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WAVE PACKET TRANSFORMS OVER FINITE FIELDS∗
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Abstract. This article introduces the abstract notion of finite wave packet groups over finite

fields as the finite group of dilations, translations, and modulations. Then it presents a unified

theoretical linear algebra approach to the theory of wave packet transforms (WPT) over finite fields.

It is shown that each vector defined over a finite field can be represented as a finite coherent sum of

wave packet coefficients as well.
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1. Introduction. The mathematical theory of finite fields has significant roles

and applications in computer science, information theory, communication engineering,

coding theory, cryptography, finite quantum systems and number theory [17, 28].

Discrete exponentiation can be computed quickly using techniques of fast expone-

ntiation such as binary exponentiation within a finite field operations and also in

coding theory, many codes are constructed as subspaces of vector spaces over finite

fields, see [18, 20, 27] and references therein.

The finite dimensional data analysis and signal processing is the basis of digital

signal processing, information theory, and large scale data analysis. In data pro-

cessing, time-frequency (resp., time-scale) analysis comprises those techniques that

analyze a vector in both the time and frequency (resp., time and scale) domains si-

multaneously, called time-frequency (resp., time-scale) methods or representations,

see [4, 5, 16] and references therein. Commonly used coherent (structured) methods

and techniques in such analysis are time-frequency analysis which is sometimes called

as Gabor analysis [6], time-scale analysis which is called as wavelet analysis [25], and

scale-time-frequency analysis which is mostly called as wave packet methods, see [11]

and references therein. The theory of Gabor analysis is based on the modulations

and translations of a given window vector and the phase space has a unified group

structure, see [2, 10, 12, 19] and references therein. The wavelet theory is based on

affine group as the group of dilations and translation, see [25] and references therein.
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Wavelet analysis of periodic data rely on embedding the vector space of finite size

data in the Hilbert space of all complex valued sequences with finite ‖ ·‖2-norm which

is not on finite dimensional analogous to the continuous setting as is the case in Gabor

analysis [3, 24, 29]. Some different approaches to the wavelet analysis over finite fields

studied in [7, 8, 13, 15].

Wave packet analysis is a shrewd coherent state analysis which is an extension of

the two most important and prominent coherent state methods. The mathematical

theory of wave packet analysis over the local field R is originated from dyadic dilations,

integer translations, and integer modulations of a given window vector. The structure

of wave packet groups over prime fields (finite Abelian groups of prime orders) and

the notion of wave packet representation on these wave packet groups are recently

presented in [11].

In this article, we introduce the notion of wave packet group WPF associated to

the finite field F as the group of dilation, translation and modulation and we present

the abstract theory of wave packet transform over F. If y ∈ CF is a window vec-

tor, we define the wave packet transform (WPT) Vy as the voice transform defined

on CF with complex values which are indexed in the finite wave packet group WPF.

These techniques imply a unified group theoretical based scale-time-frequency (di-

lation, translation and modulation) representations for vectors in CF. It is shown

that the wave packet transform Vy as a windowed transform satisfies the isometric

property and inversion formula as well.

2. Preliminaries and notation. Let H be a finite dimensional complex Hilbert

space and dimH = N . A finite system (sequence) A = {yj : 0 ≤ j ≤ M − 1} ⊂ H is

called a frame (or finite frame) for H, if there exist positive constants 0 < A ≤ B < ∞
such that [4]

(2.1) A‖x‖2 ≤
M−1∑

j=0

|〈x,yj〉|2 ≤ B‖x‖2 for all x ∈ H.

If A = {yj : 0 ≤ j ≤ M − 1} is a frame for H, the synthesis operator F : CM → H

is F{cj}M−1
j=0 =

∑M−1
j=0 cjyj for all {cj}M−1

j=0 ∈ CM . The adjoint (analysis) operator

F ∗ : H → CM is F ∗x = {〈x,yj〉}M−1
j=0 for all x ∈ H. By composing F and F ∗, we get

the positive and invertible frame operator S : H → H given by

(2.2) x 7→ Sx = FF ∗x =
M−1∑

j=0

〈x,yj〉yj for all x ∈ H.

In terms of the analysis operator we have A‖x‖22 ≤ ‖F ∗x‖22 ≤ B‖x‖22 for x ∈ H. If

A is a finite frame for H, the set A spans the complex Hilbert space H which implies
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M ≥ N , where M = |A|. It should be mentioned that each finite spanning set in H

is a finite frame for H. The ratio between M and N is called as redundancy of the

finite frame A (i.e., redA = M/N), where M = |A|. If A = {yj : 0 ≤ j ≤ M − 1} is a

finite frame for H, each x ∈ H satisfies the following reconstruction formulas

(2.3) x =
M−1∑

j=0

〈x, S−1yj〉yj =
M−1∑

j=0

〈x,yj〉S−1yj .

In this case, the complex numbers 〈x, S−1yj〉 are called frame coefficients and the

finite sequence A• := {S−1yj : 0 ≤ j ≤ M − 1} which is a frame for H as well, is

called the canonical dual frame of A. A finite frame A = {yj : 0 ≤ j ≤ M−1} for H is

called tight if we have A = B. If A = {yj : 0 ≤ j ≤ M −1} is a tight frame for H with

frame bound A, then the canonical dual frame A• is exactly {A−1yj : 0 ≤ j ≤ M−1}
and for x ∈ H we have [4]

(2.4) x =
1

A

M−1∑

j=0

〈x,yj〉yj .

For a finite group G, the finite dimensional complex vector space CG = {x :

G → C} is a |G|-dimensional Hilbert space with complex vector entries indexed by

elements in the finite group G 1. The inner product of two vectors x,y ∈ CG is

〈x,y〉 =
∑

g∈G x(g)y(g), and the induced norm is the ‖ · ‖2-norm of x, that is ‖x‖2 =√
〈x,x〉. For CZN , where ZN denotes the cyclic group of N elements {0, . . . , N − 1},

we simply write CN at times.

Time-scale analysis and time-frequency analysis on finite Abelian group G as

modern computational harmonic analysis tools are based on three basic operations

on CG. The translation operator Tk : CG → CG given by Tkx(g) = x(g − k) with

g, k ∈ G. The modulation operator Mℓ : C
G → CG given by Mℓx(g) = ℓ(g)x(g) with

g ∈ G and ℓ ∈ Ĝ, where Ĝ is the character/dual group of G. As the fundamental

theorem of finite Abelian groups provides a factorization of G into cyclic groups, that

is, G ∼= ZN1
× ZN2

× · · · × ZNd
as groups, which implies Ĝ ∼= G, we can assume that

the action of ℓ = (ℓ1, . . . , ℓd) ∈ Ĝ on g = (g1, . . . , gd) ∈ G is given by

ℓ(g) = ((ℓ1, ℓ2, . . . , ℓd), (g1, . . . , gd)) =
d∏

j=1

eℓj (gj),

where eℓj (gj) = e2πiℓjgj/Nj for all 1 ≤ j ≤ d. Thus,

ℓ(g) = ((ℓ1, ℓ2, . . . , ℓd), (g1, . . . , gd)) = e2πi(ℓ1g1/N1+ℓ2g2/N2+···+ℓdgd/Nd).

1|G| denotes the order of the group G, or, more generally, the cardinality of a set G.
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The character/dual group Ĝ of any finite Abelian group G is isomorphic with G

via the canonical group isomorphism ℓ 7→ eℓ, where the character eℓ : G → T is

given by eℓ(g) = ℓ(g) for all g ∈ G. The third fundamental operator is the discrete

Fourier Transform (DFT) FG : CG → CĜ = CG which allows us to pass from time

representations to frequency representations. It is defined as a function on Ĝ by

FG(x)(ℓ) = x̂(ℓ) =
1√
|G|

∑

g∈G

x(g)ℓ(g)(2.5)

for all ℓ ∈ Ĝ and x ∈ CG. That is equivalently

FG(x)(ℓ) = x̂(ℓ) =
1√
|G|

N1−1∑

g1=0

· · ·
Nd−1∑

gd=0

x(g1, . . . , gd)((ℓ1, . . . , ℓd), (g1, . . . , gd))

for all ℓ = (ℓ1, . . . , ℓd) ∈ Ĝ and x ∈ CG. Translation, modulation, and the Fourier

transform on the Hilbert space CG = CĜ are unitary operators with respect to the

‖ · ‖2-norm. For ℓ, k ∈ G ∼= Ĝ we have (Tk)
∗ = (Tk)

−1 = T−k and (Mℓ)
∗ = (Mℓ)

−1 =

M−ℓ. The circular convolution of x,y ∈ CG is defined by

x ∗ y(k) = 1√
|G|

∑

g∈G

x(g)y(k − g) for k ∈ G.

In terms of the translation operators, we have x ∗ y(k) = 1√
|G|

∑
g∈G x(g)Tgy(k) for

k ∈ G. The circular involution or circular adjoint of x ∈ CG is given by x∗(k) =

x(−k). The complex linear space CG equipped with the ‖ · ‖1-norm, that is ‖x‖1 =∑
g∈G |x(g)|, the circular convolution, and involution is a Banach ∗-algebra, which

means that for all x,y ∈ CG we have

‖x ∗ y‖1 ≤ 1√
|G|

‖x‖1‖y‖1 and ‖x∗‖1 = ‖x‖1.

The unitary DFT (2.5) satisfies

T̂kx = Mkx̂, M̂ℓx = T−ℓx̂, x̂∗ = x̂, x̂ ∗ y = x̂.ŷ

for x,y ∈ CG, k ∈ G and ℓ ∈ Ĝ. See standard references of harmonic analysis such

as [9, 22, 29] and references therein.

Let H be a complex finite dimensional inner product space with dimH = N . Let

U(H) be the group of all unitary operators on H, which is precisely the matrix group

of all unitary N×N -matrices with complex entries. A projective group representation

π : G → U(H) ∼= UN×N (C)
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of G is a family of unitary operators {π(g) : g ∈ G} such that

π(gg′) = cG(g, g
′)π(g)π(g′) for g, g′ ∈ G

for unimodular numbers cG(g, g
′). The projective group representation π is called

irreducible on H, if {0} and H are the only π-invariant subspaces of H.

3. Harmonic analysis over finite fields. Throughout this section, we present

a summary of basic and classical results concerning harmonic analysis over finite fields.

For proofs we refer readers to see [14, 17, 21, 23, 28] and references therein.

Let F = Fq be a finite field of order q. Then there is a prime number p and an

integer number d ≥ 1 in which q = pd. Every finite field of order q = pd is isomorphic

as a field to every other field of order q. From now on, when it is necessary we denote

any finite field of order q = pd by Fq otherwise we just denote it by F. The prime

number p is called the characteristic of F, which means that

p.τ =

p∑

k=1

τ = 0 for all τ ∈ F.

The absolute trace map t : F → Zp is given by τ 7→ t(τ) where

t(τ) =

d−1∑

k=0

τp
k

for all τ ∈ F.

The absolute trace map t is a Zp-linear transform from F onto Zp. It should be

mentioned that in the case of prime fields, the trace map is readily the identity map.

There exists an irreducible polynomial P ∈ Zp[t] of degree d and a root θ ∈ F of

P such that the set

Bθ := {θj : j = 0, . . . , d− 1} = {1, θ, θ2, . . . , θd−2, θd−1}

is a linear basis of F over Zp. Then Bθ is called as a polynomial basis of F over Zp

and θ is called as a defining element of F over Zp. Let H = Hθ ∈ Zd×d
p be the d× d

matrix with entries in the field Zp given by Hjk := t(θj+k) for all 0 ≤ j, k ≤ d − 1,

which is invertible with the inverse S ∈ Zd×d
p . Then the dual polynomial basis

(3.1) B̃θ := {Θk : k = 0, . . . , d− 1},

given by

(3.2) Θk =

d−1∑

j=0

Skjθ
j ,
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satisfies the following orthogonality relation

(3.3) t(θkΘj) = δk,j ,

for all j, k = 0, . . . , d− 1.

Proposition 3.1. Let F be a finite field of order q = pd with trace map t : F →
Zp. Then:

1. For τ ∈ F, we have the following decompositions

τ =
d−1∑

k=0

τ(k)θ
k =

d−1∑

k=0

τ[k]Θk,

where for all k = 0, . . . , d− 1, we have

τ(k) := t(τΘk), τ[k] := t(τθk).

2. For τ ∈ F, the coefficients (components) {τ(k) : k = 0, . . . , d − 1} and {τ[k] :
k = 0, . . . , d− 1} satisfy

τ(k) =

d−1∑

j=0

Skjτ[j], τ[k] =

d−1∑

j=0

Hkjτ(j),

for all k = 0, . . . , d− 1.

Let θ ∈ F be a defining element of F over Zp. Then θ defines a Zp-linear isomor-

phism Jθ : F → Zd
p by

(3.4) γ 7→ Jθ(τ) := τθ = (τ(k))
d
k=1 for all τ ∈ F.

Then the additive group of the finite field F, F+, is isomorphic with the finite elemen-

tary group Zd
p via Jθ. Thus, using classical dual theory on the ring Zd

p we get

eτθ(τ
′
θ) = e1,p (τθ.τ

′
θ) = e1,p

(
d∑

k=1

τ(k)τ
′
(k)

)
for all τ, τ ′ ∈ F.

Remark 3.2. The dual (character) group of the finite elementary group Zd
p, that

is Ẑd
p, is precisely

{
eℓ : ℓ = (ℓ1, . . . , ℓd) ∈ Zd

p

}
,

where the additive character eℓ : Z
d
p → T is given by

eℓ(g) = e1,p(ℓ · g) = exp

(
2πi ℓ · g

p

)
=

d∏

k=1

eℓk,p(gk) for all g = (g1, . . . , gd) ∈ Zd
p,
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with ℓ · g =
∑d

k=1 ℓkgk.

Let χ : F → T be given by

χ(τ) := exp

(
2πit(τ)

p

)
= e1,p(t(τ)) for all τ ∈ F.

Since the trace map is Zp-linear, we deduce that χ is a character on the additive

group of F (i.e χ ∈ F̂+).

Proposition 3.3. Let F be a finite field of order q = pd with trace map t : F →
Zp. Then:

1. For τ, τ ′ ∈ F, we have

t(ττ ′) =
d−1∑

j=0

d−1∑

k=0

Hjkτ(j)τ
′
(k) =

d−1∑

j=0

d−1∑

k=0

Sjkτ[j]τ
′
[k] =

d−1∑

k=0

τ(k)τ
′
[k] =

d−1∑

k=0

τ[k]τ
′
(k).

2. For τ, τ ′ ∈ F, we have

χ(ττ ′) = e1,p

(
d∑

k=1

τ(k)τ
′
[k]

)
= e1,p

(
d∑

k=1

τ[k]τ
′
(k)

)
.

For γ ∈ F, let χγ : F → T be given by

χγ(τ) := χ(γτ) = exp

(
2πit(γτ)

p

)
= e1,p(t(γτ)) for all τ ∈ F.

Then χγ is a character on the additive group of F (i.e χγ ∈ F̂+). For γ = 1, we get

χ = χ1.

If α ∈ F∗, the character χα is called as a non-principal character. The inter-

esting property of non-principal characters is that any non-principal character can

parametrize the full character group of the additive group of F. In details, if α ∈ F∗,

then we have

F̂+ = {χαγ : γ ∈ F} .

Thus, the mapping γ 7→ χαγ is group isomorphism of F onto F̂+. Then for α = 1, we

get

(3.5) F̂+ = {χγ : γ ∈ F} .

Remark 3.4. The characterization (3.5) for the character group of finite fields

is a consequence of applying the trace map in duality theory over finite fields. This
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characterization plays significant role in structure of dual action, and hence, wave

packet groups over finite fields; see Section 4.

Then the Fourier transform of a vector x ∈ CF at γ ≍ χγ ∈ F̂+ is

x̂(χγ) =
1√
pd

∑

τ∈F

x(τ)χγ(τ) =
1√
pd

∑

τ∈F

x(τ)F(γ, τ),

where the matrix F : F× F → C is given by

F(γ, τ) := χ(γτ) = exp

(
2πit(γτ)

p

)
for all γ, τ ∈ F.

Remark 3.5. (i) For β ∈ F, the translation operator Tβ : CF → CF is

Tβx(τ) := x(τ − β) for all τ ∈ F and x ∈ CF.

(ii) For γ ≍ χγ ∈ F̂+, the modulation operator Mγ : CF → CF is

Mγx(τ) := χγ(τ)x(τ) for all τ ∈ F and x ∈ CF.

4. Wave packet groups over finite fields. The abstract notion of wave packet

groups over prime fields (finite Abelian groups of prime order) introduced in [11]. The

algebraic structure of wave packet groups over prime fields based on the canonical ac-

tion of the multiplicative group of nonzero elements on the associated time-frequency

groups, that is the group consists of all time-frequency shifts over prime fields. This

action is originated from the canonical affine action of the multiplicative group of

nonzero elements on the prime field (as time domain) and the induced dual action

on the character group (as frequency domain) of the underlying additive group of

prime fields. Thus, to extend the notion of wave packet groups over finite fields we

need to present generalized version of dilation operators on both the time and the

frequency domain. To this end, first we present properties of affine action of the mul-

tiplicative group of nonzero elements and then we will discuss various aspects of the

induced dual action. Finally we introduce algebraic structure of wave packet groups

over finite fields.

Let F = Fq be a finite field of order q = pd. The finite multiplicative group

(4.1) F∗ := F− {0} = {α ∈ F : α 6= 0}

of nonzero elements of F is a finite cyclic group of order q−1 = pd−1. Any generator

of the finite cyclic group F∗ is called a primitive element or primitive root of F over

Zp.
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For α ∈ F∗, define the dilation operator Dα : CF → CF by

Dαx(τ) := x(α−1τ)

for all τ ∈ F and x ∈ CF.

Hence, we state basic algebraic properties of dilation operators.

Proposition 4.1. Let F be a finite field. Then:

1. For (α, β) ∈ F∗ × F, we have DαTβ = TαβDα.

2. For α, α′ ∈ F∗, we have Dαα′ = DαDα′ .

3. For (α, β), (α′, β′) ∈ F∗ × F, we have Tβ+αβ′Dαα′ = TβDαTβ′Dα′ .

Proof. Let F be a finite field and x ∈ CF. Then:

(1) For (α, β) ∈ F∗ × F and τ ∈ F, we can write

DαTβx(τ) = Tβx(α
−1τ)

= x(α−1τ − β)

= x(α−1τ − α−1αβ)

= x(α−1(τ − αβ))

= Dαx(τ − αβ) = TαβDαx(τ).

(2) For α, α′ ∈ F∗ and τ ∈ F, we can write

Dαα′x(τ) = x((αα′)−1τ)

= x(α′−1α−1τ)

= Dα′x(α−1τ) = DαDα′x(τ).

(3) It is straightforward from (1) and (2).

Next proposition summarizes analytic properties of dilation operators.

Proposition 4.2. Let F be a finite field and α ∈ F∗. Then:

1. Dα : CF → CF is a ∗-isometric isomorphism of the Banach ∗-algebra CF.

2. Dα : CF → CF is unitary in ‖·‖2-norm and satisfies (Dα)
∗ = (Dα)

−1 = Dα−1 .

Proof. (1) Let x,y ∈ CF and τ ∈ F. Then we have

Dα(x ∗ y)(τ) = x ∗ y(α−1τ) =
1√
q

∑

τ ′∈F

x(τ ′)y(α−1τ − τ ′).
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Replacing τ ′ with α−1τ ′, we get

1√
q

∑

τ ′∈F

x(τ ′)y(α−1τ − τ ′) =
1√
q

∑

τ ′∈F

x(α−1τ ′)y(α−1τ − α−1τ ′)

=
1√
q

∑

τ ′∈F

x(α−1τ ′)y(α−1(τ − τ ′))

=
1√
q

∑

τ ′∈F

Dαx(τ
′)Dαy(τ − τ ′) = (Dαx) ∗ (Dαy)(τ),

which implies that Dα(x ∗ y) = (Dαx) ∗ (Dαy).

We can also write

(Dαx)
∗(τ) = Dαx(−τ)

= x(−α−1τ))

= x∗(α−1τ) = Dαx
∗(τ),

which guarantees (Dαx)
∗ = Dαx

∗.

(2) Let x ∈ CF. Then we can write

‖Dαx‖22 =
∑

τ∈F

|Dαx(τ)|2

=
∑

τ∈F

|x(α−1τ)|2

=
∑

τ∈F

|x(τ)|2 = ‖x‖22,

which implies that Dα : CF → CF is unitary in ‖ · ‖2-norm and satisfies

(Dα)
∗ = (Dα)

−1 = Dα−1 .

Remark 4.3. Let F = Fq be a finite field of order q = pd, where p is a positive

prime integer and d ≥ 1 is an integer.

(i) Let d = 1. Then F = Zp, and hence, the affine action of F∗ = Zp = {0}
canonically induces the dual action on F̂+ = Zp, see [11].

(ii) Let d > 1 and also let θ ∈ F be a defining element of F over Zp. Then

F+, the additive group of F, is isomorphic with the elementary group Zd
p via the

Zp-linear isomorphism Jθ : F → Zd
p given in (3.4). Then Ĵθ : Ẑd

p → F̂+ given by

Ĵθ(eℓ) := eℓ ◦ Jθ for all eℓ ∈ Ẑd
p, is a group isomorphism. Thus, ℓ 7→ eℓ ◦ Jθ, defines a

group isomorphism from Zd
p onto F̂+. Since Zd

p is not a (finite) field, if multiplication
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and addition are defined coordinatewise, the affine action of the multiplicative group

F∗, on the dual group F̂+ does not make sense via the group isomorphisms Jθ. Thus,

we deduce that replacing the prime field Zp with the ring Zd
p does not characterize

a unified version of the dual action of the multiplicative group F∗ on the character

group F̂+.

In the remainder of this article, we use the explicit characterization of the char-

acter group given by (3.5). Using (3.5), which can be considered as a consequence

of analytic and algebraic properties of the trace map, the finite field F parametrizes

the full character group F̂+. This parametrization implies a unified labelling on the

character group F̂+ with F.

Then we can present the following proposition.

Proposition 4.4. Let F be a finite field and γ ≍ χγ ∈ F̂+. Then:

1. Mγ : CF → CF is a unitary operator in ‖ · ‖2-norm and satisfies (Mγ)
∗ =

(Mγ)
−1 = M−γ.

2. For α ∈ F∗, we have DαMγ = Mα−1γDα.

3. For β ∈ F, we have TβMγ = χγ(β)MγTβ.

Proof. (1) This statement is evident invoking definition of modulation operators.

(2) Let α ∈ F∗. Let x ∈ CF and τ ∈ F. Then we can write

DαMγx(τ) = Mγx(α
−1τ)

= χγ(α−1τ)x(α−1τ)

= χ(γα−1τ)x(α−1τ)

= χ(α−1γτ)x(α−1τ)

= χα−1γ(τ)x(α
−1τ)

= χα−1γ(τ)Dαx(τ) = Mα−1γDαx(τ),

which implies DαMγ = Mα−1γDα.

(3) Let β ∈ F. Let x ∈ CF and τ ∈ F. Then we have

TβMγx(τ) = Mγx(τ − β)

= χγ(τ − β)x(τ − β)

= χγ(−β)χγ(τ)x(τ − β)

= χγ(−β)χγ(τ)Tβx(τ) = χγ(β)MγTβx(τ),

which implies TβMγ = χγ(β)MγTβ.
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For α ∈ F∗, let D̂α : CF̂+ → CF̂+

be given by

D̂αx(χγ) := x(χα−1γ),

for all γ ≍ χγ ∈ F̂+ and x ∈ CF̂. Since F and F̂+ are isomorphic as finite Abelian

groups, we may use Dα instead of D̂α at times.

The following proposition presents some analytic properties of dilation operators

on the frequency domain.

Proposition 4.5. Let F be a finite field and α ∈ F∗. Then:

1. Dα : CF̂+ → CF̂+

is a ∗-isometric isomorphism of the Banach ∗-algebra CF̂+

2. Dα : CF̂+ → CF̂+

is unitary in ‖ · ‖2-norm and satisfies (Dα)
∗ = (Dα)

−1 =

Dα−1 .

Next result states analytic properties of dilation operators and also connections

with the Fourier transform.

Proposition 4.6. Let F be a finite field of order q. Then:

1. For β ∈ F, we have FFTβ = MβFF.

2. For γ ≍ χγ ∈ F̂+, we have FFMγ = T−γFF.

3. For α ∈ F∗, we have FFDα = D̂α−1FF.

Proof. (1) Let β ∈ F and x ∈ CF. Then for γ ≍ χγ ∈ F̂+, we have

FF(Tβx)(χγ) =
1√
q

∑

τ∈F

Tβx(τ)χγ(τ) =
1√
q

∑

τ∈F

x(τ − β)χγ(τ).

Replacing τ with τ + β, we get

1√
q

∑

τ∈F

x(τ − β)χγ(τ) =
1√
q

∑

τ∈F

x(τ)χγ(τ + β) =
χγ(β)√

q

∑

τ∈F

x(τ)χγ(τ).

Then we can write

FF(Tβx)(χγ) = χγ(β)FF(x)(χγ)

= χγ(β)FF(x)(χγ) = χβ(γ)FF(x)(χγ),

implying FFTβ = MβFF.
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(2) Let γ ≍ χγ ∈ F̂+ and x ∈ CF. Then for all γ′ ≍ χγ′ ∈ F̂+, we have

FF(Mγx)(γ
′) =

1√
q

∑

τ∈F

Mγx(τ)χγ (τ)

=
1√
q

∑

τ∈F

χγ(τ)x(τ)χγ′ (τ)

=
1√
q

∑

τ∈F

x(τ)χγ+γ′(τ)

= FF(x)(γ + γ′) = T−γFF(x)(γ
′).

(3) Let x ∈ CF and γ ≍ χγ ∈ F̂+. Then we have

FF(Dαx)(γ) =
1√
q

∑

τ∈F

Dαx(τ)χγ (τ) =
1√
q

∑

τ∈F

x(α−1τ)χγ(τ).

Replacing τ with ατ , we achieve

1√
q

∑

τ∈F

x(α−1τ)χγ(τ) =
1√
q

∑

τ∈F

x(τ)χγ (ατ)

=
1√
q

∑

τ∈F

x(τ)χαγ (τ) = FF(x)(αγ),

which implies FF(Dαx) = D̂α−1(FFx).

The underlying set F∗ × F × F = F∗ × F × F̂+ equipped with group operations

given by

(4.2) (α, β, γ) ⋉ (α′, β′, γ′) := (αα′, α′−1β + β′, α′γ + γ′),

(4.3) (α, β, γ)−1 := (α−1, α−1.(−β), α.(−γ))

for all (α, β, γ), (α′, β′, γ′) ∈ F∗×F× F̂, is a finite non-Abelian group of order q2(q−1)

which is denoted by WPF. The group WPF is called as finite wave packet group over

the finite field F. Since any two field of order q = pd are isomorphic as finite field,

we deduce that the notion of WPF just depends on q. In details, if F and F′ are two

finite field of order q, then the groups WPF and WPF′ are isomorphic as finite groups

of order q2(q − 1). Thus, we may use the notation WPq instead of WPF at times.

Next theorem guarantees that the group structure of the wave packet group WPF

is canonically connected with a projective group representation.

Theorem 4.7. Let F be a finite field of order q > 2. Then:
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1. WPF is a non-Abelian group of order q2(q−1) which contains F× F̂+ ∼= F×F

as a normal Abelian subgroup and F∗ as a non-normal Abelian subgroup.

2. The map Γ : WPF → U(CF) ∼= Uq×q(C) defined by

(4.4) (α, β, γ) 7→ Γ(α, β, γ) := DαTβMγ for (α, β, γ) ∈ WPF,

is a projective group representation of the finite wave packet group WPF on

the finite dimensional Hilbert space CF.

Proof. Let F be a finite field of order q > 2. Then:

(1) It is straightforward from the group structure given in (4.2) that F×F̂+ ∼= F×F

is a normal Abelian subgroup and F∗ is a non-normal Abelian subgroup of WPF.

(2) It is evident to check that Γ(1, 0, 0) = I and Γ(α, β, γ) : CF → CF is a unitary

operator for all (α, β, γ) ∈ WPF. Now let (α, β, γ), (α′, β′, γ′) ∈ WPF. Then using

Proposition 4.1, we can write

Dαα′Tα′−1β+β′Mα′γ+γ′ = DαDα′Tα′−1βTβ′Mα′γMγ′

= Dα(Dα′Tα′−1β)Tβ′Mα′γMγ′

= Dα(TβDα′)Tβ′Mα′γMγ′

= DαTβDα′Tβ′Mα′γM
′
γ

= DαTβDα′(Tβ′Mα′γ)Mγ′

= χα′γ(β′)DαTβDα′(Mα′γTβ′)Mγ′

= χα′γ(β′)DαTβDα′Mα′γTβ′Mγ′

= χα′γ(β′)DαTβ(Dα′Mα′γ)Tβ′Mγ′

= χα′γ(β′)DαTβ(MγDα′)Tβ′Mγ′

= χα′γ(β′)DαTβMγDα′Tβ′Mγ′

= χα′γ(β′)(DαTβMγ)(Dα′Tβ′Mγ′),

where χα′γ(β
′) = χ(α′γβ). Thus, we get

Γ ((α, β, γ)⋉ (α′, β′, γ′)) = Γ(αα′, α′−1
β + β′, α′γ + γ′)

= χα′γ(β′)Γ(α, β, γ)Γ(α′, β′, γ′),

which implies that Γ is a projective group representation of the finite wave packet

group WPF on the finite dimensional Hilbert space CF.

Remark 4.8. The restriction of the wave packet representation Γ : WPF →
U(CF) to the subgroup F× F̂+ is unitarily equivalent with the projective Schrödinger

representation of the group F× F̂+ on CF (see [6] and references therein) and similarly
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restriction of the wave packet representation Γ : WPF → U(CF) to the subgroup F∗×F

is unitarily equivalent with the unitary quasi-regular representation of the wavelet

group F∗ × F on CF, see [1, 8, 15] and references therein. Thus, we deduce that the

wave packet representation Γ : WPF → U(CF) contains both projective Schrödinger

representation and quasi-regular representation.

5. Wave packet transform (WPT) over finite fields. In this section, we

present abstract theory of wave packet transforms on finite fields and we study analytic

properties of this transform. Throughout this section, it is still assumed that F is a

finite field of order q = pd.

Let y ∈ CF be a window vector. The wave packet transform (WPT ) of a given
vector x ∈ CF with respect to the window vector y (y-wave packet transform) is
defined on the finite wave packet group WPF by

(5.1) Vyx(α, β, γ) :=
∑

τ∈F

x(τ )e2πit(γ(α−1τ−β))/p
y(α−1τ − β) for all (α, β, γ) ∈ WPF.

Then Vy : CF → CWPF given by x 7→ Vyx is linear.

By (5.1), we can write

Vyx(α, β, γ) =
∑

τ∈F

x(τ)e2πit(γ(α
−1τ−β))/py(α−1τ − β)

=
∑

τ∈F

x(τ)χγ(α
−1τ − β)y(α−1τ − β)

=
∑

τ∈F

x(τ)Mγy(α−1τ − β)

=
∑

τ∈F

x(τ)TβMγy(α−1τ) =
∑

τ∈F

x(τ)DαTβMγy(τ).

Thus, in terms of the inner product of the Hilbert space CF, for x ∈ CF we can write

(5.2) Wyx(α, β, γ) = 〈x,Γ(α, β, γ)y〉 = 〈x, DαTβMγy〉 for (α, β, γ) ∈ WPF.

Then using basic properties of dilation, translation and modulation operators, we

have

(5.3) 〈Dα−1x, TβMγy〉 = 〈T−βDα−1x,Mγy〉 = 〈M−γT−βDα−1x,y〉.

Using the Plancherel formula and also (5.3), we get

(5.4) Vyx(α, β, γ) = 〈Dα−1x, TβMγy〉 = 〈D̂α−1x, T̂βMγy〉.

Then invoking (5.4) and Propositions 4.6, we achieve

(5.5) 〈D̂α−1x, T̂βMγy〉 = 〈Dαx̂,MβM̂γy〉 = 〈Dαx̂,MβT−γŷ〉.
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Remark 5.1. Let y ∈ CF be a window vector and x ∈ CF. Then Remark 4.8

implies that the restriction of the wave packet transform Vyx to the subgroup F× F̂+

coincides with the Gabor transform of x with respect to y and also similarly, the

restriction of the wave packet transform Vyx to the subgroup F∗ × F is the wavelet

transform of x with respect to y. Thus, we deduce that the wave packet transform

unifies both wavelet and Gabor (short time Fourier) transform over finite fields.

In the following, we present some representations for the wave packet transform

defined in (5.1).

Proposition 5.2. Let F be a finite field of order q. Let x,y ∈ CF and (α, β, γ) ∈
WPF. Then:

1. Vyx(α, β, γ) =
√
qF

F̂+

(
Dαx̂.T−γŷ

)
(−β).

2. Vyx(α, β, γ) = Dα−1x ∗ (Mγy)
∗(β).

The representation (1) is called a Fourier representation of the WPT and the

representation (2) is called a circular convolution representation of the WPT.

Proof. Let x,y ∈ CF and (α, β, γ) ∈ WPF. Then:

(1) Using (5.5), we can write

Vyx(α, β, γ) = 〈Dαx̂,MβT−γŷ〉
=
∑

γ′∈F̂+

Dαx̂(γ
′)MβT−γŷ(γ′)

=
∑

γ′∈F̂+

Dαx̂(γ
′)M−βT−γŷ(γ

′)

=
∑

γ′∈F̂+

χβ(γ
′)Dαx̂(γ

′)T−γ ŷ(γ
′)

=
∑

γ′∈F̂+

χ−β(γ′)(Dαx̂.T−γŷ)(γ
′) =

√
qF

F̂+

(
Dαx̂.T−γŷ

)
(−β).

(2) Similarly, using the Plancherel formula and (5.5), we have

Vyx(α, β, γ) = 〈D̂α−1x,MβM̂γy〉

=
∑

γ′∈F̂+

D̂α−1x(γ′)M̂γy(γ′)χβ(γ
′)

=
∑

γ′∈F̂+

D̂α−1x(γ′)(̂Mγy)
∗(γ′)χβ(γ

′) = Dα−1x ∗ (Mγy)
∗(β).

The following theorem presents a concrete formulation for the ‖ · ‖2-norm of the
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wave packet transform Vyx.

Theorem 5.3. Let F be a finite field of order q. Let y ∈ CF be a window vector

and x ∈ CF. Then

(5.6)
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

|Vyx(α, β, γ)|2 = q(q − 1)‖y‖22‖x‖22.

Proof. Let F be a finite field of order q. Let y ∈ CF be a window vector and

x ∈ CF. Let α ∈ F∗ and γ ≍ χγ ∈ F̂ be given. Using Proposition 5.2 and Plancherel

formula, we have

∑

β∈F

|Vyx(α, β, γ)|2 = q
∑

β∈F

|F
F̂

(
Dαx̂.T−γŷ

)
(−β)|2

= q
∑

β∈F

|F
F̂

(
Dαx̂.T−γŷ

)
(β)|2

= q
∑

γ′∈F̂+

∣∣∣
(
Dαx̂.T−γŷ

)
(γ′)

∣∣∣
2

= q
∑

γ′∈F̂+

∣∣∣Dαx̂(γ
′).T−γ ŷ(γ

′)
∣∣∣
2

= q
∑

γ′∈F̂+

|Dαx̂(γ
′)|2|T−γ ŷ(γ

′)|2.

Then we get

∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

|Vyx(α, β, γ)|2 =
∑

α∈F∗

∑

γ∈F̂+

∑

β∈F

|Vyx(α, β, γ)|2

= q
∑

α∈F∗

∑

γ∈F̂+


 ∑

γ′∈F̂+

|Dαx̂(γ
′)|2|T−γŷ(γ

′)|2



= q
∑

γ′∈F̂+

(∑

α∈F∗

|Dαx̂(γ
′)|2
)
∑

γ∈F̂+

|T−γ ŷ(γ
′)|2

 .

Replacing γ by γ − γ′, we have

∑

γ∈F̂+

|T−γ ŷ(γ
′)|2 =

∑

γ∈F̂+

|ŷ(γ′ + γ)|2

=
∑

γ∈F̂+

|ŷ(γ)|2 = ‖ŷ‖22 = ‖y‖22.
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Thus, we have

∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

|Vyx(α, β, γ)|2 = q
∑

γ′∈F̂+

(∑

α∈F∗

|Dαx̂(γ
′)|2
)
∑

γ∈F̂+

|T−γŷ(γ
′)|2



= q
∑

γ′∈F̂+

(∑

α∈F∗

|Dαx̂(γ
′)|2
)
‖y‖22

= q‖y‖22


 ∑

γ′∈F̂+

∑

α∈F∗

|Dαx̂(γ
′)|2

 .

Replacing the summation, we get
∑

γ′∈F̂+

∑

α∈F

|Dαx̂(γ
′)|2 =

∑

α∈F∗

∑

γ′∈F̂+

|Dαx̂(γ
′)|2

=
∑

α∈F∗

‖Dαx̂‖22

=
∑

α∈F∗

‖x̂‖22

= (q − 1)‖x̂‖22 = (q − 1)‖x‖22.

Therefore, we achieve

∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

|Vyx(α, β, γ)|2 = q‖y‖22


 ∑

γ′∈F̂+

∑

α∈F

|Dαx̂(γ
′)|2

 = q(q − 1)‖y‖22‖x‖22.

which implies (5.6).

As a consequence of (5.6), we can deduce the following orthogonality relation.

Corollary 5.4. Let F be a finite field of order q and v,y ∈ CF be window

vectors. Then, for every x, z ∈ CF, we have

(5.7) 〈Vvx,Vyz〉CWP
F = q(q − 1)〈y,v〉CF〈x, z〉CF .

In particular, we have

(5.8) ‖Vyx‖2 =
√
q(q − 1)‖y‖2‖x‖2.

The following result states an inversion formula for the windowed transform given

in (5.1).

Proposition 5.5. Let F be a finite field of order q. Let y ∈ CF be non-zero
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window vector and x ∈ CF. Then

(5.9) x(τ) =
‖y‖−2

2

q(q − 1)

∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)DαTβMγy(τ) for τ ∈ F.

Proof. For x ∈ CF and a non-zero window vector y ∈ CF, define

x̃(τ) :=
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)DαTβMγy(τ) for τ ∈ F.

Let z ∈ CF be given. Using (5.7), we have

〈x̃, z〉CF =
∑

τ∈F

x̃(τ)z(τ)

=
∑

τ∈F


∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)DαTβMγy(τ)


 z(τ)

=
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)

(∑

τ∈F

z(τ)DαTβMγy(τ)

)

=
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)

(∑

τ∈F

z(τ)DαTβMγy(τ)

)−

=
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)Vyz(α, β, γ)

= 〈Vyx,Vyz〉CWP
F
= q(q − 1)‖y‖22〈x, z〉CF ,

implying

x(τ) =
‖y‖−2

2

q(q − 1)
x̃(τ) for τ ∈ F,

which yields (5.9).

Corollary 5.6. Let F be a finite field of order q. Let y ∈ CF be a non-zero

window vector with ‖y‖2 = 1 and x ∈ CF. Then

(5.10) x(τ) =
1

q(q − 1)

∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

Vyx(α, β, γ)DαTβMγy(τ) for τ ∈ F.
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In terms of the abstract frame theory, we can summarize Theorem 5.3 and Propo-

sition 5.5 as follows.

Corollary 5.7. Let F be a finite field of order q and y ∈ CF be a non-zero

window vector. The finite system

Ay := {Γ(α, β, γ)y : (α, β, γ) ∈ WPF}

constitutes a tight frame for the Hilbert space CF with the redundancy q(q − 1) and

the frame bound q(q − 1)‖y‖22.

Next theorem states an analytic property of the projective representation Γ.

Theorem 5.8. Let F be a finite field of order q. The unitary projective group

representation Γ : WPF → U(CF) is irreducible.

Proof. Let H be a non-zero Γ-invariant subspace of CF. We claim that H = CF.

It is enough to show that H⊥ = {0}. Let x ∈ H⊥ be arbitrary. Let y ∈ H be a

non-zero vector. Then for all (α, β, γ) ∈ WPF we get 〈x,Γ(α, β, γ)y〉 = 0. Thus,

using (5.6) we can write

q(q − 1)‖y‖22‖x‖22 =
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

|Vyx(α, β, γ)|2

=
∑

α∈F∗

∑

β∈F

∑

γ∈F̂+

|〈x,Γ(α, β, γ)y〉|2 = 0,

which implies that x = 0.

6. Examples. In this section, we present examples of finite fields and we study

the theory of wave packet transform over them.

6.1. The finite field Zp. Let p be a positive prime integer and F = Zp be

the prime field of order p. Thus, readily the trace map is the identity map. Then

F∗ = Zp−{0} and for 1 ≤ α ≤ p−1 the dilation operator Dα : Cp → Cp is Dαx(τ) =

x(α−1τ) for all 0 ≤ τ ≤ p− 1, where α−1 is the multiplicative inverse of α ∈ F∗ (i.e.,

an element α−1 ∈ F∗ with αα−1 p≡ α−1α
p≡ 1) which satisfies α−1α+np = 1 for some

n ∈ Z, which can be done by Bezout lemma [14, 23]. The finite wave packet group

WPp over the field Zp has the underlying set

{1, . . . , p− 1} × {0, 1, . . . , p− 1} × {0, 1, . . . , p− 1}.

Let y ∈ Cp be a window vector. Then the wave packet transform of a given vector

x ∈ Cp with respect to the window vector y (y-wave packet transform) is

(6.1) Vyx(α, β, γ) =

p−1∑

τ=0

x(τ)e2πiγ(α
−1τ−β)/py(α−1τ − β) for (α, β, γ) ∈ WPp.
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Let y ∈ Cp be a window vector and x ∈ Cp. Then

(6.2)

p−1∑

α=1

p−1∑

β=0

p−1∑

γ=0

|Vyx(α, β, γ)|2 = p(p− 1)‖y‖22‖x‖22,

(6.3) x(τ) =
‖y‖−2

2

p(p− 1)

p−1∑

α=1

p−1∑

β=0

p−1∑

γ=0

Vyx(α, β, γ)DαTβMγy(τ) for 0 ≤ τ ≤ p− 1.

Remark 6.1. Dyadic dilations of signals on the real line preserve the geometry

of signals but dilations over Cp destroy geometric properties and the localization of

signals. Dilations operators over Cp imply sculptured and permuted rearrangement of

signal or data entries. Invoking Proposition 4.5, dilation operators lead to permutation

of spectra as well. This property of dilations over Cp have recently been used in

implementation of algorithms for sparse fast Fourier transform, see [26] and references

therein.

6.2. The finite field F4. The finite field F4
∼= Z2×Z2 is the smallest finite field

which does not have prime order. It can be considered as the polynomial ring Z2[t]

over an indeterminate variable t with addition and multiplication defined module

the irreducible polynomial t2 + t + 1. That is the classic polynomial addition and

multiplication with this note that field operations (addition and multiplication) are

done module 2 and the relation t+ 1 ≡ t2 holds as well.

The finite wave packet group WP4 over the field F4 has the underlying set F∗ ×
F× F̂+. Let y ∈ CF be a window vector. Then the wave packet transform of a given

vector x ∈ CF with respect to the window vector y is

(6.4) Vyx(α, β, γ) =
∑

τ∈F4

x(τ ′)e2πit(γ(α
−1τ−β))/py(α−1τ − β) for (α, β, γ) ∈ WP4.

Let y ∈ CF be a nonzero window vector and x ∈ CF. Then

(6.5)
∑

α∈F∗

4

∑

β∈F4

∑

γ∈̂
F
+

4

|Vyx(α, β, γ)|2 = 12‖y‖22‖x‖22,

which implies the following reconstruction formula

(6.6) x(τ) =
‖y‖−2

2

12

∑

α∈F∗

4

∑

β∈F4

∑

γ∈̂
F
+

4

Vyx(α, β, γ)DαTβMγy(τ) for τ ∈ F4.
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