
 Open access  Journal Article  DOI:10.1017/S0022112009007411

Wave-power extraction by a compact array of buoys — Source link 

Xavier Garnaud, Chiang C. Mei

Institutions: Massachusetts Institute of Technology

Published on: 25 Sep 2009 - Journal of Fluid Mechanics (Cambridge University Press)

Topics: Wave power, Frequency band, Wavelength and Buoy

Related papers:

 Wave energy utilization: A review of the technologies

 Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves

 A theory for wave-power absorption by oscillating bodies

 Bragg scattering and wave-power extraction by an array of small buoys

 A resonant point absorber of ocean-wave power

Share this paper:    

View more about this paper here: https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-
4ixqhhtd7i

https://typeset.io/
https://www.doi.org/10.1017/S0022112009007411
https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-4ixqhhtd7i
https://typeset.io/authors/xavier-garnaud-11entxyjg5
https://typeset.io/authors/chiang-c-mei-5wbtd5e4cl
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/journals/journal-of-fluid-mechanics-3ayqlpx6
https://typeset.io/topics/wave-power-3p50ouoo
https://typeset.io/topics/frequency-band-3bbhaohh
https://typeset.io/topics/wavelength-33axw8az
https://typeset.io/topics/buoy-1u6v7y3u
https://typeset.io/papers/wave-energy-utilization-a-review-of-the-technologies-3qlp9iic1y
https://typeset.io/papers/radiation-impedance-matrix-and-optimum-power-absorption-for-2i5tu8lhuq
https://typeset.io/papers/a-theory-for-wave-power-absorption-by-oscillating-bodies-488c4esxys
https://typeset.io/papers/bragg-scattering-and-wave-power-extraction-by-an-array-of-2hzo724szd
https://typeset.io/papers/a-resonant-point-absorber-of-ocean-wave-power-3s5sk6cw2o
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-4ixqhhtd7i
https://twitter.com/intent/tweet?text=Wave-power%20extraction%20by%20a%20compact%20array%20of%20buoys&url=https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-4ixqhhtd7i
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-4ixqhhtd7i
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-4ixqhhtd7i
https://typeset.io/papers/wave-power-extraction-by-a-compact-array-of-buoys-4ixqhhtd7i


HAL Id: hal-00674136
https://hal.archives-ouvertes.fr/hal-00674136

Submitted on 25 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wave-power extraction by a compact array of buoys
Xavier Garnaud, Chiang C. Mei

To cite this version:
Xavier Garnaud, Chiang C. Mei. Wave-power extraction by a compact array of buoys.
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2009, vol 635, pp 389-413.
฀10.1017/S0022112009007411฀. ฀hal-00674136฀

https://hal.archives-ouvertes.fr/hal-00674136
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Wave-power extraction by a compact array
of buoys

XAVIER GARNAUD1 † AND CHIANG C. MEI2

1Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology

Cambridge, MA, 02139, USA
2Department of Civil and Environmental Engineering,

Massachusetts Institute of Technology
Cambridge, MA, 02139, USA

(Received 9 December 2009)

The majority of existing single-unit devices for extracting power from sea-waves relies
on resonance at the peak frequency of the incident wave spectrum. Such designs usually
call for structural dimensions not too small compared to a typical wavelength and yield
high efficiency only within a limited frequency band. A recent innovation in Norway
departs from this norm by gathering many small buoys in a compact array. Each buoy
is too small to be resonated in typical sea conditions. In this article a theoretical study
is performed to evaluate this new design. Within the framework of linearisation, we
consider a periodic array of small buoys with similarly small separation compared to the
typical wave length. The method of homogenization (multiple scales) is used to derive
the equations governing the macro-scale behaviour of the entire array. These equations
are then applied to energy extraction by an infinite strip of buoys, and by a circular
array. In the latter case advantages are found when compared to a single buoy of equal
volume.

1. Introduction

The prevailing ideas of wave-power extraction are based on matching the impedance
of the extracting device to the characteristics of the incident wave. In particular for a
single unit of an oscillating body, or for an oscillating water column, the device should
be resonated at the peak frequency of the incoming wave and the extraction rate should
equal that of the radiation damping. High efficiency is attainable in a limited frequency
bandwidth around resonance. Ideas have been proposed to broaden the bandwidth by
the method of phase control (Budal & Falnes (1980)) or by combining several devices of
different impedances into one. Usually such devices must be sufficiently large to operate
near the peak of the sea spectrum, and very small bodies can be resonated only at
frequencies above the usual range of the energetic sea.

Recently Fred Olsen and ABB Power Systems Inc. (http://www02.abb.com) in Norway
have designed a system called FO3 which consists of a rig with many small floating
cylinders hanging underneath it. Energy is absorbed from the waves as they set the
cylinders into vertical motion which then activates a hydraulic system driving a generator
to produce electricity. Currently being tested is a 1:3-scale research model which measures

† Present address : Laboratoire d’Hydrodynamique – Ecole Polytechnique, 91128 Palaiseau,
France
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Figure 1. Geometry of the array of buoys.

12 by 12 meters and is 8 meters high. It is estimated that the full-scale model can produce
2.52 MW from 6-meter high waves with a period of 9 seconds, comparable to the capacity
of a wind turbine. Eventually a large array of many rigs can be installed over a large sea
surface area and produce much more electricity.

In this paper we report a theoretical evaluation of this novel concept by examining a
compact array of small buoys with spacings much shorter that the typical wavelength.
Based on linearised theory of small amplitude waves we first employ the method of ho-
mogenization (i.e. multiple scales) to derive effective equations governing the dynamics
on the macro-scale of the wave length. We show that for buoys of dimensions and spac-
ing small compared to the water depth and wavelength, their presence and motion are
manifest in a modified free surface condition on the wavelength scale. Explicit results are
obtained for a long array of finite width attacked by normal incident sea, as well as a
circular array of large radius. The dynamics and the energy efficiency are then compared
with those of single buoys.

Specifically we shall consider a square array of small and identical buoys floating on the
surface of the sea of constant mean depth h∗, as shown in figure 1. Each buoy is a vertical
cylinder of circular cross section of radius a∗ and draft H∗, spaced at the distance d∗

from centre to centre. Assuming monochromatic waves of frequency ω∗, the wave number
k∗ of the incident waves is given by the real root of the dispersion relation

ω∗2 = gk∗ tanh(k∗h∗) (1.1)

The incoming wave length and the sea depth are assumed to be comparable but both
are much greater than the buoy radius a∗, the draft H∗ and the separation distance d∗.
i.e.,

a∗

h∗
≡ µ≪ 1, O(a∗) = O(H∗) = O(d∗), k∗h∗ = O(1) (1.2)

Wave energy is extracted from the heaving oscillation of each buoy through an absorbing
device anchored to the seabed or attached to a fixed supporting structure.
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2. Linearised governing equations

We employ the following symbols for physical domains: ΩF is the fluid domain, SF is
the free surface, SW is the lateral surface of the buoys, and SB is the bottom surface of
the buoys. Let us denote all physical variables with asterisks. Assuming irrotational flow
and infinitesimal waves, the velocity potential in water is governed by Laplace’s equation

∆∗Φ∗ =
∂2Φ∗

∂x∗2 +
∂2Φ∗

∂y∗2 +
∂2Φ∗

∂z∗2 = 0, x
∗ ∈ ΩF (2.1)

The total pressure inside water is given by Bernoulli’s equation:

p∗ = −ρ∂Φ∗

∂t∗
− ρgz∗ (2.2)

On the free surface z∗ = η∗(x∗, y∗, t∗), the kinematic boundary condition is

∂Φ∗

∂z∗
=
∂η∗

∂t∗
, x

∗ ∈ SF (2.3)

and the dynamic boundary condition is,

gη∗ +
∂Φ∗

∂t∗
= 0, x

∗ ∈ SF (2.4)

As the sea-surface pressure is assumed to be constant. On the sea bed the vertical velocity
vanishes, which gives

∂Φ∗

∂z∗
= 0, z∗ = −h∗ (2.5)

On the side wall of the buoy, there is no normal velocity:

∂Φ∗

∂r∗
= 0, x

∗ ∈ SW (2.6)

where r∗ is the local radial coordinate from the axis of a cylindrical buoy. We assume
that all buoys are installed on a large stationary frame or platform which is held fixed
above the sea surface. On the flat bottom of the buoy the kinematic condition is

∂Φ∗

∂z∗
=
∂ζ∗

∂t∗
, x

∗ ∈ SB (2.7)

where ζ∗(t∗) is the unknown vertical displacement of the buoy. Modelling the energy
extraction device as a linear load force

−λ∗ ∂ζ
∗

∂t∗
(2.8)

on a moving buoy with a constant coefficient λ∗, the conservation law of vertical momen-
tum of the buoy serves as the dynamic condition

M∗ ∂
2ζ∗

∂t∗2 + λ∗
∂ζ∗

∂t∗
+ πa∗2ρgζ∗ = −ρ

∫∫

SB

∂Φ∗

∂t∗
dS∗ (2.9)

where M∗ = ρπa∗2H∗ is the buoy mass and H∗ its draft by Archimedis principle.
Let us introduce normalized variables as follows,

x∗i = a∗x′i, t∗ = t′

√

h∗

g
, Φ∗ = A∗

√

gh∗Φ, η∗ = A∗η, ζ∗ = A∗ζ (2.10)

where A∗ is the amplitude of the incoming wave. Let us rewrite the governing equations.
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Note that the length scale is the small radius of the buoy (the micro-scale). In normalized
form, Laplace’s equation (2.1) is unchanged. The free surface condition (2.3) becomes

µ
∂η

∂t′
=
∂Φ

∂z′
, x

′ ∈ SF (2.11)

where

µ =
a∗

h∗
≪ 1 (2.12)

is the key parameter in this study. Equation (2.4) gives,

η +
∂Φ

∂t′
= 0, x

′ ∈ SF (2.13)

Equations (2.11) and (2.13) can be combined into

∂Φ

∂z′
+ µ

∂2Φ

∂t′2
= 0, x

′ ∈ SF (2.14)

and the condition on the seabed now reads

∂Φ

∂z′
= 0, z′ = −h

∗

a∗
= − 1

µ
(2.15)

As 1/µ≫ 1, this micro-scale boundary condition is effectively applied at z′ → −∞. On
the buoy, the kinematic conditions are

∂Φ

∂r′
= 0′, x

′ ∈ SW (2.16)

and
∂Φ

∂z′
= µ

∂ζ

∂t′
, x

′ ∈ SB (2.17)

The dynamic condition (2.9) now reads

a∗

h∗
H∗

a∗
∂2ζ

∂t′2
+
λ∗
√

g/h∗

ρ∗gπa∗2

∂ζ

∂t′
+ ζ = −

∫∫

SB

∂Φ

∂t′
dS′

π
(2.18)

Defining

H ′ =
H∗

a∗
= O(1), λ =

λ∗
√

g/h∗

ρ∗gπa∗2 = O(1) (2.19)

we change the same dynamic condition to dimensionless form,

µH ′ ∂
2ζ

∂t′2
+ λ

∂ζ

∂t′
+ ζ = − 1

π

∫∫

SB

∂Φ

∂t′
dS′ (2.20)

which can be combined with the kinematic condition (2.17) to give,
(

µH ′ ∂
2

∂t′2
+ λ

∂

∂t′
+ 1

)

∂Φ

∂z′
= −µ

π

∫∫

SB

∂2Φ

∂t′2
dS′ (2.21)

3. Multiple-scale approximation

Our main objective is to consider the collective effects of many small buoys on the
dynamics over a much larger region of dimensions comparable to the sea depth or to the
wavelength. In view of the contrast of scales we seek an asymptotic approximation by the



Wave-power extraction by a compact array of buoys 5

method of multiple scales, and define the slow (macro-scale) coordinates without primes
by

x = µx
′ (3.1)

Let us denote by ∇
′ and ∆′ the gradient and Laplacian on the micro-scale and ∇ and

∆ the corresponding operators on the macro-scale. We next introduce the expansions

Φ = e−iωt′
[

φ0(x
′,x) + µφ1(x

′,x) + µ2φ2 (x′,x) + . . .
]

(3.2)

η = e−iωt′
[

η0(x
′, y′, x, y) + µη1(x

′, y′, x, y) + µ2η2(x
′, y′, x, y) + . . .

]

(3.3)

ζ = e−iωt′
[

ζ0(x
′, y′, x, y) + µη1(x

′, y′, x, y) + µ2ζ2(x
′, y′, x, y) + . . .

]

(3.4)

where ω is the dimensionless frequency normalized according to

ω = ω∗

√

h∗

g
(3.5)

Referring to the dimensionless governing equations in §1, we get from Laplace’s equa-
tion,

(

∆′ + 2µ∇
′ · ∇ + µ2∆

)

(φ0 + µφ1 + ...) = 0, x
′ ∈ ΩF (3.6)

The combined free surface condition becomes
(

∂

∂z′
+ µ

∂

∂z
− µω2

)

(φ0 + µφ1 + ...) = 0, x
′ ∈ SF (3.7)

while the kinematic condition is
(

∂

∂z′
+ µ

∂

∂z
+ · · ·

)

(φ0 + µφ1 + µ2φ2 + · · · ) = −iµω(η0 + µη1 + · · · ), x
′ ∈ SF (3.8)

On the side wall of the buoy we have
(

∂

∂r′
+ µ

∂

∂r

)

(φ0 + µφ1 + ...) = 0, x
′ ∈ SW (3.9)

and on the sea bed
(

∂

∂z′
+ µ

∂

∂z

)

(φ0 + µφ1 + ...) = 0, z′ = − 1

µ
(3.10)

At the bottom of the buoy, the kinematic condition (2.17) gives
(

∂

∂z′
+ µ

∂

∂z

)

(φ0 + µφ1 + φ2 + · · · ) = −iµω(ζ0 + µζ1 + · · · ), z′ = −H ′ (3.11)

while the dynamic condition gives

(

−µω2H ′ − iλω + 1
) (

ζ0 + µζ1 + µ2ζ2 + · · ·
)

=
iω

π

∫∫

SB

(φ0 + µφ1 + µ2φ2 + · · · ) dS′ (3.12)

From the combined buoy condition, we get

(

−µω2H ′ − iλω + 1
)

[

∂φ0

∂z′
+ µ

(

∂φ0

∂z
+
∂φ1

∂z′

)

+ µ2

(

∂φ1

∂z
+
∂φ2

∂z′

)

+ · · ·
]

− µ
ω2

π

∫∫

SB

(φ0 + µφ1 + µ2φ2 + · · · ) dS′ = 0 (3.13)
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Let us also expand the factor

1

1 − iλω − µH ′ω2
=
∑

j=0

µjFj(ω) (3.14)

where

F0(ω) =
1

1 − iλω
, F1(ω) =

H ′ω2

(1 − iλω)
2 , etc. (3.15)

By separating the orders, a series of micro-scale boundary value problems are then
obtained at the orders O(1), O(µ) and O(µ2).

3.1. Leading order (O(1))

The governing conditions are homogeneous

∆′φ0 = 0, x
′ ∈ Ω (3.16a)

∂φ0

∂n′
= 0, x

′ ∈ SF ∪ SW ∪ SB ∪ Sb (3.16b)

where Sb denotes the sea bed at z′ = −µ−1≪ −1. Let us define a unit cell of the array
as shown in figure 1. Because there are a large number of periods in the array, we impose
the condition that on the micro-scale, the solution is periodic, i.e.

φ0(x
′, y′, z′,x) = φ0(x

′ + d′, y′, z′,x) (3.17a)

φ0(x
′, y′, z′,x) = φ0(x

′, y′ + d′, z′,x) (3.17b)

with

d′ ≡ d∗/a∗ (3.18)

being the centre-to-centre distance between adjacent buoys.
The leading-order solution is clearly independent of the micro-scale,

φ0 = φ0(x) (3.19)

and the dependence on the macro-scale is yet to be found. It follows from (2.4) that

η0 = iω φ0|z=0 (3.20)

independently of the presence of the buoys. In the buoy-area (3.12) gives the buoy dis-
placement

ζ0 = iωF0(ω) φ0|z=0 , x ∈ S̄B. (3.21)

Both η0 and ζ0 are independent of the micro-scale coordinates, and they are related by

ζ0 = F0η0 x
′ ∈ S̄B. (3.22)

inside the buoy area.

3.2. First order (O(µ))

Using (3.19), we get from (3.6) that

∆′φ1 = 0, x
′ ∈ ΩF (3.23a)

and from (3.7) that

∂φ1

∂z′
= −

(

∂φ0

∂z
− ω2φ0

)

, x
′ ∈ SF (3.23b)
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Equation (3.13) becomes

∂φ1

∂z′
= −

(

∂φ0

∂z
− ω2F0φ0

)

, x
′ ∈ SB (3.23c)

We also have on the side wall of the buoy,

∂φ1

∂r′
= −∂φ0

∂r
= −ni

∂φ0

∂xi
, x

′ ∈ SW (3.23d)

where n = (n1, n2) = (cos θ, sin θ) denotes the unit vector normal to the side wall, and

∂φ1

∂z′
= −∂φ0

∂z
, z′ = − 1

µ
(3.23e)

on the seabed. In addition we require micro-scale periodicity on the cell boundaries.
Once φ1 is found, ζ1 follows from (3.12). As it is usual in homogenization analysis,
the macro-scale physics at the leading order is found by requiring the solvability of the
inhomogeneous micro-scale problem at a higher order. The micro-scale cell problem for
φ1 is inhomogeneous. By applying Gauss’ theorem (or, equivalently applying Green’s
formula to φ0 and φ1 over a unit cell) φ1 over the cell volume, we get

∫∫

∂Ω

∂φ1

∂n′
dS′ = 0 (3.24)

where ∂Ω is the boundary of the cell. This is just the condition of solvability for the
inhomogeneous problem of φ1. Since

∫∫

SW

∂φ1

∂r′
dS′ = −µ

∫∫

SW

∂φ0

∂r
dS′ = −µ∇φ0 ·

∫∫

SW

er dS′ = 0 (3.25)

we must have
∫∫

SB

∂φ1

∂z′
dS′ = −

∫∫

SF

∂φ1

∂z′
dS′

which gives at the leading order:

(1 − f)

(

∂φ0

∂z
− ω2φ0

)

+ f

(

∂φ0

∂z
− ω2F0φ0

)

= 0, z = 0 (3.26)

where for circular buoys

f ≡ πa∗2

d∗2 =
π

d′2
, with 0 < f <

π

4
(3.27)

is the area fraction of solid, or the packing ratio. Hence we have

∂φ0

∂z
− ω2 [1 + f(F0 − 1)]φ0 = 0, z = 0, x ∈ S̄B. (3.28)

This is a key result of our approximation and gives the macro-scale boundary condition
over the part of the mean sea surface covered by buoys. In the open water with no buoy,
f = 0, (3.28) reduces to the familiar condition on the free surface:

∂φ0

∂z
− ω2φ0 = 0, x ∈ SF (3.29)

Because of (3.28), (3.23b) and (3.23c) can be rewritten as

∂φ1

∂z′
= −∂φ0

∂z

(

1 − 1

1 − f(F0 − 1)

)

≡ −β ∂φ0

∂z
, x ∈ SF (3.30)
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and

∂φ1

∂z′
= −∂φ0

∂z

(

1 − F0

1 + f(F0 − 1)

)

≡ −β′ ∂φ0

∂z
, x ∈ SB (3.31)

which define β and β′. In view of the forms of the boundary conditions, the solution of
the micro-scale problem for φ1 in a unit cell can be sought in the form

φ1(x
′,x) = −

3
∑

j=1

Nj(x
′)
∂φ0

∂xj
(3.32)

Then the horizontal components N1, N2 are governed by the following boundary-value
problems in the unit cell,

∆′Nj = 0, x
′ ∈ΩF (3.33a)

∂Nj

∂z′
= 0, x

′ ∈SF ∪ SB ∪ Sb (3.33b)

∂Nj

∂r′
= nj , x

′ ∈SW (3.33c)

where the outerward normal to SW is n = (n1, n2, 0). The vertical component N3 is
governed instead by

∆′N3 = 0, x
′ ∈ΩF (3.34a)

∂N3

∂z′
= β, x

′ ∈SF (3.34b)

∂N3

∂z′
= 0, x

′ ∈Sb (3.34c)

∂N3

∂z′
= β′, x

′ ∈SB (3.34d)

∂N3

∂r′
= 0, x

′ ∈SW (3.34e)

The solutions are made unique by adding the constraint

∫∫∫

ΩF

Nj(x) dV ′ = 0, j = 1, 2 (3.35)

and N3 = 0 at a point x
′ = x

′
b = (0, 0,−µ−1) on the seabed. Being periodic in (x′, y′), the

harmonic functions Nj(x
′) are expected to diminish exponentially in z′. For confirmation

we have performed a numerical simulation using Finite Elements. The results, given in
figure 14 in Appendix A, show indeed that for a sufficiently slender cell the solutions Ni

are highly localized near the buoy. In view of (3.32), a consequence is that,

∂φ1

∂z′
→ 0 as z′ → −∞ (3.36)

which in turn implies

∂φ0

∂z
= 0, z = −1 (3.37)

because of (3.23e). This provides the seabed boundary condition for the macro-scale
problem.
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3.3. Second order (O(µ2)) and the macro-scale problem

At the second order the micro-scale problem for φ2 is again inhomogeneous,

∆′φ2 = −2∇
′ · ∇φ1 − ∆φ0, x

′ ∈ ΩF (3.38a)

∂φ2

∂z′
= −

(

∂φ1

∂z
+ ω2φ1

)

, x
′ ∈ SF (3.38b)

∂φ2

∂z′
= −

(

∂φ1

∂z
− ω2F0φ1 − ω2F1φ0

)

, x
′ ∈ SB (3.38c)

∂φ2

∂z′
= −∂φ1

∂z
, z′ = −µ−1 (3.38d)

∂φ2

∂r′
= −∂φ1

∂r
, x

′ ∈ SW (3.38e)

As |Ni| → 0 for z′ → −µ−1, (3.38d) reduces to :

∂φ2

∂z′
= 0, z′ = −µ−1 (3.39)

We now apply Green’s formula for φ0 and φ2 in the unit cell and invoke their governing
conditions on the micro-scale to get

∫∫∫

ΩF

(∆φ0 + 2∇
′ · ∇φ1) dV ′ =

∫∫

SF

(

∂φ1

∂z
− ω2φ1

)

dS′

+

∫∫

SB

(

∂φ1

∂z
− ω2F0φ1 − ω2F1φ0

)

dS′ −
∫∫

SW

∂φ1

∂r
dS′ (3.40)

Using the fact that φ1 vanishes with Ni outside the vertical distance of O(1) from z = 0,
and that the cell volume |ΩF | = O(1/µ) is much greater than unity, we conclude that:

∫∫∫

ΩF

∆φ0 dV ′ = 0

Because φ0(x, t) is independent of x
′, we conclude that

∆φ0 = 0, −1 < z < 0 (3.41)

Thus φ0 is harmonic on the macro-scale.

In summary, in the region with buoys, the macro-scale variation of φ0(x) is governed
by (3.41) in the fluid region, subject to the boundary condition (3.28) on z = 0 in the
buoy-covered area, and (3.37) on the seabed. In the open water without buoys, condition
(3.28) must be replaced by (3.29), while (3.41) and (3.37) still apply. Note that due to
the small draft H ′, buoy inertia, hence resonance, is unimportant.

The homogenization analysis for finding the macro-scale behaviour can in principle be
extended to periodic buoys of any shape. Once the macro-scale is completely determined,
one can also derive the micro-scale fluctuations by solving the cell problems for the vector
N(x′). Then φ1(x,x

′) can be found according to (3.32) and used to calculate wave forces
on each buoy hence the individual apparent mass and radiation damping matrices. Such
effort is needed for design, but is omitted here.

We shall now apply these macro-scale equations to examine wave power extraction
from one- and two-dimensional arrays in response to a plane incident wave train arriving
from x ∼ −∞.
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4. Vertical eigenfunctions

As it is well known, the general solution in the open water region where f = 0 can be
expressed as a series of the form

φ0(x) =

∞
∑

n=0

ψn(x, y)fn(z) (4.1)

where

f0 = c0 cosh(k0(z + 1)), fn = cn cos(κn(z + 1)) (4.2)

are real orthogonal eigenfunctions in −1 < z < 0, and (k0, k1, . . . ) are the eigenvalues of
the dispersion relation,

ω2 = kn tanh(kn), n = 0, 1, . . . (4.3)

In particular k0 is the positive real root and kn ≡ iκn is the n-th imaginary root i.e.,

ω2 = k0 tanh(k0), ω2 = −κn tan(κn), n = 1, 2, 3, . . . (4.4)

With the choice of

c0 =

√

2

1 + ω−2 sinh2 k0

, cn =

√

2

1 − ω−2 sin2(κn)
(4.5)

the vertical eigenfunctions are orthonormal,

〈fn|fm〉 ≡
∫ 0

−1

fn(z)fm(z) dz = δnm (4.6)

Furthermore the horizontal factors ψn must satisfy Helmholtz equations in the horizontal
plane

(

∂2

∂x2
+

∂2

∂y2
+ k2

0

)

ψ0 = 0, (4.7a)

(

∂2

∂x2
+

∂2

∂y2
− κ2

n

)

ψn = 0, n = 1, 2, 3, ... (4.7b)

In the region of wave absorbing buoys we also assume

φ0(x) =

∞
∑

n=0

Ψn(x, y)Fn(z) (4.8)

It can be shown that the eigenfunctions {Fn}, n = 0, 1, 2, . . . are the solutions of the
boundary value problem

F ′′
n (z) −K2

nFn(z) = 0 − 1 < z < 0
(

F ′
n − σ2Fn

)

= 0 z = 0

F ′
n = 0, z = −1,

(4.9)

where σ is defined by

σ2 ≡ ω2[fF0(ω) + (1 − f)] (4.10)

and is complex due to energy extraction. Therefore the eigenfunctions Fn are complex

Fn = Cn coshKn(z + 1) (4.11)

The eigenvalue Kn is the n−th complex root of the relation

σ2 = Kn tanhKn (4.12)
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Figure 2. First few vertical eigenfunctions in the buoy domain according to (4.9). For ω = 1,
λ = 1 and f = 0.2

This type of dispersion relation with complex σ2 arises also for waves through a porous
media and has been studied by Dalrymple et al. (1991) and McIver (1998).

It is straightforward to show that the set {Fn} is orthogonal. By choosing the coeffi-
cients {Cn} to be

Cn =

√

2

σ−2 sinh2(Kn) + 1
(4.13)

the eigenfunctions {Fn} are also orthonormal,

〈Fn|Fm〉 ≡
∫ 0

−1

Fn(z)Fm(z)dz = δnm (4.14)

Since Kn is complex, the square root above is defined such that if the complex radical is
z = reiθ, its phase is limited to the range −π < θ ≤ π. Dalrymple et al. (1991); McIver
(1998) showed that this set of functions is a complete basis provided the eigenvalues Kn

are distinct, which is in general the case.
For a given frequency ω, packing ratio f and damping rate λ, σ is first defined. Kn

and Fn are found numerically. Before employing an usual iterative algorithm to solve the
complex transcendental equation, a good initial guess of the solution is needed. For this
purpose we solved the eigenvalue problem governed by (4.9) by the numerical method
of finite elements with a regular mesh and third-order Laplace elements. The resulting
Kn’s are used as a initial guesses for further iteration of (4.12). Sample Fn’s are shown
in figure 2. Sample eigenvalues are given in Table 1.

Note that for f = 0, k is purely real and kn = iκn, n = 1, 2, 3... are purely imaginary.
For f ≪ 1, K0 is almost real and Kn, n = 1, 2, 3, ... are almost imaginary. Perturbation
solutions of (4.12) have been used to confirm the values in Table 1 where f = 0.2.

We now apply these results to examine two simple arrays.

5. A long array of energy-absorbing buoys

Referring to figure 3, let us first consider a long array of width L with its edges parallel
to the crests of incoming plane waves. Assuming an incoming wave of unit amplitude,
the velocity potential in the open water on the incidence side (zone I) is

φI(x, z) =
−i

ωf0(0)

(

eik0xf0(z) +

∞
∑

n=0

Rne−iknxfn(z)

)

, −∞ < x < 0 (5.1)
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Kn ω = 0.5 ω = 1 ω = 2

K1 0.5107 + 0.0230i 1.1165 + 0.0835i 3.3669 + 0.3159i
K2 0.0067 + 3.0634i 0.0357 + 2.8342i 0.0545 + 2.1332i
K3 0.0032 + 6.2448i 0.0163 + 6.1376i 0.0449 + 5.7538i
K4 0.0021 + 9.3992i 0.0107 + 9.3286i 0.0322 + 9.0697i
K5 0.0016 +12.5472i 0.0080 +12.4945i 0.0247 +12.2996i
K6 0.0013 +15.6927i 0.0064 +15.6505i 0.0200 +15.4944i
K7 0.0011 +18.8368i 0.0053 +18.8017i 0.0168 +18.6715i
K8 0.0009 +21.9802i 0.0046 +21.9502i 0.0144 +21.8385i
K9 0.0008 +25.1232i 0.0040 +25.0969i 0.0126 +24.9991i
K10 0.0007 +28.2658i 0.0035 +28.2425i 0.0113 +28.1555i

Table 1. First ten eigenvalues of (4.12) for λ = 1 and f = 0.2.

L

I II III

Figure 3. Cross section of an infinitely long array.

where k0 is real and kn = iκn, n = 1, 2, 3, ... are imaginary roots of the dispersion relation.
In zone II of the buoys, the potential is

φII(x, z) =
−i

ωf0(0)

∞
∑

n=0

(

BneiKnx +B′
ne−iKnx

)

Fn(z), 0 < x < L (5.2)

and in the open water on the transmission side (zone III) we have

φIII(x, z) =
−i

ωf0(0)

∞
∑

n=0

Tneiknxfn(z), L < x <∞ (5.3)

The eigenvalues (kn,Kn) and eigenfunctions (fn, Fn) have been defined in §4. Let us
introduce

U(z) =
∂φ0

∂x
(0, z), U ′(z) =

∂φ0

∂x
(L, z) (5.4)

as the horizontal velocities at x = 0 and x = L respectively. Requiring flux continuity
and using the orthogonality of eigenfunctions, we find

R0 = 1 − 〈U |f0〉
ik0

Rn = −〈U |fn〉
ikn

(5.5a)

Bn = −〈(U ′ − e−iKnLU)|Fn〉
2Kn sin(KnL)

B′
n = −〈(U ′ − eiKnLU)|Fn〉

2Kn sin(KnL)
(5.5b)

Tn =
〈U ′|fn〉
ikneiknL

(5.5c)
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We further require continuity of pressure (i.e., of potentials) at x = 0

f0(z) +

(

1 − 〈U |f0〉
ik0

)

f0(z) −
∑

n≥1

〈U |fn〉
ikn

fn(z)

= −
∑

n≥0

〈(U ′ − cos(KnL)U)|Fn〉
Kn sin(KnL)

Fn(z) (5.6)

and at x = L

−
∑

n≥0

〈(U ′ cos(KnL) − U)|Fn〉
Kn sin(KnL)

Fn(z) =
∑

n≥0

〈U ′|fn〉
ikn

fn(z) (5.7)

These are a pair of integral equations for U(z) and U ′(z) in −1 < z < 0. Let their
solutions be represented by the following orthonormal expansions

U =
∑

m

UmFm, U ′ =
∑

m

U ′
mFm, −1 < z < 0 (5.8)

with unknown coefficients, and let

fn =
∑

m

MnmFm where 〈fn|Fm〉 = Mnm (5.9)

The matrix elements Mnm can be obtained explicitly,

Mnm = ω2f(1 −F)
cn cosh(kn)Cm cosh(Km)

(k2
n −K2

m)
(5.10)

Equations (5.6) and (5.7) become

2f0(z)
∑

n,q

MnqUq
1

ikn
fn(z) =

∑

n

(

− U ′
n

Kn sin(KnL)
+

Un

Kn tan(KnL)

)

Fn(z) (5.11)

∑

n,q

MnqU
′
q

1

ikn
fn(z) =

∑

n

(

− U ′
n

Kn tan(KnL)
+

Un

Kn sin(KnL)

)

Fn(z) (5.12)

By taking the scalar product with Fp for p = 0, 1, 2, 3, ... in turn we obtain from (5.11)
and (5.12)

2M0p −
∑

n,q

MnqUq
1

ikn
Mnp =

(

− 1

Kp sin(KpL)p

U ′
n +

1

Kp tan(KpL)
Up

)

(5.13)

and
∑

n,q

MnqU
′
q

1

ikn
Mnp =

(

− 1

Kp tan(KpL)
U ′

p +
1

Kp sin(KpL)
Up

)

(5.14)

The expansion coefficients Un, U
′
q are solved numerically after truncation. Afterwards we

get the buoy displacement ζ0 from the expression of φII . The transmission and reflection
coefficients follow from (5.5c) and (5.5a) :

T ≡ T0 =
M0qU

′
q

ik0eik0L
(5.15)

and

R ≡ R0 = 1 − 〈U |f0〉
ik0

(5.16)
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Figure 4. Free surface elevation inside an array of length L = 1 (a) and L = 5 (b). Solid curve:
Amplitude. Dashed curve: Phase difference from the undisturbed plane wave, in radians. The
parameters are f = 0.2, λ = 0.5 and k0 = 1.

The dimensionless power-extraction efficiency is

E = 1 − |T |2 − |R|2. (5.17)

Figure 4 shows the amplitude and phase of the free surface elevation inside the buoy
region for array width of L = 1 and L = 5 according the macro-scale normalization. The
buoy displacement is simply proportional to that of the free surface displacement in the
same region by the complex reduction factor F0 whose magnitude

|F0| =
1

√

1 + (λω)2
(5.18)

is smaller for higher extraction rate and frequency. Note first that there is no resonance.
For a fixed width L, the reflection coefficient R increases with the extraction rate λ, as
shown in figure 5. Both the transmission coefficient T and the extraction efficiency E
reach optimal? maximum values for some intermediate extraction rate around λ = 0.5
as shown in figure 7(a). The precise optimal value is around 0.5 and can be determined
numerically.

For a fixed extraction rate, the effects of array width L on the transmission and re-
flection coefficients are shown in figure 6(b). The corresponding extraction efficiency is
shown in figure 7(b). The oscillatory variation of the reflection coefficient shown in fig-
ures 5(b) and 6(b) is due to interference by strong reflection, similar to the case of a
finite shelf (cf. Mei et al. (2005), p. 149). In the transmission coefficient, this oscillatory
behaviour is less prominent due to energy extraction. We have indeed checked that in
the limit of extremely strong load force, λ ≫ 1, the buoys no longer move. In this case
reflection is the strongest and the oscillatory variation in T is recovered.

While it is not surprising that a larger L gives a higher efficiency, as shown in fig-
ure 7(b), it is nevertheless interesting that the gain of energy extraction with a wider
array is more significant at low frequency. In practical situations k0 = k∗0h

∗ will likely be
between 0 and 3. Our predictions can help the designer to choose the proper width by
considering both efficiency and construction economy.

In general scattering is significant, hence the maximum efficiency of energy extraction
is somewhat lower than that a large beam-sea device such as a Salter’s duck (see Mynett,
Serman & Mei (1979)).



Wave-power extraction by a compact array of buoys 15

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0.1

0.5

1

5

k0

|T
|

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.1

0.5

1

5

k0

|R
|
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Figure 5. Transmission and reflection coefficients for an array of buoys with various extraction
rates λ, as indicated by numbers next to each curve. The packing ratio is f = 0.2 and L = 1.
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Figure 6. Transmission and reflection coefficients for a buoy array with various array width
L, as indicated next to each curve. The packing ratio is f = 0.2 and λ = 0.5
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varying parameter are indicated by numbers next to each curve. The packing ratio is f = 0.2.
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6. A circular array

6.1. The solution

Now let many buoys be gathered inside a circular area of radius R. First, it is well known
that the incident plane wave in the direction of x can be expanded as a sum of partial
waves (see e.g. Abramowitz & Stegun 1964)

φi(x) =
−i

ωf0(0)
f0(z)e

ik0x =
−i

ωf0(0)
f0(z)

∞
∑

m=0

εmimJm(k0r) cos(mθ)

where ε0 = 1 and εn = 2 for n = 1, 2, 3, . . . are the Jacobi symbols. Let us express the
total solution as

φ =
∞
∑

m=0

φ̄m(r, z) cos(mθ) (6.1)

In the open water, the m-th mode potential φ̄m can be written as

φ̄m =
−i

ωf0(0)

(

εmimJm(k0r)f0(z) +

∞
∑

n=0

an,mψn,m(r)fn(z)

)

, r > R (6.2)

with

ψn,m(r) =

{

H
(1)
m (k0r) for n = 0

Km(Knr) = H
(1)
m (iKnr) for n = 1, 2, . . .

(6.3)

where H
(1)
m is the first Hankel function of order m. The first term in (6.2) corresponds to

the incident wave and the series to the scattered/radiated waves. In the circular region
of buoys, 0 < r < R, we can expand the potential as:

φ̄m =
−i

ωf0(0)

∞
∑

n=0

bn,mΨn,m(r)Fn(z), 0 < r < R, (6.4)

with

Ψn,m(r) = Jm(Knr)

where (fn, kn) and (Fn,Kn) are the same as before. Let us denote the common radial
flux along r = R by

Um(θ, z) =
∂φ̄m

∂r
, r = R. (6.5)
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The expansion coefficients are found in terms of Um by orthogonality:

a0,m =
〈Um|f0〉 − εmimk0J

′
m(k0R)

ψ′
0,m(R)

(6.6)

an,m =
〈Um|fn〉
ψ′

n,m(R)
(6.7)

bn,m =
〈Um|Fn〉
Ψ′

n,m(R)
(6.8)

which ensures the continuity of radial flux. Continuity of pressure (i.e. potential) at r = R
requires that

εmim

(

Jm(k0R) − k0J
′
m(k0R)

ψ′
0,m(R)

ψ0,m(R)

)

f0(z) +
∞
∑

n=0

(Um|fn)

ψ′
n,m(R)

ψn,m(R)fn(z)

=

∞
∑

n=0

〈Um|φn〉
Ψ′

n,m(R)
Ψn,m(R)Fn(z) (6.9)

Introducing the expansions

fi =
∑

j

MijFj , Um =
∑

j

Uj,mFj (6.10)

We get

(

Jm(k0R) − k0J
′
m(k0R)

ψ′
0,m(R)

ψ0,m(R)

)

∑

j

M0jFj(z)

+
∑

i,j,k

ψk,m(R)

ψ′
k,m(R)

MkiUi,mMkjFj(z) =
∑

n

Ψn,m(R)

Ψ′
n,m(R)

Un,mFn(z) (6.11)

for m = 0, 1, 2, . . . . By taking the scalar product with Fp, we finally obtain for any value
of m

∑

j

[(

∑

k

Mkp
ψk,m(R)

ψ′
k,m(R)

Mkj

)

− Ψp,m(R)

Ψ′
p,m(R)

δp,j

]

Uj,m =

− εmim

(

Jm(k0R) − k0J
′
m(k0R)

ψ′
0,m(R)

ψ0m(R)

)

M0p (6.12)

which is a matrix equation for the unknown vector Uj,m for every m. Numerical com-
putations can be carried out after truncation of the series. After solving for Uj,m, the
velocity Um hence φm are found. Combining (6.2) and (3.21), we get the displacement
of the buoys

ζ0(r, θ) = F0(ω)

∞
∑

m=0

∞
∑

n=0

bn,mΨn,m(r)
Fn(0)

f0(0)
cos(mθ) (6.13)

Again it is proportional to the free surface displacement in the same area according to
(3.22). Hence we only show in figure 9 the free surface displacement in and outside the
buoy area, for two arrays of radiiR = 1 andR = 5. For the smaller array the displacement
is relatively uniform and less than 1. For the larger array, the displacement is significantly
reduced on the leeward side.
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Figure 9. Free surface elevation in the neighbourhood of a circular array of buoys. The circum-
ference of the array is represented by the bold circle. λ = 0.5, f = 0.2 and k0 = 1. Waves are
incident from the left. Lighter colour corresponds to larger displacement. The phase difference
indicated by varying shades of gray is measured in radians.

6.2. Energy absorption

One can evaluate the extracted energy by calculating the total energy flux into a large
circular cylindrical surface of radius r ≫ R. In physical variables the power output is

P∗ =

∫ 2π

0

∫ 0

−h∗

(

Re(iρω∗φ∗)
∂Re(φ∗)

∂r∗

)

r∗ dz∗ dθ

= ρ

√

g

h∗
A∗2gh∗h∗

∫ 2π

0

∫ 0

−1

1

2
Re

(

iφ
∂φ†

∂r

)

r dz dθ (6.14)

where the overline denotes time averaging over a period and dagger indicates complex
conjugate. Use has been made of the normalization defined in (2.10). The implied nor-
malization for power output is

P∗ = P
(

ρ

√

g

h∗
A∗2gh∗2

)

(6.15)

In contrast, the power flux per unit length of the incoming wave crest is,

1

2k∗0
ρgA∗2C∗

g =
1

2
h∗ρgA∗2

√

g

h∗
h∗

1

k0

dω

dk0
=

(

ρgA∗2

√

g

h∗
h∗2

)

Cg

2k0

where Cg = C∗
g /

√
gh∗ is the dimensionless group velocity of the incoming plane wave.

As in early theories the capture width W∗ can be defined as the ratio of the absorption
rate to the influx rate of wave power within unit length of the incoming wave front.
As a measure of effectiveness, k∗0W∗ represents the fraction of a wavelength where the
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incoming power is depleted,

k∗0W∗ = k0W =
P∗

1
2k∗

0

ρgA∗2C∗
g

=
2k0P
Cg

(6.16)

Using the asymptotic expansions of Bessel functions for large k0r, we get from (6.2),

φm(r) ≈ Am

√

2

πk0r
ei(k0r−π/4) −i

ωf0(0)
f0(z) for k0r ≫ 1 (6.17)

so that

φ(r) ≈ −i

ωf0(0)

(

eik0r cos(θ) +
∑

m

Am

√

2

πk0r
ei(k0r−π/4) cos(mθ)

)

f0(z) (6.18)

where the modal amplitudes Am can be computed from the solution using the asymptotic
expression of the Hankel functions:

Am = a0,mi−m

Using the method of stationary phase it can be shown that :

P = 2
1

ωf0(0)2



|A0|2 +
1

2

∑

m≥1

|Am|2 + Re





∑

m≥0

Am







 (6.19)

Details are similar to that in Mei et al. (2005), p.381, and omitted. The capture width
is therefore:

k∗0W∗ = k0W =
4k0

ωCgf0(0)2



|A0|2 +
1

2

∑

m≥1

|Am|2 + Re





∑

m≥0

Am









Finally, using the expression for f0 and the dispersion relation, we find

Cgf0(0)2 =
k0

ω

hence

k0W = 4



|A0|2 +
1

2

∑

m≥1

|Am|2 + Re(
∑

m≥0

Am)



 (6.20)

The same result can also be derived by calculating the rate of work done on the heaving
buoys. Another measure of effectiveness is the ratio of the extraction rate to the influx
rate across the entire diameter of the array, W/2R which is expected to be less than
unity.

For evaluating the merits of the compact array let us first recall some results known for
a single buoy : (i) The optimal k0W is 1 at best for a heaving buoy of any size. If all three
degrees of freedom are used to extract energy then maximum k0W = 3 (Newman (1979),
Falnes (2002), Mei et al. (2005)). (ii) The peak value of k0W occurs at k0ab = O(1). In
other words, the peak occurs at higher k0 = k∗h∗ for smaller ab = a∗b/h

∗. (iii) The curve
of k0W versus k0 = k∗h∗ has a broader peak for a smaller ab. Properties (ii) and (iii) are
based on numerical computations via the eigenfunction expansion method of Black, Mei
& Bray (1971) and are confirmed by approximate reasoning in Appendix B.

In light of these let us present the results for a circular array of buoys. Figure 10
shows the dependence of the two measures of effectiveness on the extraction rate λ. For
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two different array radii R, the greatest k0W and W/2R are achieved at around the
same extraction rate of λ = 0.5. The optimal rate of extraction depends slightly on the
frequency/wave-number of the incoming wave.

Figure 11 shows that for a fixed packing ratio and damping rate, the capture width
kW and efficiency W/2R naturally increase with the radius of the array. More important,
the bandwidth of both quantities is very large for all array sizes.

Figure 12 shows that the capture width increases monotonically with the packing ratio
f , and with the incoming wave frequency. Recall that for circular buoys in a square array
the maximum packing ratio is f ≤ π/4 ≈ 0.8.

Finally let us compare a large buoy whose radius and draft are equal, with a buoy array
of the same total displaced volume πfR2H where H ≡ H∗/h∗ and is taken to be H = 0.1
for illustration†. Then the radius and draft of the large buoy are both ab = (fR2H)1/3.
Figure 13 compares the capture widths over a wide range of frequencies. The solid curves
gives the capture width for an array for different radii R, with fixed f = 0.2 and λ = 0.5.
The dashed curves represent the capture width for a single-buoy absorber of radius ab.
In the range of 0 < k0(= k∗0h

∗) < 6 the maximum k0W is at most unity for a single
heaving buoy, and can be 3 if roll and sway can also be resonated. Note however that
the band width of a single buoy is always much narrower. Thus the circular buoy array
is potentially more advantageous from the technical viewpoint of efficiency.

7. Conclusions

Stimulated by a recent invention in Norway, we have developed a theory for the hy-
drodynamics and power-extraction efficiency of a compact array of small buoys. The
typical wave length is assumed to be comparable to the overall radius of the array but
much greater than the dimensions of individual buoys. For a periodic array the two-scale
method of homogenization leads to an effective equation governing the spatial average.
The energy-absorbing efficiency is studied for a long strip of buoys and for a circular
array. The latter geometry is shown to be potentially advantageous, having good effi-
ciency over a broad range of frequencies, unlike that of one large buoy. The theory can
be readily modified for wave interaction with broken ice floes on the sea surface, if the
ice floes are idealized as identical floating bodies in a periodic array.

Finally, we stress that the homogenization theory employed here is effective only when
two sharply different scales exist. When both the buoy dimension and the spacing are not
small compared to the wavelength, direct numerical methods are available but require
greater computational effort. For simple geometries such as vertical circular cylinders,
formally exact theories have been reported by Linton & Evans (1990); Manihar & New-
man (1997); Linton & Mclver (1996); Chamberlain (2007); Linton & Evans (1992); Linton
& Mclver (1996) for an infinite or semi-infinite line of fixed vertical cylinders with finite
radius. These methods still call for significant numerical work. Approximate theories on
the interaction of water waves with many floating objects have been given by Falnes
(1980); Falnes & Budal (1982); Falnes (1984); de O. Falcao (2002) for large separation
and weak hydrodynamic interactions without Bragg scattering. For Bragg scattering by
an array of very slender vertical cylinders, the present approximation leads to explicit
analytical results and the accuracy has been numerically confirmed by Li & Mei (2007)
using the method of finite elements.

We thank Drs. Yuming Liu and Dick Yue of MIT for illuminating discussions. This

† The dimensionless draft H of small buoys does not influence the energy extraction, but a
value is chosen here to define the total volume for the array.
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Figure 10. Dependence of effectiveness on the extraction rate λ whose values are indicated
next to the curves. The packing ratio is f = 0.2.
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Figure 11. Dependence of the effectiveness on the array radius R whose values are indicated
next to the curves. (λ = 0.5 and R = 1).
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Figure 12. Dependence of effectiveness on the packing ratio f whose values are indicated next
to the curves. (λ = 0.5 and R = 1)
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Figure 13. Capture widths of a circular arrays of small buoys of radii R = 0.5, 1, 2 are shown
by dashed curves. Their drafts are H = H∗/d∗ = 1/10. Capture widths of a large buoy of equal

total volume with radii ab = (fR2H)
1

3 = 0.17, 0.27, 0.43 are shown by solid curves. The draft is
equal to the radius. For the array f = 0.2, λ = 0.5. For the single buoys the extraction rate is
chosen to be the maximum at the peak.

Appendix A. Numerical confirmation of the localization of Nj(x)

The distributions of the Nj in a cell are computed by the Finite Element Method, and
plotted in Figure 14. For N3 the constraint N3(0, 0,−1) = 0 was imposed for uniqueness.
It can be seen that all solutions diminish rapidly with the depth.

Appendix B. Order estimate for a single buoy

When a heaving buoy of radius ab and draft Hb is at resonance, the buoyancy restoring
force ρgπa2

b roughly equals the total (real and hydrodynamic) inertia αρπa2
bH where

α = O(1). Thus the resonance frequency is

ω∗2 =
ρgπa∗b

2

αρπa∗b
2H∗

b

, or ω2 =
1

ab

ab

αHb
(B 1)
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Figure 14. Finite element solutions of (3.33) and (3.34) for a tall cell with H ′ = 1, d′ = 4 and
different µ. Note the exponential decay with depth.

By the dispersion relation, resonance occurs at

k0ab =
ab

αHb tanh(k0)
(B 2)

For k0 = O(1) and ab/Hb = O(1), we get k0ab = O(1) at resonance. In the plot of k0W
vs k0, resonance is at higher value of k0 if ab is smaller, as shown in Figure 13.

The dimensionless capture width can be shown to be

k0W =
k0

Cg

λgω
2|FD

z |2
ω2(λzz + λg)2 + (πa2

b − ω2 (πa2
bH + µzz))2

(B 3)

where FD represents the diffraction force, λzz the radiation damping coefficient (normal-

ized according to λzz = λ∗zz/ρg
1/2h∗5/2) and µzz the hydrodynamic mass. Using the fact

that the capture width is at its peak value of unity when resonance occurs and λg = λzz ,
(B 3) can be approximated by

k0W ≈ (2λzzω)2

πa2
b(1 − αHω2) + (2λzzω)2

(B 4)

around the peak where 1−αHω2 ≈ 0 and α = O(1) is a constant. The values of ω2 = ω2
±

when k0W = 1/2 on both sides of the peak are found to be

ω2
± ≈ πa2

b ± 2λzzω

απa3
b

(B 5)
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hence

ω2
+ − ω2

− ≈ 4λzzω

απa3
b

(B 6)

or

k0+ − k0− ≈ 4λzzω

απa3
b

(B 7)

since ω2 = O(k0). For small k0ab it is known that (Mei et al. (2005))

λ∗zz =
ρgk∗0a

∗
b
4

4C∗
g

Numerical computations show that this order of magnitude is still valid k0ab = O(1),
hence

λzz = O

(

k0ab

Cg
a3

b

)

Since at the peak k0ab = O(1), which implies ω = O(a
−1/2
b ) and Cg = O(a

1/2
b ), it follows

that

λzz = O(a
5/2
b )

Thus the peak width of the k0W vs. k0 curve is

k0+ − k0− ∝ a−1
b (B 8)

Consequently the peak width is larger for a smaller buoy, as shown in Figure 13.
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