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The realist interpretations of quantum theory, proposed by de Broglie and by 

Bohm, are re-examined and their differences, especially concerning many-particle 

systems and the relativistic regime, are explored. The impact of the recently 

proposed experiments of Vigier et al. and of Ghose et al. on the debate about the 

interpretation of quantum mechanics is discussed. An indication of how de Brogtie 

and Bohm would account for these experimental results is given. 
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1. INTRODUCTION 

Given the volume of material that has been published on the subject of the 

interpretation of quantum theory, it is clearly not an exaggeration to claim 

that the fundamental issues remain unresolved. Many approaches to the 

interpretation of quantum mechanics and their ramifications have been 

discussed at length, but a survey of the literature reveals that the amount 

of debate devoted to those realist interpretations proposed by de Broglie (1"2) 

and by Bohm (3~ is very small. Where these latter approaches are considered 

they are often quickly rejected, either through misunderstanding or as a 

matter of taste. Furthermore, the different approaches to the interpretation 

of quantum theory proposed by de Broglie and by Bohm are frequently 

conflated, and it is part of our purpose here to reiterate the essential 

differences between them. The points of distinction are most evident in the 

description of many-body systems, in the nonrelativistic domain, and in the 

description of relativistic bosons. 

We shall first review, in Section 2, the formalism of Bohm's causal 

interpretation and of de Broglie's double solution. This shall be done in the 

nonrelativistic single-particle case since many of the fundamental problems 

of interpretation can be formulated in this simple context. In Sec. 3 we 

question the validity of the assumptions made by Bohr in formulating his 

interpretation of quantum mechanics and also the resulting limitations on 

our ability to describe quantum systems. In Sec. 4 we present a causal 

account of quantum interference and tunneling and then proceed to 

illustrate, in Sec. 5, the differences between the approaches of Bohm and de 

Broglie, using a system consisting of two particles in a harmonic-oscillator 

potential. 

The principles of the extension of these models to relativistic many- 

fermion systems will then be presented in Sec. 6. Following this discussion 

we examine, in Sec. 7, the approach to boson fields suggested by Bohm, 

applying it to a simple model of two atoms interacting with a single-mode 

scalar cavity field. The purpose of doing this is to bring out clearly the 
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way in which Bohm's quantum field theory accounts for the anticorrelation 

in the firing of two detectors interacting with a single photon field. We 

then proceed to discuss, in Sec. 8, the radically different approaches to 

relativistic boson systems proposed by Bohm and by de Broglie, including 

the problems involved in defining trajectories for relativistic bosons. 

Recently Vigier et aL (4) and Ghose et aL ~5) have each proposed experi- 

ments which they claim can elucidate the problem of the interpretation 

of quantum mechanics. The experiment proposed by the former group 

concerns neutron interferometry and that of the latter group concerns a 

single-photon anticorrelation experiment. In the last section we use these 

experiments as a basis for deliberation concerning matters of interpretation, 

making use of the foregoing descriptions of related, but simplified, model 

systems presented in Secs. 4 and 7.1. In particular, we compare the details 

of the trajectory interpretations of Bohm and de Broglie with the inter- 

pretation proposed by Bohr. 

2, REALIST INTERPRETATIONS OF QUANTUM THEORY 

2.1. Bohm's Causal Interpretation 

Formally, Bohm's causal interpretation of quantum mechanics 

arises when the substitution 

~1 = R e is/h (1) 

is made in the Schr6dinger equation 

( h 2 v 2 + t ~  =ihO~ 
- 2m 0--T (2) 

and the real and imaginary parts are separated, yielding the equations 

~+v . ( p v ) = 0  (3) 

and 

where p = tSj 2 and 

0S h 2 V2R (VS) 2 
= + - : - - -  + V (4) 

0t 2m R A m  

mv=VS (5) 
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Equation (3) expresses the conservation of probability density; this is 

interpreted as the probability density for the particle to be at a certain 

position. This probability is not inherent in the conceptual structure of 

the theory, but is a consequence of the necessary lack of knowledge of 

the precise initial particle coordinates. Equation (4) can be interpreted 

as a Hamilton-Jacobi equation, with an extra "quantum potential" 

term, Q, given by 

h 2 V 2 R  

Q =  2m R (6) 

We also have an expression for the "quantum force" due to the quantum 

potential: 

F = - V ( Q  + V) = -VV~rr (7) 

In this approach to quantum mechanics, the real existents are the 0-field 

and the actual particle position. A given initial 0-field, initial particle 

position, and Hamiltonian yield a unique individual evolution for the 

particle. The trajectories are the integral curves of (5) 3 and since S is 

determined by (2), the trajectory of an individual particle and the evolu- 

tion of its dynamical variables are determined by the development of ~. 

A single quantum-mechanical object consists of both a particle and an 

objectively real wave which guides the particle. All of the predictions of 

quantum mechanics can be accounted for in terms of a welt-defined 

conceptual scheme, and many detailed calculations have now been 

carried out demonstrating exactly how the Bohm approach works in 

spedfic cases in the nonrelativistic regime. 

2.2. de Broglie's Theory of the Double Solution 

Ideas similar to those of Bohm were first investigated by de Broglie 

in the 1920'sJ 2) According to de Broglie's "principle of the double 

solution," every continuous solution of the Schr6dinger equation, (2), has 

a corresponding singularity solution 

u(x, y, z, t) = f ( x ,  y, z, t) e es(x'y'z'')/~ (8) 

which shares the same phase as @, but has an amplitude, f ( x ,  y, z, t), 

involving a mobile singular region. The amplitude of u(x, y, z, t) is exactly 

3 John Bell, who was very sympathetic to trajectory interpretations, believed that the only 

equation necessary to these interpretations is (5). He felt that the full Hamilton-Jacobi 

theory was an unnecessary complication. 
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the same as the one for ~b except within a spherical singular region, O. The 

theoretical ideas behind Bohm's quantum potential approach and the 

Broglie's theory of the double solution are quite different and, unlike 

Bohm, de Broglie only successfully compieted his theory in the single 

particle case. 

In the theory of the double solution for a single particle, the quantum 

object consists of a physical wave in real space, given by u(x, y, z, t). It is 

the presence of the singularity in u which gives rise to the particle-like 

behavior. So, unlike Bohm, de Broglie does not have to postulate the 

existence of the particle; he provides a more natural explanation of 

the dependence of the movement of the particle on the development of the 

wave. According to de Broglie, the wavefunction of quantum mechanics is 

considered to be of statistical signification and not real since, in the many 

particle case, the wavefunction necessarily exists in configuration space. 

He considered the u-waves, in real space, to represent reality and his aim 

(which he never achieved) was to reproduce many-particle quantum 

mechanics using these u-waves. 

2.3. The Pilot-Wave Theory 

In 1927 de Broglie presented his ideas on the theory of the double 

solution in a simpler form, under the title of "the pilot-wave theory." For 

the case of a single particle, the pilot-wave theory is identical in form to the 

theory of Bohm--the wavefunction guides the movement of the particle, 

accounting for the wave-particle duality observed in quantum mechanical 

systems. We obtain the pilot-wave theory from the theory of the double 

solution in the following way: if the single particle solution for u is used 

in the Schr6dinger equation, for the region outside O, we obtain similar 

equations to those found by Bohm, i.e., (3) and (4), except that now the 

amplitude R(x,  y, z, t) is replaced by the amplitude f ( x ,  y, z, t), de Broglie's 

version of the continuity equation is 

~r.__~= _ 1 (fV2 S +  2VfVS) (9) 
~?t 2m 

de Broglie assumed that the function S(x, y, z, t) holds the same value 

everywhere on the sphere O, as do its first derivatives. The function 

f ( x ,  y, z, t), however, does not have the same value on all points of Q and 

increases very rapidly inside O. This means that if r is the route followed 

by the singularity, then (?J)'Or is greater in magnitude than f (on the surface 

O) and the ratio f/(~?f/Or) is approximately zero. Dividing (9) by -~JT~?r 



1222 Dewdney e t  a L  

and taking f/(Of/ar) = O, we obtain the displacement velocity Vr of the value 

of the amplitude f ( x ,  y, z, t) on a point on the sphere O, 

VS 
V r = - -  (10) 

m 

This equation for the velocity of the singularity is known as the "guidance 

formula." It shows that the velocity is derived from the phase S(x,  y, z, t), 

which is the same for both the wavefunction ~ and the u-wave solution (8). 

The simpler pilot-wave theory is able to avoid any reference to the u-wave 

and just assumes instead that a single particle is guided in its motion by the 

wavefunction, according to the guidance formula, as in Bohm's theory. 

3. BOHR'S INTERPRETATION OF QUANTUM MECHANICS 

In this section we discuss how the Copenhagen interpretation accounts 

for the observed behavior of quantum mechanical systems such as the 

experiment of Vigier et al., described in Sec. 9.2. In particular, we will 

demonstrate that not only are we free to choose a deterministic.description 

for a quantum mechanical system of particles, in terms of particle trajec- 

tories, but that such an interpretation of the theory provides a far more 

powerful analysis of quantum mechanical systems than is provided by the 

orthodox interpretation. 

The Copenhagen interpretation is considered by many physicists to be 

the usual interpretation of quantum mechanics. A fact which has often been 

overlooked with regard to this interpretation is that we are not forced 

by experimental evidence to adopt it; there is no need to restrict the 

description of physics to that of classical physics or to relinquish a causal 

description of the quantum domain, as is claimed by this interpretation, 

and we suggest that any interpretation which does not have to do either of 

these two things has an advantage over the Copenhagen interpretation. 

The Copenhagen interpretation is difficult to present in a clear and 

unambiguous form. This is partly because it consists of many differing 

viewpoints, the most influential being that of Bohr, but with important and 

quite distinct ideas being contributed from, among others, yon Neumann, 

Heisenberg, Born and Pauli; however, if we confine ourselves for the 

moment to the interpretation of Bohr, (6"7) it is also apparent that his ideas 

alone, although self-consistent, are vague and assume an unnecessary 

degree of restriction on the possible forms of description of quantum 

phenomena. 

Bohr proposed that (i) all unambiguous descriptions of physical 

systems must be made using the terminology of classical physics and that 
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(ii) a direct description of quantum mechanical systems is beyond the 

abilities of the classical framework. He restricted the role of physics to 

making statements exclusively about the instruments which are used in the 

preparation and observation of quantum systems, since he assumed that 

these could be correctly described by classical physics. 

Because Bohr assumed that a description of a quantum system was 

not possible without the classical measuring apparatus, he considered it 

impossible to draw any conclusions about the properties of the quantum 

system alone or to ascribe individual properties to the system, independ- 

ently of the experimental arrangement. Thus a suitably chosen measuring 

apparatus is able to provide a single, stable result for the measurement of 

a specific physical quantity (and for variables which commute with this 

quantity), but, in general, it cannot provide a measurement of all quan- 

tities. For instance, it is not possible to make a measurement of both 

particle position and momentum simultaneously, within one experimental 

set-up. According to Bohr's interpretation, reference to a physical quantity 

is only meaningful in the context of an appropriate measurement of that 

quantity, and any reference to a quantity which cannot be measured is 

meaningless. 

This means that the concept of a particle trajectory (and indeed any 

causal and continuous description of a quantum system) is meaningless, 

since no apparatus is suitable for making a measurement of both the posi- 

tion and momentum of a quantum particle. Bohr termed pairs of variables 

which do not commute, such as position and momentum, "complementary 

pairs." He asserted that the wave and particle aspects of quantum objects 

from such a complementary pair, resulting in the impossibility of describing 

the behavior of quantum systems using the concepts of "wave" and 

"particle" simultaneously. If we consider the experiment of Vigier et al., 

described in Sec. 9.2, which concerns the wave-particle duality of neutrons 

in an interferometer, this interpretation is unable to account for the inter- 

ference of single neutrons in terms of trajectories. It is meaningless to refer 

to the motion of the neutron-particle in space and time through the 

apparatus, the complete description of the experiment being contained 

in the wavefunction which provides solely a statistical account of 

measurements. 

The aim of Bohr's interpretation was to provide a consistent and 

unambiguous way of describing our interaction with quantum systems; 

however, without even demonstrating that it is necessary, Bohr has 

imposed on quantum mechanics the necessity of using classical terminol- 

ogy, and in doing so has relinquished a description in terms of cause and 

effect. The lack of, firstly, a causal description of quantum events and, 

secondly, a formal theory for the measurement process, considered by Bohr 
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to be so crucial, results in an interpretation which is difficult to understand 

and which fails to provide us with any picture of the quantum world at all. 

In the words of John Bell, (8) "vagueness, subjectivity, and indeterminism 

are not forced on us by experimental facts but by deliberate theoretical 

choice." 

4. TUNNELING AND QUANTUM INTERFERENCE 

In this section we discuss some illustrative examples of one-particle 

quantum effects. In the following, we only refer to the theory of Bohm but, 

as we have seen, in the single-particle case Bohm's theory coincides with 

the pilot-wave form of the theory of de Broglie. 

In studying Bohm's theory it is important to scrutinise explicit calcula- 

tions, in order to understand the subtle manner in which the usual results 

of quantum mechanics are recovered. For the purposes of this paper, we 

choose to discuss quantum interference and quantum tunneling, because of 

their relevance to the experiments of Vigier et al. and Ghose et aL, which 

we examine later, in Secs. 9.2 and 9.3. One practical difficulty with the 

approaches of de Broglie and Bohm is that there are very few cases in 

which particle trajectories can be calculated analytically, even when the 

velocity field is known in closed form. Furthermore, in many cases it is 

necessary to resort to numerical integration of the Schr6dinger equation 

in order to calculate the evolution of the wavefunction on which the 

trajectories depend. 

4.1. Tunneling 

In order to see how the Bohm theory accounts for the phenomenon of 

quantum tunneling, detailed calculations have been carried out (9) for the 

scattering of a Gaussian wavepacket from various potentials: Here we 

present the results for the scattering of a Gaussian wavepacket from a 

square potential barrier when the incident energy is less than the barrier 

height; the parameters of the scattering have been chosen to yield a 

transmission ratio of 0.5. Figure 1 shows a set of frames from a computer- 

generated motion picture of this process, and Fig. 2 shows a corresponding 

set of trajectories (x versus t). Note how the quantum potential modifies 

the classical square potential and allows those particles in the forward part 

of the wave packet to enter and pass through the classically forbidden 

region. One can see in this simple example that once the particle position 

and the wavefunction (the "hidden" parameters) are specified, along with 

a A computer  program and a video tape are available from C. Dewdney. 
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Fig. 1. A series of frames taken from a computer-generated motion picture, illustrating how 

tunneling occurs ion Bohm's theory. The dashed line represents the classical square potential, 

the solid line represents the effective potential, the dotted line represents the probability 

density, and the asterisks represent a set of possible particle motions (their order is 

maintained and the height in the frame represents the particle's energy). 
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NEUTRON TRAJECTORIES SINPA¢ 

Fig. 2. A set of possible particle trajectories fbr a Gaussian wave 

packet incident on a square potential barrier (represented by the 

parallel lines). 

the potential, the scattering process is described in a completely deter- 

ministic way. Whether, in an individual case, a particular particle is reflected 

from or transmitted through this potential (with acts as a beam splitter) is 

determined by its initial position in the wavepacket. The anticorrelation of 

the responses of two detectors, one placed in the path of the transmitted 

beam and the other in the reflected beam, has a simple explanation; in each 

case, the particle is actually either passed through the barrier or reflected 

from it, and so it interacts with just one detector. 

After scattering, the wavefunction is a superposition of two separating 

packet states, with two corresponding sets of trajectories. However, the fact 

that the wavefunction is in a superposition of position states does not 

imply, in the Bohm theory, that the position is not definite. Neither does 

a definite position deny the possibility of subsequent interference. Both the 

wave and the particle aspects of matter have objective significance. If two 

spatially separated components of the wavefunction subsequently have 

cause to overlap, and if no interactions have taken place, then an inter- 

ference pattern is created and the particle trajectories evolve in a manner 

consistent with this pattern. However, if the transmitted beam (for 

example) interacts with some device capable of recording the passage of 

the particle before the components overlap, then no interference wilt ensue 

on recombination of the beams. This is accounted for by the fact that 

the wavefunction of the particle-apparatus combination consists, after 
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measurement, of two orthogonal components. In this case the interference 

terms will vanish due to the orthogonality of the detector states "fired" and 

"not fired." 

In the Bohm theory, the problem of accounting for the fact that 

individual events occur in individual experiments, even when the final 

wavefunction is a superposition, is solved by the trivial assumption of the 

existence of a definite trajectory for all the dynamical coordinates of the 

system. Thus, in an individual scattering of one particle from the square 

potential, the detector in the transmitted beam will either be excited or 

remain in its ground state, depending simply on the initial coordinate of 

the particle. Of course, the system may be extended to include observers, 

their friends and so on; but each part will in fact have a definite set of 

coordinates correlated with the actual particle coordinate. 

Two points should be stressed here; firstly the statistical predictions of 

quantum theory are recovered if the initial distribution of the particles in 

an ensemble of experiments is given by [~p[2.s Secondly, it is not possible 

to control the initial position of the particle in the wavepacket so that, in 

practice, the scattering of a particle from a beam splitter cannot be 

controlled, giving the appearance of randomness. 

4.2. Neutron lnterferometry 

A simple one-dimensional model of an interferometer can be construc- 

ted by arranging for the reflected and transmitted wavepackets from the 

beam splitter, discussed in Sec. 4, to be reflected back onto the same beam 

splitter, subjecting one of the packets to a phase-shift before recombination. 

This is a valid procedure since, referring to Fig. 3, one sees that the signifi- 

cant component of the motion is perpendicular to the beam splitters. 

s Arguments have been given which show that any distribution other than I ~I 2 will decay into 

a I~] 2 distribution given certain reasonable assumptions which we shall not enter into here 

but are contained in Ref. 48. 

~ C 

ml 

Fig. 3. A diagram of the neutron interferometry apparatus. 
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Fig. 4. The effective potential (quantum potential plus 

square barrier potentail), at the last beam splitter (M3), in 

the model of the neutron interferometer. The phase shift 

between the beams is ~/2. 

T . ; 0  ' 
NEUTRON TRAJECTORIES P H S H I O  

Fig. 5. The trajectories produced when two beams, which have 

passed through the interferometer, are recombined at the last 

beam splitter (M3). There is a phase shift of n/2 between the 

beams. 
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Detailed calculations have been carried out, using the Bohm theory, 

for both spatial and spin interference. The spatial interference observed in 

a neutron interferometer has been calculated and discussed in Ref. 10 while 

spin superposition has been discussed in Refs. 11 and 12. The motion of an 

individual neutron in a spin-flip coil has also been calculated, using the 

nonrelativistic approach to spin developed by Bohm, Schiller, and 

Tiomno(13); the results are discussed by two of us in (C.D. and M.M.L.). (14) 

However, since in the experiment of Vigier et al. discussed later, both 

neutron beams have their spin inverted before recombination, the spin 

plays no role in the interference process at the final set of crystal planes, 

and we do not enter into a discussion of this part of the process. 

We show the effective potential (classical potential plus quantum 

potential) and the associated trajectories for the recombination of the 

beams at the last beam splitter in Figs. 4-7. Figures 4 and 5 are calculated 

for the case in which the phase shift is such that the two emerging beams 

have equal amplitude (i.e., a phase-shift of n/2). One sees that the effective 

potential is such that no trajectories cross the line of symmetry. This could 

be deduced without explicit calculation; since the phase must be single- 

valued, the trajectories may not cross. Clearly, there is no conflict between 

particle paths through the interferometer and the occurrence of interference 

in the Bohm approach; the quantum potential is derived from the wave- 

function which contains information about the conditions present in both 

paths of the interferometer. This means, of course, that a phase shift 

Fig. 6. The effective potential (quantum potential plus 

square barrier potential), at the last beam splitter (M3), in 

the model of the neutron interferometer. The phase shift 

between the beams is re. 

82~2~1~3 
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Fig. 7. The trajectories produced when two beams, which have 

passed through the interferometer, are recombined at the last 

beam splitter (M3). There is a phase shift of ~z/2 between the 

beams. 

applied on one path will nevertheless affect the motion of the neutron in 

the interference region, even if it passed along the path in which no phase 

shifter is present. Figures 6 and 7 show the effect of changing the phase 

shift between the beams to n. 

5. DIFFERENCES BETWEEN DE BROGLIE AND B O H M  

IN THE NONRELATIVISTIC, MANY-BODY CASE 

5.1. Quantum Statistics: Two Particles in a Harmonic-Oscillator Potential 

In order to illustrate the manner in which Bohm's theory works in the 

many-body case, and to bring out the difficulties associated with the de 

Broglie program, we present here a brief description of a system of two 

noninteracting particles moving in one dimension, both subject to a 

harmonic-oscillator potential. (ls'16) We shall see that, after specifying the 

particle positions and the forces acting on them, 6 the motion of the system 

is not determined unless we also specify the initial wavefunction. The 

6 Along with particle momenta these initial conditions would be sufficient to determine the 

motion of the system according to classical mechanics. 
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wavefunction determines the momenta through Eqs. (11). It is the many- 

particle wavelunction that determines the additional quantum forces acting 

on and between the particles and hence, unlike classical potentials, we see 

that the quantum potential is not a pre-assigned function of position. The 

quantum state determines the motion of the particles in the system. 

Evidently this feature has no counterpart in classical physics. 

The extension of the Bohm theory to the nonrelativistic many body 

case is straightforward. The essential equations--the guidance formulas-- 

a r e  

mlv l  = VIS(1, 2) 
(11) 

m2v2 = V2S(1, 2) 

with ~h(1, 2)=R(1,  2)e  is(~'2)/h. Evidently, the velocity of either particle 

many depend on the coordinates of both, and hence the theory is nonlocal. 

Returning to our chosen example, we want to be able to discuss the 

motion of the two particles under those circumstances in which they are 

initially placed at separate locations in the harmonic-oscillator potential. 

To this end we construct two coherent wavepacket states, ~,~(x, t) and 

Oh(X, t), and arrange these so that initially the overlap is very small. Here 

they are initially centered on opposite sides of the potential, at x, and Xb, 

respectively and x~ is chosen to be equal to -xb .  As is well known, it 

is then possible to write three alternative two-particle wavefunctions, 

depending on particle distinguishability and symmetry; 

O,,,B= ~M~,~Oo(xl, t)Oh(x2, t) (12) 

q~B~ = ~ [ O o ( x l ,  t)Ob(x~, t)+ ~,~(xl, t) Oo(x2, t)] (t3) 

0,~ = ~[4,a(x~, t)O~(x~, t)-O~(x~, t)0~(x2, t)] (14) 

where the ~'s are the normalization coefficients. 

All three wavefunctions evolve deterministically and locally in the 

configuration space spanned by Xl and x2. The evolution of the probability 

density with time, for ~bM~, is shown in Fig. 8. The initial and final forms 

for the probability density for ~b~e and ~FD a r e  identical and are shown in 

Fig. 9. The forms of the probability density, for ~bne and ~bFO, when the two 

initial packets in configuration space completely overlap, are shown in 

Figs. t0 and 11, respectively. We see that the two components of the 

wavefunctions given in (13) and (14) form initially separated packets in 

configuration space, which subsequently overlap, each producing an inter- 

ference pattern. The difference between the phases of these two patterns, for 
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Fig. 8. The evolution of the configuration-space 

probability density for ~b~B. 
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Fig. 9. The initial and final form for the configura- 

tion-space probability density for ~bBe and ~bFD. 

~bBE and ~7~, is 7"g, 7 Figures 12, 13, and 14 show the configuration space- 

time trajectories for ~bMB, ~beE, and ~brD, respectively. The individual 

particle trajectories are given by projecting the configuration-space trajec- 

tories onto the individual particle axes. In Figs. 15-17 we show a set of real 

space trajectories associated with the configuration space trajectories; for 

clarity we just plot those for which xl = 2.5 while x2 = -2.5, -3.0,  and 

-3.5.  Note that, for the wavefunctions ¢;BE and ~bFD, the specification of 

the initial position of a given particle is not sufficient to determine its 

motion. Figures 16 and 17 show that the trajectory of particle one splits 

7 Indeed, one could put x 1 ~ x and x2 ~ y and view the evolution as that of a single-particle 

two-dimensional superposition wavefunction. 

Fig. 10. The configuration-space probability 

density for ~se, when the wavepackets in con- 

figuration space completely overlap. 
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Fig. 11. The configuration-space probability density 
for ~FD, when the wavepackets in configuration space 
completely overlap. 

into three in the region where the wavepackets overlap. Which actual tra- 

jectory particle one occupies, in a given case, depends on which trajectory 

particle two follows; that is to say which is the corresponding configuration 

space trajectory. This is a general feature of Bohm's theory; which trajec- 

tory is actually realized, in a particular instance for a given particle, 

depends not only on its own initial position, but also on the initial 

positions that occur for the other particles, the initial configuration-space 

wavefunction, and the Hamiltonian of the system. These global dependen- 

x 2  

2 

- 2  0 . . . . . . . . .  

t 

x l  

.... / 

Fig. 12. Configuration space/time trajectories 

for Cio'  
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3 

t 

-2 xl 

Fig. 13. Configuration space/time trajectories 

for ¢~E. 

ces ensure that the Bohm theory is naturally both contextual and nonlocal. 

Since the theory has these features, the major no-hidden-variables theorems 

do not apply. (17) 

The particle trajectories are thus nonlocally correlated, and this non- 

local correlation may be accounted for, in real space, by the action of the 

nonlocal quantum potential. In this case it can be seen that, in the Bohm's 

theory, nonlocality only arises when the system's wavefunction is not 

factorizable. It can also be seen that when ~a and ~b do not overlap, the 

3 

t 

-2 0 

Fig. 14. Configuration space/time trajectories 

for CFD. 
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x 

3" 

2" 

1" 

t 

-1" 

-2"  

-3"  

Fig. 15. Trajectories in real space for ~Ms, with x1=2.5, 

x2= -2.5, -3.0,  and -3.5,  at t=0.  

particle trajectories develop locally. Thus, in this situation, Bohm's theory 

attributes nonlocality only in those circumstances in which it is usually not 

possible to say that the particles are separated. 

5.2. Waves in Real Space? 

The Bohm theory works, in the many-particle case, using a configura- 

tion-space wavefunction and not with individual-particle waves in three- 

dimensional space. One could introduce such waves in three-dimensional 

space by considering a section through the system configuration-space 

wavefunction, defined by the actual coordinates of all the particles except 

the one under consideration. This wavefunction, so defined, would then 

x 

I I I I I t 

i 
Fig. 16. Trajectories in real space for ~BE, with x1=2.5, 

x2= --2.5, --3.0, and -3.5,  at t=0.  
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-1- 

- 2 -  

-3 -  

x 

Fig. 17. Trajectories in real space for ~FD, with x~=2.5, 
x2= -2.5, -3.0, and -3.5, at t=0. 

evolve in a nonlocal and nonlinear manner; however, such a construction 

could only be performed in practice, a posteriori. The main point is that if 

one insists that both particles and waves must be in three-dimensional 

space, as did de Broglie, then it is possible to do so; but the price to be 

paid is that the waves will evolve both nonlocaUy and nonlinearly. Selleri 

et aL wish to define waves with just these properties ("Selleri-de Broglie" 

waves). They postulate that these waves exist in three-dimensional space 

and also insist that the equation they obey should be local. In this case, of 

course, the predictions produced by their theory will not reproduce those 

of quantum mechanics. 

6. RELATIVISTIC FERMION SYSTEMS 

In the following three sections we present the extension of the 

approaches of Bohm and de Broglie to the relativistic regime. In this 

section relativistic fermions are discussed and, in Secs. 7 and 8, the 

situation for bosons is considered. As far as relativistic fermion systems are 

concerned, both de Broglie (2) and Bohm (~8) generalize their approaches 

to the Schr6dinger equation to include the Dirac equation, in a straight- 

forward manner. Bohm does not develop a full Hamilton-Jacobi type 

description for the Dirac equation--he simply defines a guidance formula, 

which is the approach followed here; whereas de Broglie does develop the 

relativistic Hamilton-Jacobi approach. 

In this section some simple illustrative examples are used to bring out 

the interpretation of spin angular momentum in Bohm's approach to the 

single-particle Dirac equation. We first consider single plane waves and 
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note the absence of a spin current. Then the manner in which the spin 

current becomes apparent is examined for the case in which a wave packet 

solution is formed. 

6.1. Dirac  Trajectories 

From the single particle Dirac equation, 8 

(i~--m)~b = 0  (15) 

where Feynman "slash" notation, 

¢ --- a . ~ .  

is used, and y,  are the usual Dirac matrices, it follows that there is a 

conserved current density, whose time component is positive definite. It is 

defined by 

j " = ~ 7 . 0  (16) 

and 

Ouj~=0 (17) 

where ~ ~ O,yo. Bohm(lS) defines the velocity of the particle as 

J ~ 0  
v jo 0'@ (lS) 

It is well known that the Dirac current can be decomposed into two parts, 

according to the Gordon decomposition. One part is associated with 

motion associated with a gradient field, while the other is a non-zero-curl 

circulatory (or spin) contribution. In the Bohm picture, this leads to the 

idea of the Dirac electron as a point-particle following a trajectory which 

has an overall translatory component and an additional circulation. Thus, 

in this approach spin is not an intrinsic property thought to arise from the 

rotation of an extended particle about its axis, as proposed in the applica- 

tion of the causal interpretation to the Pauli equation by Bohm, Schiller, 

and Tiomno. (13) The model proposed for the Dirac equation can also be 

applied to the Pauli equation, considered as a low velocity limit of the 

Dirac equation. (19) 

8 In all that follows, h = c = 1. 
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For the purposes of illustration, only positive energy solutions (and 

superpositions thereof) of the free, single-particle Dirac equation will be 

considered. 

6.1.1. Plane Wave Solutions. Positive-energy, plane-wave solutions of 

the Dirac equation, of wavenumber k and with an energy E, can be written 

using the usual four-vector notation 

where 

and 

~(x) = e-ikXu~)(k) (19) 

u(')-~/2m(E+rn)tkk3ik2) 

t ° ) u~2) - 1 E+m 

x/2m(E + m) ~kl- ik2 

\ -k3 

The two solutions, u (1) and u (2), represent plane waves travelling in the 

direction k, with spin up and spin down, respectively, along a z axis. It is 

readily shown that for plane waves the guidance condition (18) yields 

k 
v = - (20) 

E 

for either u °~ or u {2). It can be seen by inspection that v ~< 1 (recall that 

E 2 -  k2=  m2). Hence the velocity of the Dirac particle will always be less 

than or equal to the speed of light, for plane waves. Evidently a 

Schr6dinger ~3) particle, 9 for which v = k/m, is not limited to a velocity less 

than c. 

For  a plane wave, then, the velocity term contains only a translational 

component and no circulation. These results may at first seem surprising 

since a Dirac particle, with a plane wavefunction and definite spin in some 

direction, actually has no spin component to its motion at all. Yet plane 

was are an abstraction, and a careful analysis of the process of measure- 

9 Which is also associated with a positive-energy plane wave. 
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ments of a spin component, using a Stern-Gerlach (SG) apparatus, shows 

that consistency with the usual results of quantum mechanics is obtained. 

In order for the SG apparatus to provide an unambiguous result, the 

quantum state must have the form of a spatially limited packet, which is 

achieved by the presence of a suitable slit at the entrance to the SG field. 

The interaction with the inhomogeneous magnetic field in the SG device 

then imparts an opposite momentum impulse to each of the components, 

u (1) and u (2) (assuming the SG to be aligned along the z-direction). If the 

two eigenstates of the spin are to separate spatially, it is necessary that the 

two packets separate more rapidly than they spread. This would not be 

possible for a single electron, but if the electron were an outer electron of 

a silver atom, then the large associated mass would ensure a spreading 

which was slower than the separation of the packets. After interaction with 

the SG field, the quantum state consists of two spatially separated packets, 

each associated with one component of the spin. 

The form of the velocity will now be considered, along with the 

associated trajectories for laterally limited solutions obtained by superposi- 

tion of solutions (19). de Broglie (2i demonstrates, using the example of 

Wiener fringes, that superpositions of waves in interference regions yield 

superluminal velocities near the interference minima. This occurs not only 

in the nonrelativistic theory, but also in his approach to the Klein-Gordon 

equation (see Sec. 8). In the Dirac theory, the velocity is always 

subluminal. 

6.1.2. Superposition of Plane Waves. Consider the following solution 

to Dirac's equation 

O(x) = e-ikXu(1)(k) + Re -ik" Xu(l)(k') (2t) 

consisting of a superposition of two plane waves, with a ratio of amplitudes 

R, both with spin along the z (or 3) axis and travelling in directions k 

and k'. 

The Gordon decomposition of the current density yields 

mj = (1 + r cos 0)k + (R ~ + r' cos 0)k' + (r sin Ok - r' sin Ok') x e3 (22) 

where 0 = ( k -  k ' ) .  x, r = R[(E '  + m)/(E + re)I, r' = R[ (E  + m)/(E'  + m)] 

and ~3 is the unit vector parallel to the z-axis. The probability density is 

also easily calculated as 

R cos 0 
mp=mj°=E+R2E'+x/(E, m)( :(k.k'+(E'+m)(E+m)) (23) 
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According to (18), the velocity has two components--one translational and 

the other of "spin." In this case, again, the spin term is not associated with 

any rotational motion, but is linear in a direction perpendicular to (k. k') 

and ~3. For the special case where k =  - k ' = k 3 ~ 3  and hence E=E' ,  the 

Dirac velocity is given by 

j (1 -- R2)k3~3 
v - - - (24) 

p ( 1 - R  2)E+2mRcosO 

It is interesting to note that the density has no nodes when R =  1, 

and that the velocity is (as it must be) subluminal, whereas for i f (x)= 

e - i(Et- k3~) + R e - i(et + k3~) the Schr6dinger guidance formula (3) yields 

1 t~S (1 - - R 2 )  k3~3 
v = -- - (25) 

mt3z m ( l + R  2 + 2 R c o s 0 )  

In the Schr6dinger case, the velocity can become arbitrarily large in the 

regions where p ~ 0 (if R = 1, p can be zero). This, of course, is not 

problematic in a nonrelativistic theory. Even in the low-energy limit of the 

Dirac equation, where relativistic effects may be thought to be unimpor- 

tant, it can be seen that the relativistic corrections to p, evident in the 

denominator of (24), play an important role in ensuring subluminal 

velocities by their alteration of the behavior of this equation in the limit. 

Thus it is important, from the computational point of view, to use the 

Dirac theory for trajectory calculations even in cases for which relativistic 

effects are usually considered unimportant. 

Consider now the case in which a particle moves in the z-direction, 

but has a wavefunction limited in the x-y plane. Ideally, a single 

wavepacket solution should be used, but here a superposition of just four 

plane waves is considered. 

4 

~k(x)= ~ e-ik~"~Xu~l)(k ~"~) (26) 
n=l  

This produces an infinite rectangular array of packets in the x-y plane. For 

the purposes of illustration it is assumed that the energy, E = k~o ") = 2, is the 

same for each wave, along with the z-component of the wavevector of each 

wave, k (n), which is taken to be zero. The other components of the wave- 

vectors are taken to be k]l)=k(2')= 1, k~2~= -k(22)= 1, k] 3)= -k(23)= -1 ,  

and ,~lz~(4)-t~(4)---2 - -1 .  Figure 18 shows that the form of the probability 

density in the x-y plane is time-independent and possesses an infinite 

number of localized peaks. The velocity, which is always in the x-y plane, 

can be calculated from (18) and integrated numerically to give a set of tra- 
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Fig. 18. Probability density, ~ t ~ ,  according to the Dirac 

equation, for a superposition of four plane waves travelling 

in each sense of two perpendicular axes in the x-y plane. 

jectories. A set of trajectories is shown which has different initial positions 

along the x-axis and which is associated with just one of the probability 

density peaks. 

Figure 19 shows a set of trajectories for the case in which the 

z-component of each wavevector is zero. It shows that the particles perform 

a circulatory motion. Figure 20 shows how the trajectories evolve in space/ 

time.t° In this case there are a set of nodal lines for the velocity, forming 

a grid in the x-y plane. 

It has been shown that, insofar as the Dirac equation can be treated 

as a single-particle equation, Bohm's theory gives a consistent interpreta- 

lo Figure 19 is the view from the "top" of this figure. 

1 

0 . 5  

>" o 

- 0 . 5  

-1 

-1 - 0 . 5  0 . 5  1 

x 

Fig. 19. A set of trajectories associated with the super- 

position of four plane waves travelling in each sense of 

two perpendicular axes in the x-y plane. 
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Fig. 20. Evolution in time of the tra- 
jectories associated with the super- 
position of four plane waves travelling 
in each sense of two perpendicular 
axes in the x-y plane. 

tion in terms of particle trajectories. Bohm and Hiley have indicated (19) 

that the extension to the many-particle case can be carried out consistently, 

and they have also discussed the question of relativistic invariance within 

this approach. The application of the two-particle Dirac equation to the 

EPR spin-correlation experiment will be discussed by us, in detail, in a 

forthcoming publication. 

7. BOHM'S  Q U A N T U M  FIELD THEORY FOR BOSONS 

Bohm first outlined the essential details of this approach to quantum 

theory in 1952, in the appendix of his paper "A suggested interpretation of 

the quantum theory in terms of hidden variables II. ''(3) More recently, 
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further details of this approach have been given by Bohm, Hiley, and 

Kaloyerou, in the context of a scalar field ~(x, t). (2°) 

In Bohm's quantum field theory (BQFT), the field is always well 

defined and it evolves according to a deterministic, but nonlinear and non- 

local, field equation. Given the initial form of the field, the super-wave- 

function, ~(~), and the Hamiltonian, BQFT provides a continuous and 

deterministic description of the development of the field, if(x, t). As in the 

case of quantum particle systems, the causal interpretation of quantum 

fields shares the observed results of the orthodox theory, but has the 

advantage of possessing a well-defined model of individual physical systems 

in all contexts and, of course, the theory does not depend on the existence 

of an observer for its interpretation. The consistency of the predictions of 

the causal interpretation of quantum fields with those of the usual theory 

can be demonstrated through a discussion of the measurement process. 

This process is essentially the interaction of the field with matter, and it is 

also in this situation that the particle nature of the field is observed. 

Here we shall briefly review the framework of the approach of Bohm 

et al. for the case of a real, massless scalar field, ~(x, t), confined to a one- 

dimensional cavity, extending between x = 0 and x = L (we shall put h = 1 

and c = 1). The boundary conditions require that the field be zero at x = 0 

and x = L, so that the normal modes of the field in this cavity are 

~k(X) = sin kx  (27) 

An arbitrary state of the field may then be written as 

q~(x, t) = ~ qk(t) sin kx  k = -~-, n = 1, 2,... (28) 
k 

As is well known, the classical equation of motion for each coordinate, qk, 

of the field is 

C~2qk 
8t 2 + k2qk = 0 (29) 

This is the equation of motion for a harmonic oscillator of coordinate qk, 

frequency co = k, and mass m = 1, so the field can be represented by an 

infinite set of harmonic oscillators each obeying Eq. (29). The set of 

oscillators is quantized by the introduction of a Schr6dinger equation, 

termed by Bohm et aL the super-Schr6dinger equation: 

i h ~ (  .... qk ..... t) 2 k -- Oq---~g + k2q~ ~(  .... qk,'", t) 

It is this equation which governs the behavior of all field oscillators. 

(30) 
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The usual interpretation of the wavefunction, g*(..., qk,..., t), is simply 

that I gtl 2 gives the probability density for "finding" a particular set of qk's. 

To obtain a causal interpretation for the quantized field we write, just as 

is done for the case of quantum particle systems, 

7*( .... qk ..... t) = R( .... qk ..... t) exp(iS(..., qk,..., t)) (31) 

where R and S are real and g* is a function of a configuration space of 

infinite dimensions, which is spanned by all the oscillator coordinates. One 

finds, by substituting this form of g* into the Schr6dinger equation, that 

-~7+ 2 ~ +kZq2 2 k R~ Oq 2 - 0  (32) 

at k ~q~l  Oq~d=0 (33) 

where P =  I~ul 2. Taking Eq. (32) as the Hamilton-Jacobi equation for the 

field, ~b(x, t), implies that OS/Oqk is the rate of change of qk. However, there 

is an additional energy term, not present in the classical equation, which is 

termed the super-quantum potential 

1£L  e 
Q =  - 2  k Rk aq 2 (34) 

If OS/Oqk is taken as the rate of change of the mode coordinate qk, 

then Eq. (33) expresses the conservation of probability. If it is assumed 

that, at some point in time, the probability density P =  I~] 2 gives the 

actual distribution of the coordinates qk in an ensemble, then P will 

continue to give the distribution for all subsequent times. 

In general the field itself, ~b(x, t), is the "hidden variable" (or beable), 

but within this normal mode formulation the mode coordinates ..... qk ..... 

may be thought of as the "hidden variables." Each qk has a well-defined 

value and therefore, according to Eq. (28), the field ~b(x, t) is also well 

defined. Each coordinate, qk, evolves according to 

~ =  Hk(t) = ( , 
aS 
~q ... qk ..... t) (35) 

so that its motion is determined in the configuration space spanned by all 

the cavity coordinates . . . . .  qk ..... Given the initial values of the mode 

coordinates (the set of which is referred to collectively as the initial "system 

point" in configuration space) and the initial wavefunction for the system, 

gq..., qk,...), the trajectory of the system point is determined, and it is this 

trajectory which determines the evolution of the field ~b(x, t) in real space. 

825/22/10-4 
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Evidently, in this approach there are no photon trajectories and the 

"photon" itself is simply an excitation of a field mode. Instead there are 

well-defined quantum fields which evolve continuously and deterministi- 

cally, according to Eq. (35). The particle-like aspects of the field arise as a 

result of the influence of the super-quantum potential on the evolution of 

the system point, as the field interacts with matter. Bohm, Hiley, and 

Kaloyerou have discussed this in a general way, and two of us (M.M.L. 

and C.D.) have carried out detailed modelling for cavity fields/21) 

Next we take the discussion further, in order to explore the nonlocality 

involved in the anticorrelation between two atoms interacting with a single 

photon field. At first sight it would seem that a theory based on boson 

trajectories would give a simple and intuitive description of the anticorrela- 

tion, since a localized photon on a trajectory could only be in the vicinity 

of one detector (atom). It is fascinating to see that the observed results can 

be recovered deterministically and causally using extended, but welt-defined 

fields. 

7.1. Anticorrelation between Two Atoms in a One-Photon Field 

In this section we illustrate how Bohm's causal field theory can 

provide a deterministic account of the results of the experiment proposed 

by Ghose e t  al . ,  which is described in Sec. 9.3 and illustrated in Fig. 21. The 

key feature of this experiment is the anticorrelation observed between the 

firing of two detectors, C1 and C2, placed in a one-photon field. 

The energy of a quantum field, at a particular point in space, is 

measured by allowing the field to interact with a detector (i.e., matter) 

placed at that point. This interaction creates a correlation between the 

S 

Fig. 21. Experimental arrangement of the anticorrela- 
tion experiment of Ghose et al. 
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state of the field and the state of the matter, allowing us to deduce the 

former, at a particular moment in time, from the result of a measurement 

performed upon the latter. 1. Measurement of the energy of a quantum field 

yields discrete spectra of values; for example, photon counts are detected 

by a photomultiplier tube, placed within a quantum field. 

A simple model of the detection of a one-photon field is provided by 

the example of a single-mode field, which is coupled for a certain period of 

time to a two-level atom, with a subsequent observation of the state of 

the atom. This observation is made through the use of a measurement of 

the atomic momentum. If the momentum of the atom corresponds to the 

excited state, then the field is assumed to have transferred its quantum 

of energy to the atom. Alternatively, it the momentum of the atom 

corresponds to the ground-state eigenvalue, the field is assumed not to 

have lost any energy. Extending this idea further, the experiment of Ghose 

et aL can be modelled by using a system of two identical two-level atoms 

both coupled, for a period of time, to a single-mode one-photon field in a 

cavity (but not coupled to each other). After the period of interaction, each 

atomic electron is released from its confining potential and the time taken 

for each to reach a fixed detector is observed. From the momentum 

measurement of either atom, the state of the field may be deduced. 

An atom is represented in this model by a single electron confined 

within an infinite well of width L = lr, and the field mode is represented by 

a harmonic oscillator of mass 1. Here we ignore the parts of the super- 

wavefunction which represent all other field modes, since these vacuum 

state modes are not entangled with the mode coupled to the atoms and so 

develop independently from it. The angular frequency associated with the 

field-mode, co, is taken to be precisely that frequency associated with 

the transition between the ground level and one of the excited levels of the 

infinite well, enabling us to treat each atom as a two-level system. The two 

atoms are coupled to the field by interactions of the form 

Vi = q sin(xxi + ~i) (36) 

where atoms 1 and 2 are labelled by i = 1 and 2, respectively. In Eq. (36), 

q is the coordinate of the field mode, x is the wavevector of the mode, and 

~b~ and ~bz are phases which depend on the position of each atom in the 

cavity. Although the atoms are considered to be in different regions of the 

cavity, it is assumed that the dimensions of the atoms, and their separation, 

are small in comparison with the wavelength of the field and that the sizes 

of the interaction of each atom with the field are approximately equal, 

n Two of us (C.D. and M.M.L.) have already modelled the measurement of energy for matter 

interacting with a classical field3 m 
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allowing us to put ~b 1 = ~b 2 = 0. Without the presence of the interaction, the 

field-matter system is triply degenerate, and the effect of the coupling of 

the atoms to the field can be found using degenerate perturbation theory. 

If the ground and excited-state wavefunctions of the two atoms are atoms 

are denoted by ~bo(Xi,2) and 0~(x1,2), respectively, and the ground and 

first-excited states of the mode oscillator are represented by Oo(q) and 

01(q), then the three degenerate levels are 

U1 = 01(q) 00(xl) tPo(X2) 

U2 = Oo(q) O1(xl) Oo(X2) 

U3 = Oo(q) Oo(Xl ) O 1(x2) 

If the system is in the state Ul(x~, x 2, q) at t=O, then the subsequent 

development of the system wavefunction during the period of interaction is 

given, from degenerate perturbation theory, by 

gt(xl, x2, q, t) = UI(xl,  x2, q) cos f2t 

i 
- x/~ sin Ot[ Uz(xl, x2, q) + U3(xl, x2, q)] (37) 

where £2 depends on the overlap integrals between the unperturbed states, 

for the interaction Vi. When f2t is an integer multiple of rc (case A), the 

system is entirely in the state U1. This is normally interpreted as corre- 

sponding to an excited field and two unexcited atoms since, at this time, a 

measurement of the energy of each atom will yield the ground-level eigen- 

values. When f2t is a half-integer multiple of rc (case B), the system is in a 

superposition of the states U2 and U 3. This is usually interpreted as corre- 

sponding to a de-excited field and either atom 1 or atom 2 being excited, 

since if a measurement of momentum is performed on both atoms at this 

time, one of the atoms (the probability of it being atom 1 or atom 2 is 

equal) will be observed as having the ground level energy, while the other 

will have the momentum eigenvalue corresponding to the excited state. The 

wavefunction of the two atoms, for these values of time, is 

gt(xl, x2, q, t) = +-~22 [U2(Xl, x2, q) + U~(xl, x2, q)] (38) 

which is an entangled state involving the two separated atomic systems, i.e., 

the type of wavefunction required to observe EPR-type correlations. 

For all other values of t, the system wavefunction is a superposition of 

the two states corresponding to cases A and B, and observations associated 
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with either case are made with probabilities that vary as a function of time, 

as given by Eq. (37). For these values of time, it is not possible, in the usual 

approach, to give any description of the behavior of the field or the atoms. 

The most complete description of the quantum system, which can usually 

be given, is in terms of the probability of a quantum of energy being 

detected at a given position and time, and this is provided by the system 

wavefunction. 

The causal interpretation of quantum fields is able to provide, in addi- 

tion to this statistical description, a precise account of the development of 

a well-defined quantum field, along with a unique trajectory for the matter 

with which the field is interacting, and it can provide this for all t imes-- 

before, during, and after measurement. As in the usual theory, the descrip- 

tion of the causal theory is in terms of the field-matter wavefunction, which 

exists in the configuration space spanned by xl,  x2, and q, but unlike the 

usual theory it assigns a precise value for the field coordinate and the 

positions of the atomic electrons. 

The coordinates of the system, Xl, x2, and q, are collectively referred 

to as the "system point." The probability of the system point possessing 

a certain value, at any time t, is given by the usual probability density 

P(X1, X2, q, t ) =  I~-/(Xl, x2, q, 012 of quantum mechanics, which usually 

only provides the probability of measuring this value. 

We consider a period of coupling between the field and the two atoms 

of ~/2f2, at the end of which the state of the system is a product of a field 

wavefunction and an entangled wavefunction for the two atoms. Figure 22 

shows how the probability density varies between the time period t - -0  and 

t = ~z/2f2, as a function of the variables Xl, x2, and q (regions of probability 

density above a certain value are filled with dots). The excited level of the 

two-level atoms is taken to be the first-excited state of the infinite well, as 

the use of this state produces the least complicated motion. At t = 0, there 

are two regions of high probability density, localized around (xl, x2, q)-- 

(1.57, 1.57, _+0.56), respectively, and at t = ~z/2f2, there are two maxima of 

probability, centered about (0.79, 0.79, 0) and (2.36, 2.36, 0). 

Using Eqs. (5) and (35), the trajectory for a given initial system point 

may be calculated. Figures 23a and 23b show sets of possible trajectories 

for the time period t = 0 to ~z/2£2. In Fig. 23a, there is a set of six trajec- 

tories, which divide into group (i) trajectories, with an initial value of q of 

0.46 and group (ii) trajectories, with an initial value for q of 0.66. Within 

each group there are three initial values for (Xl, x2), and these are (1.47, 

1.47), (1.47, 1.67), and (1.67, 1.47). The figure clearly shows that group (i) 

trajectories enter the area occupied by one of the final maxima of proba- 

bility density, whereas group (ii) trajectories enter the other maximum. 

Due to the symmetry of the system, the set of trajectories, with their initial 
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system points centered about (xl ,  x2, q) = (1.57, 1.57, -0 .56) ,  behaves in a 

very similar fashion, as shown by Fig. 23b. 

The behavior of the quantum field and the two electrons, in real space, 

is given by the projection of the system point trajectory onto the axes, 

q, xl ,  and x2, respectively. Figure 24 shows the projection of the system 

trajectories of Fig. 23a onto the xl axis; this is identical to its projection 

field 

x2 x2 

field 

field 

(a) (b) 

x2 x2 

field 

(c) (d) 
x2 

field 

(e) 

Fig. 22. Evolution of the probability density for two interacting with a single- 
mode field, between times t = 0 and t = 7z/2f2. 
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~[2~ i~ z 
1~q./'1. "2< ............ ~ZJ" 

0.5 0.2 

-0.25 -0.5 ~... 

1.5 1.5 

(a) (b) 
Fig. 23. Configuration-space trajectories, between times t = 0 and t = ~/2£2, for two atoms 

interacting with a single-mode field; with the system-point values initially Centered about 

(xl, x2, q) = (1.57, 1.57, 0.56) (a) (1.57, 1.57, -0 .56)  (b). 

onto the x 2 axis. Figure 25 shows the projection of the configuration-space 

trajectories onto the q axis, and this shows that trajectories with the initial 

points (q, 1.47, 1.67) and (q, 1.67, 1.47) are identical to each other, but 

different from the trajectory with initial point (q, 1.47, 1.47). These 

projected trajectories demonstrate that the behavior of each part of 

the system depends not only on its own initial coordinate, but also on 

the initial coordinates of all other parts of the system, regardless of the 

separation between the parts, reflecting the explicit nonlocality of the 

theory. 

2 . 2  

xl. 8 

1.6 

1.4 

1.2 

I 

0 0.25 0.5 0.75 I 1.25 1.5 

time 

Fig. 24. Projection onto the x l (or x2) axis, of the con- 

figuration-space trajectories, for two atoms interacting with 

a single-mode field, with the system-point values initially 

centered about  (1.57, 1.57, 0.56). 
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0 0.25 0.5 0.75 I q.25 1.5 

time 

Fig. 25. Projection onto the q axis, of the configuration- 
space trajectories, for two atoms interacting with a single- 
mode field, with the system-point values initially centered 
about (1.57, 1.57, 0.56). 

After the period of interaction, the field and the two atoms are 

decoupled and the final part of the detection process takes place; this is 

the performance of a momentum measurement on each atom. One way of 

observing atomic momentum is by removing the infinite potential con- 

taining the electron, which causes the spatial separation of the wave- 

function into a superposition of orthonormal eigenfunctions of the atomic 

momentum. The position of the electron, after the spatial separation of the 

eigenfunctions, is correlated with the measured value of momentum. The 

decoupling and the removal of both atomic potentials occurs at time 

t = n/20, when the wavefunction is a product of two wavefunctions--one 

for the field and one for the two atoms. After this point in time, the 

development of the field is independent from that of the atoms, and the 

final part of the detection of the field quanta may be modelled using 

the two-atom entangled state alone, which at t = n/2f2 is 

( ; 0 x l , x2 , -~  =-~[01(Xl)Oo(xj+Oo(Xl)Ol(xJ] (39) 

If the energies of the two atomic levels are of suitable relative magnitudes, 

then, after the removal of the infinite potentials, the different momentum- 

components of the two-atom wavefunction will separate, as was 

demonstrated in a previous paper (14) by two of us (C.D. and M.M.L.). In 

this paper, we modelled the measurement of the state of an electron 

confined within an infinite 1D potential well, undergoing a transition 

between its ground and third-excited states, using the nonrelativistic causal 
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theory. The transition was caused by an interaction with an unquantized 

field, at the resonant frequency for that transition. 

The observed state of the electron (either the ground or the third 

excited) was deduced from a measurement of momentum, performed 

halfway through the transition, when the system wavefunction was a super- 

position of the ground and third excited states. On removing the infinite 

potential well, the wavefunction for the atom initially ran out in each of the 

directions, + x  and - x ,  and then separated into three wavepackets; two 

moving outwards from the center, associated with the higher-energy com- 

ponent, E3,  and the third (as yet unseparated) in the center, associated 

with the ground-state energy component, Eo, (see Fig. 26). The electron 

was guided by the quantum potential, so that, as the three packets 

. × -  , × 

Fig. 26. Evolution of the probability density after the 

removal of the confining potential for a single two-level 

atom. The wavefunction is initially a superposition of the 

ground and third excited states of the infinite well. 
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separated, it was positioned within one of the packets and subsequently 

remained localized within that packet. The trajectory of the electron was 

shown to depend on its position at the point of the removal of the poten- 

tial. A particle detector, placed some distance from the origin of the well, 

detected different times-of-flight for the electron, depending on which 

packet it eventually became associated with. 

It is interesting to note that if the semiclassical treatment, given in 

Ref. 14, is extended to the case of two atoms interacting with a single-mode 

cavity field, then the quantum state of the atoms remains a simple product; 

no anticorrelation can be encompassed by the semiclassical description. 

Here, in the fully quantized description, the overall state of the two atoms 

becomes entangled through the interaction with the single-photon field. 

In order to illustrate the momentum measurement, we now choose the 

upper atomic levels to be the third excited state of the infinite well (of 

energy E3) , rather than the first excited state, to ensure complete spatial 

separation of the eigenfunctions of momentum. Figure 27 shows the prob- 

ability density for the two-atom entangled state, at the end of the period of 

interaction between the field and the atoms. The probability density not 

only represents the probability of the system particle being detected at a 

point (xl, x2), as in the usual interpretation of the theory, but here it also 

gives the probability of the electrons being at that point. We can deduce, 

3 

2 
0 

x l  2 

3 ~0  

Fig. 27. Probability density for the two-atom entangled state at 
the end of the period of interaction with the single-mode field, at 
time t = ~/2~. 
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from the single two-level atom case, that the wavefunction of the two-atom 

system, some time after the removal of the infinite potentials, is given by 

Z(Xl, X2, t ) =  --@0(X2, t)[l~t1(Xl, t )L-~ - ~II(Xl, /)R'] 

-¢o(X l ,  t)[Ol(x2, t )c+Ol (x2 ,  t) R] (40) 

where L and R denote two spatially separated wavepackets, moving in 

opposite directions. This wavefunction has a probability density of the form 

p ( X l ,  X2,  t)  = [I//I(X1, t )  L ff/0(X2, t)] 2 + [I//I(Xl, t )  R I/Io(X2, t)] 2 

+ [¢o(X,, t) 0,(x2, t)L] 2 + [¢0(X,, t) 0,(X2, t)R] 2 (41) 

Therefore, after the separation of the momentum wavepackets for each 

atom, the probability density for the two-atom system consists of four 

wavepackets, wpl, wp2, wp3, and wp4, each moving away from the origin, 

as shown in Fig. 28. This figure also shows the positions of four particle 

detectors (for instance, photographic plates); there are two for each atom, 

one for the positive component of momentum and situated along the 

positive axis, the other for the negative component, at the equivalent posi- 

tion along the negative axis. Atom 1 may be detected by either dl or D1, 

depending on which wavepacket it becomes associated with, and atom 2 

may be detected by d2 and D2, all detectors being situated an equal 

10 j /  
/s 

W P l  , /  

"'" 3 ~  WP3 D "~ 10 

// 

Fig. 28. Probability density for the two-atom system, after the spatial 
separation of the momentum eigenstates has occurred. 
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distance along their respective axis. Once the system point, (xl, x2), has 

become localized within one of the wavepackets, it must remain within that 

packet, since it cannot cross the regions of zero probability separating the 

different packets. 

Of course, the system point may be localized within any one of the 

four wavepackets, but if it is localized, for instance, within wavepacket 

wpl, then the electron from atom 2 will not be detected, but atom 1 will 

eventually be detected by D1, since wpl remains localised around x2--0, 

but travels along the positive x 1 axis towards D1. If we examine the motion 

of the other three packets, we can see that the firing of detectors D1 and 

dl is associated with no firing of the detectors for atom 2 and that the firing 

of D 2 and dl is accompanied by no firing of dl or DI, i.e., anticorrelation 

is observed between the firing of the detectors for atoms 1 and 2. 

In this section, we have given a causal description of the anticorrela- 

tion observed between two detectors in a one-photon field, using Bohm's 

quantum field theory for scalar massless bosons. In this picture, there is a 

well-defined motion for the quantum field, but no photon trajectories, a 

photon being just an excitation of a mode. So we have demonstrated that 

we do not need the concept of a photon-particle to described quantum field 

phenomena, only a precise form for the quantum field. The observation of 

field quanta is then due to observation of the quantized energy of the 

detector used to deduce the state of the field. 

The behavior of the field may be found from the motion of the system 

point, which is determined by its initial value (i.e., the initial values of the 

dynamical variables of all parts of the system, regardless of their separa- 

tion), and by the development of the system wavefunction. The behavior, 

in real space, of individual parts of the system can be found from the 

description in configuration space; this leads straightforwardly to a account 

of the nonlocal correlations between these parts. 

8. RELATIVISTIC BOSON PARTICLE TRAJECTORIES? 

In classical relativistic mechanics, a massive particle has a definite 

world line in space-time. Massless particles, with spin greater than zero, 

however, are only located on a two-dimensional null hyperplane (22'23) from 

which one could conclude that they are nonlocal objects (Penrose), or that 

classical mechanics is not sufficient to determine their worldlines. 

Attempts to extend these results to a causal interpretation of 

relativistic quantum mechanics have led to problems, especially for bosons. 

Thus, as we have seen in Sec. 7, Bohm has proposed a purely field picture 

for bosons which is, however, causal; while de Broglie and Vigier have 
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maintained the possibility of a particle interpretation for both fermions and 

bosons, de Broglie has clearly laid out the problems for a scalar spin-zero 

boson, obeying the Klein-Gordon equation. (2) A Hamilton-Jacobi type 

equation can be derived by the usual substitution, ~ = R e is/h, and leads to 

a relativistic generalization of Bohm's quantum potential, namely 

-h2(DR/R),  with four-momenta V,S  and a variable proper mass, Mo, 

defined by 

DR 
M 2 = m 2 + h 2 (42) 

R 

In this interpretation it should be noted that the four-momenta are propor- 

tional to the conserved current vector, j~,=R2V~,S. Unfortunately, as 

pointed out by de Broglie, (2) the simple case of two counter-propagating 

Klein-Gordon plane waves leads to superluminal velocities in some regions 

of space. The result is very counterintuitive, as remarked by J. Bell, (45) since 

the problem occurs no matter how small the relative amplitude of one of 

the waves. However, no contradiction with relativity is entailed since the 

variable proper mass goes to zero as the particle approaches the velocity 

of light; the velocity average over a wavelength is always less than c and 

any attempt to measure the superluminal velocities must entail a considera- 

tion of the propagation of energy whose velocity is always less than c. 

The interesting alternative particle description, given by de Broglie (2) 

and Vigier, (24/ involves modifying the metric tensor by a conformal trans- 

formation, g~,v~(Mo/m)2g~,v, and showing that the trajectories are 

geodesic when this modified metric is used; when Mo 2 is negative, the role 

of the time and space axes are interchanged. The connection of this inter- 

pretation with the principle of equivalence has been discussed by VigierJ 25) 

An attempt to overcome these difficulties has been given by several 

authors, in Refs. 27 and 28, and involves restricting the solutions of the 

Klein-Gordon equation to those that initially have time-like trajectories 

(as given by V,S) on the whole of space-time. It then folows, from the 

conservation of the current four-vector, that the particle motions remain 

time-like. While this result is correct it seems to be too severe a restriction, 

as it would involve a limitation on the relative amplitudes of two counter- 

propagating plane waves. ~2'28) One could, at least in principle, use partially 

reflecting mirrors or barriers to adjust the amplitudes of the two beams to 

any desired ratio. The case of spin-one bosons is not essentially different in 

this respect, so one might consider using laser beams; there will then be 

regions where V , S  is a space-like four-vector. It would seem, therefore, 

that the use of the current four-vector, in the case of bosons, to define 

trajectories gives problems, whereas its use in the Dirac case ~z'18) gives 

velocities less than c; this is due to the contribution from the spin current. 
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A problem that arises in both the fermion and boson case is that of the 

interpretation of the time component of the current vector as a probability 

density; this is thought to be problematic in the Klein-Gordon case. since 

Jo need not be positive definite, whereas it is automatically so in the Dirac 

case. This problem can be overcome by linearizing the Klein-Gordon 

equation and separating the positive and negative energy solutions. (25'27'29) 

The interpretation of Jo, as a probability density, remains problematic, 

since it is the time-component of a four-vector. A theorem that has been 

used in this regard is that, if L .  is a four-vector, with V . L .  = 0 and L .  = 0, 

except in a finite region of space, then ~ d3x Lo is a constant Lorentz scalar. 

This theorem is, for example, invoked in classical electromagnetism, in 

showing that charge is conserved. It is, however, not applicable in the cases 

under consideration, since relativistic wavefunctions corresponding to 

positive (or negative) energies cannot be localized and, afortiori, the 

current four-vector. If a covariant description is needed, one possibility that 

has been explored is the use of the evolution (or historical) time(3°-32); we 

are not aware, however, that the problem of superluminal velocities can be 

dealt with in this way. 

A possible solution to the problems above is suggested by the fact that 

the construction of trajectories for the electron proceeds without the use of 

a Hamilton-Jacobi type equation; as remarked by J. Bell and Bohm, one 

only needs a guidance formula. Indeed, one may derive a Hamilton-Jacobi 

type equation for the electron, with a modified quantum potential, which 

leads to superluminal velocities, if one takes V, S as the four-momenta. As 

we have seen, Bohm uses the Dirac equation in its noncovariant form and 

defines the three-velocity according to (18). This formulation is identical 

with de Broglie's, who also shows that with the neglect of spin, one obtains 

the Hamilton-Jacobi equation for the Klein-Gordon equation. (z~ It has 

been known for some time that a linearized set of equations can be used 

to deal with bosons and fermions, and that they take the same form as 

the covariantly formulated Dirac equation. The Kemmer-Duffin-Petiau 

equation, (26) for example, is a five-component wave equation describing a 

spin-zero particle; the five components being a scalar function and its four 

derivatives. As Kemmer remarks, the content of these equations is the same 

as in de Broglie's theory in which he treats the photon as a fusion of two 

spin-one-half particles. If one selects a particular frame of reference, the 

equation takes the same form as the Dirac equation, and the velocity may 

be calculated in the same way. The result is related to the stress-energy- 

momentum tensor for this system and is easily shown to have a value less 

than c. In this theory, a spin operator appears whose expectation value is 

always zero, but which will contribute when calculating the current vector. 

In addition one either must assume that some natural frame of reference 
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occurs, relative to which the velocity may be calculated, 12 or one may find 

that the quantum field itself defines a unique time-like eigenvector of the 

stress-energy-momentum tensor. It is not clear that time-like eigenvectors 

always exist, although in one spatial dimension it may easily be shown that 

they do. Details of the above will appear in a subsequent publication. 

It seems, therefore, that massive bosons may be treated as particles 

as de Broglie wanted, and will have subluminal velocities. The case of 

massless bosons will need separate consideration. We find that for massive 

bosons at least there is a choise of two causal theories, both of which can 

account for the predictions of the usual theory. In a further publication we 

compare, in detail, the application of these disparate approaches to the 

same set of model experiments, so as to elucidate the description of nature 

entailed in each case. 

9. EXPERIMENTAL DISTINCTIONS BETWEEN THE 

DIFFERENT INTERPRETATIONS O F  

QUANTUM MECHANICS? 

Among the followers of Bohm and de Broglie, there has been disagree- 

ment concerning the question of testability. Bohm and Hiley have argued 

that since the statistical predictions of their approach are identical to those 

of quantum mechanics, there can be no experimental test of the approach 

unless one adds further assumptions, e.g., the stochastic background or 

finite speed propagation of the quantum potential. 

Vigier takes a different approach and has proposed a series of 

experiments which, it is claimed, allow such a distinction, given certain 

auxiliary assumptions (see Sect. 9.2). He claims that these experiments find 

a natural interpretation in the de Broglie-Bohm model, but not in the 

orthodox interpretations (of course the statistical predictions of quantum 

theory themselves are not in dispute). 

Selleri and others have also proposed experiments designed to 

demonstrate the existence of quantum waves. Again, however, one must be 

very clear about the additional assumptions being made. In interpreting 

de Broglie, Selleri et aL claim that the real waves in physical space, which 

de Broglie referred to as the u-waves, each obey a single-particle, local 

wave equation. The consequence of this is, of course, that the approach 

advocated by Selleri contradicts the predictions of quantum mechanics. 

~2 For example, one may have, to a good approximation, a Robertson-Walker metric and a 
definite time axis. 
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Under Selleri's assumption, there are no configuration-space waves and 

hence there is no possibility of nonlocal phenomena. It is then a problem, 

for approaches such as Selleri's, to explain the wealth of experimental data 

which confirms many-body quantum mechanics so well. Selleri et al. have 

therefore attempted to show that each experimental situation to date, 

which confirms many-particle quantum mechanics, can in fact also be 

accounted for by a local theory. 

9.1. The Detection of the Broglie Waves 

Franco Selleri was the first to suggest the experimental testability of 

the de Broglie waves, in 1969. (33) In the type of experiment proposed by 

Selleri, it is assumed that de Broglie waves in physical space carry neither 

energy nor momentum, but nevertheless, their existence can be demon- 

strated by the generation of zero-energy-transfer stimulated emission in a 

laser gain tube. This idea has been pursued by several other authors, (34~ but 

so far no direct experiment to test this assumption has been performed. The 

Blake-Scarl experiment, (3s) although controversial, has been interpreted as 

providing indirect evidence in favor of the reality of the de Broglie waves. 

Prompted by the experiment performed by Pfleegor and Mandel, (36) 

several experiments have been proposed by Garuccio, Popper, and 

Vigier, (39) by Croca, Garuccio, Lepore, and Moreira, (41) and by Croca. (4°) 

All these experiments are based on the notion that particles (even photons) 

follow well-defined trajectories, and that quantum waves evolve in physical 

space. 

In the Pfleegor and Mandel experiment, two laser sources, locked in 

phase, produce an interference pattern even in those case in which only a 

single photon is in the superposition region at a time. The notion that 

photons are to be treated in just the same manner as material particles, 

from the de Broglie point of view, yields a conceptually simple explanation 

of the Pfleegor Mandel experiment. In this case each photon is a localized 

object in an extended wave, the form of which guides the particle-like 

object into the bright fringes. This seems a simple explanation, but it entails 

a program in which, as we have seen, there are the formidable mathemati- 

cal difficulties, mainly associated with the definition of photon trajectories. 

Furthermore, if one wishes to maintain that the waves associated 

with the photon are local, then one is faced with the task of accounting 

for the wealth of experimental evidence provided by quantum optical 

experiments, (36'37'43) which demonstrate nonlocal correlations. The Bohm 

theory for photons, as we have seen, is conceptually rather different; the 

Pfleegor Mandel experiment, for example, has a totally different explana- 

tion using this theory. (2°) 
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Selleri and Schmidt (42/have proposed an experiment to test existence 

of local Selleri-de Broglie waves. It should be emphasized that the theory 

of these local waves is not developed and that what is proposed contradicts 

the statistical predictions of quantum theory. It is an essentially different 

theory to quantum theory. We do not enter into a discussion here, except 

to point out that an experimental test of the Selleri local guided-wave 

theory for photons has actually been performed by Wang, Zou, and 

Mandel, (43~ following the proposal put forward in Ref. 41. The experi- 

mental outcome is compatible with the predictions of quantum field theory 

(and, we must emphasize, the Bohm interpretation) but in contradiction 

with the local Selleri model for photons, as was stated and applied in 

Ref. 41. 

An attempt to salvage Selleri's local wave theory has been made in 

Ref. 44, where it was shown that, using only the idea of local waves in 

physical space and the assumption of a variable detection probability, it is 

possible to fit the experimental data of Ref. 43. In this account the photon 

detection probability is dependent on the quantum state and is thus not 

constant, as is in usual quantum field theory where, for a given state, the 

detection probability depends only on the "quantum efficiency" of the 

detectors. This notion has been the subject of much debate in the context 

of local explanation of EPR-type correlation experiments, (33'42'44) and we 

do not entertain this particular idea further in this paper. That quantum 

statistics can also be derived from a local model is the subject of another 

paper by one of us (MS) and Selleri. 

9.2. The Experiment of Vigier et aL 

In this section we discuss the proposed experiment of Vigier et al. The 

aim of this experiment is to demonstrate that quantum mechanical objects 

may display their wave and particle aspects at the same time, thereby 

contradicting the principle of complementarity. The experiment fails to 

invalidate complementarity, as it only provides indirect evidence of the 

coexistence of trajectories and interference; however, it certainly demon- 

strates that the de Broglie-Bohm picture of quantum objects, in terms of 

both particles and a waves, is one obvious and convincing description of 

these experiments. 

The experiment is related to Young's double-slit interference experime, 

in which we observe the wave properties of quantum mechanical objects in 

the interference pattern formed from individual spots on the screen. These 

spots indicate the existence of particle-like properties in quantum objects; 

however, despite the presence of these spots, we are not able to specify 

825/22/10-5 
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which slit any "particle" passed through on its way to the screen. If we 

devise some means of revealing, with increasing certainty, which slit a 

particle did pass through, for example, by measuring the transfer of 

momentum to the screen, then the visibility of the interference pattern is 

correspondingly diminished. (46) In the usual interpretation of quantum 

mechanics, we are led to believe that the only consistent way of thinking 

about this experiment is by denying the existence of a particle trajectory 

between source and screen altogether. 

The aim of the proposed neutron interferometry experiments of Vigier 

eta/. (4) w a s  to attempt to detect the particle and wave aspects of neutrons 

simultaneously. The neutron was chosen because, unlike the photon, it 

is known to be massive with an internal structure, so that its particle 

properties are more evident than those of the photon. 

A pulsed neutron beam, which is polarized vertically with respect to 

the apparatus, is incident upon a perfect crystal interferometer. There is, at 

any one time, at most one neutron inside the interferometer. The beam is 

split at the first set of crystal planes to produce two neutron beams, both 

in the spin-up state. A rotatable aluminum slab, in the path of both beams, 

provides a variable scalar phase-shift between the two beams. 

These beams then both pass through radio-frequency (r.f.) spin-flip 

coils and are superposed beyond the final set of crystal planes, producing 

an interference in the measured intensity, which varies at one position in 

space with the value of the scalar phase shift. The neutrons which emerge 

from the interferometer, and whose detection is used to build up the inter- 

ference pattern, each undergo time-of-flight measurements on the way to 

the detectors. Their energy is compared with that of unflipped neutrons to 

reveal whether or not the neutrons, which have passed through the coils, 

have the energy associated with the spin-down state, i.e., have actually been 

flipped. 

If the energy of each neutron detected in the interference pattern is 

that associated with the spin-down state, then every neutron detected has 

undergone a spin-flip within the interferometer, and hence also an energy 

transfer h~orf. There are no resonant frequencies provided by the r.f. field 

which correspond to half the energy of a spin-flip, only to the full spin-flip 

energy. This means that if we assume that energy and momentum are 

conserved in each energy exchange, then each neutron must have lost a 

photon of energy in one coil or the other, not in both. Thus the results of 

this experiment may provide indirect evidence of the existence of neutron 

trajectories through the interferometer. It is also possible to obtain inter- 

ference in the intensity of detected neutrons in the same experimental 

set-up. This implies that particle properties coexist with wave properties, 

for single neutrons. Possible trajectories for the neutron, at the last set of 
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crystal planes, are shown in Fig. 5 and 7, for different settings of the phase 

shifter. 

To believe in the completeness of quantum mechanics is to deny the 

existence in this experiment of neutron trajectories, and to believe instead 

that absorption takes place in both r.f. coils, without the presence of energy 

conservation. It is certainly possible to maintain this point of view; 

however, since we have already shown, in Sec. 4.2 that Bohm's interpreta- 

tion provides a consistent account of this experiment in terms of particle 

trajectories, the experiment highlights the fact that a much more intuitive 

approach to quantum mechanics may be provided than is generally, by the 

orthodox interpretation. 

9.3. The Experiment of Ghose e t  at,. 

Ghose et aL ~5) have proposed an experiment designed to show that 

both wave and particle characteristics may be displayed by light, at the same 

time, with the aim of demonstrating the inadequacy of the Copenhagen 

interpretation. In the proposed experiment, pulses of light in "single photon 

states" are incident upon two prisms as in Fig. 21. According to quantum 

optics, when the wavelength of the incident light is less than the separation 

of the two prism faces, the light will suffer total internal reflection within 

the first prism. In that event, all photon counts take place in a counter C1, 

placed in the path of the reflected light. However, if the wavelength of 

incident light exceeds the interprism gap, quantum optics predicts that 

quantum tunneling of the light across the gap between the prisms occurs, 

and that the light may enter a photon counter Cz, placed beyond the 

second prism. 

It is predicted that the two counters will click in perfect anticoin- 

cidence. The authors claim that such behavior strongly suggests that these 

packets of light are composed of single particles, which are either reflected 

at the first prism-air interface, or which enter thesecond prism by tunnel- 

ing through the airgap. Since they consider the presence of tunneling to be 

accounted for by assigning a wave aspect to the photon, they suggest that 

the complementarity of the wave and particle aspects of quantum objects 

has been disproved, in this experiment. 

However, just as in the original Young's two-slit interference experi- 

ment, the particle path is not directly observed--only the click in the 

detector; so the most that can be deduced from the results of this experi- 

ment is that the Copenhagen interpretation does not provide any causal 

explanation of the experiment and that a realist interpretation, in terms of 

particle trajectories, would be a useful and natural description of the 
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experiment, if it were possible to provide one. As we have seen, there is 

not as yet a complete causal theory for light, in terms of photon particle 

trajectories; but it would be reasonable to assume that the form of the 

trajectories, if they exist, are similar to those of other quantum objects, 

such as neutrons, since it is possible to reproduce some of the interference 

phenomena of light using the wave equation for massive particles. (47) 

We might conjecture that the form of the trajectories for photon 

tunneling through the barrier between the prisms, in the Ghose experiment, 

is similar to those calculated nonrelativistically for a massive particle, as is 

done in Sec. 4. Alternatively, we can provide a deterministic model for the 

behavior of the light in terms of a quantum field theory, where the hidden 

variable representing the field is not the photon position, but the coor- 

dinates of the field modes, as was discussed in Sec. 7.1. 
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