 - k2) £, (k) 0
p L5 7p
a
- (=% k* k_,z) | dr' v(z') £ (-k_,z') I, (kzr')
¢2 p,r r r 2 p,r o (kx } .
£, (-k ) xr '
2P

(1.33)
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0

In the third term within the curly brackets, f dr' has been replaced by
? dr', since v(r'}) is zero for r' > a, i
r

The derivation so far is valid for all values of r, so that we
could, if we wished, calculate the wave function Y¥(r,T) for‘points inside
the interaction region. Nussenzveig (1961) and Jeukenne (1967 b)
have carried out such calculations for the scattering problem in order to
follow the formation and decay of the "compound nucleus". We shall limit
our discussion to the external region r > a, however, and in this case the
first integral over r' in Eq. (33) becomes ? . and the second integral over

o]
r' vanishes. Using the relation

2 ', (k) = o k), rza | (1.34)

where OQ(kr) is the outgoing spherical Hankel function, and rewriting the

r' integral by means of Eg. (30a), we obtain finally

[PRER

- fdk A (k) 2 {Jz(kr) - 0 (k_x) w[a, (ka) ,¢2(kp,a)] }
@]

r> a 2 2
(k2 = k<)
o | w[ol(kpa) .%(kp.a)]

»~

0 a
+ j dk A (k) (-2i) O, (k r) f dr' J_(kr')¢ (k ,r') . (1.35)
fm L p 0 L L p )
o

W[:O,Q (kpa) 14)2 (kpra)]

The specification ¥ > a will be omitted from subsequent eguations, it being

understood that the wave functions are those for the external region.

The first integral in Eg. (35) is given in Rosenfeld 1965, where
the initial packet is assumed to be localised outside the potential, and

the Laplace transform is derived by a different method. On taking the
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iinwverse Laplace transform of this term, Rosenfeld obtains the wave function

féor the scattering problem in the form

-ik27
2

Lz

)Q,m(r'T) =

dk Alm(k) Jz(kr) e

O 8

o S
- d& A, (k) D, (x}] |} o (k) + ) a.(k)|l 3 M(x,k,1)
Am 2 n 2 s=0 S I gr
! {(k-k )
n’
o ‘ S
4L e k) o+ ) ag k) _;% M(r,-k,T)
s=0
n Sk ) i or
n
- ) 2%k p (k) M{r,k_,T) .
N —————
(k2- k2)
n
(1.36}
Tme operatoxr Dz(r) is given by
A
p(r) = 1 (=0 l1a| 1 , (1.37)
2i r or r
wi.th
b (r) eXF = k' o (kr) , (1.38)
) =, L
2i
ancd the M functions by
ik r - ik?7
v v
M(r,k ,T) = 1le 2 erfc|r -k 1 , (1.39)
; \Y] -2- \%
v2it
wheere -
-2
erfc (z) = 2| e du
V1 oz

. forr complex =z.
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In writing Eq. (36) we have combined S_. and S, of Rosenfeld's

1

Eq. (42) into the term in M(r,k,t), expressed 32 in terms of M(r,-k,t), and

combined S3 and S4 into the term in M(r,kn,f). The sums over n and s

arise from a Mittag - Leffler expansion of the Wronskian term in Eq. (35) :

Lo kot Wl k) e k0 ] To ) + Jo 0ok .  (1.40)
; wlo, (x_a) ¢, (k_,a)] "k -k s=o F |
Lp T e A P n

The poles kn are at the zeros of the Wronskian in the denominator,
wlogk a) gtk yal] = 0 ' ~ (1.41)

and coincide with the poles of the S matrix (Humblet and Rosenfeld 1961).
Comparing Egs (4) and (36), it can be seen that the first integral in
Egq. (36) is the wave function for the incident packet, and the second

integral the wave function for the scattered packet.

Lozano (1953) has treated the scattering problem for arbitrarf
angular momentum by another method, and obtained a wave functioﬁ similar
to (36). Sasakawa (1959) has considered é-wave scattéring, but he
overlooks the poles of the S matrix in the evaluation of a éontdur
integral, so that ﬁis expréssion for the wave function lacks tﬁe terms

in M(r,k ,t).
n

The second integral in Eq. (35) represents the contribution from

the part of the initial packet inside the potential, as may be seen by
a : '

rearranging it into the form =2i g dr' G!’(kp 1 r,c') o m,(r') . We shall

L

calculate the inverse Laplace transform of this term, and obtain the wave

function for the decay problem.
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The inverse Laplace transform is given by

by (1) = f ap 'Y (r,p) (1.42)
c

where Ci is a line in. the right half of the p plane, parallel to the

imaginary'axis and as close to it as we please, Fig.l.

Fig. 1.1. Contour for Evaluation
of the Inverse Laplace Transform.

Following Rosenfeld, we work within the k integral and calculate

il

1
m

i

a
pT —.' ) .1 ' '
, f dp e (=21i) Oz(kpr) f dr Jz(kr ) ¢R(kp,r ) . (1.43)
0

C,
1

The integrand has a square root branch point at the origin, and we make a
cut from the origin along the negative real axis to infinity. The contour

may then be completed by a semicircle C,, of infinite radius, in the left
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half of the p plane, and an indentation Co around the cut.

The poles of the integrand are again given by Eq. (41), and they

are distributed in the kp plane as shown in Fig.2,

Fig.l.2 Zeros of W[b2,¢£]a . Eq. (41).

——————————— Second bisector.
B Bound state R Resonance V Virtual
A Antibound state TR Time-reversed TV Time-reversed
resonance virtual

We divide the kp plane into two regions, labelled (:) and () ’
separated by the second bisector. From Eg. (23) we see that region ()

is mapped onto the first sheet (-m < 86 < 1) of the p plane, and region (]
is mapped onto the second sheet (m <8 <33n). Accordingly, in integrating
around the contour in Fig.l, we shall obtain contributions from the residues
of the bound state'ana resonance poles in region (:) . The integral

around C, vanishes, so we have

§ - }_.f = L res . | (1.44)
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The integral around the indentation CO may be evaluated by

reverting to the kp plane, where the path of integration coincides with

the second bisector. Denoting the integral by 95 , and using Eqg. (38)

to rewrite the Hankel function Oz(kpr), we have

. ik r-ik?t
§ = D (r) 1 I dk e
2 2mi P
004§ 00
Now
¢2(k,r) = fl(-k) xz(k,r)
k9,+l

where xl(k,r) is the "physical" solution of the radial wave equation

(Newton 1960) , and

wlo, ka) 0, k,a) ] = £, (k)
k
(cf. Egs (32), (34) ), so we have
a
-+l , , .
4i kp f dr Jz(kr Mz(kp,r') = 4i k
o A

WE%‘kpa’ 16, (e s2) ]

We know that

xz(k,r) = @j(k£+l) as

so the function on the LHS of Eq.(46) has a first order zero at k

’

a
g
0

0

£ -2+1
: t ] 1
41kp [ dr' Jz(kr )¢2(kp.r )

W[ o, (ka) sog (k) ]

dr’ Jz(kr') xz(k ')

2+1

k

k-0 ,

P

(1.45)

(1.46)

0.

Removing a factor ikp, we obtain a meromorphic function of kp' with poles
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given by Eg. (4l1), which approaches a finite limit as kP - 0. The function

may be expressed as a Mittag - Leffler expansion of the form

a
—'Q' L) 1 1 p— ) L) S
4k f dr' 3y (ke') g (k ,x') = Izl p! (k) + ag (k) k_ , (1.47)

0 k -k
P n

w[ozmpa),%(kp,a)j

where the sum over n includes all poles of regions C) and C) in Fig.2.
The residues p;(k) and coefficients a;(k) have been primed to distinguish
them from similar quantities appearing in the expansion used by Rosenfeld,

Eq. (40).

To prove that the sum over the poles in Eq. (47) converges, we
comparc the residue pé(k) with the residue pn(k) of Eq. (40). 1f we denote

by a further G the residue of the scattering amplitude

Syl -1 = -2i w[sl(kpa),%(kp,a)] | (1.48)

wlog e a) .0,k ,a)]

at the pole kn, Rosenfeld has shown that

p k) = —%ﬂ w3, ka), 0,k a) ] . (1.49)
p k
n n

Now it can be seen from Egs (47) and (48) that

a
pé(k) = 21 l& ,f dr’' Jl(kr')¢£(kn,r') . (1.50)
o kn 0

wla, (k a) .9,k _,a) ]
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Using the fact that Wsz(kna)'¢2(kn'ai] = 0_, we can write

wlo, k_a),¢, (k_,a)] W,k a),0,k a)] ¢, k_,a)

Oz(kna)
= -k ¢,(k_,a) | . (1.51)
’Oz(kna)
The function ¢Z(k,r) is given by (Newton.1960)
. | .
¢£(k,r) = i 1 [%2(-k)f2(k,r) - (= fz(k)fz(-k,ri] :
2 L+1
k
but
fl(-kn) = ¢} ’
so
. 2+1 ) ‘
P vy = i 1 () £,k V£, (=k ) . (1.52)
2 k!?,+l ~
n

Then from Egs (50),(51) and (52)

a
' (k = -21i dr' J, (kxr') £ (-k ' o (k a) . 1.53
p! (k) f Jkr') £ (=k ,x') 0O, (k a) (1.53)
2+1 ,
p k
n n

fz ("kn"a)

Comparing Eqs (49) and (53) we have .

pﬁ(k)
pn(k)

a .
. r 1 - w1 . .
21 f dr Jz(kr ) fz( kn,ri) X Oz(kna) ‘ o
0

£,(-k sa) w[al(ka),oz(lfna)].

- (1.54)
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Now

fl(_kn'r) —~ i e S,

and except for a finite number of bound states, the pole kn is given by

kn = Kn - iyn, Yn > 0, so for |kn| sufficiezti¥ large, the integrand
in the first term of Eq.(54) contains a factor e " . Thus as Iknl > ©
ik a
the ‘integral is O ), and
a
Idr' 3, (k') £, (k_,x') = Q@) as k| >= . (155
0
Further, :
-2 ik _a
Oz(kna) N- ) i e ’
'k I > o
n
50
0, (k_a) = @) i‘ as |k | >= . (1.56)
n
w3, (ka), 0, (k a)]
Combining Eqs (54), (55) and (56),
prk) = 6 % as |kn| > , (1.57)
p. (k) nj

and the series in Eq. (47) converges by comparison with the corresponding

series in Eq. (40).

On inserting the expansion (47) into Eq. (45), we obtain two types
of integrals. The first is related to the function F(kn) appearing in

Rosenfeld's paper, defined by



+eo=ico ikr-ik2t
Pl ) = 1 { ak e 2 ) (1.58)
2m oo o0 k - kn
Then teomio ikpr-ikzr
1 J dk ik e = 3 F(k ) . {1.59)
27wi R p P k -k Ar
—co+loo p n

The second type of integral may be expressed in terms of the .-

point source propagator U(r,t).

Using the change of variable u
we have

='r - kt
V2it
+eo—iw ikr-ik®t , ~x? o .
1 j dk e 2 o .1 /E AT f du e"
2wi ook {0 ' 27mi Ve “ie ‘
. 2it
= =1 e
vamit
= .1 Ul(z,1) . - (1.60)
i .
Then
. ik_r-ik2t
+oo=joo P s
1 f dk_ ik_ e 2% = 3 l13]| rutem . (1.61)
211 i © P or |1 3r| 1

Finally, from Egs (45), (47), (59) and (61), the integral around the cut is

or

§_ = oo 3{

© ‘ \ S : .

Ipltk) Flk ) + Jal(k) (L3 {2 U(r,T)} . (L.62)
n s ) .

n =0 iorf i
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Returning to Eqgq. (44), thé residue at a pole in region (:) may be

obtained by inspection from Egs (45) and (47)

ik r-ik?t
n n
_ 2 . .
res = Dg(r) e 1kn pn(k)
ik r-ik2t
n n
= D(r) 3 {p'k) e 2 L (1.63)
2 -B—r n

In combining Egs (62) and (63), we use the following expressions for F(kn)

(Rosenfeld 1965, Eq. (49) )

ik r~ik?t
n n
2 i .
F(kn) = e - M(r,kn,t) , kn in (:) .
(1.64)
- - M(r,kn,r) | P kn in () '

where M(r,kn,r) is defined by Eq. (39). Then from Egqs (44), (62) and (63),

. o s
$4 = o) 3 {Zpr;(k) Mz 0 - el [;9_] 1 U(r.r)}
or n s=o0 i dr i
= D, (x) { gpé(k) ik M(z,k_,T)
® s+l - ' ’
- [?D'(k) + ) a’(k) (1 3 ] :l u(r,T) } , - (1.65)
n s = =
n s=0 i 9r v
where we have used
%} M(r,kn,r) = 'ikn M(r,kn,T) - U{x,T1) | .
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Finally, placing Eq. (65) within the momentum integral we obtain the wave

function for the decay problem

by (FT) = J dk A, (k) D, (x) { 1]k e!lk) M(rk ,7)
o n .
e ‘ s+1
- [Z o' (k) + T al(k) [1 3 ] | ] Ulzr,T) } . (1.66)
n S hrulirod
n s=0 1.8r :

The wave function (66) is similar in form to the scattering wave
function (36), though we may note certain differences. In Eg,ﬁ36) the
first integr&;,repreéents the wave function of the unscattere&;éacket, and
the second the waye function of the scattered packet. Eq. (66) does not

-ik2t
contain a term . f dk Azm(k) I, (kr) e —z . “In the decay problem,
of course, the whgle of the initial packet interacts with the potential,
and no par; of it experiences free propagétioﬁ. Both wave functions
contain the functions M(r,kn,T) summed over al; thé poles, but the terms
in M(r,k,t) and M(r,-k,t) in Eq.(36) have been replaced by the term in
U(z,t) in Eq. (66). It is a general feature of this type of calculation

that the functions M(r,k,t) and M(x,~k,T) appear only in the Wave function

for the scattering problem (cf Moshinsky 1951, Lozano 1955, 1954).

Wave fun&tions for decay situéﬁibns have been obtainedlby
Lozano (1954), Nussenzveig (1961), and &éﬁkenne (1968i. It is difficult
to compare our result with those of Lozano and Nussenzveig, however, since
there are considerable differeﬁqes in approach - Lozano expands the
initial packet in a Fourier sin;'éeries and obtains the wave function aé a
sum over the terms of the series, while Nussenzvéig considers a partially

transparent sphere, V(r) = 1 A §(r-a), rather than a general potential.
2 a ‘ C
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Jeukenne has treated the s-wave case for an arbitrary potential,

and obtained a wave function in terms of a propagator

a
Y(r,7) = 2i I G(x,r',t) £(r') dr' ' - (1.67)
0

where £(r) (= 0 for r > a) is the initial packet. The prbpagator

contains coefficients cs(r') and Cn(r'), and on setting

h (a) 2i
S

f(r') ¢ (r') dAr' - '
s

O Y—p

and

2i

g (a) £(r') C (r') ar' K

O ‘Y—0n

the wave function is obtained in the form

Y(r,T) = -i E kn gn(a) M(r-a, kn,T)
meg T2 W28 el s+l
+ 1 lag(ak Y ok (1 3 ] + )} h (a) 1 [1 3 } ] U(r-a,t)
| n n n == s = |+ = ,
n s=0 i 9y s=0 s!ii or

(1.68)

where the sum over n is over all poles of the scattering matrix.

After making aliowance for the use of the space-time propagator
rather than the momentum expansion, this wave functidn may be comparea with
Eq. (66). The main difference arises from the fact that Jeukénne has used
a Cauchy expansion rather than a Mittag ~ Leffler expansion in his derivation,

o
so the infinite series Z in Eq.(66) is replaced by a polynomial mil .
=0 s=0

The parameter m is determined by the potential V(r), and is the smallest

integer for which
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& v ] #= o :

dr
a-o

In order to write the scattering matrix as a Cauchy e#pansion
(Humblet and Jeukenne 1966} it isg necessary to separate out the hard
sphere scattering term. A similar sepaiation h;s beeﬁ carried out in .
the propagator G(r,r',t), and this accounts for the presence of the
radial variable r-a in Eq. (68). The double sum in the first temm

within square brackets has its origin in the pole terms of the Cauchy

expansion, which are of the form Cn(r') k -2 .
k - k k
n n

It is quite difficult to say aﬁything about the relative
importance of individual terms in a ﬁavé’fuhctidh such as (66) or (36),
and we shall not attempt to do so. Rosenfeld, Nussenzveig, and Jeukenne
have examined different aspects of this problem and in fact Jeukenne's use
of the Cauchy expansidn'is aimed at simplifying the separation of background
and resonance terms. Our interest, however, lies more in the overall
appearance of the wave funcﬁion, and we shall be able to say sometning

further about this in Chapter 2.

lc. The M Functions

A well known difficulty in stationary scattering theory arises
in connection with the wave function for a decaying resonance state.

The "Gamow state" wave functions, which increase exponentially with
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distance, cannot be normalised in the usual way, and require the introduction
of special techniques (Berggren 1968, Romo 1968, Huby 1969, Fuller 1969).
The problem of the "exponential catastrophe" is not unique to guantum
mechanics however (Beck and Nussenzveig 1960), and its origin lies in the
assumption that the exponentially decaying state has beenvin existence for
an indefinite time. The difficulty may be removed by taking into account

the excitation of the system at some initial instant.

In the wave function (36) the place of the Gamow states is taken
by the functions M(r,kn,T) for poles kn' and these ensure that no exponential
catastrophe occurs. To see this, let us study the behaviour of the M function
for an arbitrary pole, kn = Kn - iyn , of the S5 matrix.. Frqm Fig.2, Kn =0

and Yn < 0 for a bound state pole, but otherwise,Yn > 0 , and the pole lies

in the lower half of the k plane.

We define

w = r-kt ’ (1.69)
n n ;
v 2iT

with

lw ]2 = 2 - «cxr + (k2 +y29)1 (1.70)

n —_— n n n
27T ———————
2

and

Re w = r - (k =-v)1 : . (1.71)

n n n
2Y 1

From the asymptotic behaviour of the complementary error function

(Abramowitz and Stegun 1964) we have
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M(rlkan)
ik_r-ik21 2
n n -x )
2 2it m .
—~ e + 1 -1 +oaaot (=) (2m - 1)1+ ...
ECE e 2 | (202"
|n n n n
Re w £ o
n
(1.72a)
£
i N R S e PRI S . (1.72b)
| 2/T W 207 (2w2)™
w I - oo n n n
n
Re w > o
. n
ik_r-ikZt
n n
2 an
The term e « e in Ed. (72a) corresponds to the Gamow state in

stationary theory. From Eq. (71) this term can occur if kn is a bound state
or a resonance (Kn > Yn > 0) pole, but only the latter need be considered

since Yn'is negative for a bound state.

For a given value of T, M(r,kn,r) behaves according to (72a) for
Y ¥ ,
r < (Kn - Yn)T, and the term proportional to e B is present in the wave

function. As r increases beyond the value (Kn - Yn)T, however, Re wn

becomes positive, and for r large M(r,kn,r) decreases smoothly in accord-
ance with (72b). The properties éf the M function are such that the
Gamow state term is cut off in the region r = (Kn - Yn)T, and the
exponential catastrophe is avoided. Roughly speaking, we may think of
(Kn - Yn)r as the point which the exponential wave front has reached at

time T.

Moshinsky (1952b) has shown that the function M(x,k,t), k real,
describes transient effects which arise when a steady beam of particles

(of momentum k) is disturbed. If the beam is confined to the region
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X £ 0 by a perfect absorber placed at the origin, arid the absorber is
suddenly removed at t = 0, the wave function for subsequent times is just

M(x,k,Tt).

Classically, the current detected at a point x > 0 would be
zero until t = x , where v is the velocity of the particles, and constant
v A
thereafter. In quantum mechanics, however, the current exhibits
éscillations, and the stationary value is attained only in the limit
t » =, as the transient tems die away. The mathematical form of the
transient current is closely related to an expression arising in optics,

in connection with Fresnel diffraction by a straight edge, and Moshinsky

has labelled the quantﬁm - mechanical effect "diffraction in time".

In scattering situations, such as the scattering of a plane wave
by a hard sphere (Moshinsky 1952 a), the functions M(r,k,t) and M(r,-k,T)
again represent the transient behaviour of the system as it changes from
the initial state (plane wave) to the final state (plane wave plus scattered
wave) . The correspondence between the interrupted 5eam experiment and
scattering is made more obvious if the absorber at the origin is replaced by
a perfect reflector, when the wave function for t > O becomes M(x,k,t) -

M(x,-k,T1).

Sasakawa and Rosenfeld have separated out the transient and
asymptotic parts of the scattering wave function (36) using the behaviour of

the M functions as T > =, From Eq. (72),

ikr-ik21
M(r,k,T) ~~ e 2
T > o
lim M(r,-k,T) = 0
T -+ o
and lim M(r,kn,T) = 0 for all kn .

T > ®
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Then with the relations

e s -2

Lo )+ _X_as(k)k = k [szm-l] '
n k=% ) s=0
n
and
-2 ikr )

k Dl(r) e = -l' Oz(kr) , v

2i

where Sg(k) is the S matrix for the £'th partial wave, the asymptotic part

is

© ] "ikz'r

asym 2

¢Rm(r,T) = J ak Alm(k)_{ Jz(kr) + %7_[%2(k) - %} Oz(kr)}e .
0 + '

(1.73)
If we note that (Eq.(48) )
Wl o, ka) .9, k)] = -1 [s,0 -1
% % o7 L% ]

W[ o, (ka) ,¢2(k;,a):[

it may be seen that in the calculation of the inverse Laplace transicrm for
the scattering‘wave function (cf Egs (35) and (42) ), the term (73)‘is just -
the residue at the polé p = -iEE_ . The term within curly brackets in

Eq. (73) is familiar as the l'tthartial wave component of the total wave
function in stationary scatteriqg theory - Jl(kr) is the compoﬁent\of the
incident plane wave, aﬁd l_{%i(k) - :} Oz(kr) the component of the outgoing

2i
scattered wave.
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CHAPTER 2

SCATTERING STATE EXPANSION OF THE WAVE FUNCTION

2a. The t = 0 Wave Function

In the derivation of the wawve function in Chapter 1, the first
step was to obtain an expression for the Laplace transform E&m(r,p) in

terms of the initial packet ¢ m(r) and the Green's function Gl(kp: r,r'},

L
Eq. (1.25). We then wrote the Green's function in terms of the regular
and irregular solutions of the radial wave equation, Eq.(1.29), and
proceeded to the calculation of the inverse Laplace transform, which

eventually gave us the wave function in the foxm (1.36) and (1.66),

containing the functions M(r,kv,T) and U(r,1).

We shall now show that the wave function can be obtained in a
much simpler form by using an alternative expression for the Green's
function. Let us define scatteringvstates xg(k,r) and bound states

Xén)(r) by the relations

X U = K e tem ) (2.1)
| £ (=K
2
)y = (-iy_.r) (2.2)
XSL » ,Q, Ynl ' ) -
N

where kn= -iYn r Y. <0, is a bound state pole of the S matrix, and Nn is

n
(n)

a normalisation constant. The functions xz(k;r) and Xy

(r) satisfy the

orthogonality relations
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f ar x, 06, X, (k',r) = 1 8k - k") , (2.3a)
5 2
(n) (n') _

f dr Xq (x) Xy (r) = Gnn, . (2.3b)
0
{ dr xl(k,r) Xén)(r) = 0 S, (2.3c)
0

and the completeness relation

2 j a X, (k,x) xz(k.r'> ) xén)(r) xé“’(r') = 8(r-r" . (2.4)

il n

Q

Then the Green’s function Gl(kp: r,r') is given by (Newton 1960)

*
Gy(k T,1) - %_[ ak x, (k1) xg (k,x') o+ E M x My, e
0 k2_k2 kz_kz
P n P

where the sum over n refers to bound state poles only.+

Now let us use Eq. (5) in the expression for the Laplace transform,

Eq. (1.25):

t Our notation differs from Newton's in two respects. In the definition
of the bound state wave function, Eq.(2), Y is negative, whereas
Newton uses ¢g(-ik,,r) with k, positive, Since ¢g(k,r) is a function
of k2 only, thé same wave function is obtained in each case. The
Green's function used in the thesis differs by a sign from that of
Newton - compare Eg. (6.1) of Newton 1960 with our Eq. (1.24).
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wgm(r.p) = -2i f dr' Gg(kp: r,r'") sz(r')
)
*
= -2i f dr %_f dk xz(k,r) xg(k,r ) ¢2m(r )
(o] 0 k2 _ kz
b
© k2 - k2
n P
= 21 | & B, (k) x,(k,p) + 217 BT By (2.6) -
Lm L o am % ! ’
° k2 - k2 K2 - K2
b P n
where -
*
Bzm(k) = %_J dr ®Qm(r ) xz(k,r ) (2.7)
0
(n) — (] 1 (n) [] .
and Blm = I dr ®2m(r ) Xg (") . (2.8)
)

"The Bkm are the .coefficients in the expansion of ¢2m(r) in terms of the

(n)

complete set xl(k,r), Xg () ,

‘ (n) _(n)
d B, (k) x, (k,x) + IZIB X, (x) (2.9)

2m % m

S

g

I
o 8

as may be seen by applying the orthogonality relations (3) to Eq.(9).
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The inverse Laplace transform of Eq. (6) may be calculated by
completing the contour around an infinite semicircle in the left half of

the p plane, Fig.l.

Fig.2.1 Contour for Evaluation of the
" Inverse Laplace Transform of Eg. (6)

The integral around C_ vanishes, and we are left with the pole contributions:

-ik?t
v

1 f ap T 2i ‘- & 2 , (2.10)
C

where kv = k or kn, and k; = 2ip. Then the time-dependent wave function is

-ik2t
n

(n} . (n) 2
+ z Bo Xg (X)) e . (2.11)

-ik?7
2

v

Zm(r’T) = f dk Bgm(k) xg(k,r) e
0
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The wave function (1l) has a simple interpretation, since it is
just the form obtained by expanding the initial packet in terms of scatter-
ing and bound states, Eq.(9), and applying the operator e-th, where H is
the total Hamiltonian. It is cleaxr from the derivation that the wave
functions (1.36), or (1.66), and (2.11) are completely equivalent, and
differ only in the expansion of the initial packet. If the packet is
expanded in terms of plane waves, which are not eigenstates of H, it is
not possible to apply the operator e—th directly, and the Laplace trans-

form method of Chapter 1 must be used to derive the wave function. If,

instead, the packet is expanded in terms of scattering states, the operator

-iHt

e may be used, and the wave function is obtained in the form (2.11).
The scattering state expansion is actually the starting point for

the derivations of Moshinsky and Lozano. In the wave packet treatment,

Lozano expresses the coefficient B as an integral containing Alm and the

m

functions Xy, and J The wave function (11l) is then converted to the form

I
(1.36) by means of contour integration, when the M functions grise at poles

k - ie, -k-ie, and the poles of the S matrix. A similar method of obtain-
ing the wave function of Chapter 1 from the scattering state expansion has
been suggested by Beck and Nussenzveig (1960), but they do not actually
carry oqt the calcu;ation. In the present discussion the use of the Green's
function provides a parﬁicularly simple means of proving the equivalence of
the wave functién (1.36) and the expansion in scattering states. We shall
use the form (2.11) in @iscussing the relationship between the t = 0 wave

function and the standard wave function for scattering problems, which

involves the asymptotic limit t =+ -» |

It will be noted from Eg. (9) that the initial packet contains, in

(n)

general, a bound state component BEm .

This means that in the scattering
(or decay) process, some fraction of the packet is left behind in the

interaction region, even as T > +* , It is usual to avoid this situation
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by assuming that the initial packet is orthogonal to all bound states, i.e.

(n)
Blm

|
(@]

for all n . (2.12)

At this point, we shall make a brief diversion fo mention a
method of treating wave packet scattering which is used in several text
books (Merzbacher 1961, Rodberg & Thaler 1967). The method is due to
Low (1959), and may be applied only to "long" wave packets containingva
narrow rapge of momenta. It is normally discussed in terms of the three-
dimensional form of the wave function, Y¥(r,t), but we shall consider the
corresponding partial wave componehts in order to show its relationship to

the present work.

The initial packet is specified at t = 0, and expanded in terms
of plane waves, with the radial component of the 2'th partial wave given by

(Eq. (1.4) )

¢2m(r) = J dk Alm(k) Jz(kr) SN (2.13)
0

The packet is situated at a distance L from the scatterer, and has a mean
momentum P, directed towards the scatterer aﬁd a spread in ﬁomentum

Ap << po . The width of tHe packet, Ax, is chosen to satisfy the
conditions Ap Ax av'ﬁ , 80 that Ax is actually a minimum, Ax << L ,'so
that the initial overlap between packet and séatterer is.negligible, and
Ax >> b, where b is the radius of the scatterer. Finally, it is assumed
that Ax does not change appreciably in the course of the experiment, and
this yields the "constant‘shape" condition (AEQZT << 1, where u is the

. H
mass of the particle, and T a characteristic time (= 2L ) .

po/u
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With these restrictions on the position and shape of the initial
packet, it is proved that the plane waves may be replaced by scattering
states in the initial expansion without affecting the form of the packet,_
i.e.

@Rm(r) 7 f dk Alm(k) xz(k,r) . (2.14)
o)

Then the time-dependent wave function for the interacting packet is
obtained by applying e_lHt to the expansion (14), and the wave function

t to the expansion (13).

for the unscattered packet by applying e-iHO
The wave function for the scattered packet may be separated out from the
total wave function, and it is found to consist of an outgeoing packet of
width Ax in the radial direction, which reaches a radius r at time
t = (L + r). The shape of the scattered packet in the radial direction
Po/H ‘
is similar to the shape of the initial packet in the incident direction.
(The differential cross section for scattering inté an angle 0 may be
calculated quite easily, and it has the usual form lfpo(e)l2 » where

fp (6) is the scattering amplitude for a plane wave of momentum pg .)
o E

The treatment of scattering by Goldbergér and Watéon (1964,
Chap.3) is similarly restricted to wave packets with a narrow momentum
distribution, which propagate without changing shape. The initial
packet is specified at a finite time to' and the method of deriving the
wave function for subsequent times differs from that of Low. However,
by extrapolating their Eq.(70) back to time to, and comparing with their
Egs (28b) and (33), it ﬁay be seen that the initial packet satisfies Low's
condition of having the same coefficients whether expanded in plane waves
or scattering states. Messiah (1965) uses the basic idea of ILow's
derivation, but his proof of the equivalence of the two expansions involves

the limit t » -= .
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We can see from Egs (9), (13) and (14) that for packets which
are almost monochromatic, much larger than the scatterer, and situated at
a long distance from the scatterer, the coefficients A

(k) and B. (k) are
m m

L L

approximately equal. In experiments involving accelerators, the incident
packets will usually satisfy these three conditions, and the scattering
may be treated by Low's method. In more general scattering situations,

however, the coefficients A

le(k) and B

ij(k) are not equal, and the exact

wave functions (1.36) or (2.1ll1l) must be used.

¢b. The t > - Wave Function and the Asymptotic Limit

Treatments of wave packet scattering using the asymptotic limit
have been given by several authors, hotably Moses (1955), Jauch (1958)
and Haag (1960). The notation used in these papers is rather abstract,
however, and we shall refer instead to the paper by Green and Lanford
(1960), in which the correspondence between the Hilbert space notation

and the more familiar partial wave expansion is made clear.

The central theorem in the usual treatment of wave packet
scattering is the following (Green and Lanford 1960, Eq.(l1.1l) ): For
every element u.belonging to the Hilbert space of the free Hamilténian Ho'
there are elements u, beldnging to the continuum subspace of the total

Hamiltonian H, such that

lim e-lHt u+ - e_lHOt u = 0 (2.15a)
t > -

and lim  [[e™ y - Moty = 0o . (2.15b)
t > 4o
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The Hilbert space elements are just normalised wave packets, and the

+

restriction on u, to the continuum subspace of H means that these packets
contain no bound state Components. The double bars in Egqs (15} signify

the norm,
" u “ = f dr I u(r) Iz ' (2.16)

and the functions in Eqs (15) thus approach each other in the sense of

strong convergence.

The elements u_ are related to u by the Mgller wave matrices,

. *
u, = 2, u, and the S matrix is given by S = Q_ Q+ . Green and

Lanford find the following expressions for Q+ and S :

Q = F_l [%xp(i idl(k) {] F ;

-+

_ -1 .
S = FO [%xp(Zlﬁl(k) [] Fo .

The operators FO and F transform an element u into the partial wave
expansion appropriate to the space of Ho and the continuum subspace of H

respectively; 62(k) is the phase shift for the 2'th partial wave.

In partial wave notation, if

w -ik?t
L 2
u, (r,1) = { dk A, (k) [g] 3, (kx) e . (2.17)

o} m v
o0 2

then uzm(r,r) = J dk Agm<k) e wg(r,k) e (2.18)
(0]
0 i12

i -1 () o

and uzm(r,r) = f dk Agm(k) e wz(r,k) e . (2.19)

5 ,
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Equations (17) to (19) correspond to Eq. (4.31) of Green and Lanford 1960,
with the notation u retained instead of g. To avoid confusion with oﬁr
scattering state xl(k,r), we have replaced the coefficients sz(k) of
Green and Lanford by Alm(k)' Green and Lanford's scattering state

wz(r,k), which appears in Egs (18) and (19), is related to ours by

. -8, (k)
Y (k) = [2 e Xg (ko) , (2.20)

m

and this is the origin of the factor {gak.in Eq. (17).
T

If we were asked to specify the position and shape of the initial.

packet in this version of scattering theory, we might try to re-express the
theorem (15) in the following way: Let the wave function for the scatter-

ing system at finite time T be given by+

o -ik21 ‘
_ 2 .
wzm(r'T) = f dk Alm(k) xz(k,rxve . (2.21)
. 4
Then the initial state of the system is
w -ik2t
" s 2
¢2m(r) = llm» f dk Azm(k) Jz(kx) e ’ (2.22)
T > ==
0
and the final state
1l
, p 218, (k) ig—l
Qm(r) = lim f dk Azm(k) e Jz(kr) e . (2.23)

T > <+

t The factor [21% in Egs (17) and (20) has been absorbed in the definition
m

of Azm(k)°



(47)

The equations (21) and (22) highlight the essential differences
between the usual treatment of scattering, and that in which the initial
state is given at t = O. Although we have arranged that the same
coefficients Alm(k) appear in Eqs (22) and (1.4), the initial packets
represented by these equations are of quite different appearance.in
co-ordinate space. The packet (1,4) may be of any shape, and may be
situated at any finite distance from the scatterer. The packet (22) is
necessarily "thinly spread" over all space, with its centre at an
infinite distance from the scatterer. The functions ®2m(r) and @;m(r)

in Egs (22) and (23) are actually symbolic, since the limit on the RHS of

each equation is zero for all r.

The wave functions (11) and (21) are similar in appearance, if
we assume the bound state terms to be omitted from Eqg. (11), but they have
rather different significance. At time t = 0, the wave function (11)
represents the incident packet alone, with no scattered waves yet present;
The wave function (21) at time t = O contains both incident and scattered
packets, since the scattering has already been in progress for an infinité

time.

The use of the asymptotic limit t > - is often justified on
the grounds that the incident packet is initially a long distance from
the target, or ghat‘a long time elapses between formation of the packet
and its interaction with the scatterer. In most scattering experiments,
the packet must travel the length of the accelerator tube before striking
the target, and the distances andbtimes involved in this journey are long
on the quantum scale. However we have seen in the discussion of Low's
method that a packet specified at t =70 may still be situated a long way
from the target. If the scattering takes place in the interval t = O

to t = +» , the packet may take an arbitrarily long time to reach the
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scatterer. There does not seem to be any conflict, therefore, between
the use of the initial condition t = 0 and the occurrence of large

distances and times in normal scattering experiments.

A more general argumentvfor the limits t + t= is based on the
idea that the incidént and scattered particles are "asymptotically free"
(Tauch 1958, Haag 1960).' Since wéve packets in non-relativistic gquantum
mechanics cannot propagate with sharp wave fronts (Van Kampen 1953), the
wave packets must always have some overlap with the potential, and
strictly speaking their propagation is always governed by the full
Hamiltonian H.  However as |t| + » , and provided the wave packets have
no bound state components, the probability density at any point within
the potential goes to zero as t_3. In this limit, the incident and
scattered packets have negligible overlap with the potenfial,»and-their

propagation is essentially free.

Now a packet specified at t = 0 may also have negligible over-
lap with the potential. If the parameters of the packet are suitably
chosen, the overlap will remain negiigible until the méin body of the"
packet reaches the interaction region at some collision time tc . The
packet propagates "freely" frqm t = 0 to t= tc-. It seems, therefore,
that the requirements usually associated with the asymptotic limit may
also be satisfied hy a treatment in which the initial packet is given at
t = 0. Such a treatment has the additional advantage that it is
directly applicable to scattering situationé, such as proximity scattering,

which involve small distances and times.
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2C. Transients

Our initial interest in the t = O wave function arose partly
from the possibility of investigating transient effects. We might
expect that in a general expression for time delay, the transient and
asymptotic parts of the scattering wave function in Chapter 1 would
give rise to separate terms, from which»one could draw conclusions
about the significance of transient effects in a given»situation.
However on the general question of transients in time-dependent
scattering theory, a distinction may be made between plane wave deriv-

ations and those using wave packets.

In the plane wave approach, the particle is initially and
finally in a stationary state, with the transition from one state to
the other produced by an interaction which varies with time. The
early treatment of scattering by Dirac (1927), for example, starts with
an initial state wo which is an eigenstate of the free Hamiltonian Ho ’
and to this applies a perturbation V , switched on at time t = 0. The
method of variation of constants is used to calculate the probability,
Ian(t)]2 , that the system is afterwards in the state wn ,'also an
eigeristate of Ho . The derivation of formal scattering theory by
Lippmann and Schwinger (1950) similarly uses plane waves for the initial
and final state, but in this case the interaction is switched ori and off
adiabatically. Cross sections are calculated from wba , the probability
per unit time of transitions from stationary state a to stationary sﬁate b.
In derivations of this type, components of the wave function which decay
to zero as t + 4+ , i.e. as stationary conditions are re-established, may

properly be labelled "transient".
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In the wave packet treatment of scatteriné, the final state of
the system contains the scattered and unscattered packets, both of which
undergo spreading as they move away from the region of interaction. As
a consequence of the spreading, the total wave function in ahy finite
region decays to zero as t > += . Stationary conditions are not

established, and in a sense the whole wave function is "transient".

Moshinsky's discussion of scattering uses a plane wave for the
initial state, and after the scattefer is inserted into the beam of -
particles the wave function contains transient components, described by
the functions M. The transient terms go to zero as the system approaches
a new stationary state in the limit t » 4= | In the corresponding wave
packet treatment, however, the situation is rather different, as may be
seen by examining the "asymptotic"‘part of the wave function separated

out by Sasakawa and Rosenfeld. This term is (Eq.(1.73) )

-ik2T

VSR () = | ak Ay ()] 3, (ke) + L[5, (k) - 1]o, (kx) e
£m m
2i
)
(2.24)
We may use the relation
X, (k,r) = I (kx) 4+ L[5 (k) ;] o tkr) , r za, (2.25)
2i
to write it in the form
© ~ik?1T
asym _ 2
w (r,T) = f dk Azm(k) xz(k,r) e . | (2.26)
o .

It is now identical with the expression (21), and by the discussion
following that equation we see that as T + +» , the limit of the RHS of

Eq. (26) is zero for -all r. Thusrthe whole of the wave function (1.36),
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.t.
including the asymptotic part, goes to zero as T > += .

It is interesting to note that a direct connection exists
between Dirac's perturbation treatment of scattering, and the M functions

of Chapter 1. Moshinsky (1952a) has considered the problem of a plane

kX

wave, et o , which is disturbed at time t = 0 by the sudden insertion of

a hard sphere scatterer at the origin. As t >+ +» , the system gradually
reverts to a new stationary state, with the transient behaviour being
described by the functions M. Moshinsky calculates the probability that

the scattered particles have energy E at time t (the probability amplitude

involves Fourier transforms of M functions, / dr M(r, kgr t) sin kr ), and
o}

obtains the result sinZH(E-Eo)t » where E, is the energy of the original
(E-Eg) 2 :
plane wave. In Dirac's éalculation, the probability |an(t)|2 that the

system is in the eigenstate wn with energy En at time t is proportional to

sinzlz(En -Ej)t . The similarity of these results arises from the fact

(Ey - Eg)?

that in both cases a stationary state is disturbed at time t = O.

The function sin?-l:(En - E )t is related, by a well known
(En - EO)Z

argument, to the problem of conservation of energy (Dirac 1927). For
finite times the function is peaked arouﬁd ES, and there is a finite
probability of finding the particle with energy Eq #=ﬁo . Aé t increases,
however, the width of the peak decreases, and in the limit t > += tﬁe
function becemes a 8 function, and ensures that the scattered particles
have exactly the same energy as the incident particles.. We may note

here another difference between the plane‘wave and wave packet treatments
of scattering, since particles described by wave packets do not have a

definite energy.

+ It should perhaps be mentioned that Sasakawa, who is interested mainly
in long wave packets, describes as "transient" effects which arise as
the front or rear of the packet moves across the scatterer. This
suggests that when the scatterer is submerged in the body of the wave
packet, stationary conditions prevail, and although this is a good
approximation for long wave packets, it is not true in general.
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Our original calculation of time delay used the t = 0 wave
function in the form (1.36), since it was hoped to obtain coﬁﬁributions
from the M functions representing transient effects. While the calcul-
ation could be carried out with the wave function of Chapter 1, it is
much easier to use the scattering state expansion (2.11l), and this we
shall do in subsequent chapters. It will be found that the calculation
and the results still contain new featurés, and these arise from specify-

ing the initial packet at t = 0 rather than in the limit t » -» .
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CHAPTER 3
TIME DELAY- OF A SCATTERED WAVE PACKET

3a. Introduction

The idea of time delay in quantum scattering processes is
familiar from nuclear reaction theory, where it'provides the basis for
the distinction between compound nucleus and direct reactions. In a
compound nucleus reaction, the incident particle excites many degrees of
freedom in the targef nucleus, so that its energy is rapidly spread amongst
all the target nucleons. After a considerablé number of energy exchanges{
and a long time delay, sufficient energy is concentréted in the final staté
particle for.it to be emitted from the compound nucleus. In a direct
reaction, on the other hand, the energy of the incident particle is trans-
ferred to the final state particle almost immediately, and the particle is
emitted with very little delay. Of course, it is usual tovthipk in terms
of level widths, rather than lifetimes, and 0 compound  nucleus procesées
are characterised by very narrow resonances, direct processes by broad

resonances,

An expressiqn relating the time delay for elastic scattering toA
the phase shift was first obtained by Eisenbud (1948), who considered the
scattéring of a wave packet with a narrow momentum distribution, and
followed the motion of the "centre" of the packet (see also Bohm 1951).

Let the scattered packet have thé asymptotic wave function

ikr-ihk?t

Vo (Eit) o~ [dk A(k) £(k,0) e 2u , (3.1)
- r > o« r
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in(k)

where £(k,0) = |f(k,8)] e
is the scattering amplitude, and A(k) is strongly peaked around k = ko.
At time t, the centre of the scattered packet is at that value of r which

makes the phase of the integrand in (1) stationary, i.e. at

d (kr+n-fk2t) = 0
dk 2u k=k
o
or r = ﬁko (t - td) ’
W
where td = N dn| . . (3.2)
_ fk dk
o) k
o

The time t. is the amount by which the scattered packet (at angle 8) is
delayed over the correspondiﬁg free packet. If the scattering amplitude

is expanded in partial waves,

2i62(k)

£(k,0) = _1 )(28 + 1) '; - 1] P,(cos 8)

2ik L

and only one partial wave has appreciable phase shift, then

*,

t = u
Ak dk
o

4 . IR € 5

%

It can be seen that the expressién (3) has the behaviour we would
expect of the time delay by considering the nature of él(k) at a resonaﬁce.
The phase shift increases sharply by m at a resonance, soO ff&_, and therefore
the time delay td’ is large and positive. Away from the itsonance region,

where direct processes are more important, 62 changes slowly with energy, so

that the time delay is small. It is possible for dél to be negative, and
: . dk
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in this case td is to be interpreted as a time advance. If the potential

is repulsive, for instance, the scattered particle may appear at a point r

sooner than in the case of free propagation.

It was pointed out by Wigner (1955) that, for potentials of finite
. . s : .
range a, there is a lower limit on d 2 - the greatest time advance occurs
dk
if the particles are completely excluded from the region r < a , il.e. in

hard sphere scattering. This qualitative argument suggests

ds

> -a | (3:4)
5 | |

and Wigner showed that in fact

as 2162 ) ,
£ > Re {1 w[lz,g O’Z' -1 e w[oz,g 09] } , (3.5)
dk 2k =7 sk 2k ‘ 3k A 7
a : a
where Iz and 02 denote the incoming and outgoing spherical Hankel functions,
W[:"':]a is a Wronskian evaluated at r = a, and Re signifies the real part.

This relation was derived by differentiating the expression reléting 62 to’

the R matrix,

(prime denotes differentiation with respect to r), and omittihg a positive
2 .
term k dRz IIR - Ii Rz . In the case of s waves the inequality is

dk

ddo > -a + 1 sin (2ka + 260) . (3.6)
& 2K
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A more general definition of time delay was given by'Smith (1960) ,
who considered the average time spent by the particle in a large spheré‘
surrounding the scatterer. If this "residence time" or "occupation time"
is calculated with the scatterer present, and again with the scatterer
removed, the difference of the two times is é measure of the time delay
due to the interaction. Smith's calculation uses stationéry state wave
functions rather than wave packets, and the occupation tiﬁe is defined as
the number of particles within the sphere, divided by thé number of pa;ticles
entering the sphere per unit time. (The notation Q for the time delay is

used because of the analogy with the Q value of an electrical systemf)

For elastic scattering, Smith finds the occupation time for the

2'th partial wave to be

. . .
I dr y, ¥, = 28d§, + 2R = N sin (kR + 26, + &m) + G, /R,
b v ' 2 ’

2E
(3.7)

where R is the radius of the observer's sphere, v the velocity of the
incident particles, 62 the usual phase shift, and GQ/R a remainder term
which goes to zero as R =+ = , The'fuhctiéns wl are normalised to unit

incident flux.

The occupation time with the potential removed is just .2R ,
: v
and this is subtracted from (7) to obtain the time delay. The oscillatory
term is removed by averaging over R and taking the limit R =+ « ., The

term Gl/R then vanishes, and a result independent of the size of the

observer's sphere is obtained. The time delay for the L'th partial wave is
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Qg = 2035, ’ (3.8)
dE
which is similar to the result obtained by Eisenbud, Eq. (3). (There is 'a

difference of a factor of 2, which arises from different definitions of

the outgoing wave. If the total outgoing wave is used, the phaée is
2ié
e , whereas if only the scattered outgoing wave is considered, the
216 i8
phase is altered to e -1 = e sin 61 .)

The aim of Smith's paper was to obtain a time delay or lifetime

operator, and with this in mind, Eg. (8) may be written as

* .
QQQ -ih Sz S‘Q o . (3.9)

4
dE

2id .
where s2 = e 2 is the S matrix for the &'th partial wave. This

establishes a formal relation between the Q matrix (or operator) and the
S matrix for elastic scattering. Smith extended his treatnent to the

case of inelastic scattering, and obtained a similar relation,

9.. = -i-nZsf

S, - : (3.10)
i3 n

in

n &
N EE

where Sij are elements of the general scattering matrix, and Q is a
generalised lifetime matrix. A diagonal element of Q, say Qii,'represents
the average time delay in a collision in which the initial channel is i.

Lippmann (1966) has suggested that a time operator be defined as

t = -ihd (3.11)

&



(58)

and then Egs (9) and (10) may be written in the general form

0
It

-5 t s P ' (3.12)

where T denotes the Hermitian adjoint.  Gien (1965, 1969, l97O)Ihas
carried out calculations of time delay starting from the operator t,
rather than the idea of occupation time, and he obtains reSults whiéH
agree with those of Smith. Razavy (1967, 1969) has investigated the
problem of deriving such a time operétor by quéntising the operator

conjugate to the Hamiltonian in classical theory.

A calculation of time delay for a general wave packet, as
distinct from one with a narrow momentum distribution, has been givén by
Ohmura (1964). We shall discuss Ohmura's results in some detail, since
tlie questions raised by Ohmura's paper stimulated the present inﬁestigat—
ion. (In what follows, Ohmura's notation is retained to facilitate

reference to the original paper.)

The scattering process is described by a time—dependeht wave

function with the asymptotic form (Ohmura 1964, Eq. (26) )

. g LB V) eikr} Loive av

O, t) o~ J G(v) e

r > x®

ia(v) {eikz

r

(3.13)

where v is a frequency and k the corresponding wave number
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(i.e. E =Hv = H2k2 ). The functions G, o, g and B are real, with

2u
the last two related to the scattering amplitude by

ig (v)

fv(e) g(v) e

(g and B are therefore functions of 6§ also). The lower integration

limit in Eg. (13) is formal, since G(v) vanishes for v negative.

(3.14)

The wave function (13) may be split into incident and scattered

packets,

‘\b(rlt) = Wln (r,t) + lwsc(rrt) ’
~ - 7 - }

=]

J G v) Jlo) ikz-ivt

It

where win(r,t) dv

-—l0

and b (xet) o~ f G(v) eia(v) g(\))eiﬁ(\)) eikr&ivt v

r >

Note that the incident packet depends only on z , and is therefore of

infinite extent in the x and y directions.

The incident flux is

and the total number of incident particles

(3.15)

(3.16)

(3.17)



4
S = é? f (Bwin lpin - 8‘J)j.n win de
Mo 3z 3z
= 2 J GZ(v) v dv , E (3.18)
-— 00
where v = fik is a velocity. (The notation S is Ohmura's - it does
m .

not denote the scatterihg matrix.) The incident particles arrive at a

point z at a mean time

, * *
tin T l-;§4-f awin win - alpin 1pin t dt
S Ziu_°° —_—

az . 9z

0

21 f G2(v) dv . z + 27 f GZ(v) da'(v) vdv | ..
dv

(3.19)

The total number of scattered particles in a direction ¢ is egual

to the mean cross section <@ (9):> multiplied by S of Eq.(18), so that

> * 3*
<§ (6) S - éﬁ aq)sc lPsc - wsc lPsc dt
H o or or
= 27 f G2(v) g2(v) v dv . (3.20)

The scattered particles arrive at a point r at a mean time




* *
t = 1 £ f WY -3y ¢ t dt
T s s
SC <0 (e)>s 211.1 _ ( aic C aic C]

= 1 {Zn J GZ(vig2(vav . r + 2w [ G2 (v)g? (v) g_[é(v)+ B(vi]v av
o (8>S ‘ o av

(3.21)

The time delay is to be found by comparing (19) and (21), but
since tin is a function of z, and tsc a functioh of r andHG, some care is-
needed in making this comparison. This point is not mentioned by Ohmura,
however we can oﬁtain his result if we assume 6 = 0, and sét zZ=1xr = R.

Then the time delay is

£ t:> = [ G%°g%dB v av S G%g? da v dv J c? do v dJ]
dv + \Y - dv
J G*g® v dv S G%g% v av szvva

- 2 | '
+ R f G2 2d\) ) f G d\) r (3-22)
[ G2 v dv

[ G%g% v av

which corresponds to Ohmura's Eg. (33).

The first term invK.(22) represents a wave packet average of
the derivative of the phase shift, and is' the generalisation to an
arbitrary wave packet of the expressions obtained by Eisenbud and Smith.

Since Ohmura does not use partial waves, B(v) is the phase of the total.

]
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scattering amplitude, and the term in df corresponds directly to Eq.(2).
dv

The second term in Eq.(éZ) suggests that the fime delay depends
on'the phase of the momentum distributioh of the initial paéket. By
using a simple model, Ohmura shows that this term can have a»considerable
effect on the value of <? t>> . For a wave packet of decaying resonance
shape, with width +A and mean energy ﬁvo » the phase o is given by

tan o = A . If such a packet is scattered from a resonance of

v o=V

o
the same width, but centred at energy"l’wr , the time delay depends on the
separation hvo -~ﬁvr between the packet and resonance energies. Setting
hv_ - fiv | equal to mI' , where I = 2hA , Ohmura finds that the time delay
is 2n , h and zero for m =0, 1 and'w respectively; and in each case

r r
the second term in Eq. (22) is of the same order of magnitude as the first.

Fong (1965) has extended the wave packet calculations to the'
case of inelastic scattering, and he also finds a term depending on da - .
In this case the term is significant only near the threshold of a ch::nel,_
but it is éf the same general form as that obtained by Ohmura. Gien (1970)
has investigated the problem using the time operator approach, andbconcludes
that the time delay does‘not depend'onrthe phase of the momentum distribﬁﬁ-

ion. He suggests that the term arises because Ohmura has used only the

scattered part of the interacting packet to calculate_the time delay.

The term proportional to R in Eq. (22) is omitted by Ohmura.
In an earlier part of the paper he assumes separate normalisation of the

incident and scattered packets, and this may have led to the term being



overlooked. It has the form R - 1 , where the v are average

velocities, and suggests a kinematic contribution to time delay arising

from different average velocities of the incident and scattered packets,

While the operator expression for time delay derived by. Smith,
Eg. (9), has considerable formal appeal, it is obtained from stationary
theory, and could not be expected to contain terms representing wave
packet effects. Ohmura's paper suggests that if an arbitrary wave packét
is considered, the expression for time delay will include terms in which
the shape of the packet, and in particular the phase of its momentum

distribution, is important.

We have carried out‘a new calculation of time delay, for an
arbitrary wave packet, in orderbto éxémine the questions raised by Ohmura.v
Although our approach differs from Ohmura's in several respects, we shall
be able to shed light on the physical significance of the da term appear-

dv

ing in Eq. (22). Our results will also be compared with those obtained by

Kilian (1968) in a paper which appeared during the course of the present

work.

3b. Definition of Time Delay

A general definition of time delay has been given by Goldberger
and Watson (1964, Chap.8). We shall use this definition in our calcu1at-
ion, with the difference that the initial packet is specifiea at time

t = 0, rather than in the limit t > -= |
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Let us consider a spherical potential V(r), of finite range a,
centred at the origin and surrounded by a sphere of radius R, with an

arbitrary wave packet situated outside the sphere at t = 0 , Fig. 1.

(=

Fig.3.1 1Initial Configuration
for Time Delay Calculation
Let the wave function for the propagation of the packet as it
interacts with the potential be Y¥(r,t). Then the mean time spent within
the sphere by the wave packet is defined as
%*
Tint(RJ = f dt f df ¥ (f,t)W(f,t) K 7(3.23)
o v

R

where VR is the volume of the sphere of radius R.

Similarly, let the wave function for free propagation of the

packet be ¢(r,t). Then the free packet spends a time

<]

T (R = '( at J ar d)*(f,t)@(l:,vt) (3.24)

v
°© R

within the observer's sphere.
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The time delay due to the interaction with the potential V is

given by

Q(R) = Tint(R) - Tfr(R) . (3.25)

This definition of time delay is similar to that used by Smith,
but the occupation times are now defined in térms of time-dependent wave
functions, rather than stationary states. Roughly speaking; the volume
integral in Egs (23) and (24) is edual to unity if the packet is within
the sphere, and zero if it is outside the sphere. The time integral

then gives the mean time spent within the sphere.

To see how the definition is related to the current integrals
used in Ohmura's calculation, let us integrate Eq. (23) by parts:

J at J ar ¥ (r,t)¥(r,t) - -J at t f ar ¥ (x,0)¥(r,t) .
(o] v (o} »

2

ot

R : vRv

The integrated part vanishes, since the volume iﬁtegral is zero at -

t = 0, and it goes to zero as £73 in the limit t > + = . Using the

continuity equation and Gauss' theorem we have

Tint(R) =

0O ~—38

dt. t f dr Vy. J (x,t)
v

R

at t I as . J (rR,t) |, (3.26)

-~

It
0O *~— 8

R

where SR is the surface of the observer's sphere, and the current

J (r,t) is defined as

——

2iu

r gy

(r,t) = 4 [%*(r,t)vw(r,t) - w(r,t)vw*(r,t{}' A

-
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Eq. (26) may be compared with the definitions (19) and (21) used by Ohmura.

For a packet which is strongly locglised, the surface integral

in (26) will consist of two § functions of opposite sign,

Jd? . g(l},t) = -G(t-tl) + G(t-tz) ’

R

since dS . J is positive if_the current is outwards, negative if the

-~ ~

current is inwards. Then
0
Tint(R) = J dt t [—G(t,-tl) + 6(t-t2ﬂ
o ’ ‘
=ty ot

and the occupation time is just the difference of the entrance and exit

times measured at the surface SR'

The initial packet ©¢(r) is expanded in terms of partial waves,
or) = ) v, (@ 1e () (3.27)
fm r

where le(r) is the radial wave function for the m'th component of the
L'th partial wave. To obtain the wave function ¥Y(r,t) for the inter-

acting packet, we expand @lm(r) in terms of scattering states:

!

¢2m(r) ,[ dk Bgm(k)xl(k,r) | ’ ‘ (3.28)
o

and then ¥(r,t) = e X% g(x)

o -iﬁkzé
r '
(o]

Lm
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Similarly, the wave function for the free packet is obtained by expanding

¢2m(r) in terms of Riccatti - Bessel functions:

®Qm(r) = f dk Alm(k) Jz(kr) . (3.30)
(0]
-iH t
o(r,t) = e ° (x)
w® —ifk°t
- 2u
= 7 Ylm(n)};_f ak A, (k) J, (kr) e . (3.31)
2m r o

Note that in Eg. (28) we have assumed that the packet contains no bound
state components. If this were not so, the integral (23) would diverge,

due to the bound state part of the packet remaining in the sphere for all

times.

The calculations of Tint and Tfr are gquite similar. We shall

calculate Tfr first, since the Bessel and Hankel functions are more

familiar than the scattering states, and it is thus rather easier to

follow the method of the calculation.

3¢. Calculation of Tfr(R)

Inserting the wave function (31) into the definition (24) we

have o
*
T_ (R) = [ dt J dr ¢ (r,t) ¢ (r,t)
fr - - ~
o VR
® R © ikzr
d d 2 an Z * Q) 1 r * k 2
= U T r r tm Ylm( ) 1 jdk Alm(k) Jl( r)e
ol r ’
o) o 4w o
_ ? -ik'%t
i [] ] [
X /Q«‘m.' YQ!I’('{(Q) %' Ag:m.(k) sz(kr)e

[e)
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(o] R [=2] o0 i(kz_k' Z)T
— y * 1 1A 2
= E—J at J ar ) f dk f a’ A, (k) A, (k') I (kr) T, (k'x) e .
g ol Lm
o o] (o] o]
(3.32)

The time integral in Eq. (32) may be calculated in the usual way
by inserting a factor e-ET in the integrand, where the limit € -~ 0 is to be
taken later in the calculation:

o i(k2- k'%)1 o i(k2- k'%+ 2ig)1
ar e 2 et & fAdT e 2
o]

= 2i ‘ ) (3.33)

Then

8

Tfr(R) =

o & =

R [+
. . * .
f ar ) ak f ak' Ay (k) Ay (k') J,(kr) J,(k'x) 2i
(o] Zm [o] (o] .
k2 - k'2 + 2ig

(3.34)

At this point we may make use of the fact that the coefficients
Agm(k) are defined in terms of the radial component ¢2m(r) of the initial
packet. Using the orthogonality relation (1.7 ) for the Bessel functions

in Eq. (30) we have, formally,

R K= %_[ dr ¢, (r) J,(kr) . (3.35)

[0)

However the initial packet is localised outside the sphere of radius R, so

¢ (r) = 0 , r £ R , ~(3.36)
Lm 1

where Ry is some radius greater than R. Then

Alm(k) = %_f dr le(r) Jz(kr) . (3.37)

Rl'
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-
We shall introduce a special notation in connection with

relations of the type (37). Let slm(k,J) denote the transform of the
function @lm(r) with respect to the function Jl(kr), evaluated at the

momentum k

le(k'J) = J dr ®£m(r) Jl(kr) . (3.38)»
. Rl
Then Alm(k) = %_@Zm(k,J) . _ - o (3.39)

The coefficients Blm(k)'in the interacting wave function (29)
may be expressed similarly as transforms of sz(r) with respect to the
scattering states xl(k,r). From Eq. (28) and the orthogonality

relation (2.3a),

It

‘B (k)_'

o~ * . ‘ .
om le(klx ) ) ‘ (3.40)

2
™

~ *
where o m(k,x ) =

. .
. dr QZm(r) X, (k,r) . (3.41)

8

To see how the transform notation is to be used in the

calculation,_let us consider the relation

sz (kr) = %_i [OZ (kr) =~ Iz(kr):l‘ ; : (3_.42)

where Iz(kr) and Oz(kr) are the incoming and outgoing spherical Hankel

functions. Inserting (42) into the definition (38) gives

3 (k,J) 1
2m 5

i

©
- lﬂ J dr ¢2m(r) Iz(kr)
2i R

f dr égm(r) Oz(kr)
R

1

, (3.43)

ii
'—l
oY

x

=]
~
e

!
[
©

g

=)
~
H



(70)

where (3 m(k,O) and (3

I} m(k,I) are the transforms of &

m(r) with respect to

% L

the functions Og(kr) and IZ(kr).

Since ¢2m(r) is not in general real, we must distinguish

. * .
between the transforms of @Qm(r) and QZm(r). We shall use an asterisk

*

placed at the extreme right of a transform, Ekm(k' ...) , to denote

the complex conjugate of the complete transform, and an asterisk placed

~k *

beside the tilde, @Qm(k, ...) , to denote a transform of ¢£m(r).

Taking the complex conjugate in Eq. (43), and using the relation

* C
02 (kr) = Iz(kr) ’ k real ' (3.44)

we have

* * * *
-1 dr ¢ zm(r) OL(kr) + 1 dr ¢ Zm(r) Ig(kr)

2: 2i

7 xk,n”
r
m 21

g
R

= - fdr o (r) I, (ke) + J‘ ar ¢, (r) o (kr)
R R

1
2i 2i %
1 1

13 T 3.45
= -1 Rm(k'I) + l: zm(k’O) ’ (3.45)

21 23 .

or, using Eq. (42},

'y * s | 3.46
k) = T ka3 (3.46)

It can be seen that in taking complex conjugates of the various
transforms, we must pay attention mainly to the behaviour under conjugation

of the function inside the brackets.
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Returning to Eq. (34), we may now evaluate the integral over k'

by writing A

(k') in terms of ¢ and J
L

Lm L

2

f ak' A, (k') J . (k'v) 2i
m 2
o

k2 - x'2 + 2ie

L

= J dk' 2 [ dr' & (') J, (k'r') 7 (k'F) 21
Py m 2 L
(o] Rl

k2.- k'2 + 2i¢

i
|
N
'—I-
g ——— 8
[oN)
H—
e
"

%_J.dk Jl(k r) Jg(k ') ’
o

kK'2 - (k + ig)2

(3.47)

where we have used kZ + 2ie ~ (k + ie)2 for k positive and £ small,

The k' integral in Eg.(47) is just the free Green's function for
the L'th partial wave, and is evaluated in Appendix A, The value of the
integral depends on the relationship between r and r' , and on the siyn of
the imaginary part of the second term in the denominator. From Eq. (34)
we have 0 & r € R, and from Eq.{47) R € R, <€ r' <« » ,s0r < r'.

1
Since Im (k + ie) > 0 , the integral is given by Eq.( A.6),

2
m

k
k'?2 - (k + ie)2 . (3.48)

f ak' Jz(k'r) Jg(k'r') | = l_Jz(kr) Qz(kr') , r < r'.
o

We have allowed € to go to zero on the RHS of Eq.(48) since it serves to
select the asymptotic behaviour of the Green's function, and this is

incorporated in the factor Oz(kr').
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Combining Egs (47) and (48) gives

1 ] 1] .
f dk Alm(k ) Jg(k r) 21 m
5 12 k

k% - k

-2i j dar'®. (r'") l_Jl(kr) Ol(kr')
+ 2ie R1

= -2i J, (kr) ¥, (x,00 , (3.49)
— % Lm
k
and then in Eq. (34)
o R
T (R) = ] Jdk A, (k) ¥ (k,0) (-2i) Jdr 3, (kr) I, (kr) . (3.50)
A Aim o k 5

-

The integral over r in Eq.(SO)‘is of the type calculated in
Appendix B, and may be written in terms of Wronskians evaluated at the
upper and lower limits. . We define a Wronskian containing a derivative

with respect to k :

wlzg(k,r),gh(k,r) = g3 n - 3 3 ,
ak 9xdk dr dk

where g and h are arbitrary functions of k and r. Then

b

[er (kr) J_ (kr) = —1{[1(1“:),3 J (kr):l -WEI (kr),a J(kr):l} .
2 L >k

a

(3.51)
Now
: 2+ 1
Jl(o) ~ P ’ '
p>o (28 + 1) !!
SO

lim Wl} (kr), 2 J (kr):-J = 0 ’
ok

r+o



and R
dr J_ (kr) J_ (kr) = -1 W[% ’ g_ J;] . (3.52)
i 4 % 2k ,2 ok ¢ R

In future we éhall omit the arguments of the functions within
the Wronskian (as has been done in Eq.(52) ) in order to simplify the

appearance of the results.

Inserting (52) into Eqg. (50), and using the relation

* ~% .
A, k) = 2¢ (k3 , (3.53) -
m
we obtain
o
. s Y | 3 54
T, ® = 2p) | dk o (k) ¢, (k,0) L WJI,d_ J, . (3.54)
TH &m o ) ok R

We now have an expression for T r(R) which consists of a single

£
integral over k for each partial wave, with the properties of the incident

~n i -~ '
wave packet contained in the transforms ¢ m(k,J) and ¢ m(k,O), and the

2 L
dependence on the radius of the observer's sphere contained in the
Wronskian WE?Q, g__Jéjv. However, before we can be satisfied with the

ok R _ ' : v
form of the expression, a further point must be discussed. The occupation

time Tfr(R) is necessarily real, so we must prove that the expression we

have obtained is real.

Let us consider the imaginary part of Eg. (54) :

*
In T, (R) = %1 {Tfr(R) - Tfr(R)}

)
2

= |
e

~tk ~ ~ . ok
_ J dk {cbm(k,J) ?on kO + 0, (k,T) @zm(k,l)} 1 W[JR, Q__JQ] .
(o]

k2 R
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Using the relation (42) we have

~% ~
¢ (k,J) @
m

—~ —~%
% om KO+ QQm(k,J) b (ke T)

* ~ —~ ~*
Qm(k’I)QQm(k'o) + QQm(k,O) QQm(k,I)

~%k S~ -~
1 {®2m(k,o) o 60) =
2i

~ . ~%
-F, (kD ¢2m(k,I)}

~% ~ —~t — v
L {?Qm(k.O) 600 = (kD) ®2m(k,1)} , (3.56)

and using the further relations

k) = (-)" 0, (k) (3.57)
2+1
Jz(kr) = (-) JQ('kr). ’ (3.58)

we may write the contribution to (55) from the second term in (56) as

~% ~
dk ¢, (k,I) (k,I) 1 W[I ’ E_J]
i &m Lm 12 L Tk L R

O
~k ' ~ .
= -JdeMJkp)Qhﬁkm)%zwﬁl'iJJR .

Then the integral in Eq. (55) is equal to

¢ = 1 fdk@ (k,0) 3, (k,0) 1 wE ,gJ] . (3.59)
fr 21 ) Lm | S Am %2 L Tk 2 R ,

We evaluate (59) by contour integration. Now

¢£m(k'o) = f dr ®2m(r) Ol(kr) _ : (3.60)
R .
and 1
0, (kr) ~ TR M

| > =
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so for |k| sufficiently large and y = Im k > 0 , the integrand (60)
_Yr

contains a factor e . Thus
¢, (k,0 = 6 (™R as |k| - , mk >0 .
m

Further, Jl(kr) o~ sin (kr - 47 )
Ik|+oo 2
- : . .

so wlg,, 34d = O (e 2lkR) as |k| > , Imk>0 .

ST PN

The contour for the integral (59) may therefore be completed by’an infinite

semicircle in the upper half plane, Fig.2, where for !kl sufficiently large

the integrand behaves as 1 ezlk(Rl - R

, with R, > R .
k2

Fig.3.2 Contour for the
Evaluation of Im Tfr(R)

The integrand has no poles, and the intégral around C_ vanishes,

S0

~% L A ) : v '
dk ¢  (k,0) ¢ (k,0) 1 W[& ’ Q_J:} = 0 ’ (3.61)
o[ £m Lm | X2 S Tk L R v o
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and the imaginary part of Eqg. (54) is in fact zero.

We may now rewrite the expression for T

gr oS
T =
fr(R) mﬁe Tfr(R)
dek{&?*(k)?f(k) ?é’(k)'é*(k)}l [ a]
= 14 ) J ,0) - o oI wiJ, ., _’J .
= % m ! Lm £m 2m m 72 2 Tk ' R
and by a calculation sihilar to (56),
~k —~ o~ ~%
¢Qm(k.J) Zm(k’o) - ¢2m(k’J) ¢2m(k’1)_
- 2i 3 k,0) % (k 1 {3 T T k1) 3 (x
- 1 Q,m( IJ) R,m( rJ) = = R,m(k'I) ILm(k'O) = SZ,m( rI) SLm( lo) .

’ 2i

Finally, writing the J transforms in terms of the coefficients A ., we have

fm

*

T(R)=nzjdkA(k)A(k)g ’-;wliJ,QJ:l
fr 2m ) . Am m X { ™ ] 2 Sk '3 R

*

~k ~ ~ L '
+ 17 f dk { o, (k,I) ¢, (k,0) - &, (k,I) ® (k,O)} n -1] W[J 3 J:I
T Am 2m o Am fm Ak |2k e Y

’

(3.62) .

The factor -1 has been separated out and placed beside the
2k , .
Wronskian since these two terms arise from the radial integral (52).

We conclude this section with an observation regarding the‘real
and imaginary parts of the expression for the occupatioﬁ time. Returning
to Eg. (34), it may be seen by taking the complex conjugate and interchangF
ing k and k' that the expression at that point is real. After the
evaluation of the Green's function, however, the form (50) or (54) is

obtained, and it is no longer obvious that the expression for Tfr is real.

The asymmetry of the transforms in Eq. (54) arises directly from the

Green's function Eq,. (48).
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Comparison with Appendix A shows that the calculation of Im Tfr
(Egs (55) to (6l) ) bears a strong resemblance to the evaluation of the
Green's function by contour integration. The similarities include the
use of relations such as (57) and (58) to obtain an integral along the
complete real axis, and the use of inequaliﬁies in the radial variables
to justify completion of the contour in the upper half plane. Thus the

proof that Im T r is zero involves the same type of integration as gives

£
rise to the asymmetry in Eq. (54), and the derivation of the final express-

ion Eq. (62) is seen to be internally consistent.

3d. Calculation of Tint(R)

The occupation time for the interacting packet may be calculated
in a similar way to the occupation time for the free packet, with the

coefficients A replaced by Blm , the Bessel functions J

um replaced by

L
scattering states Xg v and so on. We shall not give all the details of

the calculation here, but rather mention the points at which it differs

from the calculation in the previous section.
The occupation time is, from Egs (23i and (29) ,

Tint(R)

i
O “——8

* .
dat dr VY (r,t) ¥(r,t)
VR

s}

: 2
i(k%2-k')t
2

e

. * %*
fdr f dr %m J dk J dk'B, (k) B, (k') X, (k,x)x, (kir) e
(o] (o] (o]

. *
dk'B,_ (k) B
m

L L

*
m(k') xz(k,r)xz(k',r) 211
k2 - k' + 2ie

]
= J =
0 —
jo N
[a]
=~
=]
—
fol]
A~
O *~—38

(3.63)
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Using the relation

~ *
Blm(k) = % ¢2m(ka)( ) ’

the k' integral in Eq. (63) is

dk' B, (k')x.(k',r) 2i
i *m L kZ - k'2 + 2ie

Y J dr'e, (r') g_f ' x, (ko)X (kL) (3.64)
m
R 0

1 k'2 - (x + ig)?

The Green's function integral is given in Appendix A :

EREN]

*
f ak xz(k .r)xz(k ')
s}

k'2 - (k + ig)?

= 1y, 0,0 ek - [ xMogP ey s orere

k n

k2_k2
n

where the sum is over all bound states.

On inserting (65) into Eq. (64) we obtain two integrals over r',

(n)

) (r'). Now

the first containing fz(-k,r') and the second ¥

Z .
(-) fZ(-k,r') = Ol(kr') , r' > a , (3.66)

' ] - L - ] — [} ] ]
so J dr @Qm(r ) (=) fz( k,r') = J dr ¢lm(r ) Ol(kr )
R R

1 1

= 3 (k,0) . (3.67)
£m
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The second integral is the overlap integral between the component ¢2m(r)
of the initial packet, and a bound state. Since we have assumed that the
initial packet is orthogonal to all bound states, this integral is ident-

ically zero

Jdr' ¢, (r') xé“) (') = 0 foralln . (3.68)
R

1

Then from (64) and (65),

~

-ﬁ_i_xg(k,r) 10 . (3.69)

] ] 2
J dk? Bﬁm(k ) Xl(k , ) 21
o k2 - k'% + 2ie

We are left with the radial integral in Eq. (63), and this is

evaluated in Appendix B :

R
fd *(k,x) x. (k,x) 1 w[* 5 ] (3.70)
r X X)X ) = =1 Xor 9 X, ’ .
. L 2k L 2k % R
o
' *
since 1lim WB R ax] = 0 .
L - g
r -+ o ok r

Then from (63), (69) and (70), together with the relation

* . ~k
Bzm(k) = 2_¢2m(er) ’
™

we have

(=2

(R) 2 Zfak?ﬁ*(k)%(k)l —'*a] (3.71)
T, R = 2iy X 0 WiX,r 9 X, . .
int T Hh fm Am fm k2 1‘2 ok L R

o}

This corresponds to the expression (54) for T_ (R).

fr

Following the procedure of the previous section, we now

calculate the imaginary part of (71). It can be seen from Eq. (70) that
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the Wronskian appearing in (71) is real, so

*

. P ~ —~ * ~r
Im T, . (R) = % Em J dk {tblm(k,x) 8, (k,0) + 8, (k,x) qam(k,z)}
Q

B

y
1 [* 3 ] (3.72)

X WiX,r 3 X . .
L2 2 ‘Q'R

k 3k

The initial packet is outside the potential, so we may use the

relation
xz(k,r) = -%i [%z(kr) - Sz(k) Oz(kri] , r>=>a .,
(3.73)
to write
~k ~k ~%
ekt = =L 4e, (k,I) -5, (k) & (k,0)f , (3.74)
2i '

where Sz(k) is the scattering matrix for thef'th partial wave. Taking

the conjugate of (74) we find
o~k ~ o~ * 3*
q’zm(k:X) R,m(k’O) + ¢Zm(k'x ) lm(k'I)

~k ~ * ~%k o~
= %1 {Sz(k) ¢zm(k10) ka(kpo) - Sz(k) sz(k,l) ¢£m(k’1)} .

(3.75)
Then, with the relations

%*
ol
ST %

I
=
<
by
w|o
~
>
=¥
s

%*
X,Q,(k'r) = S,Q.<k) xz(klr) [; k real ’
. 241
and X,Q, (kvr) = (-) X,Q,(-k'r) ' k real ’

the integral appearing in (72) may be written as an integral along the

complete real axis,



gint =

~K ~ ~
‘_ [dk ¥, x,0 T, (x,0) %2'Wl_x’@' QXJR ) (3.76)

N

As with (59), the integral (76) may be evaluated by completing
the contour around an infinite” semicircle in the upper half of the k plane.
The integral around the semicircle vanishes, but now the integrand has
poles in the upper half plane corresponding'to the bound state poles of

Sl(k)’ which is contained in the Wronskian W[%l’ g_xé] {cf. Eq.(73) ).
3k R

At a bound state pole kn’ the residue of the integrand (76)

~k o~
contains the factor ¢ (k ,0) ¢ (k ,0). However the bound state
&m n fm T n
(n)

wave function Xy (r) may be written as (Eq. (A.14) )

in
(n) _ 4 A -
X, () = e Res £, ( kn.r) '
where"Resn is the residue of the S matrix at the bound state pole. We
know that
L
(-) fQ(—k,r) = Ol(kr) ’ r = a '
so -
¢2m(kn'o) = J dr ®2m(r) Ol(knr)
R

1

(n)

dr le(r) X,Q, (r) '

R
g~ 8

1

and by our assumption that the initial packet is orthogonal to all bound

states, the residue of (76) at each bound state pole is zero. Then

~k —~
dk ¢ (k,0) ¢ (k,0) 1 WE( , é X] = 0 R (3.77)
ofo Lm m ) 2 Tk L R

and the imaginary part of Tint(R) vanishes.
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From Eq. (71),

rP . R - .
1nt( ) Re Tlnt(R)

* ~k
L o 06 ) %m‘k'”}

1
m

St=

[o¢]

ok -~ o~
_ [ dk { QZm(k,X) ¢2m(k,o) -
(&)

*
x 1 WE( ’ 3 X] ’
k2 YU MR
and by using (74) and its conjugate we have
T 0 T (k T ok
3 Y * 3 T o« 3 0 7 (x,0)
= 2i JLm(k'X) qJQ,m(k'X ) - _%_l Q,Q,m(k’I) ILm( ,0) - m ,I) ! -

Then, writing the X transforms in terms of the Bzm'

* *
T, (R) = m) f d B, (k) B, (k) p (-1 WE( + 3 x:'
int ! m m el ok ' Tk 2 R

*

' 1
~%k -~ -~ ~ *
- - P
J ak { ®2m(kll) ®2m(k'0) ¢2m(k'1) ¢2m(k.0)} u 1 w[%ﬁ'? Xy
m 5 dk. ~ R

+
En™
o~

hk 2k

(3.78)

The expression (78) for Tint(R) corresponds to Eq. (62) for Tfr(R),
with the coefficients AQm replaced by Ble and the functions JQ replaced by
scattering states Xg The time delay Q(R) is the difference of the

occupation times Tint(R) and T_ (R). However it does not seem possible to

fr
obtain a simple expression for Q by combining (62) and (78), so the results

of the calculation are best left in the form of occupation times.

We shall postpone discussion of these results until Chapter 5,
where we will be able to compare them with 'similar expressions relating to

the decay of a wave packet initially inside the potential.
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CHAPTER 4

LIFETIME OF A DECAYING WAVE PACKET

4a. Introduction

In the early treatment of decay by Weisskopf and Wigner (1930),
the wave function for the decaying system was expanded in terms of eigen—
states of the unperturbed Hamiltonian, with the coefficients of the
expansion depending on the time t. If the perturbed system satisfies

the wave equation

(HO + V) ¥ o, (4.1)

312

where Ho is the unperturbed Hamiltonian and V the perturbation producing
the decay, the wave function { may be written in the form
~-iE- t
n

v o= Ib (e Py : | (4.2)

n
n

where HY = E , : (4.3)
and the time dependence of § is contained in the coefficients bn(t).

On substituting the expahsion (2) into Eq. (1), a set of
equations for the coefficients bn is obtained:
i(E ~E )t
n m :

hd = Ve b , (4.4)
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where Vnm is a matrix element of the perturbation between eigenstates of Ho'

-

nm

v = J w: vy oo . (4.5)

If the system is assumed to be in the unperturbed eigenstate wo at time

t = 0, the equations (4) are subject to the initial conditions

b_(0) = 1
o
(4.6)
bn (0) = 0 n#*0 .
Weisskopf and Wigner assumed a form for the coefficient bo ’
- t
2
bo(t) = e 2B ' : (4.7)

expressed the coefficients bn {(n # 0) as combinations of similar
exponentials, and then verified that these assumptions gave consistent

results.

The treatment of Weisskopf and Wigner was extended by Heitler

and Ma (1949), who expressed the coefficients b as Fourier transforms,

e.q.
i(E -E)t
it L .
4
b (t) = 1 IdE a (E) e ’ (4.8)
o] 2—“ (o] .

where Eo is the enexrgy of the unperturbed eigenstate wo . They derived

general expressions for the coefficients a, in particular

a (E) = i ) , (4.9)
© E-E_+ il (E)/2

where T (E) represents the coupling of the state wo to all the other states

Wn through the perturbation V. - Then in the particular case that I'(E) is
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a slowly varying function of E, they showed that the result (7) is regained,

i(E - E)t
. o]

b (t) = -1 erE e n
© 271 E - E + il /2
-—00 o o
- t
o
- e , (4.10)

where Fo = P(Eo) and the integral is evaluated by contour integration.
From Eg. (7) or (10), the probability that the system is still in the

eigenstate wo at time t is

lo_(e)]2 = e ' (4.11)
which is the well known exponential decay law.

A general theory of decay in which the initial state is

' described by a wave packet rather than an eigenstate of Ho has been given
by Krylov and Fock (1947). .In outlining the details of their approach
we shall follow a paper by Khalfin (1958).* Let the state.of the system

at time t = 0 be

V(x, 0) = de c(E) v (x) (4.12)
o]

T Goldberger and Watson (1964, Chap.8) give a general treatment of
decay with the initial state of the system described by a wave
packet., However it is assumed that the wave packet contairs
only a narrow range of momenta, and in the evaluation of trans-
ition probabilities this condition is used to remove the wave
packet dependence - cf their Egs (53) and (54a). The final
expression for the probability of finding the system in the
initial state is (Eg. (117) )

Te
P(t) = e ,

which is just the result obtained by Weisskopf and Wigner.
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where wE(x) is an eigenstate of the total Hamiltonian, and x represents
i

the set of variables on which the wave function depends, apart from the
time t. At later times, the state of the system is given by

© -iEt

5 ,
P(x,t) = dE c(E) wE(x) e . (4.13)
0

The probability amplitude that the system is still in the initial (wave

packet) state at time t is

P(t) = ( w(xlo>l W(X,t) ) (4-14)
©  -int
or plt) = J dE e B w(E) . (4.15)
o)
where w(E) = c*(E) c(E) (4.16)

is the energy distribution of the initial packet. Then the probability

that the system has not decayed is defined as
2
P(t) = |p(t)| ' (4.17)

and the decay law is seen to be determined entirely by the energy distrib-

ution w(E) .

If w(E), considered as a function of the complex variablevE, has

poles only at E

= E0 * iFo/z , then the probability amplitude is
© -iEt
plt) = l_f dE e B Iy/2 . (4.18)
' m
0

_ 2 2
(E Eo) + Po/4

It is usual to assume that Fo << Eo and Eo >> 0, and then the lower

limit in the integral is changed to -, giving
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w ~iEt
%
p(t) =~ 1| aE e To/2
T e (E - E )2 + I'2/4
o] (o]
-iEt T t
o] o]
_ £y >
e e
-7 t
o ,
and P (t) = e R ' _ (4.19)

which is the same as Eq. (1l). However Khalfin shows that by a more
careful evaluation of Eq. (18), retaining the lower limit O and integrating

around a quadrant in the E plane, the result

p(t) = e - i AT /2 (4.20)
(E2 + T2/4)t
Q (@]

-1
is obtained for t >> ﬁ[VEg + Fg/4} . Thus, as is well known, the

exponential decay law is eventually replaced by decay as an inverse power

of t.

The definition (17) of Krylov and Fock has been criticised by
Nussenzveig (1961) on the grounds that it gives a "decay law" in situations
where decay, in the usual sense of the word, does not occur. If a wave
packet is placed inside an impenetrable sphere, for instance, the probability
I(w(x,o), P(x,t) )I2 of'finding the system in the initial state will certainly
change with time, but the system would not normally be described as "decaying".
In studying the time behaviour of a (spherical) wave packet placed.inside a
partially transparent sphere, Nussenzveig defines the decay law as the prob-

ability that the particle is still within the sphere at time t :




where f(r)
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p(t) = ar | ¢(z,0)|? , - (4.21)

2
dr | f(r) |

O Y |O

(=0 for r > a) is the initial packet and ¢(r,t) the wave function

describing its propagation for t > O. Thus the probability of finding the

particle in a particular state (eigenstate or wave packet) is replaced by the

probability of finding the particle in a particular region. In the example

considered by Nussenzveig,lthe decay law (21) is found to contain the usual

terms having exponential and inverse power dependence on the time.

With the decay law defined by Eq. (21), the mean lifetime of the

decaying wave packet might be defined as

at p(t)

[
] 1
ov_‘.ﬁg O~ 8

a
dt f ar | ¢(r,t)|2 , : (4.22)
(¢}

where we have assumed the initial packet to be normalised to unity. If the

decay were purely exponential, for example, the mean lifetime Would be

(4.23)

O “Y—— 8§
Q.
t
[¢]
1]
—

There is however an important difference between wave packets

and the eigenstates considered in earlier discussions of decay. If

the system is initially in an eigenstate.of Ho , ‘and the perturbation

is not applied, the system will remain in the eigenstate and
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not decay. If the initial state of the system is described by a wave
packet, decay will always occur due to the spreading of the wave packet,
whether the interaction is switched on or not. This is true even if the
mean velocity of the packet is zéro.+ Thus a better measure of the life-
time of the wave packet, as determined by the interaction, is obtained by
subtracting from Eq. (22) fhe corresponding expression for the free packet.
The mean lifetime of the decaying system then appears (Kilian 1968} as a

time delay in the arrival of the decay products at the point of observation,

relative to the case of the corresponding free particles.

Let us again consider a spherical potential V(r), of finite
range a, surrounded by a sphere of radius R, but with an arbitrary wave

packet situated inside the potential at t = 0, Fig.l.

Fig.4.1 1Initial Configuration
for Lifetime Calculation

+ An exception occurs in the case of a Gaussian wave packet within an
harmonic oscillator potential =~ see Furry 1962,
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Let the wave function for the propagation of the packet in the
presence of the potential be Y¥(r,t). Then the mean time spent within

the sphere by the wave packét is

int

T. (R) _=_J at f ar v (r,t) ¥(r,t) , (4.24)
o]

VR
where VR is the volume of the sphere of radius R.

Similarly, let the wave function for free propagation of the

packet be @(r,t). Then the free packet spends a time

Tfr(R)

1l

J dt f dr ®*(r,t) o(zr,t) (4.25)
o)

VR

within the observer's sphere.

We shall define the lifetime of the decaying wave packet, as

observed at the surface of the sphere, to be

L(R) = Tint(R) - T (R) . (4.26)

The wave fuﬁctions‘W(r,t)‘and ¢(r,t) have the same form as the

wave functions in Chapter 3, but the coefficients Aﬁm and Bzmuare different,

as the packet is now inside the potential.  Thus

o(x) = ] Y, (M L1e (1) @aen
- Lm r '



w -ifk?t
Yr,t) = J v, (@ 1| & B, (K)x,k,e) e 2V
2! 2m = m L '
m b o
¢}
h 23 *
where Bgm(k) = 2 2m(k'x )
i
a
*
= 2| dar ¢Rm(r) xl(k,r) '
Ui
o}
® -ifik%t
_ 2u
and e(x,t) = ] ¥, (@) ;_f dk A, (k) I, (kr) e ,
m r
0
where Alm(k) = g_@zm(k,J)

=

a
f dr ¢£m(r) Jl(kr) .
0

ENEN)

(4.28)

(4.29)

(4.30)

(4.31)

We again assume that the initial packet is orthogonal to all bound states

in order to ensure the convergence of the integral (24).

4b,  Calculation of Tfr(R)
From Egs (25) and (30),

Tfr(R) =

O Y8

*
dt J dr ¢ (r,t) o(r,t)
VR

ik?T
*

2
dk Azm(k) Jg(kr) e

St

© R

*
J dt [ dr r? J an z Yzm(Q) 1
) ) £

O — 8

J &' A, (k') T, (k'z)
0

-ik'27
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w R w w i(k2-k'2)t
— t * L 1 2
= %‘f ar J dr %m f dk f k' A, (k) A, (k') I (kr) T (k'r) e

(o] Q [¢] (o]

i.e
R 00 [= )
%*
—_ 1 ] 1 3
T, (R) = §_J dr % J dk f k' A, (k) A, (k') J, (kr) I, (k'r) 2i
0 R, o k2- k'2 + 2ie

(4.32)

As in the calculation of time delay, we may evaluate the integral

over k' by expressing A m(k') as a transform of the initial packet, and

L
making use of the Green's function integral. The procedure is a little

more complicated in the present case, however, since the initial packet is
now within the region of the observer's sphere, and the range of the radial

integral in the transform lies within the range of the radial integral in -

Eq. (32). Thus from Eq. (31),

o
1] ] 1] 4
f dk Alm(k ) Jl(k r) 2i
0 k2 - x'2 + 2ie

a, o
= -2i f ar' ¢, (r') f dk' Jy(k'r) Jy(k'x')
0 o]

2
m T
k'2 - (k + ie)?
(4.33)
where 0 € r <€ R. Using Eq. (A.6) we have
1 1 [} 3
f dk Alm(k ) Jg(k r) 2i N
0 k2 - k'? + 2ie
r a
= —_74 1 ] ] - : ) ] ] [
E&_Og(kr) f dr ¢2m(r ) Jz(kr ) %i_Jg(kr) f dr le(r ) Oz(kr ) .
0 r

(4.34)
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Now let us consider the radial integral which arises when Eq. (34)
is inserted into Eq. (32)

R by
alfr = J dr Jl(kr) (=2i) {Ol(kr) J ar' ¢ m(r') Jz(kr')
)

™ L
0

a
+ Jg(kr) j dr’ sz(r') Oz(kr')} .
r

(4.35).

Since sz(r) is zero for r > a, we may alter the integral over r' in the
R

second term within curly brackets to J dr' ... . Then the r and r'

r
integrals may be interchanged in each term (cf Fig.2) to obtain

R R
&{fr = -Ei_{f dr ¢2m(r ) Jz(kr ) f dr Jz(kr) Oz(kr)
o r'
R r'
1 1] 1
+ I ar ¢Zm(r ) Oz(kr ) f dr Jg(kr) Jz(kr)} . (4.36)
o )
R R
r' r'
0 0
0 r R 0 r R
First Term Second Term

Fig.4.2 Ranges of Integration
for Terms in Eq. (35)
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The integrals over r in Eq. (36) are of the type evaluated in Appendix B:

_—_l_{W[J 3_o] - wl,3 o] } (4.37)
2k 3% Yr Yk Vo '

R
f dr Jl(kr) Og(kr)
r

r
J dr Jg(kr) Jz(kr) = =1 W[JIL' _B__JQ;I ’ (4.38)
5 2k ok r'

where the Wronskian at the lower limit in Eq. (38) vanishes. On inserting

(37) and (38) into Eg. (36), we have

R, =i

. ar' o, (r') I (kx') w[3,, d3_o]

. % R

O —

ar' ¢, (z') {Oz(kr') wla,, 8 a,] '
ok 'r

+‘
-
oY

- 3, (ke') wlg,, 3_0,] } .
2 2wl
(4.39)

In order to evaluate the expression within curly brackets in
Eq. (32), we shall make use of several identities which follow directly from

the definition of the Wronskian:

W[g(r),h(r)] = g.3 h - 3 g.h . .
dr or
Thus wlg,n] = -w[h,q] o, (4.40a)
ew[gh] - hwlg,£] = gw[£h] , (4.40b)

and _@_W[g(k,r), h(k,r):]
dk

W[ig_ ’ hj + W[ g, _2_)_11:] . (4.40c)
3k ok
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Then o, Wla,, J] - 3, wla,, 3_o]
%
= o, w[s,, J] - 30 W[JQ, o] + I, w[a 3,0 O]
= J, 9 wlr,, o] + 3 w[a 3, 0] - o w3 g, 3]
b Ei— 8 2 vr Oy =2

%K
= J, - k3 J ' (4.41)
2 T L
since W[iz, Oé] = 2ik. Using {(41) in Eqg. (39) we have

R
R, =1 fdr o, (x') 3, &e') wls,, 3o, ]
2 dk R
k< o
R R A
+ i J dr' sz(r|) Jo (kr') - i_[ dr' ¢, (r') Q__J (kr'") .
2 k2 ok

Finally, the upper limit in each integral may be changed to a, and the

integrals written as transforms of the 1n1t1al packet, to obtain

. (k,3) .

'y =i_$(kJ)W[J o] +£$(k.J)- wm

Fr Lm fm

id

(4.42)

On placing the radial integral (42) into the expression (32) for

*
T_. (R) and writing A

£r zm(k) as a transform, wg find



T (R = 2iy] f dk o, (k,J){ 1 -14d } ?, (k,J)
T H m 2 k dk
o k
o©
~% ~
+ o2y |ae, x,0% (x, 1 wo, 3 o] . (4.43)
= E , fm fm = 87 == 8
m H m 5 . K2 ok R

It is interesting to compare Eqg. (43) with the expression obtained at the
corresponding stage in the time delay calculation, Eq.(3.54). We see
that the JQ functions in the Wronskian in Eq. (3.54) appear within the
transforms in the second line of Eq.(43), and the functions Jlland Ol

have moved from the transforms into the Wronskian. The orxigin of this

interchanging is the Green's function, in which the function O, is always

A
associated with the larger of the two radii. If the packet is outside

the sphere, 02 appears in the transforms, and if the packet is inside the
sphere, O2 appears in the Wronskian. In addition to an integral similar

to (3.54), Eqg.(43) contains a new term which does not involve a Wronskian,

and is in fact independent of the radius R.

Following the method of the time delay calculation, we shall

prove that the expression for the occcupation time T is real by calculating

fr
the imaginary part of Eg.(43) explicitly. In taking the cdmplex conjugate

of the first line, we momentarily revert from the transform notation to the

coefficients Agm(k)’ i.e.

~ .
2
~% *
%m(k,J) = %Azm(k) .

Then the complex conjugate of the first line in Eq. (43) contains the

integral
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*

dk AQ (k) J1 - 14 AZ (k)
m ;2 % dk m

O Y~ 8

* * *
dk A, (k) %2 A (k) + Agm(k)[—%] A, k)| - f dk A, (k) %k {—% Azm(k)}

it
O ——— 8

- f ak A*m(k) A (k) ) (4.44)
[0}

im

1
. k

d
ak

where we have used integration by parts to transfer the derivative from

*
A m(k) to a, (k). In evaluating the integrated part, we note that the

'3 Lm

normalisation of the packet, Egq.(l1.9), requires that the integral

® *
J ak AQm(k) Agm(k) converge. The integrated part therefore certainly
)
vanishes at the upper limit. At the lower limit we have
a
AQm(k) = %_J dr le(r) Jz(kr) ’
o
+
but Jz(kr) —~ (kr)g ! as k>0 ’
(22 + 1) 1!
so Agm(k) = C) (k£+l) as- k>0 '

and the integrated part again vanishes.

The imaginary part of the complete expression (43) is

~% ~ '
dk o (k,T, (k,3) L W[J .3 o:] + w[a )9 1] + 1] .
i gm m kz{ v g A

(4.45)
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Using the relation

wgl,oj+w[1,§_o] = 2i
3k % TR
we have
w[J,g__o:] +WI:J,8 I] +1 = 1 w[o,a o] —w[x,
Y My Yok My 21 e Mg %
By Egs (3.57) and {(3.58),
I (kr) = (=) o, (=kr)
[} h 2 ’
g+l
Jl(kr) = {-) Jl(-kr) :

(4.46)

50 the contribution from the second Wronskian in Egq. (47) may be converted

to an integral along the negative real axis:

~Kk ~
fdk ¢, (k,3) ¢ (k,3) L w[xl, 3_12]
0 k? R

0
~k ~
= - | a& ¢, (k,d) ¢, (k,J) 1L w[o , a_o]
l fm im 2 L K L R

Then the integral in Eq. (45) is

~k ~ )
31 = 1 Jdk o (k,3) ¢, (k,J) 1 w[o , 9 o] ,
fr 24 ) 2m Lm > % & L R

which we shall evaluate by contour integration.

(4.48)
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Now

¥ (k,J)
m

a
. [ dr <I>2m(r) Jl(kr)
0

and J!L (kr) ~ 1 (i-R' e;"kr - il e-lkr )
|| » = 2i

so for Imk > o , 0] m(k,J) = @(e_lka) as lkl > @

L
We know that 02 (kxr) ~ . i-l elkr
Ikl -+
so WE) , 0 O] ~ (-)2' eZlkR .
Yok Me
k| » =

Thus the contour for the integral (48) may be completed by a semicircle

of infinite radius in the upper half plane, Fig.3, where for lk‘ suffic~

e21k(R—a) with R > a.

iently large the integrand behaves as 1
. k2

v

Fig.4.3 Contour for the
Evaluation of Im Tfr(R)
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The integrand has no poles, and the integral around C_ vanishes, so

~rk o~
& ¢, (k,J) ¢, (k,J) 1 WP , 3 o] = o0 |, (4.49)
i Lm 2m 2 ) Sf £ R

and the imaginary part of T r(R) is zero.

£

Returning to Eg. (43) we may now take the real part of this

expression to obtain the final form for Tfr(R). We note that

WE ,3_0] - WE ,Q_Ij = Zin',g_J] .
Yok Me Yok Me Yo e

Then writing the J transforms in terms of the coefficients Alm we find

* *
T(R)=1E[dkA(k)gig_A(k)-A(k)g_igA(k)
fr 7 im ) { fm fk fm m ko & m }
*
+m ) fdkA k) A, (k) g (-1 )| wlg ,23 7 . (4.50)
im ) tm dm ﬁk(zk] [2 3k p”:lR

4c. Calculation of Tint(R)

In the derivation of the expression corresponding to Eg. (50)
for the interacting packet, we shall find that the function fz(-k,r)
appears, and this will always be written with a factor (—)2 beside it.
Although this makes the mathematics appear a little more cumbersome, it
has the effect of preserving the parallel with the calculation of the
previous section, since (-)2 fl(—k,r) corresponds to the Ol(kr) appearing

there.
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From the definition (24) and the expression (28) for the wave

function with the potential present,
*
Tint (R) = dt df ¥ (f't) W(f,t)
o}

i(k%-k'2)t

[} * ] * 1 2
dk Bzm(k)ByLm(k ) xz(k,r)xl(k (X)) e

i
o J i =
———
[N
~
O
[oN)
=
o 1
3
O Y——— 8
o8

R [ o
L] * 1 * V 1 2 2
= %‘ dr g & | ak' B, (k) Bgm(k ) X (k,x) X, (k') 5
o 5 0 k2 - k'2 + 2ie

(4.51)
The integral over k' is (Egs (29) and (A.7) )

] ] ' s
dk Blm(k ) Xl(k ') 21

R

k? - kx'2 + 2ie

o 8

«

a

*

= =2i J dr' ¢2m(r') %_( dk!' xl(k',r) xz(k',r')
)

© k'2 - (k + ie)2

X r .
. 9 et " ) (n) ,_,
-2i (-) fg(—k,r)-J ér ¢£ (r') xz(k r') + 2i z x (r) f ® (r') x {(r")
o ' )

L L
k n k2 - k?‘ n
n
.a a :
=21 X, (k1) fdr' o, (x) ()Y £ (kx4 21 ] x‘“’ (£) far' O (21 X" ()
K 4 i n P"—P‘

r a _

- - : _'Q' - [ ' [ _n3 ' ' _Q' - '

= %&.( ) fz( k,xr) J dr QZm(r ) xl(k,r ) | %i xz(k,r) f dr ¢£m(r ) (=) fl( k,r')
) r

+2i ) x(n) (x) f dr' ¢ (r')‘xén)(r') , (4.52)

n im
k2 - k2 o
n
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where the sum is over all bound states. The integral in the third temm
of Eg.(52) is just the overlap between the initial packet and a bound
state, and by the assumption that the packet is orthogonal to all bound
states, it vanishes for each n:

a
] : t (n) ] _ V :

J dr sz(r ) Xq (r') = 0 . (4.53)

° .

The radial integtral obtained by inserting (52) into Eg.(51) may
be calculated in a similar way to the integral (35). Corresponding to

Eq. (39) we have

R
] 1] ] * - R‘ -
atint = i [ dr ¢2m(r ) X, kyx') W[sz' 3_ (=) £ k,r)]
2 ok R
k“ o
R
. ] ] R’ 1 *
PO drt 0 e e (ko) Wy 2wy
2 9k r
k< o
- X, (k,z") w[x* 3 (9% (=« =] } | (4.54)
A A T '3 " .

The expression within curly brackets in Eq. (54) is evaluated by using the
Wronskian identities (40) and the following expressions for the scattering

states:

- _ e g ‘
Xg Gex) = -1 [fz(k,r) S, (k) (=)" £, k,r)] , (4.55a)
2i
* _ Z * )
X, (k,x) = _12_i (=)" £, (-k,x) - 8, (k) fl(k,r)] , k real , (4.55b)
* _ %*
Xz(k.r) = Sgﬁk) Xz(k,r) , k real , (4.55c)

and wle, ), (-)* £, (%k,x) ] 2ik . (4.554)
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2 * *
Then ()" £, (<k,x) W[x,, %_k_xgj =X WXy 2

L
(=) £, (k,x)
e ]

o I} ) N
= s, {(-) £, (-k, ) W[X;L' _g_]zxﬂ X, w[xg, g_f ()7 £, k,r):l }

* L
= s, {xl # WX (1) £y (k) -3—,;*1}

or
(- £ (k1) wx, ? W*S()Qf(k):] *osT ks oy
- =K, r [X ’ __-_.X:I - X I:X r 9 \" 2 =Xp - 9._ Xy
) 27 == L R 3 3 2t e
(4.56)

The intermediate steps in the calculation are similar to those used to
derive Eq. (41). Using (56) in Eq. (54), and writing the integrals over r'

as transforms of the initial packet, we obtain

.o * L
Ripe = & Fpptn0 wlxg, 27 £y k.7
X2 R

. ~ *
+ 1 sz(klx ) - S
k2

* a ¢ (k,x) (4 57)v
i X .
L X @ m

which corresponds to the expression (42) in the calculation of Tfr'

Inserting the radial integral (57) into Eg.(51), and using

. *
Eq. (29) to express Bzm(k) as a transform, we obtain for the occupation

time
Tint (R) = _2_1_£z f dk q)lm(klx ) i -1 g-_ ‘ng(le)
T h Zm ) k dk
0 k
. ~% * ~ .
+2ip ) | dk e (,x) @, (k) L w[xg, 3__021 . (4.58)
T h fm o K2 ok R
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*
In writing Eq. (58) we have used Eq. (55¢) to transfer a factor SQ between

transforms, and from the Wronskian to a transform, e.g.

~% ~ * ~% *
] =
g (ke %m(k,X ) e nkox ) o, (kX . (4.59)

We shall now examine the imaginary part of Eq. (58). Taking

the complex conjugate of the first line gives the integral
fdk'c‘ﬁ (k) f 1 1 a)l % kD

r X £+ - 4L g4 X
) m ( K 3]} 2m

oo}

- a7, 1 3 oy ¥ (x 3 *
- ) LB x4 R (k,x) [-;] x|
0

K2 k

2]

‘~* * ~
- f ak @, (k,x ) d {—]_1_ %m(k,m}
o]

&

~k * ~
m m
[¢]

2

1
2 k

d
ak

where we have used integration by parts, as was done in Eqg. (44) for the
free packet. The evaluation of the integrated part follows the

argument given below Eg. (44) if we note that (cf Egs (29) and (59} )

3 k

o~ ~k * * . '
@, (k,X) [-i] o, (kx ) = By (k) (-;] By (k) o (4.61)

The normalisation of the wave function (28) for the interacting packet
is

le(k) = 1 , (4.62)

L
%

[ SYE]

*
f a B, (k) B
m 0
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so the integrated part (61l) vanishes at the upper limit. At the lower

limit,
a
*
Bzm(k) = %' dr @Zm(r) xz(k,r)
)
and xz(k,r), = Cj (k£+l) as k-~+o,
so B, ) = O™ as k+o,

and the integrated part again vanishes.
From Egs (58) and (60),

Im Tint (R) = .117 Q‘m.(kIX)

St

Z 3* * ~
dk zm(k.x ) @
m °

) *
x 1 W[? ’ Q__O:] + W[? ’ g__I:] + 1 .
kz{ 3 Yr Yok Ug

(4.63)

The Wronskian expression may be evaluated by using Eq. (46) and the relations

(55) for the scattering states, with fz(k,r) = Il(kr) for r > a :

*
w[xl,g_fogR + W[Xz'%flan + 1

*
= 1 swEn,g_o] -sw[x,g_r] .
21{" o Mr LV s YR

(4.64)
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The contribution to the integral in Eq. (63) from the second term on the

RHS of Eq. (64) may be converted into an integral along the negative real

axis:

~k * ~ * .
f dk ¢, (k,x ) ¢ (k,X) ;2 S, w[xg, 3 19]
) k ak R

0
~k ~
- - f dk @, (k,x) @, (Kk,x) 12 w[oﬂ, g__oﬂ

where we have used Eq.(55c) and the relation

* £2+1
Xz(k.r) = (-) xz(—k,r) ’ k real

Then the integral appearing in Eq. (63) is

~% ~
¢ E—_];jdk@ (k,x) @, (k,x) 1 WEo,Q_OJ .
int i m Lm kz L R L R
-0
a
Now ng(k,x) = J dr ¢2m(r) xz(k,r)
)
and xg(k,r) = kM ¢, (k,r)

(4.65)

(4.66)

(4.67)

where ¢2(k,r) is the regular solution_of the radial wave equation defined

in Chapter 1, and fz(—k) the Jost function. By Eq. (4.16) of Newton 1960

we have

lim fl(—k)v
x| > <

[
pd

Imk 20
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and by Eq. (3.13) of the same reference

ol

8, (k) = sin (kr - 2m) + o | 1 as |k| ~ = ,

1l
k2+l 2 |klﬂ,+l

where v = Im k. Combining these results we see that

Elm(k’x) = (j (e—ika) as |[k] > , mmk>0 .

The asymptotic behaviour of the Wronskian was given in the previous section:

w[ol, 3 Oz] ~ (9% i KR
3k HR k| > =

Thus the integral (67) may be evaluated by completing the contour around an

infinite semicircle in the upper half plane, Fig.3, where for Ik[ sufficiently

eZiK(Rra)

large the integrand behaves as 1 with R > a.

k2

The integral around C_ vanishes, but the integrand now has poles

»
in the upper half plane, since the transform ¢ m(k'x) contains the scattering

L

matrix Sg(k), with bound state poles at k = -iYn ,: Yn < 0. It can be

seen from Eq. (55a) that the residue at a bound state pole kn contains the

a .
factor [ dr 9 m(.r) fz(—kn,r) . By Eq. (14) of Appendix A this integral is

o '’
(n) (n)

a
proportional to J dr QQm(r) Xg {(r) , where Xg (r) is the bound state wave

o :
function. As the initial packet is orthogonal to all bound states, the

integral vanishes, and the residue of the integrand (67) at each bound state

pole is zero. Then

| e T (x 3
dk R,m(k'x) Q,m( IX) Lz W[qu — O'Q]
o ok ok R

il
o
~

and the imaginary part of the occupation time (58) is zero.
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We may now take the real part of Eq. (58) and obtain an expression

for Tint(R) in terms of the coefficients Blm(k)' From Egs (29) and (55c¢),

* * *
= 72 Bin®) B k) s, 1 d s+ B (k)1 d B (k) (4.68)
2 k dk B P
*
where we have used Sl(k) Sg(k) = 1 , for k real. From Eq. (55b),

*
orgod, e R,

*
-s W[x,B__I:l
L J'a % L R
21 W\|: 3 ks, 3 s (4.69)
= 21 Wx,, 3_X ‘] - 3 . : . ‘ .
ST P Ya b
Using Eqs (68) and (69), and the relation
3 * * ] ‘k 1
S, 9_58 = -5, 8_ S . rea ’
L T 2 2 K L

we obtain finally



Tint (R) =

N
x
=]

* *
- _11_2 fdkB (k) B (k)S(k)u__ig_ s, (k)
7 0m ) m m 2 1k 3k 2

+ m ) J dk B;,m(k) Bonk) (-1 Wl:x;:. an - (4.70) .
! ™ onk | 2k 3k HRr
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CHAPTER 5

DISCUSSION OF RESULTS

We have obtained expressions for the occupation times
Tfr(R) and Tint(R) in the cases: (i) when the initial packet is

outside the observer's sphere, Tint - Tff being the time delay for
the interacting wave packet; (ii) when the initial packet is within
the region of the potential, Tint - Tfr being the lifetime of the
decaying wave packet. The expressions contain the effects of the

packet shape in the coefficients A B, , and the transforms glm’

m’ “fm

and the dependence on the size of the observer's sphere in the
Wronskians evaluated at the surface. Our results cannot be

compared immediately with those of Ohmura, since his calcuiation is
carried out with the three-dimensional form of the wave function, while
we have used partial waves. We can, however, make a comparison with

the calculation of time delay for an arbitrary wave packet given by

Kilian (1968).

We shall give brief details of Kilian's calculation, since
this will help in relating the various expressions to our own results.
Kilian uses the t + =-» wave function in the foim given by Green and
Lanford (1960), and discussed in Chapter 2. It will simplify matters
if we retain the coefficients A, used in Chapteriz, and note that

2m
these are related to Kilian's @mz(k) by

2m

- 5,
a (k) = (z] ¢, 00 . (5.;)
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Then the wave function for the free packet is (Eq. (2.22) )

o -ik?1
$(r,1) = ) ¥, () 1] &A, (k) J,(ke) e ° . (5.2)
~ fm = m L
fm r
)
and for the interacting packet
© -ik2t
_ 2
?(f,f) = z Yzm Q) }_J dk Azm(k) xz(k,r) e ' (5.3)
£m r :
0
with
lim [ dr Y(r,t) - o(r,T) = 0 . (5.4)
T > =-o ~ ~ -~

The occupation times are as defined in Chapter 3, but the time

oo
integral is now [ dt. Thus

-00

©
*
T (R) = J dt J dr ¢ (r,t) o(r,t)
fr - - -
-0 VR
R ® ® ® i(k?-k'2)1
* 2
= ' ' v
i f ar ) f dk f ak' A, (k) A, (k') J,(kr) I, (k'r) J dt e
h m ‘
e} [¢] e} =0
o0 R
N .
= 2n) f dk A, (k) A, (k) p_ f dr 3, (kr) J, (kr)
m Ak
(¢] [¢]
l.e.
* .
T. (R) = 2w ) f dk A, (k) A, (k) p_[-1 w[? . 9 J:] , (5.5)
fr im 7 Am PR | 2k Vs My
where we have used
o ik® - k') _
dte ° = 21 8k - k') : (5.6)
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Similarly,

T. . (R) 2m f & A (k) A, (k) 1) wlx,, (5.7)
. (R) = 2% bo(- Xgr 9_ X . .
int fm Lm K ( Zk] [2, A% JL]R v

Kilian uses the asymptotic forms of the Wronskians in Egs (5)

and (7):
- l—-w[?z’ 3 Jé] ~ l_{R + (—)’H-l sin 2kR} ’ (5.8)
2k dk R R> > 2 2k '
* 2+1
-1 W[%Q, Q__xé} ' o~ l_{R + d(S2 + (=) sin (2kR + Zéz)} '
2k ok R R>® 2 —_— 2k
dk
(5.9)
to obtain
0 = lim EI‘int(R) - Tfr(R):]
R+ = . =
* . v '
= T f dk A, (k) A, (k) p_dé, . (5.10)
m hk ——
0 dk

Eg. (10) corresponds to Eq. (6.5) of Kilian 1968, and is a simple wave

dGE obtained by Eisenbud and Smith.
dk

packet average of the time delay U _
hk

Expressions similar to Eq. (10), but restricted to the case of spherical
wave packets, have been derived by Goldberger and Watson (1964, Chap.8)

and Nussenzveig (1969).

When the Wronskians (8) and (9) are placed within the wave
packet integrals, and the limit R -+ = taken, the oscillatory terms

sin 2kR and sin (2kR + 262) vanish by the Riemann - Lebesgue lemma.
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Such terms also occur in Smith's calculation of time delay, and there

they are removed by applying the averaging procedure

2R ,
Q5 = lim ;J Q(R') dr' . (5.11)
R+ R R

The limit R > « may, of course, be used quite freely in calculations
involving the t + -« wave function, since the centre of the initial
packet is at infinity, and the packet is‘not localised in any region.
In Smith's treatment the particles are described by plane waves, so the
expressions obtained cannot depend on the position of the particles in
any way. Iﬁ our calculation,‘however, the initial packet is localised
outside the observer's sphere, at a finite‘distance from the séatterer,
and we are not atA liberty to make R infinite. We shall therefore
consider the expressioﬁs arising in Kilijian's calculatioﬂ for finite R

in making comparison with our own.

In the t + —» wave function, the free and interacting packets
contain the same coefficients Azm, and this leads to the simple expression
(10) for the time delay. The wave functions ¢(r,t) and ¥(r,t) in the

present calculation contain different coefficients A, and Blm,‘and it

m

does not seem possible to obtain a simple expression for the time delay

(or lifetime) by actually subtracting T_._ from Tin . When the packet

fr t

is outside the region of the potential, the coefficient BZm can be

expressed in terms of Azm as follows:

*
X, ,x) = T k) - L [s

*
(ky - 1| 1, (kx) ' (5.12)
rza 2i % ] L
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3 * ~
omte® - L [Sz(k) - 1] ¢, (k,I)
mL

. . B, (k) 2
m <
i

* ~
Bk =1 Sz(k)-l:‘<1>2m(k,l) . (5.13)
: i

From Eq. (12) and its conjugate, the Wronskian appearing in our expression

for T, . (R) (Eq.(3.78) ) can be written as

* - : *
wBl,g_kxaR = w[Jl,g_k JZ]R - %_{(sl- 1) WE)R,%TEQQR + (s~ 1) W[:IZ’%}Z' IaR}

i ks 9 S . : (5.14)

However when these results are used in the expression (3.78), and the

occupation time Tfr is subtracted out, a very complicated expression for

the time delay Q ensues, which does not seem particularly useful.
Accordingly we shall leave the results of the calculations of time delay

and lifetime in the form of occupation times.

Let us, then, compare the expression (5) for Tfr(R) with the

result obtained in Chapter 3, Eq. (3.62):

*
T, (R) = m]) fdkA (k) A, (k) p_ [-1 w[J,g___J]
fr m | om S 7 Y Hr
lZJdk 3*(kI)$(k‘) 3, x,1) T, (x,0) 1) wfg,,8 g
+ = : ) ] :0) = I ’ Bi-L [ 19 ].
T %m ! { fm Am m fm }hk( Zk] L K L R

(5.15)
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Qur expression contains the term (5} (apart from a factor of 2) plus an

extra term involving the I and O transforms. If we note that

~ *
¢, (k;0)
m

~k
2 LR LIRS '

~ * ~% ‘
¢£m(k,1) ¢2m(k10) ’

the second line of Eq. (15) can be written in the form

%%m l dk {|$2m(k,0)|2 - |$Qm(k,1)|2};_k (-%_k] W[Jz, g_sz]R . (5.18)

Now |3£m(k,o)l2 is just the fraction of the initial packet with momentum
k in the outward direction, and lszm(k,1)|2 is the fraction with momentum
k directed inwards; The new term thus suggests a contribution to the
occupation time which v;ries acco?ding to whethex the overall motion of

the packet is towards or away from the observer's spheré.

The source of the extra term can be seen by going back to the
time integrals. In Kilian's calculation the time integral gives a

simple & function,

w ik% - x'H1 .
are 2 = 21 8(k - k') . (5.17)
k
-0
and in our calculation the integral gives a 6<+) function,
o i(k2 - k'2)1
art e 2 = 2i

k% - k'2 + 2i¢

3 e—

T8k -~ k') + 21 PP‘[ 1 ] , (5.18)
T —_— |
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where PP denotes the principal part. Clearly the new term in Eq. (15)

arises from the principal part integral in Eq. (18).

Previous calculations of time delay (Ohmura 1964, Goldberger
and Watson 1964, Fong 1965, Nussenzveig 1969) have all used the time
integral (17), so in this respect our calculation is quite new. We
have shown that the expressions arising from the time integral (18) may
be handled by writing the momentum coefficients in the wave functions
as transforms over the initial packet, and making use of the Green's
function integrals. The transform notation plays an important part
in this approach, and it allows the orthogonality of the initial packet
to all bound states to be taken into account quite readily. Since we
have not otherwise placed any restrictions on the initial packet, it
seems reasonable to suggest that the method we have used in the calcul-
ations of time delay and lifetime might provide a general basis for

future calculations involving the t = 0 wave function.

The occupation time with the potential present is (Eq.(3.78) )

T, (R) ZJ‘dkB*(k)Bv(k) L) i sk
. R = u -1 Xor X
int o e AT R ( 2k] [1 ok Q]R

~k o~ ~ ~k *
+ l_i f dk o  (k,I) ¢ (k,0) - ¢ (k,I) ¢ (k,0)|p (-1 W[? 9 X
T im ) { 2m m im m }hk >k 2

and this is to be compared with Eg. (7). The term containing the
coefficients Bzm in Eqg. (19) corresponds to the expression (7) because of
the different wave functions used in the two calculations, and again there

is an extra term containing I and O transforms. In the scattering wave

function, the total outgoing wave is Sg(k) Oz(kr), where Sz(k) is the
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scattering matrix for the £'th partial wave, and it will be seen that
Sl(k> does not appear in Eq.(l9). However Sg(k) is unitary, so we
could write the outgoing term in the second line of (19) as

~K

* o~
%m(k,l) Sz(k) Sz“‘) <I>2m(k,o)

Il

'Y 2
s, (k) &, (k,0) |

3 3 2
= Qm(k’I) lm(k’o) ’ (5.20)

without affecting the final expression.
Our results contain Wigner's inequality in the Wronskian
*
Wix,, @ X appearing in Eq. (19). If we use
LY — "L
ok R
Xp(koT) = i [Iz(kr) - 8, (k) Ol(kr)]‘ : (5.21)

and its conjugate, we may expand the Wronskian into the form

. . . .

W(X,Lx] =iks, 9 s, + 1Ee wl::[,g__o] —sw[o,'g__o] .

e Mr o7 R ! 2 Y3k MR VLV Hg
(5.22)

where Re denotes the real part of the expression within brackets. The

Wronskian is also equal to a radial integral:

R
* . *x
W[xl, %};X&]R = - 2k J dr xz(k,r) xg(k.r)
) 0

so, noting that

[}
Q
n
il
N
'_I-
[oH]
(o]
=
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we have

R

%*
das = 1 Re WE:,Q_O] -SW@ ,3_0] + Zjdrx(km)x(km).
— & {’Lak"n PLA Mg o %

(5.23)

The integral is necessarily non-negative, and if it is omitted from

Eq. (23) an inequality for ddz is obtained. By first letting the radius R

dk

decrease to the value a (the radius of the potential), we find Wigner's

result (Eqg.(3.5) ):

a8, 5 1 Re w[zg, g__op] - sz“[oz'ﬁ—oz:l . (5.24)
3% 2k ok a dk a

a *
The equality sign holds when [ dr Xy Xy is actually zero, i.e. for hard

o
sphere scattering. Wigner (1955) derived the inequality (24) by
differentiation of the expression relating the S matrix to the R matrix,
but it was shown soon afterwards by Martin (1956), and Corinaldesi and

Zienau (1956), that the same result could be obtained by the radial

integral method given here.

If we now consider the results of the lifetime calculation, we
see that another type of term arises when the packet is initially inside

the observer's sphere. The occupation times are (Eqs (4.50) and (4.70) )

. *
T(R)=E_Z!dkA(k)g__i_qA(k),—A(k)g_'igA(k)
fr Z im ) { m Fylii e fm fm & fm
*
+nzfakA’ (k) A, (k) w_ [-1) wg,, 3_3J , o (5.25)
o 2 fm tm -h-f[zk] [2 ak ’JR 2
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and.
(R) ) [dk (k) p id B, (k) ~B (k) u id B, (k)
T, R) = @ B p_id - u id
int 7 om ) { m ¥k &k 2m fm 7k ak m }
) [ dk B, (k) B, (k) S.(k) w_id S,k
i W ia
4 in’ o A YR & b
. ) fdk * (k) B, (k) (-2 Y . (5.26)
+ B H -1 W[? ’ x:] . .
Am ¥ tm Tk [ Zk] e "UR

In each expression, the last line is identical with a term in the corres-
ponding expression for the time delay préblem. These terms depend on

the size of the observer's sphere through the Wronskians W[j....'] .
R

The remaining terms, however, are quite different, and do not depend on

R at all.

Let us write the complex coefficient Azm(k) as
. iazm(k)'
Agm(k) = |a, k)] e . (5.27)
Then by a simple calculation
A, (k) d A (k) - A (k) d A, (k) 2 0a, |2y a
p id A - A p id = ¥ do .
m s 3k m fm R A fm 2m em m
dk
(5.28)
The first line of Eq.(25) is thus of the form
2
L) fdk lAlm(k)l p_da, (k) , (5.29)
2 m hk .
0 dk
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and it may be seen by comparing with Egs (3.16) and (3.19) that this is

the partial wave version of the term

2_nf G2(v) da (V) v dv (5.30)
S_. dv

obtained by Ohmura. If we express the coefficient B m(k) as

A

|B m(k)| e , then the first line of Eq.(26) has a similar form

L

m

L) fdk By, (k) [2 p_ a8, (k) . (5.31)
2 im hk ————
o) dk

Gien (1970) has suggested that the term doa arises in Ohmura's
dv

calculation because the scattered part of the wave funqtion has been
separated out and used to calculate arrival times. In general, the
incident and scattered parts of the wave function can only be separated
if the initial packet is well collimated - in a wave packet experiment
using an arbitrary initial packet, it is not possible to distinguish
between scattered and unscattered particles.* For this reason we have:
been careful to refer to the occupation times and time delay of the
"interacting" wave packet, rather than the "scattered" wave packet. It

is clear, however, that this is not the source of the dependence on do ,
' dv

since no separation of incident and scattered packets has been made in
the derivation of Eq.(26), and in any case such a temm occurs in the

occupation time for the free packet, Eq.(25). It may be noted that the

1 Gien's point is actually related to a somewhat different problem,
namely that the scattered parts of the scattering states do not form
a linear space in which the time operator ih 9 _may be defined.
2E ‘
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terms (29) and (31) have been obtained in the calculation of lifetime,
when the initial packet is inside the potential, and not in the calcul-
ation of time delay. Since the terms are independent of the radius R,
one may guess that they are in some way related to the origin of the
co-ordinate system, and this will become clgarer in the one-dimensional

calculation to be discussed in a few moments.

The second line of Eq. (26) is again independent of R, and if

2i62(k)

we use Sl(k) = e , we see that it is equal to

as ’ . (5.32)

=

. *
L) J & B, (k) B, (k)
2 im o

2
o

which is very similar to Kilian's expression, Eq.(10), for the time delay.

The appearance of this term is rather unexpected, since the term dﬁz in

D

dk

calculations of time delay is only obtained after an averaging procedure,
or the Riemann - Lebesgue lemma, has been used to remove oscillatory terms
sin (2kR + 26,) etc. (Smith 1960, Kilian 1968, Nussenzveig 1969). It may
be that the first two lines of Eq.(26) can be rearranged in some more
natural way so that the term (32) does not appear by itself, but we have
not been able to see this.

Having-derived the general expressions (15), &19), (25) and (26)
for the occupation times, one would naturally like to consider models in
which the effect of the wave packet shape oh the time délay or lifetime
could be explored in detail. Previous treatments of wéve packet
‘scattering (Low 19592, Goldberger and Watson 1964, Chap.?) have often made
use of the "constant shape" approximation, in which the parameters of the
initial packet are so chosen that it does not spread or change shape

appreciably before reaching the scatterer. Our calculation, however, is
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not limited in this way, so one could select a particular shape for the
incident packet and then vary the initial distance between packet and
scatterer in order to study the effect of spreading on the occupation
time or time delay. The model of an exponential wave packet interact-
ing with a resonance in the scatterer (Nussenzveig 1961, Dodd and
McCarthy 1964, Goebel and McVoy 1966) would also be of interest, since
experiments involving such packets have alreédy been carried out (Lynch

et al 1960).

The expressions we have obtained are, however, considerably
more complicated than those derived with the t + -» wave function, and
the problem of setting up a model is correspondingly more difficult.
Kilian, for instance, has studied the time delay, Eq. (10), for two
models in which the initial packet is specified simply by choosing a

convenient form for the momentum distribution A m(k). An important

L

point in the dexivation of Eg.(10) is, of course, that the wave functions
for the free and interacting packets contain the same momentum coefficients.

In our results the coefficients ALm and Blm are not equal, so in construct-

ing & model one would have to start from the spatial form of the wave

packet, ¢ (r) , calculate A and B separately as transforms of ¢

m L fm m

*
with respect to J, and Xy v and then attempt to derive simple expressions

2

for the time delay or lifetime from the appropriate occupation times.

Instead of considering model wave packets, we have found it
easier to investigate the physical significance of our results by carrying
out a similar calculation in one dimension. VWhile it is natural to use
partial waves in a topic which has close links with scaétering experiments
in nuclear physics, it must be admitted that the partial wave formalism

can obscure quite simple points of interpretation. We shall therefore

study the motion of a free wave packet in one dimension, with the aim of
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gaining more insight into the various expressions for occupation times.

Let us consider a one-dimensional wave packet describing the

motion of a free particle of mass u ,

® ikx - ink2t _
o (x,t) = (Zﬁ)—;i J dk A(k) e 21 ' (5.33)

-0

where the wave function is normalised so that

Jdk 2Yk) Aak) = 1 . (5.34)

We shall first calculate the time spent by the packet in the
region -R € x € +R , if the motion of the packet is assumed to occur

over the time interval -« < t < 4= , Thus

o R
T (~-R, +R) = f dt J dx Q*(x,t) ®(x,t)
bl R

w R © o i(k2-k'?)1
- * - 1l
=B_jdrfdx(zn)1Jko&<'A(k)A(k')elkx+lkxe 2
ﬁ.—oo =R —00 w00
R oo [ ]
* - 4 ]
- P_f dx f dx j k' A" (k) A(k') e TRX¥IK'X c[f - gz] . (5.35)
n , 2 2

The § function in Eq. (35) gives rise to pairs of terms, since
k and k' may now be positive or negative. We may use the general

relation

6I:f(x)] = 121 1 8(x = x ) , (5.36)
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where the prime denotes differentiation with respect to x, and the sum

is over all zeros of the function such that f(xn) =0, f'(xn)4=0.

Then
§(k? - k'?] = 18(k=-k')+16(k+k")
2 2 k>o k k
(5.37)
= -1 8(k -k') =16k +k")
k<o k k
The occupation time is thus
R w o w _
* : L -2ikx
T(—R,+R)=£jdx{fdkA(k)A(k)l+fdkA(k)A(—k)_];_e }
h 5 ko0 k
-R
R 0 0
* * -q
- f dx{fdkA(k)A(k)_l_+fdkA(k)A(—k)LeZlk"} )
A _ k _2 . k
-R
or
* * .
T (-R, +R) = fdkA (k) A(k) b . 2R + fdkA(-k) A(-k) ¥_ . 2R
5 ik 5 hk

1l sin 2kR .
k

" fdk AT(k) A(-k) + A(k) A (k)| 1
! ik

(5.38)

Let us now calculate the same quantity for a wave packet which

is released at time t = 0. In this case we have
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[%(x,0)==] d(x) = (2n)'% J dk A(k) eikx (5.39)
and A) = (2m)7F f dx o(x) e ¥ ) (5.40)
Then
oo R
T (R, +R) = f dt J ax ¢ (x,t) @ (x,t)
0 -R
- R ® w i(k?2 - k'2)1
= E.J dr f ax (2m”t [ ax f ak' A" (k) Ay e ikxtik'x 2
L |
o -0 e o

R -] e}
-1 * - il !
= E—f ax (2m”t f ax J dk' A" (k) A(k')e TRXFIK'X 2i .
B

k2 - k'2 + 2ie

(5.41)

Following the method of the three-dimensional calculation, we
may use Eg. (40) to express the integral over k' in Eg. (41l) in terms of
a Green's function:

(] ' )
dk' A(k') etX¥ 2i

k2 - x'2 + 2ie

g+—— 8

f ' (2m f ax' o(x') e Lk'¥' Gik'x 2i

- - k2 - k'2 + 2ie

8
8

-2i f ax' ®(x') J ak' iK' (x - x') X (5.42)

(2m) ¢ =0 - k'2- (k2+ 2ig)
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The Green's function may be evaluated by contour integration, with the

result
1 e _ .,
fdk'elk(xx) - nig_lk(xx) ' x> x|,
-0 12 _ 2 . k>o k
) e me (5.43)
- -ni _e_—lk(x-x ) , %> % .
k<o k
Then combining Egs (42) and (43),
f dk”’ A(k') elk X 21
- k2 - k'? + 2ie
X o
. . . .
= (2“.);! fdxv CI>(X') slk(x X ) + f dx! q)(X') slk(x X )
k>o X m
-0 x
(5.44)
X oo '
. _a ot : o
= _.(2.",)12 J ax' o(x') g_lk.(x x_)+ f ax' o(x') -e_lk(x x') .
k<o _m' k , *

We shall find that the occupation time depends on the position
of the initial packet (39), so let us assume that the packet is to the

left of the region (~R, +R), that is

°(x) = 0 , x>-R ' (5.45)

where Rl > R, Fig.5.1l(a). Then, noting the range of the x integral in

Eq. (41), we have from Egs (44) and (40),
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3 '

J dk' AK') e ¥ 2i
o k? - k'? + 2ie

- on® f ax' o(x') ) _on Ak oKX (5.46a)

k>o e k k

.—Rl
- —r! -
= —m” f ax' o(x') e ROTX) _on k) o7 (5.46b)
k<o o ‘ k k
-Rl =R 0 R ~R 0 R Rl
(a) (b)
"R -Ry 0 R
(c)

Fig.5.1 Initial Positions
of Wave Packet in One Dimension

Inserting Eqs (46) into Eq. (41) and carrying out the integration

over X we obtain for the occupation time

T (R, +R) = f ak A" (k) A(K) w_ . 2R + f dk A" (k) (k)
o} o}

¥_ 1 sin 2kR .
hk Ak k

(5.47)
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The first term of Eq. (47) is real, and it can be shown by means of
contour integration that the imaginary part of the second term is zero,
so we may take the real part of the second term to obtain finally

T (-R, +R) = f a 2" (k) A(k) w_ . 2R
) i

+

f ak {A*(k) A(-k) + A(k) A*(-k)} u_ 1sin 2kR . (5.48)
o]

L
2 Tk

L
k

A similar calculation may be carried out for a packet which is
initially to the right of the region (-R, +R):

d(x) = O ' X < R (5.49)

where Rl > R, Fig.5.1l(b). The occupation time in this case is

T (-R, +R)

J ak A" (-k) A(-k) w_ . 2R
o hk

+
i

f dk {A*(k) A(-k) + A(k) A*(-k)} b 1sin 2kR . (5.50)
o]

e
fik k

48]

Comparing Eqs (38), (48) and (50), we see firstly that the
occupation times contain terms which have the simple form of a distance,
2R, multiplied by the average of an inverse velocity, Z dk A*A 'S
In Egs (48) and (50) such a term is present only for that'part‘i; the
initial packet which is directed towards the region (-R, +R) - the
positive momentum component of the wave packet (45), and the negative

momentum component of the wave packet (49). In Eq. (38), the term arises

for both the positive and negative momentum components of the packet.
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The difference between the results obtained from the initial
conditions t = 0 and t + -» may be understood if we split the wave

function (33) into two parts:

]

B (x,t) ot (x,8) + @ (x,t) , (5.51)

o ikx-ik2t
-k _ 2
(2m) f dk A(k) e (5.52)
o]

where ®+(X,t)

is the positive momentum component, and

-ikx-ik?T

2 (x,8) = (2m°F J dk A(-k) e 2 (5.53)
o]

is the negative momentum component. In the limit t + -< , the centre of
the wave packet ¢+ moves to X = == (since the average velocity v is
positive, cf Eq.(I.6) ) and the centre of the wave packet $ moves to

X = 4% As t - +» , each packet moves to the opposite end of the real
axis, and in so doing passes through the region (-R, +R), spending a time
2R ;:I within it. If the wave packet is specified at t = 0, only one of
the components,}@+ ' o will pass through the region, which one being

determined by the initial position of the packet.

In addition to the terms having a simple kinematic interpretation,
each occupation time contains a texm with the factor sin 2kR. These are
the oscillatoty terms which are usually removed in calculations of time
delay by'averaging over R, They have generally been described as
representing simply a "quantum effect" (Smith 1960, Nussenzveig 1969),
but the expressions (38), (48) and (50) make it quite clear that they
arise from interference between the positiVe and negative momentum

components of the wave function.
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. -1
It is interesting to note that the terms of the form 2R v
give finite non-zero contributions to the occupation time, even if the

packet has zero mean velocity. The mean velocity

<
f

j dk A (k) A(K) Bk

=

=]

f ak A" (k) A(K) Bk - f dak A" (k) A(-k) hk (5.54)
o}

B o U

]

* :
is zero if A(k) = + A(-k) or A(k) =+ A (~k), but in all cases the sum of

the terms

(=]

J dk A*Ik) A(k) p_ + f dk Af(-k) A(-k) u_ 2R
hk
0

g

(o]

in Eq. (38) is finite and non-zero. The packet cannot have a sharp wave
front, so no matter where its centre is, part of the packet will be found
in any given region, and the occupation time for that region is non-zero.
Although the packet's mean velocity is zero, it nevertheless spreads and

dies away, so the time spent within a region remains finite.

The di;cussion in one dimension makes it easier to understand
the appearance of the various terms in the three-dimensional results, but
it is rather difficult to show in detail the correspondénce between the
two calculations. The one-dimensional analysis has been carried out ‘
using travelling waves,‘whereas the.partial wave decomposition is ip
terms of standing waves. This has the effect that the kinematic and
interference terms, which have been separatea in Egs (48) and (50), are
mixed together in a rather complicated way in Egs (15) and (19). The

Wronskian W[?o’ g__J:] , for instance, may be evaluated to obtain the form
ak R '
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-1 wWJ_, é—-Jo = R = 1 sin 2KkR ' (5.55)
2k 9k R 2 4k
and this expression gives rise to both kinematic and interference terms.

The coefficients A

- occur in an expansion in terms of J2 = li [?2 - Ig] R

2:
and so are equivalent to a combination of the A(k) and A(-k) appearing in
Egs (48) and (50). The one-dimensional treatment does, however, make it

plausible that the occupation times (15) and (19) should contain terms

which depend on the motion of the packet towards or away from the scatterer.

If the wave packet is initially within the region (;R, +R) , the
calculation of the occupation time is considerably more complicated, and
we shall not give all the details of the derivation here. Let us assume

that the packet lies to the left of the origin,
®(x) = 0 for x < —Rl ' x>0 (5.56)

where R1 < R, Fig.5.1 (c). Then the integral over k' (Eq.(44) ) becomes

s 1
J ak' A(k') e ¥ 2i
- k%2 - x'2 + 2ie

X L 0
= (211.)15 J‘ ax' @(X') Eik(x—x') + - I ax' @(x|) e—ik (x_xl)
k
R X

k>o _ k
1
(5.57)
X o '
= “(ZH)% f ax' o(x') E.'lk(x—x') + J ax' o(x') E}k(x-x') .
k<o R k : X

1
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On inserting the expressions (57) into Eq. (41), we obtain double

integrals over x and X' which are analogous to the radial integrals &%r and

@gnt appearing in Chapter 4. Thus from the first term in the first line

of Eg.(57):

R X

» . o
f dx e hx f ax' o(x') elk(X x*')
-R R

R X
-1 t
= f dx f dx' ¢(x') e ikx
R R

o} X R e}
= fdx f ax' o(x') e KX de J dx' o (x') e KX
R R o] R

o o R o
= J ax’' f ax ¢(x") e—lkx + f ax f dx' ¢ (x') e—lkx'
-R x' o =R
(o] Q
- fax o(x') (-x') e X' L g f ax' o(x') e KX
-R -R
- (n*? { - 13 A(K) + Alk) R} , (5.58) -
3k , , ‘

and from the second term, by a similar calculation,

R [e]
[ dx e_lkx J dx! <1>(x').e.-lk(x-K )
-R X 4

= em? -1 am + & A : (5.59)
2ik 2ik
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When the integrals over x and x' have been evaluated, the
expression for T (-R, +R) contains eight terms, two of which are real by
inspection. The imaginary part of the remaining terms may be shown to
be zero by a method similar to that used in Chapters 3 and 4. On taking

the real part of these terms, the final expression for the occupation

time is

T (_Rl +R)

[3®]

- _];fdk A) u_id A() -A (k) p id A +JdkA*(k) AK) u_ . R
) rK ak R & ) fk

+
N

fak A(-K) p_id A (k) -A (k) p_id A(-k)
o hk dk hk dk

+ fdk AT(-k) A(K) u_ . R
(s}

2

+

_;J ak {A*(k) A(-k) + A(K) A*(-k)} sin 2kR . (5.60)
2
o}

ol

hk k

Eq. (60) may be compared with Egs (25) and (28), and it will be seen that

we have again obtained terms of the form do , where a is the phase of the
. dk

momentum distribution. ’

In the first line of Eqg. (60), there is a kinematic term R ;:I '
which represents the time taken by the positive momentum component of the
wave pécket (56) to cross the region (0, +R). Since the packet lies
initially in the interval (-R, 0), it is clear that the first term
represents the mean arrival time of the positive momentum component at the

origin. The terms in the second line of Eq. (60) may be interpreted in a
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similar way if we note that the negative momentum component does not have
to travel the full distance R to leave the region (-R, 0), since it is
already within the region. The term containing 4 is therefore a

—_ dk

, , . -1 .
"correction" to the kinematic term R v , and represents the time taken

to travel from the origin to the initial position.

This interpretation of the da (or do ) term is verified if we
' dk dv
return to the expression (3.19) dexived by Ohmura. Choosing z = 0 we

find the arrival time for the free packet is

t, = 2m f G2 (v) da (v) v dv . (5.61)
in .dT\)-

The reason such a term does not appear in our expressions (15) and (19)
is, of course, that we have calculated the difference of two arrival -
times (see the discussion following Eq. (3.26) ), and the term in gg_has

dk
cancelled out.

We have obtained kinematic terms analogous to those in Ohmura's
expression (third term of Eqg. (3.22) ), but one may wonder if these make
any contribution to the time delay Tint - Tfr' Since the wave packet is
scattered elastically, it might seem that the mean (inverse) vélocities
of the free and interacting packets should be the same, and the kinematic
terms should cancel each other. Although we have not been able to explore
this question in detail, it seems that the kinematic term in Tint should
reflect the fact that the particle travels faster within the.potential,

. even though its velocity outside may be the same as that of the corres-

ponding unscattered particle. On this basis, one would not expect the

kinematic terms to cancel out.
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The expression for time delay E___dﬁ2 is usually thought of as

a3

. . . 2i6 o .
relating the scattering matrix Sy = e 08 to the time operator

- i = -ind . . (5.62)

dE

gl

B
hk

However the LHS of Eq. (62) can be put in another form if we remember that

i d is just the position operator in the momentum representation (Furry 1962)
dk

x = id . (5.63)
op %
. -1
Then y id = vw X ’ _ . (5.64)
Ak dk °P

where v is the velocity corresponding to the momentum fik, and cne is led.

to interpret the d terms in Eq. (60) not as derivatives of phases, but
dk

rather as expectation values invelving combinations of the operators x

and v. This becomes clearer if one uses partial integration to rearrange

the terms as follows:

Jdk AK) p id A (k) - AT(k) p_id Ak
! fk ak rK o a&
=-f&<A*(k) tdp + p idl amk
) & nk Bk dk
- [xe vt o+ vk ] . (5.65)

Eg. (65) may be compared with the term in t in Eqg. (I.7). Furxy points out

that symmetrised .products of operators, such as (65), are typical of
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quantum-mechanical expressions, and arise from the necessity of working
only with Hermitian operators, which give pure real expectation values.
The form on the LHS of Eq.(65) has its origin, of course, in our taking

the real part of T (~R, +R), after proving the imaginary part to be zero.

The one-dimensional treatment has shown that terms obtained in
the calculation of time delay and lifetime often have quite a simple
interpretation in terms of distances, velocities and so on. These
points are generally not considered in discussions based on formal
relations between the time delay Q and the S matrix. If wave packet
experiments involving small distances and times are to be performed and

analysed, it may prove fruitful to return to such simple ideas.
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APPENDIX A

GREEN'S FUNCTION INTEGRALS

The integrals for the free and interacting Green's functions
appearing in the text may be evaluated by contour integration. The method
is quite standard, but we include it here so that the similarity to the

calculation of Im T in Chapters 3 and 4 may be seen.

We shall considexr the free Green's function only, and evaluate

the integral

4 = %_f dk J, (kr) J, (kx') (A.1)
o]

k2 - k|2

for the case ¥ < r' and Imk' > 0. Using the relations

Jz(kr) = _l_ [OIL (kx) - Iz(kr] ’ (A.2a)
2i
gk = M g ke | : (a. 2b)
and
2
02(—kr) = (-) Il(kr) ' ‘(A.ZC)
we have
4 - g_;%_J dk J, (kr) O, (kr') - g_g%_f dk J,(kr) I, (kr')
T 21 m 21
© k2 - k”?‘ 0 k2 - k|2
= 1 f dk J, (kr) O (kr') . (A.3)
Ti . - :

o]

k?. - k|2
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Now 5, (er) — 1 E_-—R, e;|.kr _ iJL e—lkr:' ,
|k| + = 2i

- 3 L}
and o (kx') o~ i 2 eJ.kr '
L
k] »> «
. , , .
50 Jg(kr) Oz(kr') ~ 1 E_)Q elk(r"'r ) _ eJ.k(r rﬂ ]
k| = 21

(a.4)

Since r < r' , the integral (3) may be evaluated by completing the contour

in the upper half plane, Fig.l.

\ ¢

" Fig.A.l Contour for Evaluation of the
Green's Function Integral, Eg. (3)

The integral around C_ is zero, and the integrand has a pole at k = k', so

'{lr']'_'J dk Jz(kr) O’L(kr') = %' Jz(k'r) Oz(k'r') . (A.5)

Lo o]

k2 - k|2
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I'inally,

%_f ak Jz(kr) Jl(kr')
0

k2 - kv2

Jz(k'r) Ol(k'r') ’ r<r' , Imk'> O .

e

(A.6)

The integral for the interacting Green's function may be evaluated
in a similar way, though in this case the integrand also has poles at the

bound states kn = —iyn p Yn < 0 . The final result is

EREN

*
[ dk Xg(klr) Xz(klr )
o k2 - k|2
L (n) (n)

1ox,k',x) ()7 £ =kt x) = oy (0) Xy
k' n

(r') , r<r', Imk's> 0O,

k2 - k|2
n (A.7)

where the functions fl(k,r) have been defined in Chapter 1, and the scatter-

(n)

ing and bound states, xz(k,r) and Xl

(x) , in Chapter 2.

The expressions corresponding to Egqs (6) and (7) for Im k' < O
may be obtained by noting that in this case the integrand has a pole at
k = <=k' in the upper half plane. The relations (2b) and (2¢) may be
used to rewrite the result for the free Green's function in terms of
Il(k'r'), and a similar procedure may be applied to the interacting Green's

function.

We conclude this Appendix with a note regarding the bound state
(n) , .

wave functions Xy (x). The wave function corresponding to the bound

o i < . .
state pole kn lYn ’ Yn 0 , is defined as



X, (&) = 1 ¢,(-iy_,r) ' (A.8)
where ¢2(k,r) is the regular solution of the radial wave equation,
f g

o, (kyr) = i 1 £,(-k) £ (k,r) - (-)7 £, (k) £ (-k,r) '

L = - L L L £

: 2 2+1

k

(A.9)

and Nn is a normalisation constant ,

oo

Nﬁ = J dr Ebz(-iyn,r)]z . (A.10)

0
At the pole kn we have fl(_kn) = 0, so

| g+l ' |
(_. ’ = (k ’ ) = i (—) £ k f ("k ’ - (A.ll
E)Q lYn r) ] ¢Z n o -;- ;—m— 2,( n) A n r) )
n

Further, if we denote by Resn the residue of the S matrix at the bound

state pole, this may be expressed as (Newton 1960, Eqg. (5.2) )

_ _ 2+1 2
Res = (-) i[5,k ] , (a.12)
2042 . 2 _
4Yn f dr [d:z(—lyn,r):l |
(o]
so that

L+,

N2 = (=) i [£, k]2 | . (A.13)
4 28+2 Res
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Combining Eqgs (8), (11) and (13), the bound state wave function may be

written as

in
4

(n) _ Y _
X (x) = e Resn f2< kn,r) . (A.14)

The sign of the wave function is undetermined in Eq. (14), but

this is not important since the purpose of deriving the relation is

simply to show that xén)(r) is proportional to fg(—kn,r). It should

perhaps be mentioned that the residue of the S matrix at a bound state
pole is pure imaginary, and the properties of Resn and f2(~kn'r) under

(n)

complex conjugation are such that Xy (r) is in fact real.
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APPENDIX B
RADIAL INTEGRALS

As an example of the radial integrals occurring in Chapters 3

and 4, we calculate

b .
f ar x, (k,x) X, (k,x) : (5.1)
a

where Xz(k,r) are the scattering states defined in Chapter 2. The method

has been given by Martin (1956), and Corinaldesi and Zienau (1956).

Consider the radial wave equation for two different energies:

Lo * * —x2y" =
Q__xl(k,r) + L(2+1) xz(k,r) + v(r) xl(k,r) k Xl(k,r) 0 '
dr? r?

- Qi_xz(k',r) + L(2+1) xz(k',r) + v{r) xz(k',r) - k'zxz(k',r) = 0 .
ar r?

*
Multiplying the first by xl(k',r), the second by xz(k,r), and subtracting

the second from the first, we obtain

* . *

d W[xg(k.r), X (k'.r] + (k'% - k%) ¥, k,r) X, (k') =0 .
>y A L L
dr .
Then

b

* 1
dr xl(k,r) XQ(K ' T)
a

® * . ]
= 1 W[}z(k,r),xz(k ,r{] - W[%R(k,r),xz(kv,r{} .
(k2 - x'2) b T a

(B.2)
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The integral (1) is to be evaluated as

b
*
lim J. dr X,Q(k’r) Xﬂ,(k y ) .

k' > k
a
*
Now W[xz(k,r) Xy (k' ,r):l
*
= (k r) 9 xl(k',r) - ?_xz(k,r) xz(k',r)
Br or

= X;(k,r) _3_|: k, r) + (k'-k) 3 xz(k r):]
or %

-3 xz(k r)l: (k,x) + (k'-k) 3 xp'(k ril + @( (k' -k)?2)
Sr 3k

= (k' - k) W[ (k,x), 3 xz(k r):| ( k' - k)?) , (B.3)

* *
where we have used x,(k,r) = S (k)x,(k,r) , k real
2 2 A

Using Eq. (3) in Eq.(2), and taking the limit k' -+ k we obtain

b
d * k
r xl( ' X) Xy, (k,x)
a

= =1 [ (k,x),3 X, (k, r):] - ‘: (k,x),3 X, (k, r)] . (B.4)
2k 3k 3k

b a
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