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Abstract: The integration of wave energy devices and coastal structures may be an innovative and 

sustainable way to achieve energy production purposes with a secondary benefit of coastal protection, 

which can increase accessibility and reduce the costs of wave energy technology. In this paper, a 3-D 

theoretical model was developed to investigate the hydrodynamic efficiency and breakwater function 

of a periodic array of oscillating buoys embedded in a caisson breakwater. The generalized radiation 

problem was solved to derive generalized wave radiation force. The theoretical model was validated 

using Haskind relations and energy flux conservation law. The influences of wave /geometrical 

parameters and PTO damping were revealed. In particular, hydrodynamic phenomenon of multiple 

orders reflected and transmitted propagating waves and their influence on wave power extraction and 

coastal protection was examined. Results show that a satisfactory hydrodynamic efficiency and 

coastal defense are realized simultaneously under oblique waves for this proposed system. A decline 

of hydrodynamic efficiency is found beyond a critical wavenumber, accompanied by the occurrence 

of the strong reflection phenomenon. The findings of this paper contribute towards the preliminary 

design of the hybrid breakwater-WEC system for the synergy effect between the wave energy devices 

and breakwaters. 
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1 Introduction 1 

Ocean waves present a large reserve of renewable and environmentally friendly energy with low 2 

carbon emissions. Wave energy converters (WECs) are designed to convert the energy in ocean waves 3 

into other kinds of useful energy. WECs are separated into four categories: attenuator, oscillating 4 

water column (OWC), point absorber, and overtopping device (Falcão, 2010; Clemente et al., 2021). 5 

Most of these devices are in the stage of laboratory tests and some are in the stage of the trial/field 6 

test. Compared to other mature renewable energy technologies, wave energy is not yet economically 7 

competitive (Clément et al., 2002; López et al., 2013). For most of the designs currently developed, 8 

a single WEC will not produce significant energy so it is necessary to assemble many of them in a 9 

wave farm (Garnaud and Mei, 2009; 2010). In addition, a wave farm extracting energy from WECs 10 

can reduce the wave amplitude in the lee side, which can be served as a coastal defense measure 11 

(Abanades et al., 2014; Mendoza et al., 2014). The synergy effect of wave farms between wave power 12 

production and coastal protection enhances the economic viability of wave energy.  13 

The higher costs and lower efficiency hinder the engineering applications of WECs (Astariz and 14 

Iglesias, 2015). A solution is to integrate WECs with coastal structures (Mustapa et al., 2017), i.e., 15 

bottom-mounded, and floating type breakwater (Zhao et al., 2019; Di Lauro et al., 2020; Zhang et al., 16 

2020). Breakwaters can be used to mitigate wave damage and protect shorelines from erosion. The 17 

integration of WECs and breakwaters can achieve multi-function of coastal structure (i.e., both space- 18 

and cost-sharing function), further enhance accessibility and reduce costs of wave energy technology, 19 

provided with the coastal protection (Zhang et al., 2021). 20 

For an isolated WEC, wave power extraction efficiency is significantly associated with the natural 21 

resonance of a buoy or an OWC device (Evans, 1976; Malmo and Reitan, 1985; Martins-Rivas and 22 

Mei, 2009a; 2009b). However, for the buoy array, hydrodynamic interactions of each buoy affect the 23 

efficiency significantly (Falnes and Budal, 1982; Zhao et al., 2021). Garnaud and Mei (2009; 2010) 24 

developed an analytical solution of wave scattering by an array of small heaving buoys by using the 25 

multiple-scale method. Compared to a single buoy, an array arrangement is potentially more efficient 26 

in realistic seas. Hydrodynamics of WEC array consisting of a periodically repeated single buoy or 27 

sub-array was examined by Tokić and Yue (2019). They developed a multiple scattering method and 28 

found that the presence of Bragg resonance results in a decrease in array gain. The presence of the 29 

Rayleigh resonance was verified for the truncated cylinder array. Zheng et al. (2019) developed a 30 
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theoretical model to evaluate hydrodynamics of multiple OWCs installed along a straight coast. They 1 

pointed out that the observed enhancement of efficiency is attributed to the wave reflection of the 2 

coastal wall and the positive effect caused by the constructive interactions of an OWC array (Göteman 3 

et al., 2018). Compared to an isolated device, the WEC array can enhance the wave energy absorption, 4 

and efficiency is significantly influenced by the array phenomena, such as wave interference or Bragg 5 

resonance. 6 

Oblique or directional waves occur frequently in realistic sea states, and the assessment of the wave 7 

power extraction performance is essential for WECs or breakwater (Tay and Venugopal, 2019). Many 8 

investigations were conducted to explore oblique wave interactions with bottom-mounted structures 9 

(Teng et al., 2004; Liu et al., 2007; Jalón et al., 2019). The case of the ordinary heaving problem was 10 

studied by Ursell (l949). Then, Bolton and Ursell (1973) proposed a generalized heaving problem of 11 

an infinitely long circular cylinder to derive the generalized vertical force, on the assumption of a 12 

flexural wave traveling along the surface of the cylinder and generating an oblique wave (Sannasiraj 13 

et al., 2001; Politis et al., 2002). Considering the cartesian coordinate of an infinite long floating 14 

rectangle structure, Zheng et al. (2006; 2007) analytically investigated the generalized radiation force 15 

in cases of oblique waves under the context of the linear potential flow theory. This wave radiation 16 

was not due to the forced motions of the structure under the normal incidence (Abul-Azm and Gesraha, 17 

2000), which fails Haskind relations. The corresponding governing equation is a two-dimensional 18 

modified Helmholtz equation. The agreement of wave force between calculation from the incident 19 

and radiated potentials and results from diffracted potentials can be realized. This solution can be also 20 

referred to in the numerical investigation (Islam et al., 2019). It is worth noting that, due to the 21 

consideration of the incident wave direction, the radiation problem of the floating structures can be 22 

named generalized radiation problem (GRP). Specifically, the eigenfunction expression of the GRP 23 

involves the term of incident wave angle θ. Hence, there is a significant correlation between 24 

generalized hydrodynamic coefficients (i.e., added mass and radiation damping) calculated by solving 25 

GRP and the direction of radiated waves. This GRP is different from an isolated/array cylinder 26 

structure (i.e., truncated cylinder, OWC, etc.) (Siddorn and Eatock Taylor, 2008; Wolgamot et al., 27 

2015; Zheng et al., 2019). Therefore, the previous works related to GRP concern an infinite long 28 

rectangle structure. However, wave farm consists of many WECs with gaps perpendicular or along 29 

with incident waves. The solution of GRP by an infinite array of floating structures is limited. 30 
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The present study analyzed the hydrodynamic performance of oscillating-buoy WECs integrated 1 

with bottom-mounted caisson breakwater consisting of a periodic array of separated caissons under 2 

the oblique waves. As for caisson array with gaps, this structure is similar to the diffraction gratings 3 

in the optical field (Strutt, 1907). According to the scattering theory for diffraction gratings, there 4 

exists the phenomenon of Wood anomaly (Wilcox, 1984; Wood, 1901), which represents a rapid or 5 

discontinuous change in parameters as propagation modes are on or off. Especially, the first type of 6 

anomalies occurs at the wavelengths at which a diffracted order appears or disappears at a grazing 7 

angle, which is called Rayleigh wavelength (Bloch, 1929; Maradudin et al., 2016). Under the context 8 

of the water wave, multiple reflected/transmitted propagating waves triggered by a periodic array of 9 

caissons or barriers separated by gaps were found (Dalrymple and Martin, 1990; Fernyhough and 10 

Evans, 1995; Linton and McIver, 2001; Wang et al., 2019), but only involving scattering problem, 11 

which significantly affects wave attenuation performance and the total wave force of breakwater. 12 

Zhao et al. (2020; 2021) investigated the hydrodynamic performance of the integration of heaving 13 

buoy devices and caisson breakwater separated by gaps in the normal incident waves. They mainly 14 

revealed that the wave energy gathering effect caused by adjacent caissons and the flange is beneficial 15 

for an increment of efficiency of the WEC. But the array configuration and oblique waves were not 16 

considered for this hybrid breakwater-WEC system, with a focus on the hydrodynamic efficiency and 17 

coastal defense. 18 

In the present study, we systematically investigated the hydrodynamic interaction of the breakwater 19 

and the wave energy devices array under the normal and oblique waves. A 3-D theoretical model of 20 

oblique waves interacting with a periodic array of caisson breakwater equipped with oscillating-buoy 21 

WECs was developed, using the eigenfunction matching method, based on the linear potential flow 22 

theory. The solutions of the wave scattering problem and GRP were examined by using Haskind 23 

relations and wave energy flux conservation rule. The influence of wave parameters (i.e., incidence 24 

angle), geometrical parameters, and PTO damping on wave power extraction and coastal protection 25 

was revealed. 26 

2 Mathematical model 27 

As is shown in Fig 1a, the hybrid breakwater-WEC system considered here consists of caissons 28 

and a periodic of heaving oscillating buoys with the linear power take-off (PTO). The breakwater is 29 

considered as a base structure. Oscillating buoys working in the principle of heaving-type WEC are 30 

Jo
urn

al 
Pre-

pro
of



5 

 

located between the adjacent caissons. Symbolically, 2w1 and 2B denote the width and breadth of the 1 

caisson, respectively. 2w2 and 2b2 are the width and breadth of a buoy. The draft of the buoy and 2 

flange are d1 and d2. The position of the buoy is determined by 2b1 and 2b3, which represent the 3 

spacing between the buoy and caisson wall. A global cartesian coordinate system o-xyz is employed 4 

in the model, and the origin of o is located at the cross-point of the medial axis of the buoy and still 5 

water surface. The z- and the y-axis are positive in the vertically upward direction and along with a 6 

breakwater. The symbols A, L, k, T, h and θ0 (0 ≤ θ0 < π/2) represent wave amplitude, wavelength, 7 

wavenumber, period, water depth, and incident angle, respectively. The wavenumber k is determined 8 

by the dispersion relation ω2 = gktanh(kh). The component of wavenumber in x- and y-direction 9 

corresponds to kx = kcosθ0 and ky = ksinθ0, respectively. For convenience, following notes are as 10 

follow: l = w1 + w2, r1 = b1 + b2, r2 = 2b1 + b2, r3 = b2 + b3 and r4 = b2 + 2b3.  11 
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(b) top view of a unit       (c) section view of the buoy and the flange 15 

Fig. 1. The sketch of the hybrid breakwater-WEC system. 16 

We consider the case of small wave steepness (kA≪1) and small amplitude of buoy motion, so the 17 
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system can be studied in the framework of linear potential flow theory. The velocity potential Φ(x, y, 1 

z, t) can be used to describe the wave motion problem, and the time factor e-it can be factored out as 2 

( ) ( ) iФ , , , Re , , e tx y z t x y z  − 
 = , (1) 3 

where ϕ(x, y, z) is a complex spatial velocity potential independent of time t, Re[ ]denotes the real 4 

part of the variables, ω represents the angular frequency and i denotes imaginary unit. The complex 5 

spatial velocity potential (x, y, z) satisfies 3-D Laplace equation ∇2ϕ = 0 (∇2 is Laplace operator). 6 

Due to the linearity, the velocity potential can be decomposed as the sum of scattering and radiation 7 

potentials ϕ = ϕS + ϕR, where S and ϕR are the scattering and radiation potential, respectively. 8 

2.1 Scattering problem 9 

The geometry features of this system present a periodicity 2l. The scattering potential in the regions 10 

satisfies the periodicity condition (Linton and McIver, 2001; Nazarov and Videman, 2010): 11 

( ) ( )
i2, 2 , e , ,ylk

S S x y zx y l z =+ .
 (2) 

12 

Therefore, the fluid field can be determined by the scattering potential in the fluid domain of {−∞ 13 

< x < ∞, −l ≤ y ≤ l and −h ≤ z ≤ 0}. The fluid domain is divided into five subdomains, which are 14 

defined by Ωi (i = 1 ~ 5) shown in Fig. 1b and 1c. Correspondingly, the scattering potential in each 15 

subdomain is denoted by ϕS
(i) (i = 1 ~ 5), which satisfies the non-penetration condition of all rigid 16 

boundaries (including seabed, caisson, flange, and a buoy), as well as the linearized free surface 17 

boundary condition. The boundary conditions for the scattering problem refer to Eqs. (A.1) - (A.7). 18 

Besides, velocity potentials must satisfy the far-field radiation conditions. By using the matching 19 

eigenfunction expansion method, the scattering potentials ϕS
(i) (i = 1 ~ 5) can be expressed as 20 

( ) ( ) ( ) ( ) ( ) ( ), 44 i1 i
0 ,

0

i e e ey i nx k y p x rk x r
S i i n n

i n

gA Z z E y A Z z


+ +
−− −

=− =

 
= − + 

 
  , (3) 

21 

( ) ( )
( ) ( )

( )
, 3 , 32

, ,
0 0 , 3 , 3

cosh sinhi
cosh sinh

j n j n
S j j n j n n

j n j n j n

p x r p x rgA C y B C Z z
p b p b




+ +

= =

     − −     = − + 
          

  , (4) 
22 

( )

( )
( )

( )
( )

( )

( )
( )
( )

( )
( )

( )

0, 0,
0,0 0,0 0, 0,

12 0, 2 0, 23

, ,
, ,

1 0 , 2 , 2

cosh sinh
cosh sinhi

cosh sinh

cosh sinh

n n
n n n

n n n
S

j n j n
j j n j n n

j n j n j n

q x q xxD E D E z
b q b q bgA

q x q x
C y D E z

q b q b








+

=

+ +

= =

   
 + + +        

= −  
  
 + +  

   



 
, (5) 

23 
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( ) ( )
( ) ( )

( )
, 1 , 14

, ,
0 0 , 1 , 1

cosh sinhi
cosh sinh

j n j n
S j j n j n n

j n j n j n

p x r p x rgA C y F G Z z
p b p b




+ +

= =

     + +     = − + 
          

  , (6) 
1 

( ) ( ) ( ) ( ), 25
,

0

i e i np x r
S i i n n

i n

gA E y H Z z


+ +
− +

=− =

 
= −  

 
  ,

 (7) 
2 

where g is the acceleration due to gravity. The vertical eigenfunctions of Zn(z) and φn(z) can be 3 

expressed as  4 

( )
( )

 

cos
cos

n
n

n

k z h
Z z

k h
+  =  (8) 5 

and 6 

( ) ( )cosn nz z h = +   ,
 (9) 7 

with eigenvalues of n = nπ/(h-d1), n = 0, 1, 2, …. k0 = -ik and kn (n ≥ 1) satisfying the equation of ω2 8 

= -gkntan(knh). The y-direction eigenfunctions of Ei(y) and C̅j(y) can be expressed as 9 

( ) ie i y
iE y 

= ,
 (10) 10 

with eigenvalues of γi = ky +iπ/l (i = …, -2, -1, 0, 1, 2, …) and  
11 

( ) ( )2cosj jC y w y = − 
,
 (11) 12 

with eigenvalues of γ̅j = jπ/(2w2) (j = 0, 1, 2, …). pi,n, p̅j,n and qj,n are defined for convenience 13 

and are specified in Eqs. (A.8) - (A.10) in Appendix A. Keep in mind that the first part in Eq. (3) 14 

represents the incident velocity potential ϕI with an angular frequency of ω and wave amplitude of A. 15 

Besides, Ai,n, Bj,n, Cj,n, Dj,n, Ej,n, Fj,n, Gj,n and Hi,n are the unknowns to be solved. 16 

2.2 Generalized radiation problem 17 

Upon the assumption of the small motion amplitude, the radiation potential ϕR(x, y, z) can be written 18 

as -iωχφ(x, y, z), where χ represents the amplitude of forced heave motion. φ(x, y, z) indicates the 19 

radiation potential independent of the motion amplitude and frequency. Recalling the divisions of the 20 

fluid domain described above, we introduce the symbol φR
(i) to represent the radiation potential in 21 

the domain of Ωi (i = 1 ~ 5).  22 

The boundary conditions of GRP resemble Eqs. (A.1) - (A.7), except for the heaving oscillating 23 

buoy bottom condition. By implementation of the separation variables method, generalized radiation 24 

velocity potentials in the different fluid regions can be written as a product of eigenfunctions as 25 
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( ) ( ) ( ) ( ), 41
,

0

i e i np x r
R i i n n

i n

gA E y A Z z


+ +
−

=− =

 
= −  

 
  ,

 (12) 1 

( ) ( )
( ) ( )

( )
, 3 , 32

, ,
0 0 , 3 , 3

cosh sinhi
cosh sinh

j n j n
R j j n j n n

j n j n j n

p x r p x rgA C y B C Z z
p b p b




+ +

= =

     − −      = − + 
          

  ,
 (13) 2 

( )

( )
( )

( )
( )

( )

( )
( )
( )

( )
( )

( )

( )

0, 0,
0,0 0,0 0, 0, 2 212 0, 2 0, 23

, ,
, ,

1 0 , 2 , 2

cosh sinh
cosh sinhi

2cosh sinh

cosh sinh

n n
n n n

n n n
R

j n j n
j j n j n n

j n j n j n

q x q xxD E D E z
b q b q b z h xgA

hq x q x
C y D E z

q b q b








+

=

+ +

= =

   
    + + +      + −   

= − + 
  
   + +  

   



 
( )1d−

,
(14) 3 

( ) ( )
( ) ( )

( )
, 1 , 14

, ,
0 0 , 1 , 1

cosh sinhi
cosh sinh

j n j n
R j j n j n n

j n j n j n

p x r p x rgA C y F G Z z
p b p b




+ +

= =

     + +      = − + 
          

  ,
 (15) 4 

( ) ( ) ( ) ( ), 25
,

0

i e i np x r
R i i n n

i n

gA E y H Z z


+ +
− +

=− =

 
= −  

 
  .

 (16) 5 

Compared with the condition of normal incidence angle (Zhao et al., 2020; 2021), the difference 6 

of radiation potential expressions is y-direction eigenfunction in Eqs. (12) and (16). Therefore, for 7 

the wave radiation problem of a periodic of oscillating buoys, flexural waves travel perpendicular to 8 

normal incident waves, out of the system (i.e., Ω1 and Ω5), instead of the surface of the buoy (Zheng 9 

et al., 2006; 2007). This is due to the non-penetration condition of the caisson in Ω2 and Ω4. Different 10 

from GRP of an infinite long buoy, the periodicity of the oscillating buoy array should be taken into 11 

consideration. A flexural wave with array periodicity of the y-direction component is generated for 12 

this system. This assumption of GRP can be induced the ordinary radiation problem under the θ0 = 0. 13 

2.3 Solution procedures 14 

There exists a strong singularity at the sharp edge of the flange, the convergence of the solutions 15 

with increasing truncation cut-off was found rather slow (Evans and Porter, 1995; He et al., 2019). 16 

Also, the Galerkin approximation method was already applied to analytically solve the hydrodynamic 17 

problem of water wave interaction with sharp corners of WECs (Renzi and Dias, 2012; Renzi and 18 

Dias, 2013; Renzi et al., 2014). The Galerkin approximation method proposed by Evans and Porter 19 

(1995) was adopted to handle the velocity singularity at the edge of the flange, which is identical to 20 

Zhao et al. (2021). The detailed description can be found in Appendix A. 21 

To solve the unknown coefficients in Eqs. (3) - (7) and (12) - (16), we require that the potentials 22 

and their derivates (i.e., the pressure and velocity) are continuous at the interface of two neighboring 23 
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fluid domains. The continuities are summarized explicitly in Eqs. (A.11) - (A.19).  1 

By inserting the expressions of scattering and radiated velocity potentials Eqs. (3) - (7) and (12) 2 

- (16) into the continuity conditions and utilizing the orthogonal relations of eigenfunctions Eqs. (8) 3 

- (11), a system of linear equations is formed by truncating the infinite series of velocity potentials. 4 

Specifically, the symbols of i, j, n and q in velocity potential expressions and auxiliary function of Eq. 5 

(A.20) are truncated from -M to M, 0 to M, 0 to N, and 0 to Q. The unknown coefficients of the 6 

scattering or radiated problem with a size of (10M + Q + 9)(N + 1) are calculated. Hence, the scattering 7 

or radiated velocity potential for each fluid region is determined. The detailed matrix information of 8 

the linear equations can be referred to in Eqs. (B.1) - (B.42). 9 

2.4 Wave power extraction 10 

Based on the linear Bernoulli equation, the generalized wave excitation force in heave mode Fz can 11 

be calculated as the integral of the scattering potential over the wetted bottom surface of the buoy  12 

( )3i d
b

z S zS
F n S =  , (17) 

13 

where ρ denotes water density and n⃗ z is the unit normal vector pointing to the buoy along with the 14 

positive z-axis direction. Similarly, the generalized heaving radiation force can be obtained by the 15 

integral of the radiation potential  16 

( ) ( )1 3 2i d i
b

z R zS
F n S    = = + , (18) 

17 

where μ and λ represent added mass and radiated damping of a heaving oscillating buoy, respectively. 18 

By the implementation of the linear PTO damping λPTO, the frequency-domain heaving motion 19 

equation can be written as  20 

( ) ( )2
PTOi

zF
K M


    

=
− + − +

, (19) 
21 

where K = 4w2b2ρg and M = 4w2b2ρd1 are the restoring stiffness term and the mass term of a buoy, 22 

respectively, and ξ denotes the heaving motion amplitude. Once ξ is obtained, the heave response 23 

amplitude operator (HRAO) can be expressed as ξ/A, and the absorbed power Pc of a buoy can be 24 

calculated as 25 

22
c PTO

1
2

P   = . (20) 
26 

Correspondingly, the optimal PTO damping of an isolated buoy-WEC can be expressed as 27 
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( )
2 2

optimal /K M    = − + +  
. (21) 

1 

The hydrodynamic efficiency is calculated as η  = Pc/Pi, where the incident wave power Pi at the unit 2 

system width of 2l can be expressed as 3 

2

i 0
21 cos

2 sinh 2
gA l khP

k kh
 

q
 

= + 
 

. (22) 
4 

2.5 Reflection and transmission coefficients 5 

The reflection and transmission coefficients are key to evaluating the performance of breakwaters. 6 

In addition, wave transmission is associated significantly with coastal defense. Based on the scattering 7 

theory of diffraction gratings (Wilcox, 1984), the reflected or transmitted waves from a periodic array 8 

involve several modes propagating waves, traveling in different directions. For the proposed system, 9 

the multiple orders propagating waves due to GRP are also involved. Specifically, the total number 10 

of reflected/transmitted propagating waves is M1 + M2 + 1, where M1 and M2 can be expressed by  11 

( )01 int 1 sin / πM klq = +   (23) 
12 

and 
13 

( )02 int 1 sin / πM klq = −  , (24) 
14 

where the floor function of int[ ] represents the integer part of variables in the square bracket. Here, 15 

m-th order reflected propagating waves travel in the direction of θm (m = -M1, …, 0, …, M2). The 16 

traveling direction of the corresponding mode transmitted propagating waves is π − θm. qm can be 17 

determined by the grating equation of 18 

( )0sin sin π/m m klq q= + . (25) 
19 

Furthermore, the energy flux per meter crest width over a wave period is expressed for the incident 20 

wave JI, m-th order reflected propagating wave J(m)
R , and m-th order transmitted propagating wave 21 

J(m)
T  in the x-directions as 22 

I 2
0

1J cos
2 ggA C q= , (26) 

23 

2R
( ) ,0 ,0

1J i cos
2m m m g mg A A A C  q = −   (27) 

24 

and 
25 
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2T
( ) ,0 ,0

1J i cos
2m m m g mg A H H C  q = −  , 

1 

respectively. (28) 
2 

Here, the wave group velocity of Cg is expressed as 3 

 
21

2 sinh 2g
khC

k kh
  

= +  
 

.
 (29) 

4 

Therefore, m-th order reflection coefficient KR
(m) and m-th order transmission coefficient KT

(m) are 5 

defined as 6 

( )
2R

0( )( )
R ,0 ,0I

0

1 sin π/J
i

cosJ
mm

m m

m kl
K A A

q


q

− +  
= = −  (30) 7 

and 8 

( )
2T

0( )( )
T ,0 ,0I

0

1 sin π/J
i

cosJ
mm

m m

m kl
K H H

q


q

− +  
= = − , (31) 9 

respectively. 
10 

The total wave reflection coefficient KR and transmission coefficient KT are defined as the square 11 

root of the ratio of the energy flux of sum reflected and transmitted waves and the incident wave 12 

energy flux, respectively. The detailed expressions are drawn as 13 

( )2 2

1 1

2 2R
( ) ,0 ,0 0

R I
0

J i 1 sin π/

J cos

M M
m m mm M m M

A A m kl
K

 q

q

=− =−
− − +  

= =
 

 (32) 14 

and 15 

( )2 2

1 1

22T
( ) 0 0 0

T I
0

J i 1 sin π/

J cos

M M
m m mm M m M

H H m kl
K

 q

q

=− =−
− − +  

= =
 

. (33) 16 

In the higher-frequency region, the M1 or M2 may be greater than 1 (Eq. (23) and (24)). Compared 17 

with cases of the lower frequency region, the reflected and transmitted waves involve more mode 18 

propagating waves traveling in different directions, which satisfy the conditions of kl = |mπ/[(1 ± 19 

sinθ0)]| (a similar trigger condition was also found in Wang et al. (2019)). The trigger condition is 20 

identical to that of Wood anomaly (Wilcox, 1984), but includes the condition of GRP for the present 21 

model. Physically, the contributions caused by the appearance of the multiple orders propagation 22 

waves shall be involved in an increment or a reduction of reflection and transmission coefficients. 23 

This would affect the wave power extraction performance significantly, as well as wave attenuation 24 
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performance or coastal protection.  1 

3 Model validations 2 

3.1 Convergence analysis 3 

Firstly, we analyze how many terms in the infinite sums in the velocity potentials expressions must 4 

be used to reach the convergence of the solution, i.e., we identify the required truncation cut-off. The 5 

truncated numbers M (N and Q) vary when the other two truncated numbers are fixed. Geometrical 6 

and wave parameters are set for d1/h = 1/6, l/h = 5/6, w1/l = 1/5, b2/h = 1/2, b1/b2 = b3/b1 = 1/3, d2/h = 7 

1/6, q0 = /6 and the optimal PTO damping λPTO. It is found that a sufficient convergence was obtained 8 

when truncating the infinite sums to M = 15, N = 25, and Q = 5. 9 

2.2 Haskind’s relations 10 

Given ordinary radiation problem, the wave exciting force calculated by the radiation and incident 11 

potential do not agree with that derived by the diffraction potential under oblique waves (Zheng et al., 12 

2006). Based on the solution of GRP in the present study, the generalized wave exciting force acting 13 

on the bottom of the oscillating buoy is also calculated by radiated and incident velocity potentials. 14 

Based on Haskind’s relationship (Falnes and Kurniawan, 2020), the wave exciting force can be also 15 

written as  16 

( )R 2I
I 0,0 0i d 4 cosR

z R gS
F S glA A C

n n
 

    q


  
= − − = 

  
 . (34) 

17 

where n⃗  = (n⃗ x, n⃗ y, n⃗ z) denotes the unit normal vector along x-, y- and z-direction. Fig. 2 plots results 18 

of Fz
(R) and Fz for parameters of d1/h = d2/h = 1/6, l/h = 1/2, w1/l = w2/l = 1/2, B/h = 1, b1/B = b2/B = 19 

b3/B = 1/3. It can be found that an overall agreement can be achieved, which verifies the solution of 20 

GRP for a periodic array of oscillating buoys. 21 

 22 

Fig. 2. Comparisons of results between Fz and Fz
(R). 23 
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3.3 Energy flux conservation law 1 

Energy flux conservation law implies that the waves are either reflected, transmitted, or absorbed, 2 

which in the framework of potential flow theory can be expressed as KR
2  + KT

2  + η = 1. Fig. 3 shows 3 

the results of KR, KT, η and KR
2  + KT

2  + η for the case in Section 3.2. The PTO damping is selected as 4 

the optimal PTO damping. As shown in Fig. 3, the energy flux conservation is satisfied, which serves 5 

as a verification of the present analytical model. 6 

 7 
Fig. 3. Variations of the KR, KT, η and KR

2  + KT
2  + η versus the dimensionless wavenumber kh. 8 

4 Results and discussions 9 

4.1 Effect of incident wave direction 10 

Results of hydrodynamic efficiency η, transmission coefficients KT, reflection coefficients KR, the 11 

generalized wave excitation force Fz/(4ρgAb2w2), added mass μ(4ρb2w2d1), radiation damping 12 

λ(4ρωb2w2d1) and HRAO are shown in Fig. 4. The geometrical parameters are d1/h = 1/6, l/h = 5/6, 13 

w1/l = 2/5, w2/l = 3/5, b2/l = 1/2, B/l = 9/10, b1/l = b3/l and d2/h = 1/6. The effect of incident wave 14 

angles is revealed by considering six incidence wave angles of θ0 = 0, π/12, π/6, π/4, π/3, and 5π/12. 15 

In the frequency region 0 ≤ kh ≤ 1.75, η for different incident angles (in exception of 5π/12) increases 16 

to the first peak of 0.5 roughly with increasing dimensionless wavenumber kh. For the condition of 17 

normal incident waves θ0 = 0, η exhibits two peak values (kB = 0.416π and 0.851π), due to multiple 18 

wave resonances inside the wave chamber (Zhao et al., 2020). Considering the absence of an 19 

oscillating buoy, the system is simplified as the caisson array. The case of zeros reflection KR = 0 is 20 

triggered by kB ≈ 0.5nπ (Zhu et al., 2017), but the influences of geometry on the occurrence of phase 21 

downward shift are not neglected. An incident wavelength longer than the original wavelength is 22 

required to compensate for the phase loss of reflected waves by the superposition of waves with 23 
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opposite directions. Therefore, the appearance of this phenomenon is kB < 0.5nπ. η increases 1 

successively for the region of 0 ≤ kh ≤ 1.5, and KR has a successive decreasing trend. HRAO decreases 2 

at 0 ≤ kh ≤ 1.5 with an increase in the incident angle. Interestingly, η exhibits an abrupt change for 3 

different incident angles in the whole frequency domain, as shown in Table 1.  4 

 5 
   (a) η                                 (b) KT 6 

 7 
       (c) KR                            (d) Fz/(4ρgAb2w2) 8 

  9 
(e) μ(4ρb2w2d1)                         (f) λ(4ρωb2w2d1) 10 
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 1 
(g) HRAO 2 

Fig. 4. Results of η, KT, KR, Fz/(4ρgAb2w2), μ(4ρb2w2d1), λ(4ρωb2w2d1) and HRAO for different 3 

incident wave angles θ0 = 0, π/12, π/6, π/4, π/3, and 5π/12. 4 

 5 

Table 1. The kh corresponds to the first- and second-order reflected and transmitted propagating 6 

waves for different incident angles. 7 

incident angle 0 π/12 π/6 π/4 π/3 5π/12 
first-order 3.77 3.00 2.52 2.21 2.02 1.91 

second-order / / / 4.41 4.04 3.83 

The existence of the periodicity of this system leads to the phenomenon of multiple order reflected 8 

and transmitted propagating waves along with the different directions. The trigger wavenumber of 9 

this phenomenon is satisfied by kl = |mπ/(1 ± sinθ0)| (m = ±1, ±2, …) accurately, corresponding to 10 

Rayleigh wavenumbers (Tokić and Yue, 2019), which results in abrupt changes of hydrodynamic 11 

qualities. Therefore, m-th critical wavenumber (kl)(m)
cw  is found, corresponding to the appearance of 12 

m-th order reflected and transmitted propagating waves. 13 

The relative wave amplitude ζn/A in the Ωn (n = 1, 2, 4, 5) is expressed as 14 

( ) ( )( ) ( )/ i + /n n
n S RA gA   = . (35) 

15 

ζ1/A at kh = 1.91 and 3.83 for θ0 = 5π/12, corresponding to the appearance of the first- and second-16 

order reflected and transmitted propagating wave, is shown in Fig. 5.  17 
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 1 
(a) kh = 1.91                              (b) kh = 3.83 2 

Fig. 5. ζ1/A at kh = 1.91 and 3.83 for θ0 = 5π/12. 3 

The maximum ζ1/A at (kl)(2)
cw  is greater than that of the (kl)(1)

cw . The existence of multiple orders 4 

reflected and transmitted waves for this integrated system may lead to an increment of KR and KT (in 5 

Fig. 4b and 4c), i.e., a strong reflection phenomenon. This denotes the wave interference with an 6 

identical phase, which may result in a decrease of the incident wave energy transmitted into the wave 7 

chamber. Consequently, η, Fz and HRAO are mitigated accompanied by the appearance of first-order 8 

reflected and transmitted propagating waves. Besides, there also appear some small valleys of KR in 9 

the higher-frequency region, which satisfies the relation of kl = 2π/(1 + sinθ0). And the wave power 10 

extraction efficiency is close to zero, corresponding to zeros of Fz and HRAO. As shown in Fig. 4b, 11 

the variations of the incident angle affect slightly wave attenuation performance of the breakwater, 12 

except for some spiked values at (kl)(m)
cw  (m = 1, 2). This is to say, the effect of the incidence angle is 13 

not beneficial for coastal protection. Compared with normal incident waves (Zhao et al., 2020), the 14 

multiple orders propagating waves along different directions have a significant influence on η, instead 15 

of y-direction resonance (perpendicular to the incident wave) (kl = nπ, n = 1, 2, …). Under special 16 

circumstances, the natural resonance of buoy would be avoided by multiple orders propagating waves 17 

(as shown in Fig.4a). However, the y-direction resonance is satisfied perfectly by a special example 18 

of kl = |mπ/(1 ± sinθ0)| at θ0 = 0. The latter phenomena are more sensitive to the former in the 19 

calculated frequency region. As indicated in Fig. 4e and 4f, the negative added mass emerges (except 20 

for 0 and π/12) at the (kl)(1)
cw . Correspondingly, a sudden reduction of the radiation damping is found. 21 
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The radiation damping represents the ability to radiate waves due to the heaving motion of an 1 

oscillating buoy, which determines the wave power extraction performance of the devices (Falnes 2 

and Kurniawan, 2020). Physically, energy radiated to the far-field decreases, and the absorbed energy 3 

of the WEC device is mitigated. However, compared to other incident angles, radiation damping of 4 

θ0 = 0 and π/12 modifies gently at (kl)(1)
cw . 5 

For the case of θ0 = π/12, η experiences a dramatic change with a spike value (i.e., 74%) at kh = 6 

2.99 and a valley value (i.e., 35%) at kh = 3.00 shown in Fig. 4a, which is different to other incident 7 

wave angles. The corresponding ζ1/A is shown in Fig. 6. The wave accumulation behavior with a 8 

smaller incident angle is achieved, and suddenly more reflected propagating waves carrying wave 9 

energy result in a reduction of η. Furthermore, η and Fz for smaller incident wave angles θ0 = π/20, 10 

π/15, π/12, π/10, π/8 and π/7 were plotted in Fig. 7. There is little distinction among different angles 11 

in the region 0 ≤ kh ≤ 2.0. The spiked value decreases with the increasing incident angles, and the 12 

wave gathering behavior becomes unsatisfactory, accompanied by the appearance of the first-order 13 

reflected and transmitted propagating waves. Compared to the results in Fig. 4a, the spiked value of 14 

η vanish for a greater incident angle. This is due to that an increment of Fz also vanishes with the 15 

increasing incidence angles when the frequency is close to (kl)(1)
cw , as indicated in Fig. 7b. 16 
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 17 
(a) kh = 2.99                              (b) kh = 3.00 18 

Fig. 6. ζ1/A at kh = 2.99 and 3.00 for θ0 = π/12. 19 
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 1 

        (a) η                             (b) Fz/(4ρgAb2w2) 2 

Fig. 7. Results of η and Fz/(4ρgAb2w2) for different incident wave angles θ0 = π/20, π/15, π/12, π/10, 3 

π/8 and π/7.  4 

 5 

We introduce the interaction factor q to evaluate the array effect and the hydrodynamic interactions 6 

between the buoy and the caisson, i.e.,  7 

c

isolated

Pq
P

= , (36) 
8 

where Pc and Pisloated represent the power output per unit width of the proposed system and a 9 

corresponding 2D heaving rectangular buoy device, respectively. The draft and breadth of the 2D 10 

rectangular buoy WEC are identical to that of the proposed system (i.e., d1 and 2B, respectively). The 11 

optimal PTO damping is used to calculate the extracted power. Fig. 8 plots results of the interaction 12 

factor for b2/h = 0.15 and 0.2. The other wave/geometrical parameters of the proposed system are 13 

fixed as l/h = 2/3, B/h = 5/6, d1/h = 1/3, d2/h = 11/12, w1/h = w2/h = 1/3, b1/h = 1 × 10-6, and θ0 = 0. 14 

As shown in Fig. 8, two peaks (>1) are observed at the range of 0 < kh < 5.0, which is corresponding 15 

to the trend of the efficiency (see Fig. 4a). q > 1 demonstrates the constructive hydrodynamic 16 

interaction of the caisson and the buoys. That is to say, even though the size of a buoy is reduced, the 17 

constructive hydrodynamic interactions between the buoys and caissons lead to the enhancement of 18 

hydrodynamic efficiency. But, a frequency range with q < 1 is also observed due to the negative 19 

hydrodynamic interactions of the caisson and the buoys. 20 
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 1 

Fig.8. Results of q for b2/h = 0.15 and 0.2. 2 

Apart from η, wave capture factor qc = Pc/P0, in which P0 denotes the power extraction efficiency 3 

of the proposed system under the normal incident waves (θ0 = 0), can be used to evaluate the influence
 

4 

of incident angle on the wave power extraction. Based on the above test cases, the results of qc for θ0 5 

= π/12, π/6, π/4, π/3 and 5π/12 are shown in Fig. 9. qc is equal to 1.0 for θ0 = 0, not plotted here. A 6 

hydrodynamic efficiency equivalent to that under the normal incident waves is obtained for smaller 7 

incident angles and in the lower frequency region but decreases considerably with the greater angle 8 

at 0 ≤ kh ≤ 2.75. A decline in qc coincides at (kl)(1)
cw . But a spiked value for θ0 = π/12 at kh = 2.99 is 9 

found and the reason is referred to in Fig. 7b. 10 

 11 

Fig. 9. Results of qc for θ0 = π/12, π/6, π/4, π/3 and 5π/12. 12 

4.2 Effect of caisson breadth 13 

The wave/geometry dimensions are set for d1/h = 1/6, l/h = 1/2, w1/l = 1/2, w2/l = 1/2, d2/h = 0, θ0 14 

= π/4, b2/h = 1/3 and b1/B = b3/B. Each oscillating buoy is arranged in the center of the wave chamber, 15 

and the flange is not involved. Fig. 10 shows results of hydrodynamic efficiency η, transmission 16 

Jo
urn

al 
Pre-

pro
of



20 

 

coefficients KT and reflection coefficients KR for cases of B/h = 2/3, 1, 5/3, and 8/3. Some oscillations 1 

of hydrodynamic qualities emerge in the lower-frequency region. The oscillation magnitude is more 2 

remarkable with a greater caisson breadth, due to multiple wave resonances inside the wave chamber 3 

(Zhao et al., 2020). Interestingly, the maximum of η approaches 50% of the x-direction incident wave 4 

energy component. Similar phenomena were also found in Zhao et al. (2020). The maximum 5 

hydrodynamic efficiency is not associated with the y-direction component of the incident wave energy. 6 

A decline of η for different caisson breadths was found noticeably beyond (kl)(1)
cw  (i.e., kh = 3.68). KT 7 

also exhibits a fall correspondingly, instead of a spiked value (as is shown in Fig. 4b), which is 8 

beneficial for coastal protection. This is due to the that the magnitude of the reflected wave is 9 

amplified, corresponding to the strong reflection phenomena (i.e., 0.95). 10 

 11 
      (a) η                                  (b) KT 12 

 13 
(c) KR 14 

Fig. 10. The results of η, KT, and KR for cases of B/h = 2/3, 1, 5/3, and 8/3. 15 

4.3 Effect of caisson width 16 

The caisson width of breakwater affects significantly the occurrence of multiple orders propagating 17 
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waves. The results of η, KT, KR, μ(4ρb2w2d1), λ(4ρωb2w2d1) Fz/(4ρgAb2w2) and HRAO for w1/h = 1 

0.4, 1, 1.5 and 2 are shown in Fig. 11. The other parameters are selected for d1/h = 1/6, w2/h = 1/2, 2 

d2/h = 1/6, θ0 = π/4, b2/h = 1/2, B/h = 1 and b1/B = b3/B. Significant changes in hydrodynamic qualities 3 

are found throughout the whole frequency region. η experiences an increasing trend followed by 4 

repeated rapid oscillations. This abrupt change corresponds to the occurrence of multiple orders 5 

reflected and transmitted propagating waves (i.e., multiple critical wavenumbers), i.e., kh = 2.040 and 6 

4.080 for w1/h = 0.4; kh = 1.225, 2.450 and 3.670 for w1/h = 1.0; kh = 0.915, 1.830, 2.745 and 3.661 7 

for w1/h = 1.5; kh = 0.735, 1.470, 2.205, 2.945 and 3.680 for w1/h = 2.0. The first peak of η shifts to 8 

the lower-frequency region with an increasing caisson width. The presence of first-order propagating 9 

waves accounts for a significant role in η and HRAO (as shown in Fig. 11a and 11g), instead of wave 10 

resonances inside the wave chamber (Zhao et al., 2020), which is an unwanted result from the 11 

perspective of WEC performance. Therefore, the wave power extraction performance of the hybrid 12 

breakwater-WEC system is not only dependent on the natural resonance but also on the first-order 13 

propagating waves. In general, the presence of the first-order propagating waves dictates the 14 

hydrodynamic efficiency of the system. If (kl)(1)
cw  is dominated in the lower frequency regime, wave 15 

power extraction would be compromised at the remaining frequency region. Meanwhile, a greater 16 

width significantly hinders the wave power extraction performance (i.e., effective frequency 17 

bandwidth). KR and KT also exhibit some precipitous modifications. The greater the caisson width is, 18 

the greater KR is and the less KT is. Therefore, better wave attenuation performance can be achieved, 19 

beneficial for coastal defense. 20 

 21 

    (a) η                                   (b) KT 22 
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 1 

       (c) KR                             (d) μ(4ρb2w2d1) 2 

 3 

   (e) λ(4ρωb2w2d1)                        (f) Fz/(4ρgAb2w2) 4 

 5 

  (g) HRAO 6 

Fig. 11. Results of η, KT, KR, μ(4ρb2w2d1), λ(4ρωb2w2d1), Fz/(4ρgAb2w2) and HRAO for different 7 

caisson widths w1/h = 0.4, 1, 1.5 and 2. 8 

μ and HRAO demonstrate abrupt changes in the lower-frequency region. Correspondingly, a peak 9 
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value of λ emerges, and η approaches the first peak value. This phenomenon of wave resonance was 1 

reported by Zhang et al. (2020). The variation magnitude of μ, λ, and HRAO is weakened in the 2 

higher-frequency region. This is due to that more reflected wave is propagated out of the breakwater, 3 

and the wave energy gathering behavior inside the wave chamber is not satisfactory. For the case of 4 

w1/h = 0.4, the wave power extraction efficiency is close to zero at kh = 3.97, corresponding to the 5 

zero of Fz and HRAO. Owing to the presence of the flange, a buoy is located at the wave nodes in the 6 

confined area by the composition of the incident and reflected waves from the flange, and a detailed 7 

explanation will be given in Section 4.4. 8 

4.4 Effect of flange draft 9 

Hydrodynamic coefficients for different flange drafts d2/h = 1/6, 1/4, 1/3, 1/2, 2/3 and 5/6 are shown 10 

in Fig. 12. The other parameters are set for d1/h = 1/6, l/h = 5/6, w1/l = 2/5, w2/l = 3/5, B/h = 1, b2/B 11 

= 1/2, b1/B = b3/B = 1/4, θ0 = π/4. The trend of η is similar to that of HRAO. η exhibits two peaks 12 

except for the condition of d2/h = 1/6. A valley value is found between both peaks. Owing to the 13 

reflected waves from the flange, η is enhanced significantly. The maximum η approaches 0.9. The 14 

flange is considered as a wave-reflecting wall, and wave energy in the wave chamber can be amplified 15 

by the composition of the incident and reflected waves (Zheng et al., 2019). The first peak η slightly 16 

shifts to the lower-frequency region with an increase in flange draft, accompanied by the occurrence 17 

of the negative added mass and significant changes of radiation damping as shown in Fig. 12e and 18 

12f. The ζ4/A for kh = 1.09 for d2/h = 5/6 and kh = 1.13 for d2/h = 2/3 is shown in Fig. 13. But with a 19 

greater incident wave angle, the abrupt change of μ modifies softly. 20 

 21 

 (a) η                                  (b) KR 22 
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 1 

       (c) KT                           (d) Fz/(4ρgAb2w2) 2 

 3 

 (e) μ(4ρb2w2d1)                        (f) λ(4ρωb2w2d1) 4 

 5 

(g) HRAO 6 

Fig. 12. Results of η, KR, KT, Fz/(4ρgAb2w2), μ(4ρb2w2d1), λ(4ρωb2w2d1), and HRAO for different 7 

flange drafts d2/h=1/6, 1/4, 1/3, 1/2, 2/3 and 5/6. 8 
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 1 
  (a) kh = 1.09 for d2/h = 5/6                (b) kh = 1.13 for d2/h = 2/3 2 

Fig. 13. The ζ/A of the confined area for kh = 1.09 for d2/h = 5/6 and kh = 1.13 for d2/h = 2/3. 3 

 4 

With an increasing flange draft, the near-standing wave field is formed in the wave chamber. The 5 

valley gradually approaches zero owing to the situation where the oscillating buoy may be located in 6 

the wave node. A similar phenomenon was found in Zhao et al. (2017; 2019). Correspondingly, Fz 7 

and HRAO are closed to zeros, and the buoy remains stationary, which may lead to a strong reflection 8 

phenomenon. Interestingly, high hydrodynamic efficiency is found in the 1.8 ≤ kh ≤ 2.1. The higher 9 

wave power extraction and better wave attenuation performance are achieved for a greater flange 10 

draft. With an increasing flange draft, KT decreases and a little wave is transmitted into the lee side, 11 

which considerably prevents the coastline from the wave damage. Therefore, the synergy effect 12 

between the breakwater and WECs can be realized simultaneously. However, a reduction of η is also 13 

found at (kl)(1)
cw   (i.e., kh = 2.207). As indicated in Fig. 12, the flange draft is not related to the 14 

occurrence of multiple orders propagating waves. 15 

In order to further illustrate the zeros of η, Fig. 14a shows η for different oscillating buoy breadth 16 

and d2/h = 5/6 and d1 = 10-3 (h = 0.6 m). The other geometry is identical to that of Fig. 12. The trigger 17 

condition of η = 0 is no different for all cases. Correspondingly, ζi/A (i = 2 and 4) for η = 0 at kh = 18 

1.725 are shown in Fig. 14b and 14c, and b2 = 10-3 (i.e., the oscillating buoy is absent) and 10-1 (h = 19 

0.6 m) is selected. The standing wave field under the oblique incident waves is formed inside the 20 

wave chamber, and an oscillating buoy is located in the wave node (in Fig. 14b). The near-standing 21 

wave field is formed with a greater oscillating buoy, as is shown in Fig. 14c. 22 
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 1 

       (a) η                          (b) ζn/A for b2=0.001 2 

 3 

(c) ζn/A for b2=0.1 4 

Fig. 14. (a) η for different buoy breadth; (b) and (c) ζn/A for b2=0.001 and 0.1 (n = 2 and 4). 5 

4.5 Effect of oscillating buoy width 6 

The width of the wave chamber is identical to that of the oscillating buoy. Fig. 15 shows the results 7 

of η, KR, KT, and HRAO for different buoy widths w2/h = 1/4, 1/2, 1, 3/2, and 2. The geometry 8 

dimensions are selected as d1/h = 1/6, w1/h = 1/2, B/h = 1, b2/B = 1/2, b1/B = b3/B = 1/4, θ0 = π/4, d2/h 9 

= 1/6. Similar to the influence of the caisson width in Section 4.3, abrupt changes of hydrodynamic 10 

coefficients are due to the appearance of multiple orders reflected and transmitted propagating waves. 11 

The trigger of sudden reduction of hydrodynamic coefficients (i.e., η, KR, KT, and HRAO) shifts to 12 

the lower-frequency region, with the increasing buoy width. Therefore, the greater width of an 13 

oscillating buoy is not beneficial for wave power extraction (η < 0.2). The geometrical configuration 14 

of a caisson and an oscillating buoy of width is a key factor to evaluate the hydrodynamic performance 15 

of the system. Compared to normal incident waves, the peak of η is substituted for the wave resonance 16 
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out of the system due to the first-order propagating waves, as the buoy width increases. To maximize 1 

the efficiency, the wave resonance frequency (i.e., natural resonance) inside the wave chamber should 2 

occur by avoiding the occurrence of (kl)(1)
cw . Also, variations of an oscillating buoy width have little 3 

effect on the wave attenuation performance, except for some spike values. However, KR is greater 4 

than that of the small oscillating buoy width at kh > 0.75. This is due to that more incident wave is 5 

reflected with a greater caisson width (i.e., the wave shadowing effect). 6 

 7 

  (a) η                                  (b) KR 8 

 9 

   (c) KT                                (d) HRAO 10 

Fig. 15. Results of η, KR, KT, and HRAO for w2/h = 1/4, 1/2, 1, 3/2, and 2. 11 

4.6 Effect of oscillating buoy breadth 12 

The breadth and draft of 2-D buoy breadth affect significantly the natural frequency, resulting in 13 

the frequency of the hydrodynamic efficiency peak value. For this 3-D integrated system, results of 14 

hydrodynamic efficiency η and transmission coefficient KT for different buoy breadths of b2/B = 1/6, 15 
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1/3, 1/2, 2/3, and 5/6 are shown in Fig. 16. The oscillating buoy is located in the center of the wave 1 

chamber (i.e., b1/B = b3/B). The other parameters are set for d1/h = 1/6, l/h = 5/6, w1/l = 2/5, w2/l = 2 

3/5, B/h = 1, θ0 = π/4, d2/h = 1/6. As indicated in Fig. 16, variations of the oscillating buoy breadth 3 

slightly modify the frequency of the natural resonance. An increment of the η is achieved by 4 

increasing its breadth. But, the maximum η has a little different for the condition of b2/B ≥ 1/2. 5 

Especially, when b2/B = 0.99 (i.e., the wave chamber is filled by an oscillating buoy), η is slightly less 6 

than that of b2/B = 1/2, 2/3, and 5/6. The wave power extraction is also hindered beyond (kl)(1)
cw . The 7 

wave attenuation performance is superior with a greater buoy breadth, which significantly contributes 8 

to coastal protection. KR has an opposite trend to KT. With an increasing breadth, KR increases 9 

moderately and appears a strong reflection beyond (kl)(1)
cw . From an engineering perspective, a larger 10 

buoy may lead to high construction costs. To realize dual functions of better effective wave power 11 

capturing of a device and wave attenuation performance of a breakwater, the optimal geometry of an 12 

oscillating buoy may be selected as about b2/B = 1/2. 13 

 14 

   (a) η                                (b) KT 15 

Fig. 16. Results of η and KT for different buoy breadths b2/B = 1/6, 1/3, 1/2, 2/3, and 5/6. 16 

4.7 Effect of PTO damping 17 

Fig. 17 shows the effect of the PTO damping on the capture width ratio η, transmission coefficient 18 

KT, reflection coefficient KR and HRAO. The wave and geometrical parameters are set as d1/h = d2/h 19 

=1/10, l/h = 1/2, w2/l = 1/2, B/h = 2/5, b2/B = 1/2, b1/B = b3/B = 1/4, and θ0 = π/4. As shown in Fig. 20 

17, η and KR experience an upward trend with an increasing wavenumber (kh = 1.0, 2.0, and 3.0), but 21 

a remarkable reduction of η at kh = 4.0. This is due to that the condition of the kh = 4.0 beyond the 22 
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first-order Rayleigh wavenumber leads to an increase in the wave reflection (Fig. 17c). The maximum 1 

of η demonstrates C = 1 corresponding to the optimal PTO damping, but the valley of KR is located 2 

at C0.5 = 0.5 nearly. With an increasing PTO damping, KT and HRAO decrease (in Fig. 17b and 17d), 3 

and better wave attenuation performance is realized. Interestingly, the minimum of KT approaches at 4 

C0.5 = 1.5, instead of C = 1.  5 

 6 

  (a) η                                (b) KT 7 

 8 

  (c) KR                              (d) HRAO 9 

Fig. 17. Results of η, KT, KR, and HRAO versus PTO damping for different dimensionless 10 

wavenumber kh = 1.0, 2.0, 3.0, and 4.0 (λPTO = C∙λoptimal). 11 

To illustrate the effect of the PTO damping at the range of 0 < kh < 5.0, we plotted the results of η 12 

and KT for different PTO damping in Fig. 18. Considering the case of Kt < 0.5 and η > 0.2 as the 13 

effective frequency range (Zhao et al., 2019), the available effective frequency region is 1.975 ≤ kh 14 

≤ 3.575, 1.9 ≤ kh ≤ 3.575, 1.675 ≤ kh ≤ 3.575, 1.525 ≤ kh ≤ 3.55, and 1.425 ≤ kh ≤ 3.25 for λPTO = 15 

0.8λoptimal, 1.0λoptimal, 1.5λoptimal, 2.0λoptimal, and 5.0λoptimal, respectively. The corresponding effective 16 

Jo
urn

al 
Pre-

pro
of



30 

 

frequency bandwidths are 1.6, 1.675, 1.9, 2.025, and 1.825. The case of λPTO = 8.0λoptimal is neglected 1 

due to η < 0.2. It is concluded that the effective frequency bandwidth is broadened when λPTO = 2.0 - 2 

5.0λoptimal, compared to that of λPTO = 1.0λoptimal. 3 

 4 

  (a)η                                   (b) KT 5 

Fig. 18. Results of η and KT for different PTO damping λPTO = 0.8λoptimal, 1.0λoptimal, 1.5λoptimal, 6 

2.0λoptimal, 5.0λoptimal, and 8.0λoptimal. 7 

5 Further Discussions 8 

In this paper, we investigated the GRP of a periodic array of buoys with a row. Different from an 9 

infinite long buoy (Bolton and Ursell, 1973; Zheng et al., 2006; 2007), the flexural propagating waves 10 

with a periodicity of array 2l along the system were found, which generates oblique waves with 11 

periodic distribution due to forced motion of buoys. This assumption has no immediate physical 12 

application, but it is easier to compute wave exciting force in the scattering problem, which can agree 13 

with generalized wave exciting force deduced from GRP (i.e., Haskind relations). This assumption 14 

mainly focuses on the cartesian coordinate system. The incident angle factor can be considered in the 15 

velocity potential expressions under the cylindrical coordinate system (Zheng et al., 2019). Therefore, 16 

GRP maybe not be involved in the latter coordinate systems. 17 

The caisson array separated by gaps is similar to the diffraction grating in the optics (Wilcox, 1984). 18 

The physical phenomenon of the diffraction grating (i.e., Wood anomaly) can be found in the wave 19 

interaction with a periodic of caissons (i.e., multiple orders propagating waves) (Wang et al., 2019). 20 

Therefore, hydrodynamic coefficients (i.e., reflection and transmission coefficients) are also affected 21 

significantly at the m-th critical wavenumbers (kl)(m)
cw ). For the proposed system, a periodic of WECs 22 
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are integrated into gaps and the periodicity of the array system is not modified, so radiated waves due 1 

to the buoy motion should be taken into consideration. Based on the solution of GRP, a periodic of 2 

buoys also results in the appearance of multiple orders propagating waves, and the trigger condition 3 

is identical to the wave scattering problem (i.e., (kl)(m)
cw ), which was also found in Tokić and Yue 4 

(2019). This solution is also helpful for evaluating a compact array of floating rectangle structures.  5 

For the aspect of water wave interaction with structures, the previous literature not only reveals the 6 

influence of multiple orders propagating waves on wave attenuation performance of coastal structures 7 

(Wang et al., 2019) but also the evaluation of WECs. Renzi and Dias (2012 and 2013) investigated 8 

the influence of the channel sloshing modes on the performance of flap-type wave energy converters 9 

under the normal incident waves. The sloshing modes can be clarified for a special case of (kl)(m)
cw  (θ0 10 

= 0). Tokić and Yue (2019) also found a striking phenomenon that occurs at isolated wavenumbers 11 

in periodic WEC arrays (i.e., Rayleigh-Bloch waves). Therefore, the effect of multiple propagating 12 

mode waves on both wave attenuation and energy capture performance of hybrid caisson breakwater-13 

WECs is essential under oblique waves. Compared to the normal incident waves, hydrodynamic 14 

efficiency is hindered beyond the first-order critical wavenumber. The (kl)(1)
cw  with greater incidence 15 

angles shifts into the lower frequency region and the most wave energy reflected or transmitted out 16 

the system results in a decrease in wave energy gathering, under special circumstances. The positive 17 

wave gathering effect on hydrodynamic efficiency and the synergy effect is absent. The multiple 18 

orders propagating waves dominate the whole frequency domain, instead of wave power extraction. 19 

Therefore, the relationship between the natural resonance of the buoy and the water wave resonance 20 

outside the system should be emphasized by adjusting the geometrical configurations properly. In 21 

addition, the present work can provide a reference for the assessment of the system in the multi-22 

direction waves.  23 

Comprehensively, these findings of this work can also demonstrate the hydrodynamic synergy 24 

effect for a hybrid breakwater-WEC system with a greater flange draft, which can make wave energy 25 

technology economically competitive and improve the function of coastal defense simultaneously. 26 

The valuable guidance for the practical engineering design has been developed, in response to array 27 

configuration and preliminary power prediction of hybrid breakwater-WEC systems in real sea states. 28 

To evaluate the advantages of the proposed system with the potential application of coastal 29 
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protection, a comparison of KR between the proposed system and the novel perforated caisson 1 

breakwater (Wang et al., 2021) is shown in Fig. 19a. The difference between both structures is that a 2 

perforated wall is substituted for an oscillating buoy WEC device to capture incident wave energy. 3 

The size of the caisson and the flange is the same as that in (Wang et al., 2021). The wave/geometrical 4 

parameters are as follows: d1/h = 1/12, d2/h ≈ 1.0, l/h = 1/2, w1/l = w2/l = 1/2, B/l = 1/2, b2/B = 1/2, 5 

b1/h = 1 × 10-6, θ0 = π/4 and λPTO = λoptimal. From the results described in Fig. 19a, we found that the 6 

trend of the presters results is similar to that of Wang et al. (2021). And at the range of 1.5 < kh < 3.5, 7 

the present results are relatively smaller. This means that the wave attenuation performance of the 8 

present structures is comparable to that proposed by Wang et al. (2021). In addition, a secondary 9 

benefit of wave power extraction is achieved for the present structures. 10 

Besides, a comparison of the power output Pc between the proposed system and a linear periodic 11 

array of heaving-oscillating buoy WEC devices is illustrated in Fig. 19b. The parameters are selected 12 

for h = 20 m, A = 0.5 m, w2 = b2= 1 m, w1/w2 = 3.0, B/w2 = 2.5, b1/w2 = 1 × 10-6, d2 = 0, d1/ w2 = 1/2, 13 

θ0 = 0 and λPTO = λoptimal. The displacement of the buoy in the present structure is identical to that of 14 

Ning et al. (2020). As indicated in Fig. 19b, a significant increment of Pc between 0.0358 to 0.0622 15 

in the range of kl/π is attributed to the wave gathering behavior of adjacent caissons. But a remarkable 16 

reduction was observed beyond kl/π = 1, due to the presence of the first-order propagating waves. 17 

 18 
(a)                                   (b) 19 

Fig. 19. Comparison of (a) KR between the present results and Wang et al. (2021) and (b) 20 

Pc/(ρVg1.5h0.5) between the proposed system and Ning et al. (2020). (V = 4w2b2d1). 21 

6 Conclusions 22 

In this paper, a 3-D analytical model of oblique wave interaction with a periodic array of oscillating 23 
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buoy type wave energy devices embedded in a breakwater was developed, based on the linear 1 

potential flow theory and the matching eigenfunction method. The caissons are separated by gaps, 2 

and the heaving oscillating-buoy WEC array is arranged in the wave chamber, comprised of adjacent 3 

caissons. The linear PTO damping is adapted to convert wave energy to electric power. The 4 

generalized radiation problem is considered under oblique waves and validated. Based on pressure 5 

and velocity continuity conditions, unknown coefficients of velocity potential expressions can be 6 

derived. This theoretical model is ultimately applied to explore the effects of wave/geometrical 7 

configurations, and PTO damping. The following conclusions can be drawn: 8 

1) The appearance of multiple-order propagating waves plays a significant role in wave power 9 

extraction performance and coastal protection. In particular, the first-order propagating waves 10 

were found for a remarkable reduction of η, accompanied by the strong reflection phenomenon. 11 

A lower energy capture qc < 1 was found in the lower-frequency region, and the performance 12 

mitigation is significant with the increasing incident angle. There are conditions under qc > 1, 13 

but they correspond to a low η < 0.2. Therefore, with a greater incident angle, the wave power 14 

extraction is not a dominant role, instead of coastal defense. 15 

2) The influence of caisson width on hydrodynamic qualities is like that of buoy width. Detailly, 16 

geometrical configuration modifies the trigger of multiple orders propagating waves. When 17 

critical wavenumber is emerged in the low-frequency region, instead of the natural resonance 18 

of the buoy, coastal defense is improved significantly, but wave power extraction is hindered. 19 

Therefore, the optimal geometry configuration should be designed to avoid the appearance of 20 

the first-order critical wavenumber during the effective energy capturing frequency region.  21 

3) The synergy effect (i.e., qualified hydrodynamic efficiency and better wave attenuation) is 22 

superior for this proposed integrated system with a greater flange draft. This is due to that the 23 

wave energy accumulation in the wave chamber (i.e., reflected waves from the flange) and a 24 

little incident wave transmitted into the coastline (i.e., wave shadow effect). However, an 25 

oscillating buoy located at the wave node of the standing wave field formed in the confined 26 

region may lead to zero hydrodynamic efficiency. 27 
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Appendix A 1 

The boundary conditions of the scattering problem are as follow: 2 
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The coefficients pi,n, p̅j,n and qj,n can be expressed as 10 
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= +

− =

,
 (A.8) 

11 

,0 ,0 2 2
,0

, ,0 ,0 2 2
,

,

,  0,  0,

i ,  0,  0,  0,1,2,..., 

,  1,2,...,

j j

j j
j n j j

j n j n

j n

n
k

p n j
k

n

 
 

 
 



  =
  = − 

= −  = = 
= + 

=

,
 (A.9) 

12 

and 
13 

2 2
,j n j nq  = + .

 (A.10) 14 

To derive the unknown coefficients, the conditions of pressure and velocity conditions can be drawn: 15 

1) Pressure continuity conditions (x = r4, b2, −b2 and −r2):  16 

11 2 2
4 2 2and ,  at ,   0 ,RS RS yx r w w h z   = = = −  −  ,

 (A.11) 
17 

2 3
2 2 2 1

2 3 and ,  at ,   , S RS R x b w h z dy w   = = − − =  −  ,
 (A.12) 

18 

3 4
2 2 2 1

3 4 and ,  at ,   , S RS R x b h z dyw w   = = − − −   −=  ,
 (A.13) 

19 

and 
20 
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2
4 5

2 2 2
4 5 and ,  at ,   , S RS R x r h z dyw w   = = − − −   −=  .

 (A.14) 
1 

2) Velocity continuity conditions (x = r4, b2, −b2 and −r2): 2 

( ) ( )

1 1 22
4

4 2

2 2

2

/ , ,/ and 
0,          

 
,

0
0   , 0

S R RS w wx x r yx
x r l w

h z
hy w y lx x z

   



− −     =   
= = 

= −   −   −  

，，
， , (A.15) 

3 

3
2 2

2

2
2

2

1

1

23

2

/ , ,/ and 
0              ,  0

 
, 0

S R RS x x b yx
x

w w h z
b yx x

d
w w d z

       =   
= = 

=    

− −   −

− −  

，，
，， , (A.16) 

4 

2 2 1

2 2

2

2 1

4 4 33 / , ,/ ,and 
0         

 
0     , ,0  ,

S R RS x x b yx
x

w w
y

h z d
w w d zbx x

       = −   
= = 

= −    

− −   −

− −  

，
， , (A.17) 

5 

(
2 2 2

2 2 2

4 4 2)(1)
2

2

, ,,and 
0, 0       ,  0,

 S R wU
r

w h z d
w d

x r yU
x wx zyx

    = −  
= = 

= −    

− −   −

− −  

，
，

, (A.18) 6 

and
 

7 

( ) ( )

(
2 2 2

2 2 2

2)
5 5 2(1)

2 2
2

, ,
and ,0  

 
0

 
0

0
     ,

,

S R w
w w h z d

h z
U x r y

U l y w y lx rx x yw w d z

 
 = −  

  
= = −   −   

= −    

−



− −   −

 

−  −

，
，

，，  .(A.19) 
8 

The function of U(l)(y, z) is written as  9 

( ) ( ) ( ) ( )

( ) ( )

+ +

, 22 2
1 0 22

2 1
( , )

π

q
l l

m m q q
m q

z hU y z C y A T
h dh d z h

 

= =

−  +
=  

− − − +
  ,

 (A.20)
 10 

where the auxiliary function U(l)(y, z) (l = 1 and 2) was introduced to express the water particle 11 

velocities below the flange, Am,q
(l)   denotes unknown coefficients. Symbolically, U(1)(y, z)  and 12 

U(2)(y, z) are corresponding to the expressions of scattering and radiation problems, respectively. T2q 13 

is the Chebyshev polynomial, and the function of uq(z) can be expressed as 14 

( )
( )

( ) ( )
22 2

22

2 1

π

q

q q
z hu z T

h dh d z h

−  +
=  

− − − +
.
 (A.21) 15 

The orthogonal relation is satisfied by 16 

( ) ( )
( ) 
 

2 2 2d
cos

d q n
q nh

n

J k h d
u z Z z z

k h
−

−

−
= ， (A.22) 17 

where J2q is the Bessel function of order 2q.18 

  19 
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Appendix B 1 

For the wave scattering and radiation problem, a series of linear equations can be written as 2 

         (10 9)( 1) (10 9)( 1) (10 9)( 1) 1 (10 9)( 1) 1M Q N M Q N M Q N M Q N
X X

+ + +  + + + + + +  + + + 
  =  

,
 (B.1) 3 

and 4 

         (10 9)( 1) (10 9)( 1) (10 9)( 1) 1 (10 9)( 1) 1M Q N M Q N M Q N M Q N
X X

+ + +  + + + + + +  + + + 
   =  

,
 (B.2) 5 

where [X] and [X´] correspond to the unknown coefficients of scattering and radiated spatial velocity 6 

potential, in addition to Amq
(1)  and Amq

(2) . [] is any matrix, which can be obtained by 7 

 

     

     

       

       

       

       

     

     

   

1,1 1,2 1,3

2,1 2,2 2,3

3,2 3,3 3,4 3,5

4,2 4,3 4,4 4,5

5,4 5,5 5,6 5,7

6,4 6,5 6,6 6,7

7,6 7,7 7,8

8,6 8,7 8,9

9,8 9,9

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

   
 
   
 

    
 

    
 

 =     


   
   

   

   









. (B.3) 8 

Here, the rows of []r,s for r = 1, 3, 4, 5, 6 and 8 are (M+1)(N+1); for r = 2 and 9 are (2M+1)(N+1), 9 

for r = 7 is (Q+1)(N+1). The columns of []r,s for s = 2, 3, 4, 5, 6 and 7 are (M+1)(N+1); for s = 1 and 10 

8 are (2M+1)(N+1), s = 9 is (Q+1)(N+1). The I and J are set for the rows and columns of each matrix 11 

module, i and j represent the rows and columns of each matrix. The detailed expressions of each 12 

matrix can be derived from 13 

a) The boundary condition x = r4: 14 

 
1,1 (1)

, ( 1) 1, ( 1) 1, = ,  0, 1, ...,  2 ;  0, ...,J I j N J i N Ii j J M I M  − + − − + − = = ,
 (B.4) 15 

   
1,2 1,3

, ( 1) 1, ( 1) 1, , ,  ,  0, ...,J I j N J i N Ii j i j J I M  − + − − + − =  = − = ,
 (B.5) 16 

 
2,1

, , ( 1) 1 ( 1) 1, ( 1) 1, = ,  ,  0, 1, ...,  2J I J j N J j N J i N Ii j p J I M − + − − + − − + − = , (B.6) 17 

 
2,2 (2)

, , ( 1) , ( 1) 1 3 ( 1) 1, ( 1) 1, tanh ,  0, ..., 2 ; 0,  ...,I J J j N J J j N J j N J i N Ii j p p b J M I M − + − + − − + − − + −
  = − = =  , (B.7) 18 

and 19 

 
2,3 (2)

, , ( 1) , ( 1) 1 3 ( 1) 1, ( 1) 1, coth , 0, 1,..., 2 ; 0,  ...,I J J j N J J j N J j N J i N Ii j p p b J M I M − + − + − − + − − + −
  = − = =  , (B.8) 20 

b) The boundary condition x = b2: 21 
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   
3,2 3,3

, ( 1) 1, ( 1) 1, , ,  ,  0, ...,J I j N J i N Ii j i j J I M  − + − − + − = −  = , (B.9) 1 

   
3,4 3,5

, ( 1) 1, ( 1) 1, ,= ,  ,  0, ...,J I j N J i N Ii j i j U J I M − + − − + −  = − = , (B.10) 2 

 
4,2

, , ( 1) 1 , ( 1) 1 3 ( 1) 1, ( 1) 1, = tanh ,  ,  0, ...,J I J j N J J j N J j N J i N Ii j p p b J I M − + − − + − − + − − + −
  − =  , (B.11) 3 

 
4 3

, , ( 1) 1 , ( 1) 1 3 ( 1) 1, ( 1) 1= coth ,  ,  0, ...,J I J j N J J j N J j N J i N Ip p b J I M − + − − + − − + − − + −
  = 

，

, (B.12) 4 

 
4 4

0, 0, ( 1) 1 0, ( 1) 1 2 ( 1) 1, ( 1) 1

,

0                                                                                   , 0, 1,  0,  ...,
= tanh ,  0,  1,  0,  ...,I j N J j N J i N I j N J

J I

J j I M
q q b J j I M
q

 



− + − − + − − + − − + −

= = =

  − =  = 

−

，

, ( 1) 1 , ( 1) 1 ( 1) 1, ( 1) 12
tanh ,  0,  0,  ...,J j N J J j N J i N I j N Jq b J I M− + − − + − − + − − + −






   =  

, (B.13) 5 

and 6 

 
0, ( 1) 1,0 2

4 5
0, 0, ( 1) 1 0, ( 1) 1 2 ( 1) 1, ( 1) 1

, , (

/                                                        ,  0,  1,  0,  ...,
= coth ,  0,  1,  0,  ...,

I i N I

I j N J j N J i N I j N J

J I J j N

b J j I M
q q b J j I M
q

 

 



− + −

− + − − + − − + − − + −

−

− = = =

  − =  = 

−

，

1) 1 , ( 1) 1 2 ( 1) 1, ( 1) 1coth ,  0,  0,  ...,J J j N J i N I j N Jq b J I M+ − − + − − + − − + −






   =  

, (B.14) 7 

c) The boundary condition x=−b2: 8 

   
5,4 5,5

, ( 1) 1, ( 1) 1, , ,  ,  0, ...,J I j N J i N Ii j i j U J I M − + − − + − = −  = = , (B.15) 

9 

   
5,6 5,7

, ( 1) 1, ( 1) 1, ,= = ,  ,  0, ...,J I j N J i N Ii j i j J I M  − + − − + −  − = , (B.16) 
10 

   
6,4 4,4

, ,=i j i j  , (B.17) 
11 

   
6,5 4,5

, ,i j i j = −  , (B.18) 
12 

 
6,6

, , ( 1) 1 , ( 1) 1 1 ( 1) 1, ( 1) 1, = tanh ,  ,  0, ...,J I J j N J J j N J j N J i N Ii j p p b J I M − + − − + − − + − − + −
  − =  , (B.19) 

13 

and 
14 

 
6,7

, , ( 1) 1 , ( 1) 1 1 ( 1) 1, ( 1) 1, = coth , ,  0, ...,J I J j N J J j N J j N J i N Ii j p p b J I M − + − − + − − + − − + −
  − =  , (B.20) 

15 

d) The boundary condition x=−r2: 16 

 
7,6

, ( 1) 1, ( 1) 1, ,  0,  ..., ; 0,  ...,J I j N J i N Ii j S I Q J M − + − − + − = = = ,
 (B.21) 

17 

   
7,7 7,6

, ,i j i j = −  ,
 (B.22) 

18 

 
7,8 (1)

, ( 1) 1, ( 1) 1, = ,  0,  1,..., ; 0,  1,...,  2J I j N J i N Ii j S I Q J M − + − − + − = = ,
 (B.23) 

19 

 
8,6

, , ( 1) 1 , ( 1) 1 1 ( 1) 1, ( 1) 1, tanh ,  0,  ..., ; 0,  ...,J I J j N J J j N J j N J i N Ii j p p b J M I M − + − − + − − + − − + −
  = − = =  , (B.24) 20 
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 
8,7

, , ( 1) 1 , ( 1) 1 1 ( 1) 1, ( 1) 1, coth ,  0,  ..., ; 0,  ...,J I J j N J J j N J j N J i N Ii j p p b J M I M − + − − + − − + − − + −
  = = =  , (B.25) 1 

 
8,9

, ( 1) 1, ( 1) 1, ,  0,  ..., ; 0,  ...,J I i N I j N Ji j S J Q I M − + − − + − = = = , (B.26) 2 

 
9,8

, , ( 1) 1 ( 1) 1, ( 1) 1. = ,  ,  0,  ..., 2J I J j N J j N J i N Ii j p I J M − + − − + − − + − = , (B.27) 3 

and 4 

 
9,9 (2)

, ( 1) 1, ( 1) 1. = ,  0,  ..., 2 ; 0,  ...,I J i N I j N Ji j S I M J Q − + − − + − = = .
 (B.28) 

5 

Here, [Ξ]i, j
r, s denotes the element of any matrix, and functions of αn, u, σ̅j, v, εi, δ, βi, v

(1), βi, v
(2), τn, u and 6 

Un, u can be obtained by 7 

( ) ( )
 

 
0

,
2

0                                        ,  
sin 21d ,  

cos 2 4
nn u n uh

n n

n u
k hhZ z Z z z n u

k h k


−


  = =  + = 

 



,
 (B.29) 

8 

( ) ( )
2

2

2

, 2

2 ,  0
d   ,  0

0    ,  

w

j v j vw

w j v
C y C y y w j v

j v


−

= =


= = = 
 


, (B.30) 

9 

( ) ( ) *
,

2 ,  d 0 ,  
l

i il

l iE y E y y i 




−


= =

= , (B.31) 
10 

( ) ( )

( )
2 2

2

2

2
i(1)

2,

2                                                        ,  0,  0
2isinh i /                                 ,  0,  0
e                                          d v

i

i i i
w w

i v i vw

w v
w v

wE y C y y




  




−

= =

−  =

= =
( ) ( )

( ) ( ) ( ) ( )

1
2

1 2 2
2

       ,  
(1 1 )sin

,  
i(1 1 )cos

i v
v

i i
i vv

i i v

w
w

 

 
 

  

−

−




 = 


  + − −
 

− − −  

, (B.32) 

11 

( ) ( )

( )
2 2

2

2

2
i(2)

2,

2                                                       ,  0,  0
2isinh i /                                ,  0,  0
e                                           d v

i

i i i
w w

i v i vw

w v
w v

wE y C y y




  






−

= =

−  =

= =
( ) ( )

( ) ( ) ( ) ( )

1
2

1 2 2
2

      ,  
(1 1 )sin

,  
i(1 1 )cos

i v
v

i i
i vv

i i v

w
w

 

 
 

  

−

−




 =


  + − +
 

− − −  

, (B.33) 

12 

( ) ( )
( ) ( )

( ) ( )

1 1
, 2 2

1 sin
d

cos

n
d n n

n u n uh
n u n

k k h d
Z z z z

k k h
 



−

−

− −  = =
−

 , (B.34) 

13 

and 

14 

( ) ( ) ( )
1

1

, 1

       ,  0
d / 2,  0

0              ,  

d

n u n uh

h d n u
U z z z h d n u

n u
 

−

−

− = =


= = − = 
 

 . (B.35) 

15 
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For the basic matrix [X̅] and [X̅'], the element of [X̅]i
r and [X'̅]i

r for r = 1, 2,…, 9 can be determined 1 

by 2 

1 (1)
0, 0, ( 1) 1,  0,  ...,I i N Ii

X I M  − + −
  = − =  , (B.36) 

3 

2
0, 0, ( 1) 1i ,  ,...,0,...,x I i N Ii

X I M M   − + −
  = = −  , (B.37) 

4 

3
0, ( 1) 1

i= ,  0,...,I i N Ii
X W I M

gA


 − + −
  =  , (B.38) 

5 

4 2
0, ( 1) 1,1

1

i ,  0,...,I i N Ii

bX I M
gA h d


  − + −
  = − =  −

,
 (B.39) 

6 

5 3

i i
X X   = −    , (B.40) 

7 

and 
8 

6 4

i i
X X    =    , (B.41) 

9 

where the function of Wu denotes 10 

1
2 2 2 2

2 1 2
2

1

( ) ( ) /6 /2,  0( )d =
( 1) /              ,  02( )

d

u u uh
u

z h b h d b uW z z
uh d




−

−

+ − − − =
= 

− − 
 . (B.42) 11 

Consequently, the other basic matrix system is the zeros matrix. 12 
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