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Abstract

Energy industries and governments consider ocean wave power a promising renewable energy source
for reaching the net-zero plan by 2050 and restricting the rise in global temperatures. It expects the
potential global ocean wave power production to be around 337 GW annually. Although wave energy
forecasting critically enables economic dispatch, optimal power system management, and the integration of
wave energy into power grids, the forecasting process is complicated by the stochastic, intermittent, and
non-stationary nature of waves. Thus, this paper proposes a novel hybrid forecasting model comprising an
adaptive decomposition-based method (Nelder-Mead variational mode decomposition) and a convolutional
neural network featuring bi-directional long short-term memory. Furthermore, we propose a fast and effective
optimiser to adjust the hybrid model’s hyper-parameters and evaluate the decomposition technique’s role
in increasing the accuracy of wave energy flux predictions considering a forecasting period of 6 h. With
regard to assessing the proposed model’s effectiveness, we use a real wave dataset from a buoy positioned off
Favignana Island in the Mediterranean Sea and compare the proposed model with six well-known forecasting
methods and five hybrid deep-learning models. According to our findings, the proposed model significantly
outperforms existing approaches over extended time periods and compared with the bi-directional long short-
term memory, the developed adaptive decomposition method, and new hyper-parameters tuner improve the
prediction accuracy at 45% and 13.6%, respectively.

Highlights

• A novel hybrid convolutional model is proposed for wave energy flux prediction.

• An effective hybrid variational mode decomposition method is introduced.

• A new hyper-parameter optimiser is proposed: Equilibrium Nelder-Mead optimisation.

• The proposed model’s efficiency is compared with 11 hybrid and popular prediction models

Keywords: Adaptive decomposition method, convolutional deep learning model, equilibrium optimisation,
ocean wave power prediction, significant wave height, wave energy flux
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Nomenclature

Table 1: A list of all abbreviations used in this research work, and are sorted in alphabetical order:

abbreviation full name

ADMM Alternate direction method of multipliers
AI artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial Neural networks
Bi-LSTM Bidirectional Long short-term memory network
CR probability crossover rate
CNN Convolutional neural network
ConvLSTM Convolutional Long short-term memory network
DNN Deep neural networks
DRL Deep Reinforcement Learning
DWNN Discrete Wavelet Neural Networks
EC Evolutionary computation
ENMO Equilibrium Nelder-Mead optimisation algorithm
EO Equilibrium optimisation
FC-LSTM Fully connected long short-term memory network
FFNN Feed-forward neural networks
FS Feature selection
GA Genetic algorithm
HPO Hyper-parameter Optimisation
IMF Intrinsic mode functions
LSTM Long short-term memory network
MAE Mean absolute error
MSE Mean square error
NM Nelder-Mead simplex direct search method
NMVMD Nelder-Mead Variational mode decomposition
NOA National Observatory of Athens
NWRN Italian National Wave Recording Network
PNN Polynomial neural networks
PSO Particle Swarm Optimisation
PTO Power take-off
PI Proportional integral
RFNN Recurrent fuzzy neural network
RMSE Root mean square error
RNN Recurrent neural networks
SCADA Supervisory control and data acquisition
VMD Variational mode decomposition
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Table 2: A list of symbols, Greek letters, subscript, and superscript applied in this paper

Symbols Description Symbols Description

Tp Peak wave period V control volume
Te Wave energy period D atoms gravity
Hs Significant wave height ϕ velocity of flow around and inside of V
Dp Mean wave direction β control parameter
ω wave frequency λ a vector of real numbers from 0 to 1
h water depth Maxiter maximum number of evaluations
Jω Wave energy flux γ exploitation coefficient
ρ Density of water θ exploration coefficient
g Gravitational acceleration xr best-reflected candidate
S(ω) monodirectional wave spectrum xe expanded candidate
Cg group velocity δie inside contraction rate
Dc interval between sea site and the coast δoc outside contraction rate
Dp interval between sea site and adjacent port δe expansion rate
t time step ws centre frequency
h→t , h←t forward and backward hidden layers D(t) The Dirac distribution
WHH weight at recurrent neuron α fidelity constraint
WIH weight at input neuron Fe estimated value
WHO weight at output layer Ft true value
b bias value K Entire number of the modes
tanh hyperbolic-tangent uk signifies the kth mode
σ sigmoid (non-linear activation function) UB Upper bound of the decision variables
∗ convolution operator LB Lower bound of the decision variables
⊙ Hadamard product operator BS batch size
It input gate LR LSTM learning rate
Ct modulation of input gate Nh Number of layers
Ht hidden gate Nn Number of neurons in each layer
Ft forget gate Op LSTM optimiser
xt input layers PF Penalty factor
Ot output gate Lm Lagrange Multiplier

1. Introduction

Exacerbated global environmental problems and the shortcomings of conventional energy sources (e.g.
oil and natural gas) have propelled the renewable energy sector’s dramatic growth in recent decades [1].
Various global plans have been developed to address climate change, including the European Green Deal
project [2], which intends to replace all traditional energy sources with renewable energy (zero greenhouse
gas emissions) by 2050. Ocean wave power has emerged as a strong contender in the renewable energy [3]
due to its high power density and minimal environmental impact [4]. Although it has yet to be widely
deployed, ocean wave power could provide remote island communities with an off-grid solution, fulfil the
offshore power needs of small industrial projects, and serve the rapidly expanding aquaculture industry.

However, the rapid development of wave power technology [5] depends accurately predicting power
production to ensure a reliable and stable supply of power to the grid [6]. Therefore, this requires forecasting
dynamic environmental conditions [7] and the parameters of incoming waves, including wave power flux.
Ocean wave predictions can both estimate the power generated by wave energy converters (WECs) [8], and
improve the performance of those converters. In particular, tuning the power take-off parameters of WECs
to changing wave conditions [9] and developing efficient strategies for controlling WECs [10] can significantly
increase power generation. It is critical to consider the design of the WEC damping controller given that the
complex interaction between WEC components and dynamic sea conditions [11] challenges the prediction
of optimal settings. For Carnegie’s CETO design, a sensitivity analysis demonstrated that optimising the
damping controller could boost the energy harnessed by up to 6% [12]. Moreover, such predictions are also
critical to preventing damage to wave power units in extreme wave conditions [13].

However, the forecasting process is complicated by the nonlinear and stochastic nature of waves, which
means developing accurate and reliable predictors of wave energy flux and wave parameters is critical to
the wave power industry’s evolution [14]. Furthermore, time scales for forecasts depend substantially on the
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application. Predicting wave elevation 10-30 s in advance is essential for advanced control strategies that
maximise power output from WECs [15]. However, the highly dynamic nature of wave data, the considerable
model training time, and overall model complexity complicate making accurate real-time predictions, with
wave forecasting at the ‘sea-state’ time scale (up to 6 hours) required to reliably integrate wave power
technology into the existing electricity grid [16]. ‘weather-’ (up to 7 days) and ‘seasonal-’ (beyond 1 month)
predictions of wave conditions are critical for vessel routing [17], the aquaculture industry, and the security
of the residents and businesses of coastal regions [18]. Long-term wave forecasting (days and months) usually
involves hindcast wave models [18] that are accurate but computationally expensive. Hence, state-of-the-art
machine-learning and deep-learning mechanisms which are relatively fast and can handle large datasets can
usefully predict wave conditions over shorter periods of time (i.e., hours) [16].

Various researchers have developed wave parameter forecasting using soft computing approaches. For
example, Hashim et al. [19] proposed an advanced version of the adaptive neural fuzzy inference model, the
Takagi-Sugeno-based fuzzy model. As a first step [19], they proposed a feature selection mechanism to find
the best subset of a complete set of model input parameters for producing forecast targets. These parameters
included sea surface wind speed, wind-direction, atmospheric temperature, and temperature of sea surface.
However, they found that training the membership functions was a time-consuming process. Elsewhere, an
early study [20] designed a model forecasting significant wave height near Mangalore ( on the west coast
of India), over 48-hour intervals using a discrete type of wavelet neural network (DWNN). As input, the
DWNN model used a multi-resolution time set, with the prediction results demonstrating better accuracy
and consistency than traditional artificial neural networks (ANN) models featuring one-time resolution.
Meanwhile, a recent study by Bento et al. [16] developed a deep learning-based model for predicting wave
energy flux and certain other wave parameters using 13 wave datasets collected from the Pacific and Atlantic
oceans. Bento et al. used a bio-inspired optimisation algorithm (moth-flame optimisation) to adjust the
hyper-parameters of a feed-forward neural network (FFNN) model. However, the optimised model did not
perform well in terms of forecasting time-series data.

With regard to optimise the energy produced by a WEC, a power take-off controller has frequently been
used. However, despite the a considerable research concerning different control strategies and the design of
optimal and smart WEC controllers, efficient controller implementation remains challenging, mainly because
the process depends on the incoming wave forces. For example, Lu et al. [21] proposed combining a hybrid
recurrent wavelet and Elman neural network with an improved gravitational search algorithm in order to
control integration of offshore wind and wave energy operations. Their comparison of the hybrid model with
a recurrent fuzzy neural network (RFNN) and a classical proportional-integral (PI) network demonstrated
that the hybrid model overwhelmed both PI and RFNN. In another work, a hybrid neural model was
proposed to predict the short-term wave forces [22]; this multi-layer fully connected model was confirmed
via comparison with the random wave model that 60% and 80% more energy was absorbed. However,
Li et al. [22] did not consider a proper decomposition method for decreasing the signal noise and trained
the model with the components of the main signal. Another study [23] introduced an online forecasting
model comprising a sequence-to-sequence learning model mixed with a derivative-free optimisation method.
Although it aimed to develop a new resampling method that could forecast short and long-term intervals
for wind, solar, and ocean wave power. However, the superiority of that work [23] compared just with a
few traditional machine learning methods. Recently, a two-modular convolutional deep learning model was
hybridised by a gradient-based optimisation [24] in order to predict the aerodynamic attributes and the
physical fields in a flapping foil, and the modelling results revealed that the two-modular CNN model was
more effective than other predictive methods, especially in terms of computational cost.In another practical
study, Zou et al. [25] proposed a Deep Reinforcement Learning (DRL) model and simulated a point absorber
with a direct-drive PTO for predicting the wave power. The authors reported a considerable improvement
in the prediction accuracy from 24% up to 152% compared with other model-based controls.

With regard to recapitulating the principal challenges in developing long-term predictive wave charac-
teristics models, the main research gaps can be detailed as follows:

1. One of the most important features in order to improve the performance of the deep learning models
is hyper-parameters tuning [16]. Recently, various meta-heuristics were proposed to find the optimal
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hyper-parameter settings; however, in the majority of case studies, their performance is not consider-
able due to improper control parameters initialisation and updating during the optimisation process.

2. Most of the popular meta-heuristic optimisation algorithms have been invented in order to handle the
numerical benchmarks rather than the hyper-parameters tuning. Therefore, they need to be modified
for optimising the hyper-parameters.

3. Proposing the optimal decomposition methods’ parameters is challenging [26]. It has been reported
that these parameters strongly involve the performance of the decomposition methods. Moreover, an
insufficient decomposition setting leads to the low performance of the wave predictors.

To address the aforementioned difficulties in forecasting long-term wave parameters, we developed
a new convolutional bi-directional learning-based framework. This proposed model features an efficient
decomposition-based method that can predict long-term wave power with considerable precision and em-
ploys, an architecture that can be considered a parallel bi-directional recurrent neural model (Bi-LSTM) [27].
Thus, this work improves on current wave forecasting research via several principal contributions:

1. First, we introduce a novel hybrid forecasting model comprising an adaptive decomposition-based
method (Nelder-Mead variational mode decomposition [NMVMD]) and a convolutional neural network
(CNN) featuring bi-directional long short-term memory (BiLSTM).

2. In order to overcome the shortcomings of the decomposition techniques (such as requiring tuning
parameters), an adaptive decomposition approach is proposed. This effective decomposition method
includes variational mode decomposition and a Nelder-Mead search algorithm to de-compose time-
series data into sub-signals.

3. We also propose a new hybrid optimisation algorithm that combines the equilibrium optimisation (EO)
algorithm with the Nelder-Mean (NM) simplex direct search to optimise the hyper-parameters of the
proposed hybrid wave forecasting model.

4. Next, our comparative analysis considers Bi-LSTM against stacked LSTM and vanilla LSTM in terms
of modelling stochastic wave data, demonstrating that Bi-LSTM outperforms the other LSTM models.

5. After applying the proposed hybrid neural model to real data collected from a buoy in the Mediter-
ranean Sea off Favignana Island between 1999 and 2013, we evaluate its performance based on the
six-hours-ahead long term forecast interval.

6. Finding from a systematic comparison of the hybrid model with the adaptive neuro-fuzzy inference
system (ANFIS), feed-forward neural network (FFNN), polynomial neural networks (PNNs), vanilla
LSTM, stacked LSTM, the Bi-LSTM model, and five hybrid decomposition-based models. reveal
that the proposed hybrid model outperformed the other models in terms of both accuracy and the
convergence curve.

The remainder of this work is structured as follows: Section 2 includes some subsections: the wave
energy resource (2.1), the details of the case study with a summary of the collected data(2.2, and in the
following methods (2.3, 2.4, 2.5) used in order to design and develop the proposed forecasting wave model.
In Section 3, we formulate and compare various forecasting strategies with the proposed framework. Then,
in Section 4, we characterise the principles and associations specified by each significant finding and place
them in the proper standpoint. Finally, we summarise the results obtained by this work and present a few
thoughts for future research plans in in Section 5.

2. Methods

In this section, initially we describe the technical details of wave energy resource modelling and assessing.
Next, the collected wave dataset is introduced. In the following, the primary methods which were applied
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in this study are discussed comprehensively, including the standard Bi-directional Long short-term memory
network (Bi-LSTM) and convolutional LSTM. Furthermore, one of the modern and effective meta-heuristics
is described entitled equilibrium optimisation method and its hybrid version with Nelder-mead as a hyper-
parameter tuner. The applied decomposition method in this research is a combination of variational mode
decomposition and a fast local search discussed in detail in the following.

2.1. Wave energy resource

Different methodologies are employed to assess wave energy’s potential use as a renewable energy re-
source. These include in-situ wave buoy measurements, satellite altimetry, and wave hindcasts using spectral
wave models [28]. Measurements available from wave buoy records include significant wave height (Hm0,
or Hs), characteristic wave period, (e.g. peak wave period Tp or wave energy period Te), and mean wave
direction (Dp). The resulting datasets can be used to estimate wave power (or wave energy flux) at a specific
location. Thus, for a sea state characterised by Hs and Tp ( which propagates in a single direction), wave
power can be calculated by applying the principle of superposition, which considers wave power at each
independent frequency component ω [29]:

J =

∫ ∞
0

J(ω)dω =

∫ ∞
0

ρgS(ω) · Cg(ω)dω (1)

where ρgS(ω) represents the energy in the wave, and Cg(ω) represents the group velocity, or the velocity at
which the wave energy is propagating, ρ is the density of water, g is the gravitational acceleration, and S(ω)
is the monodirectional wave spectrum. It should be noted that the wave energy flux due to the combination
of two waves S1(ω), Cg1(ω) and S2(ω), Cg2(ω), arriving simultaneously to the same point from two different
directions is not well captured by Equation (1).

The group wave speed depends on the wave frequency ω and water depth h [29]:

Cg(ω) =
1

2

ω

k(ω)

(
1 +

2k(ω)h

sinh 2k(ω)h

)
, (2)

where k(ω) is the wave number that is defined by the dispersion relation [29]:

ω2 = gk(ω) tanh k(ω)h. (3)

As a result, the monodirectional wave energy flux for a known wave spectrum S(ω) is calculated as:

J =

∫ ∞
0

ρgS(ω) · 1
2

ω

k(ω)

(
1 +

2k(ω)h

sinh 2k(ω)h

)
dω. (4)

If to assume a Pierson-Moskowitz shaped spectrum, S(ω) is defined by [30]:

S(ω) =
5π4H2

m0

ω5T 4
p

exp

(
−20π4

ω4T 4
p

)
, (5)

where the peak wave period Tp can be related to the wave energy period as Te = 0.857Tp.

2.2. Wave data from the Mediterranean Sea off Favignana Island

This paper utilises data collected at a buoy installed in the Mediterranean Sea off Favignana Island by
the Italian National Wave Recording Network (NWRN) and administered by the Agency for Environmental
Protection and Technical Services [31] over a period of 14 years from 1999 to 2013. The geographical location
of the installed buoy (HS5) and the sea depth off the northwest coast of Sicily, in meters under the medium
sea level and surrounding Favignana Island [32] can be seen in Figure 1.

As we can see that the site HS5 is situated close to the western shore of Favignana Island. We chose
this site for the greater prevalence of energetic waves compared to neighbouring locations [31]. The average
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Figure 1: Bathymetry of the studied Favignana Island and surrounding. The sea depth shows by the color bar.

wave energy flux reported to be around 6.88 kW/m. Most of the high-energy waves have a frequency of
25.97% (roughly 95 days per year). The wave climate of HS5 is demonstrated in Figure 2, where the colour
scale represents the wave energy per meter of wave front [kWh/m], the numbers indicate the sea state’s
occurrence [number of hours per year], and the contour lines indicate the wave power levels [kW/m].
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Figure 2: Joint probability density estimation of the wave buoy data for the HS5 site.

As Figure 3 makes apparent, wave energy is generally focused on fewer bins than neighbouring sea
sites. The figure also shows the wave energy period distribution with respect to the wave direction for the
selected sea site. The predominant wave directions are between 330o and 350o N by a frequency of 26.12%.
Nevertheless, peak seasonal variation reaches around 75% between the summer and winter months. Table 3
presents the characteristics of the HS5 site, including its geographical coordinates, the sea depth, annual
average wave power and wave energy. Dc and Dp denote the distance from the HS5 site to the coast, and
to the most adjacent port, respectively.

Figure 4 shows the extensive fluctuations of the wave data. The first observation from the zoomed version
of this figure is that the fluctuation of the wave direction is less than other wave parameters compared with
wave energy period and the mean energy period.
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Table 3: The details information of the applied sea site including the geographical coordinates; the sea depth; annual
average wave power and wave energy.

Parameter Value

Site HS5

Coordinates (long, lat) 12.27o, -37.94o

Water depth (m) 10.00
Average wave power (kW/m) 6.88
Average wave energy (MWh/m) 60.27
Dc (km) 0.50
Dp (km) 7.00
Port Faviganana

Zo
o

m
 v

e
rs

io
n

Figure 4: The features of the collected dataset for Favignana Island. The right figure is regard to one month of the
recorded wave data.

Meanwhile, Table 4 also shows important statistical information about wave features and wave energy
flux including mean, median, standard deviation, and upper and lower bounds. In order to calculate the
correlation coefficients between wave energy flux (Jw) and significant wave height (Hm0), wave energy period
(Te), mean energy period (Tm) (also known as the ”zero cross mean wave period”), and wave direction
(Dir), we used the correlation matrix presented in Table 5. As expected, the biggest correlation coefficient
is regarding between wave energy period (Te) and mean energy period (Tm) at 99%. Furthermore, the
top-ranking correlation concerns significant wave height and wave energy flux by 91%.
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Figure 3: The wave climate of energy period (Te) and wave direction (Dir)

Table 4: Statistical information of wave measurements dataset

Hm0[m] Tm[s] Dir [°N] Te [s] Jw [W/m]

Mean 1.089 5.945 245.216 5.355 5036.158
Median 0.858 5.913 322.93 5.297 1477.969
Min 0.0133 1.875 0.0065 1.727 0.626
Max 3.816 19.88 360 17.633 61122.49
STD 0.795 1.793 136.324 1.729 7511.134

Table 5: The correlation among the features of the collected wave dataset.

Hm0[m] Tm[s] Dir [°N] Te [s] Jw [W/m]

Hm0[m] 1 0.78 033 0.77 0.91
Tm[s] 0.78 1 0.26 0.99 0.74
Dir [°N] 0.33 0.26 1 0.27 0.30
Te [s] 0.77 0.99 0.27 1 0.74
Jw [W/m] 0.91 0.74 0.30 0.74 1

2.3. Bi-directional long short-term memory network

The main drawback of regular recurrent neural networks (RNN) is that they pay particular attention
to previous correlations of sequential data during the training phase. This attribute produces vanishing
and exploding gradient problems in the context of long prediction sequence. Thus, the model might be
trained with null weights (un-trained) or exploding weights. In order to deal with this deficiency, it is also
recommended to explore future correlations of the sequential data [33].

One successful development of LSTM architectures is Bi-LSTM. Bi-LSTM is a modified formation of
LSTM that includes both forward and backward layers of LSTM. Using both types of connection before
and after updating the weights of sequential neurons, Bi-LSTM can simultaneously analyse past and future
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time series data [27]. This bi-directional structure means every memory block comprises a couple of LSTM
layers. The forward and backward layers both feature two series of hidden layer elements with reverse time
processes. Furthermore, the states of the two hidden layers are joined to produce an identical output. The
forward LSTM is responsible for obtaining prior information on the input sequence and the backward LSTM
evaluates future features of the sequential data [27].

The forward and backward hidden layers are denoted by h→t and h←t , respectively, at the current time
step t. Equation 6 shows how the hidden states of the forward process are estimated.

h→t = fH(WIH→xt +WHH→h
→
t−1 + bh→) (6)

where h→t is repeated over t = (1, ..., T ). In the following, the computation of backward layer can be seen
in Equation 7.

h←t = fH(WIH←xt +WHH←h
←
t−1 + bh←) (7)

Finally, to aggregate and compute the output sequence yt at each time step t, Equation 8 is applied.

yt = WHO→h
→
t +WHO←h

←
t + bo (8)

This research used MATLAB R2020a to develop the whole implementation. For the Bi-LSTM and LSTM, we
used the deep learning with time series toolbox, and BiLSTM (bilstmLayer). to update the cell and hidden
state, the activation function set the hyperbolic tangent function (tanh) and used the sigmoid function to
engage the gates. The ’unit-forget-gate’ was used initialise the bias. There were 200 and 150 in the first and
second Bi-LSTM units, respectively.

2.4. Convolutional long short-term memory model (ConvLSTM)

The main motivation for proposing a convolutional LSTM is the considerable number of redundancy
of spatial data, that a fully connected LSTM (FC-LSTM) can engender. To deal with this issue, Shi et
al. [34] first introduced this approach with an LSTM comprising convolutional architectures with recurrent
connections. That convolutional LSTM model utilised the operator of the convolution to restrict the coming
state of a singular cell before, the inputs recursively defined the future state together with the prior states
of its connected neighbours. The ConvLSTM model can be formulated [34] as follows:

Ft = σ (w(XF ) ∗ xt + w(HF ) ∗ h(t−1) +BF )

It = σ (w(XI) ∗ xt + w(HI) ∗ h(t−1) +BI)

Čt = tanh (w(XČ) ∗ xt + w(HČ) ∗ h(t−1) +BČ)

Ot = σ (w(XO) ∗ xt + w(HO) ∗ h(t−1) +BO)

Ct = Ft ⊙ C(t−1) + It ⊙ Čt

ht = Ot ⊙ tanh (Ct)

(9)

where both tanh (hyperbolic-tangent) and σ (sigmoid) are non-linear activation functions that let the model
design complex mappings among the inputs and outputs of the model applied. The convolution operator
shows by ∗ , and ⊙ denotes the Hadamard product operator [35]. The It, Ct, Ht, and Ft are input gate,
modulation of input gate, hidden states, and forget gates, respectively. Meanwhile, input layers and output
gates show by xt, and Ot, respectively. In convLSTM, the most significant module is the memory cell (Ct)
that plays the role of a state information aggregator. This can be controlled by the gates.

2.5. Hyper-parameter tuning

This study used the grid search method, one of the most widely employed strategies for hyper-parameter
optimisation (HPO) problems [36]. Due mainly to its straightforward implementation [37] and status as
a complete search method [38]. That is a grid search can guarantee finding the optimal solution with-in
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a finite amount of time in the search space. However, the curse of dimensionality [39] can undermine the
approach if the number of hyper-parameters rises, the grid search runtime will increase exponentially. A
grid search operates as an exhaustive search that depends on pre-defined subsets of the hyper-parameter
search space. The hyper-parameters are designated by combinations of the lower bound, upper bound and
the resolution of the grids. Upon assessing all combinations, the most accurate model should represent
the optimal hyper-parameters configuration. Three scale types determine the size of steps: logarithmic,
quadratic, and linear scales. This study used the linear scale to combine the hyper-parameters.

2.5.1. Equilibrium optimisation (EO) algorithm

The recently introduced (EO) algorithm [40] is among the most popular population-based optimisation
methods, performing adequately in comparison to other meta-heuristics. The EO algorithm was developed
based on the mass balance control volume in order to determine whether various situations should be
dynamic or equilibrial. Equation 10 represents the first-order differential formula of the general mass-balance
calculation.

V dD
dt = ϕDeq − ϕD + g (10)

where V expresses the control volume and D denotes the atoms gravity near the V , and also V dD
dt defines

the ratio of mass change. In order to determine the velocity of flow around and inside of V , ϕ is calculated.
g signifies the mass formation ratio interior the V . Deq implies the particles’ density towards the V through
an equilibrium phase. If we assume V dD

dt = 0, a regular equilibrium phase is obtained and the movement is

represented via λ = ϕ
V . Finally, Eq 10 is recalculated as follows:

dD

λDeq − λD + g
V

= dt −→
∫ D

D0

dD

λDeq − λD + g
V

=

∫ t

t0

dt (11)

Eq. 12 is achieved after calculating Eq. 11 as follows:

D = Deq + (D0 −Deq) exp[−λ(t− t0)] +
g

λV (1− (exp[−λ(t− t0)])) (12)

where t0 and D0 are the commencement time and concentration-dependent on the integration interim.
The final convergence stage involves the EO algorithm indicating the equilibrium situation, which might

be a local optimum or, in the best-case scenario, a global optimum. The EO method involves a vector
characterising the equilibrium pool to present a set of candidate solutions. The main exploration operator
introduces four best-found particles during the optimisation search process. After that, the average of four
particles is computed to produce a fifth particle.

The EO uses this exploration procedure in order to increase robustness and search ability. Furthermore,
this proportion of best-found particles simultaneously increases the exploitation stage. The equilibrium pool
vector is presented as follows:

D⃗eq,pool =
{
D⃗eq(1), D⃗eq(2), D⃗eq(3), D⃗eq(4), D⃗eq(ave)

}
(13)

The β is one of the most notable control parameters in the EO algorithm that is related to an exponential
term for developing a fit equivalence between both exploitation and exploration. The β reckoning stands as
follows:

β⃗ = e−λ⃗(t−t0) (14)

where λ implies a vector of real numbers from zero to one uniformly distributed and the iteration of the
fitness function is shown by t that should be reduced throughout the optimisation process as follows.

t =

(
1− i

Maxi

)γ i
Maxi

(15)
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where the current and the maximum number of evaluations depicted by iter and Maxiter, respectively. γ
indicates a fixed cost in order to accomplish EO’s exploitation capacity. One effective mechanism is proposed
in the EO algorithm to control the exploration and exploitation ability that can guarantee a convergence
situation by decreasing the search step size as follows.

t⃗0 =
1

λ⃗
ln(−θsign(r⃗ − 0.5)[1− e−λ⃗t]) + t (16)

where θ denotes a fixed value that can be effective in improving the EO’s exploration ability.

2.5.2. Equilibrium Nelder-Mead optimisation (ENMO) algorithm

The standard EO algorithm adaptively updates the control parameters which improve exploratory ability
among the initial generations, and enhances exploitation behaviour during the final iterations. Although
substantially balancing these two search phases produces a noteworthy optimisation performance. In the
multi-modal search space, however, the EO algorithm cannot perform adequately and converge with the
optimal solutions derived by the exploitation mechanism during the final iterations. The controlling pa-
rameter used by the EO, algorithm cannot properly decrease the search step size for particles during the
last iterations. To address this shortcoming, we employ a fast local search namely, the Nelder-Mead (NM)
simplex direct search method is applied.

NM method [41] is a downhill and unconstrained optimisation method that has mostly been applied
to nonlinear optimisation problems without considering the derivatives. Although the NM method can
demonstrate a high convergence rate during the initial iterations and proposes a local or global optimum.
However, a premature convergence represents one of the approach’s main disadvantages of the NM. The NM
method commences through forming an origin simplex and assessing the fitness function at each point of
the simplex, and the function rates the candidates. Next, in order to compute the simplex during the next
replication, three procedures are performed: expansion, reflection and contraction. Otherwise, all candidates
will be updated based on the best solution.

Figure 5 provides an example of the NM algorithm, where xc is the centroid point (solution), which is
the opposite of the worst point. To summarise NM search performance, it should be noted that it includes
a comparison of fr, which is the value of the evaluation function at the reflected object with the value of
the best, the second-worst, and worst simplex model (fk

best ≤ f(yn−1) ≤ f(yn)). The NM algorithm’s main
steps are as follows.

1. The worst candidate will be substituted using the best-reflected candidate of (xr) and the xe (expanded
candidate) if f(xr) < fk

best .

2. The worst candidate should be substituted using the xr (reflected candidate) if fk
best ≤ f(xr) <

f(yn−1).

3. The worst candidate will be substituted using the best-performed candidate between xoc and xr if
f(yn−1) ≤ f(xr) < f(yn).

4. The worst candidate will be substituted using xic, if f(yn) ≤ f(xr) < f(xic).

5. if f(yn) ≤ f(xr) < f(xic) next the whole simplex should be shrunk and just the best candidate (y0)
will be fixed.

2.6. Decomposition approaches

Decomposition is a broad technique in order to solve a problem with high complexity by splitting it into
more diminutive sup-problems and figuring each one out individually, in the form of parallel or consecutively.
However, if the decomposition is carried out sequentially, the runtime complexity of the problem increases
exponentially or quadratically [42].
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Figure 5: A schematic search behaviour of the Nelder-Mead algorithm when δic = −0.5 (inside contraction rate)
,δoc = 0.5 (outside contraction rate) and δe = 2 (expansion rate)

2.6.1. Variational mode decomposition (VMD)

Variational mode decomposition (VMD) is one of the modern decomposition methods, that shows a high
performance with regard to decompose the climatic time-series parameters effectively [43] and embedded
with a single step or multi-step hybrid deep learning models for wind and wave power forecasting [44]. More
technical details of VMD method can be seen in Appendix A.

2.6.2. Nelder-Mead Variational mode decomposition (NMVMD)

Despite the advantages of Variational Mode Decomposition (VMD) compared to traditional decomposi-
tion techniques which include noise suppression, high-speed estimate, substantial numerical back grounding
and a non-recursive sifting method the efficiency of VMD depends on the initial values of the control pa-
rameters. The main parameters are the number of intrinsic mode functions (IMFs), the value of the penalty
factor to push the process in the feasible area, the type of approach required to adjust the central frequen-
cies, and (perhaps most importantly) the value of the update frequency for the Lagrange multiplier. In
order to handle the issue of hyper-parameter tuning, this paper proposes an effective optimiser to address
this problem, namely, the iterative NM simplex direct search algorithm detailed in the previous subsection.
This approach represents a rapid polytope search method, particularly useful for low-dimensions optimisa-
tion problems and often employed to address nonlinear problems where derivatives cannot be known [45].
Figure 6 shows the performance of the Nelder-mead algorithm, in terms of convergence rates, in the context
of optimising VMD in ten independent experiments.
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Figure 6: A comparison of 10 independent runs of iterative Nelder-mead to optimise the performance of VMD.
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To evaluate the VMD’s performance, we applied permutation entropy (PE) [46], a reliable and robust
time-series method that presents a quantification parameter of a dynamic system’s complexity through
ordering relations between states of a time series and deriving a probability distribution of the ordinal
patterns. Consequently, having better VMD’s settings produces a small entropy value meaning the NM
approach explores the search space of the VMD’s hyper-parameters to minimise the entropy value. The
convergence rate of ten independent experiments can be seen in Figure 6.

2.7. Proposed novel hybrid wave forecasting model

Building on the components of the previous subsections, introduces a hybrid deep learning-based model
for forecasting wave energy flux based on time-series wave data with system inputs including significant wave
height (Hm0), wave energy period (Te), mean energy period (Tm), and wave direction (Dir). Development
and functioning of the proposed model (NMVMD-BiLSTM) can be understood as follows:

1. To evaluate the efficiency of the wave parameters for forecasting wave energy flux, six Bi-LSTM models
with different wave inputs were adopted.

2. After comparing the performance of the six models described in Section 3, we selected the best-
performing model to use as the kernel of the hybrid system.

3. To decompose the original wave data into sub-series of wave data, we applied the VMD method.

4. subsequently, the NM simplex search method was utilised to address hyper-parameters issues existing
during the VMD’s initialisation phase (i.e. number of intrinsic mode functions, penalty factor, method
for adjusting central frequencies, and update frequency for the Lagrange multiplier). Table 6 shows the
upper and lower bounds of the VMD parameters. To assess the NM-VMD algorithm’s performance,
we applied permutation entropy [46], the value of which should be minimised to converge with the
superior VMD configuration. Figure 7 illustrates the best-found settings identified by the NM-VMD.

5. To improve the performance of the Bi-LSTM model, a CNN was embedded to the make a hybrid
model (CNN-BiLSTM) capable of extracting and learning the features from the sequential wave data.
The complete architecture of the CNN-BiLSTM wave forecasting model is presented in Figure 8.

6. Finally, in order to address the issue of hyper-parameters tuning, we proposed a new optimisation
method, namely the Equilibrium NM optimisation (ENMO) algorithm which we then compared with
three other well-known optimisation methods. The ENMO algorithm considerably outperformed the
other models in terms of robustness and convergence rate.

Table 6: The upper and lower bounds of VMD’s hyper-parameters.

IMFs
number

Penalty
factor

Lagrange
multiplier

Initialise
Method

Min 3 100 10−6 1
Max 10 2000 10−2 3

3. Experiments and results

In order to analyse the effectiveness of the proposed hybrid deep learning-based model, we developed a
comprehensive comparative framework. The first step of which involved developing six sequential Bi-LSTM
models and comparing them based on the wave parameters addressed in Section 3.1.

Section 3.2 discusses the influence of hyper-parameters within the Bi-LSTM forecasting model and em-
phasises the importance of hyper-parameters and, the whole prediction, the stability, and accuracy analysis
outcomes are analysed in Section 3.3. The descriptions of the performance indices of forecasting models can
be seen in Appendix B.
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Figure 7: Significant wave height (Hm0) components decomposed by NM-VMD for 11 years recorded dataset.

3.1. Bi-LSTM performance models

According to the correlation coefficients values among wave features that can be seen in Table 5, we
developed six independent wave forecasting models as follows;

• Model1: has one input that is the significant wave height (Hm0) because Hm0 has the highest corre-
lation (0.91%) with the wave energy flux (Jw).

• Model2: has two inputs including significant wave height (Hm0) and the wave direction.

• Model3: has two inputs; significant wave height (Hm0) and wave energy period (Te). Both parameters
can play an important role to predict the Jw.

• Model4: the number of inputs is three including the significant wave height (Hm0), wave energy period
(Te), and mean energy period (Tm).

• Model5: has the same number of inputs as Model 4, but instead of the mean energy period (Tm), and
the new input is wave direction.

• Model6: includes four inputs such as Hm0, Te, Tm, and wave direction.
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Wave power
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Figure 8: The architecture of the proposed CNN-BiLSTM wave deep model. filters=128, kernel size=1, activa-
tion=’relu’,

Figure 9 presents the results derived from the models described, importantly revealing that the forecasting
model with two inputs (Model2) can estimate wave power flux better than the other models. Meanwhile, the
box plot (Figure 9) shows that the system with only one input of significant wave height (Hm0) performed
better than the models with two, three, and four inputs, making it the second best-performing model.
Meanwhile, a combination of significant wave height (Hm0) and wave energy period (Te) as inputs (Model3)
produced the third-highest accuracy.
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Figure 9: The statistical results of the six forecasting wave flux models with different inputs.

3.2. Bi-LSTM hyper-parameters tuning

Given the challenge of configuring the Bi-LSTM, and the absence of a reliable theory [47] regarding
establishing the hyper-parameters and architecture, this study used a popular grid search method. Regard-
ing tuning these configurations, we should consider both the dynamic neural model’s behaviour and the
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computational budget. This meant assuming a fixed architecture for the Bi-LSTM model and focusing on
the influence of batch size and learning rate. Evaluation produced batch sizes in the range 26 ≤ BS ≤ 29

and learning rates in the range 10−6 ≤ LR ≤ 10−4.
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Figure 10: Batch size and learning rate hyper-parameters tuning using the grid search for the BiLSTM wave fore-
casting model with one input (significant wave height (Hm0)). The zoomed version can be seen in (b).

Figure 10 provides the landscape analysis of the Bi-LSTM model’s hyper-parameters (batch size and
learning rate). The most prominent observation of Figure 10 revealed that the relationship between the
accuracy of the model and the values of the learning rate is meaningful. The figure also indicates a learning
rate around 10−4 obtained the best forecasting results for smaller batch sizes. Notably, batch size moderates
the estimation precision of the error gradient when training neural models [48]. The outcomes presented
confirm that adopting smaller batch sizes (e.g. 26 or 27) can deliver the most desirable training stability
and generalisation effectiveness (for a given computational cost) over an extensive range of learning rates.

Table 7 presents the hyper-parameters sensitivity results for the Bi-LSTM forecasting model. According
to training outcomes, the Bi-LSTM model exhibited the most stable forecasts with a learning rate of 10−4

and batch size of 27, and the Bi-LSTM model demonstrated the highest sensitivity to large batch sizes.

3.3. Hybrid wave power forecasting model’s results

Thus, the first step, compared the performance of the hybrid wave forecasting model without hyper-
parameters optimisation with various popular machine learning-based forecasting techniques. Figure 11 (a)
visually summarises the statistical prediction results including the minimum, maximum and median RMSE
values for each model. From Figure 11, we can see a comparison of eight models: NMVMD-CNNBiLSTM
(the proposed hybrid model), LSTM, stacked LSTM, Bi-LSTM, ANFIS [49], PNN, and FFNN. Although
the fewest training and testing errors were obtained using the proposed model (NMVMD-CNNBiLSTM).
Furthermore, the Bi-LSTM model performed competitively. To further investigate the proposed model’s
performance, Table 8 summarises the outcomes of wave energy flux forecasting based on four indices. It
is obvious that the NMVMD-CNNBiLSTM hybrid model without hyper-parameter optimiser is able to
outperform other popular models and produce more reliable forecasting outcomes.

Our second step compared the effectiveness of using the proposed hybrid model with hyper-parameter
optimisation (NMVMD-CNNBiLSTM with ENMO), comparing the performance of this approach with that
of three other hybrid models and the hybrid model without hyper-parameter optimisation. Figure 11 (b)
demonstrates that the performance of the hybrid model with hyper-parameter optimisation not only performs
better than the other hybrid models but also performs significantly better than the proposed model without
ENMO. Table 9 details the statistical prediction results for the four hybrid wave models.
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Figure 11: The comparison of the statistical results of the NMVMD-CNNBiLSTM wave model and other seven
forecasting wave flux models (a). (b) And also a comparison among without and with hyper-parameters tuner, DE,
PSO, EO, and ENMO.

4. Discussions

A fast and effective wave energy flux forecasting model was proposed. In order to evaluate the perfor-
mance of the model, we used the wave features from Favignana Island, located in the Mediterranean Sea.
The prediction interval is 6-hour ahead (long term). According to the forecasting results, the introduced
wave predictive model performed the best compared to the other six standard machine learning methods.
Five hybrid models were developed regarding accuracy and resilience. The second most significant obser-
vation is that combining the convolutional neural model (CNN) with the Bi-LSTM network improved the
accuracy of the wave power prediction. This is mainly because CNN benefits from local spatial coherence in
the sequential input data, which qualified CNNs to share fewer weights, especially fitting to extract relevant
features with a lower computational budget than fully-connected networks. Furthermore, the proposed adap-
tive decomposition method enhanced the total performance of the prediction results considerably without
imposing large demand on the computation. Finally, in order to find an optimal set of hyper-parameters of
the proposed hybrid wave model, a new tuner (Equilibrium Nelder-Mead optimisation algorithm (ENMO))
was suggested. The prediction results demonstrated that ENMO provided a better training error than DE,
PSO, and EO at 8.43%, 11.15%, and 6.00%, respectively.
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Table 8: The statistical performance metrics for the proposed NMVMD-CNNBiLSTM model.

ANFIS

MSE RMSE MAE R

Train Test Train Test Train Test Train Test
Mean 5.828E-03 5.535E-03 3.579E-02 7.437E-02 3.579E-02 3.532E-02 8.396E-01 8.467E-01
Max 5.955E-03 6.030E-03 3.622E-02 7.766E-02 3.622E-02 3.643E-02 8.438E-01 8.588E-01
Min 5.669E-03 4.918E-03 3.548E-02 7.013E-02 3.548E-02 3.345E-02 8.368E-01 8.363E-01
Std 7.528E-05 3.158E-04 1.970E-04 2.140E-03 1.970E-04 8.177E-04 2.242E-03 6.659E-03

FFNN

MSE RMSE MAE R

Train Test Train Test Train Test Train Test
Mean 9.87E-03 9.69E-03 6.38E-02 9.84E-02 6.38E-02 6.36E-02 5.90E-01 5.96E-01
Max 1.04E-02 1.03E-02 6.46E-02 1.02E-01 6.46E-02 6.46E-02 5.97E-01 6.16E-01
Min 9.59E-03 8.54E-03 6.29E-02 9.24E-02 6.29E-02 6.16E-02 5.83E-01 5.79E-01
Std 2.15E-04 5.11E-04 5.55E-04 2.63E-03 5.55E-04 9.32E-04 4.56E-03 1.10E-02

PNN

MSE RMSE MAE R
Train Test Train Test Train Test Train Test

Mean 9.862E-03 1.002E-02 7.176E-02 1.001E-01 7.176E-02 7.185E-02 8.202E-01 8.198E-01
Max 1.016E-02 1.046E-02 7.278E-02 1.023E-01 7.278E-02 7.302E-02 8.213E-01 8.234E-01
Min 9.563E-03 9.535E-03 7.050E-02 9.765E-02 7.050E-02 7.029E-02 8.192E-01 8.159E-01
Std 1.544E-04 2.997E-04 6.370E-04 1.501E-03 6.370E-04 7.988E-04 6.877E-04 2.556E-03

LSTM

MSE RMSE MAE R

Train Test Train Test Train Test Train Test
Mean 6.011E-03 6.166E-03 5.065E-02 7.850E-02 5.065E-02 5.111E-02 7.757E-01 7.720E-01
Max 6.116E-03 6.609E-03 5.112E-02 8.129E-02 5.112E-02 5.275E-02 7.772E-01 7.846E-01
Min 5.893E-03 5.724E-03 5.023E-02 7.566E-02 5.023E-02 4.931E-02 7.726E-01 7.658E-01
Std 7.010E-05 2.891E-04 2.984E-04 1.847E-03 2.984E-04 9.465E-04 1.406E-03 5.639E-03

Stacked LSTM

MSE RMSE MAE R

Train Test Train Test Train Test Train Test

Mean 3.570E-03 3.493E-03 5.975E-02 5.907E-02 3.518E-02 3.484E-02 8.824E-01 8.830E-01
Max 3.631E-03 3.871E-03 6.026E-02 6.221E-02 3.597E-02 3.742E-02 8.834E-01 8.879E-01
Min 3.497E-03 3.265E-03 5.914E-02 5.714E-02 3.442E-02 3.363E-02 8.813E-01 8.759E-01
Std 3.993E-05 2.356E-04 3.342E-04 1.980E-03 4.978E-04 1.097E-03 7.215E-04 3.958E-03

Bi-LSTM

MSE RMSE MAE R

Train Test Train Test Train Test Train Test
Mean 3.468E-03 3.380E-03 3.497E-02 5.812E-02 3.497E-02 3.456E-02 8.834E-01 8.861E-01
Max 3.533E-03 3.730E-03 3.535E-02 6.108E-02 3.535E-02 3.550E-02 8.845E-01 8.895E-01
Min 3.390E-03 3.074E-03 3.473E-02 5.544E-02 3.473E-02 3.325E-02 8.825E-01 8.817E-01
Std 4.445E-05 2.003E-04 1.737E-04 1.714E-03 1.737E-04 6.815E-04 7.184E-04 2.932E-03

NMVMD-BiLSTM

MSE RMSE MAE R
Train Test Train Test Train Test Train Test

Mean 2.77E-03 3.14E-03 5.26E-02 5.59E-02 2.63E-02 2.97E-02 9.10E-01 8.99E-01
Max 3.26E-03 4.26E-03 5.71E-02 6.53E-02 2.86E-02 3.25E-02 9.14E-01 9.07E-01
Min 2.53E-03 2.82E-03 5.03E-02 5.31E-02 2.47E-02 2.81E-02 9.01E-01 8.90E-01
Std 2.52E-04 4.20E-04 2.34E-03 3.54E-03 1.28E-03 1.50E-03 4.66E-03 5.45E-03

NMVMD-CNN-BiLSTM

MSE RMSE MAE R

Train Test Train Test Train Test Train Test

Mean 2.51E-03 2.79E-03 5.01E-02 5.28E-02 2.53E-02 2.68E-02 9.16E-01 9.09E-01
Max 2.61E-03 3.16E-03 5.11E-02 5.62E-02 2.73E-02 2.93E-02 9.18E-01 9.19E-01
Min 2.43E-03 2.38E-03 4.93E-02 4.87E-02 2.39E-02 2.39E-02 9.13E-01 9.02E-01
Std 5.25E-05 2.29E-04 5.23E-04 2.18E-03 1.03E-03 1.42E-03 1.47E-03 4.73E-03
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Table 9: The statistical prediction results of the proposed hybrid deep learning model compared with other three
hybrid forecasting wave models.

NMVMD-CNNBiLSTM-DE

MSE RMSE MAE R

Train Test Train Test Train Test Train Test

Mean 2.403E-03 2.360E-03 4.900E-02 4.857E-02 2.446E-02 2.399E-02 9.199E-01 9.218E-01
Max 2.595E-03 2.529E-03 5.095E-02 5.029E-02 2.650E-02 2.630E-02 9.244E-01 9.263E-01
Min 2.255E-03 2.193E-03 4.748E-02 4.683E-02 2.219E-02 2.230E-02 9.155E-01 9.181E-01
Std 1.117E-04 9.416E-05 1.140E-03 9.705E-04 1.512E-03 1.204E-03 3.131E-03 2.837E-03

NMVMD-CNNBiLSTM-PSO

MSE RMSE MAE R

Train Test Train Test Train Test Train Test

Mean 2.457E-03 2.434E-03 4.956E-02 4.930E-02 2.394E-02 2.420E-02 9.181E-01 9.175E-01
Max 2.589E-03 2.767E-03 5.089E-02 5.260E-02 2.464E-02 2.595E-02 9.214E-01 9.244E-01
Min 2.305E-03 2.042E-03 4.802E-02 4.519E-02 2.336E-02 2.208E-02 9.160E-01 9.092E-01
Std 9.541E-05 1.991E-04 9.654E-04 2.038E-03 4.689E-04 1.075E-03 2.017E-03 4.658E-03

NMVMD-CNNBiLSTM-EO

MSE RMSE MAE R

Train Test Train Test Train Test Train Test

Mean 2.349E-03 2.227E-03 4.846E-02 4.714E-02 2.353E-02 2.248E-02 9.215E-01 9.251E-01
Max 2.559E-03 2.580E-03 5.059E-02 5.079E-02 2.614E-02 2.489E-02 9.244E-01 9.344E-01
Min 2.227E-03 1.918E-03 4.720E-02 4.379E-02 2.242E-02 2.106E-02 9.159E-01 9.138E-01
Std 9.881E-05 2.105E-04 1.011E-03 2.230E-03 1.043E-03 1.211E-03 2.698E-03 6.242E-03

NMVMD-CNNBiLSTM-ENMO

MSE RMSE MAE R

Train Test Train Test Train Test Train Test

Mean 2.216E-03 2.006E-03 4.707E-02 4.473E-02 2.214E-02 1.991E-02 9.263E-01 9.323E-01
Max 2.317E-03 2.256E-03 4.814E-02 4.750E-02 2.423E-02 2.182E-02 9.295E-01 9.447E-01
Min 2.116E-03 1.554E-03 4.600E-02 3.942E-02 2.068E-02 1.775E-02 9.237E-01 9.227E-01
Std 6.517E-05 1.947E-04 6.939E-04 2.239E-03 1.154E-03 1.322E-03 1.822E-03 5.937E-03

However, some potential concerns still merit more engagement in the suggested hybrid wave model. The
described contemplations are summarised in the following.

1. Despite the fact that the adaptive decomposition method could decompose wave time-series data
into optimal sub-signals with various frequencies efficiently and improve the developed model’s total
performance, there are many modern meta-heuristic algorithms that can also be used concerning
speeding up the convergence velocity. Hence, these strategies can be evaluated in prospective studies.

2. According to the experimental prediction results, the proposed forecasting wave power model got the
best accuracy compared with the other six machine learning methods and five hybrid predictive deep
learning models. However, recently, various modern architectures of CNN have been proposed with
a considerable performance, such as EfficientNet [50] and MobileNet [51]. Using such modern CNN
architectures may improve the prediction accuracy of the wave energy flux. It should be noted that
there is no straightforward approach to selecting an adequate combination of CNN layers and recurrent
neural layers in order to develop a wave power predictor.

3. One of the most critical advantages of deep learning models is the ability to work in novel unseen
datasets without any over or under-fitting issues. To test the generalisation capability of the proposed
model, we used the multiple train-test splits by selecting an arbitrary split point for training and eval-
uation. However, the dataset applied in this study has been collected from one buoy. The predictor’s
performance should be assessed by other collected wave datasets from various geographies to extend
the evaluation procedure.

5. Conclusions and perspectives

This study adapted the systematic strategy of developing a novel end-to-end deep learning-based model to
forecast wave energy flux. The model combines a CNN with Bi-LSTM, a hybrid decomposition method (i.e.
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NMVMD, and hyper-parameter optimisation (ENMO). The main contributions of this work are as follows:
(1) a comparative framework was developed that incorporates six well-known machine learning methods
such as ANFIS, FFNN, PNN, vanilla LSTM, stacked LSTM, and Bi-LSTM. The initial forecasting results
indicated that Bi-LSTM performed better than other models. to identify the dominant wave parameters for
predicting wave energy flux, we proposed six Bi-LSTM models featuring different input combination. The
comparative analysis showed that the model using the two inputs of significant wave height (Hm0) and wave
direction most accurately predicted wave energy flux. (3) We utilised VMD to decompose the original wave
data into a series of sub-layers; and incorporated the NM search mechanism to optimise the performance
of the VMD, and an improvement was reported at 25% compared with the Bi-LSTM. (4) The combined
BiLSTM and NMVMD was developed using the customised convolutional layers because CNNs are highly
noise-resistant prototypes and are able to extract instructive and profound features that are self-dependent
from time. At the same time, (5) to address the hyper-parameters issue in the context of the CNN-BiLSTM
model, we subsequently developed a new hyper-parameter optimisation method (ENMO), and compared
its effectiveness with three other well-known optimisation methods (DE, PSO and EO). The achievements
demonstrated that optimising the hyper-parameters of the proposed model using the ENMO algorithm could
provide more accurate wave forecasting than employing other optimisation methods at 8.43%, 11.15%, and
6.00%, respectively.

This study’s experimental results, allow the conclusion that the ENMO proposed novel hybrid wave fore-
casting model not only outperforms the original Bi-LSTM models but also delivers more reliable prediction
of wave energy flux than the other six forecasting models for 6-hour forecasting intervals. To summarise with
some perspectives, our new wave power forecasting approach is indeed flexible, potable, and paves the way
for developing different predictors of wave characteristics. At the same time, what we accomplished for the
wave energy flux can undoubtedly be transformed into other types of renewable energies, such as wind speed,
wind power and solar radiation. Toward further investigations, research should consider incorporating the
influence of climate factors by considering them as parameters in the proposed models. In order to evaluate
the generalisation ability of the proposed model, we will consider various wave collected datasets for training
and validating. Furthermore, combining other types of RNNs (e.g. gated recurrent unit and Hierarchical
RNNs) and combined with CNNs may further improve the prediction capacity of this model framework.
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Appendix A. Variational mode decomposition (VMD)

The VMD is quasi-orthogonal and fully-intrinsic decomposition signal analysis approach, where VMD is
able to decompose a sequential signal toward a set of modes including distinct bandwidth in spectral-domain
non-recursively [52]. Every mode is compressed a core pulsation interpreted throughout the decomposition
procedure. In order to adjust the modes bandwidth, there are some suggestions [53]: Firstly, applying
a Hibert transform to harmonise a one-sided frequency spectrum toward every mode. Secondly, the as-
signment frequency spectrum of mode to base-band for combining the exponential tune to the identical
estimated centre of frequency. Finally, concerning all modes, manage the bandwidth by employing the
Gaussian smoothness of the demodulated signal. The main restrained variational problem is discussed in
the following [54]

min
us,ws

{
K∑
s=1

∣∣∣∣∣∣∣∣∂t [(D(t) +
j

πt

)
⊗ us(t)

]
e−jwst

∣∣∣∣∣∣∣∣2
2

}
(A.1)

s.t.

K∑
s=1

us = F (t) (A.2)
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where F (t) denotes the fundamental signal, t is related to the time script, s shows the whole figure of the
modes, us implies the sth mode, D(t) describes a specific type of distribution called ’Dirac’. Moreover, the
centre frequency signifies ws, and also the convolution operator shows using ⊗. Besides, the low-frequency
of sub-layers includes the mode with high-order. To reconstruct the considered optimisation problem to
unconstrained, Lagrangian multipliers and the penalty function are concerned, which can be designated in
Equation A.3.

L(us, ws, λ) =α

K∑
s=1

∣∣∣∣∣∣∣∣∂t [(D(t) +
j

πt

)
⊗ us(t)

]
e−jwst

∣∣∣∣∣∣∣∣2
2

(A.3)

+

∣∣∣∣∣∣∣∣F (t)−
K∑
s=1

us(t)

∣∣∣∣∣∣∣∣2
2

+

〈
λ(t).F (t)−

K∑
s=1

us(t)

〉

where the balancing parameter which is associated with the demanded data fidelity constraint can be denoted
by α. The same unconstrained formulation in Equation A.3 is estimated by the Alternate Direction Method
of Multipliers (ADMM). This method can get the saddle point of the augmented Lagrangian. A couple of
directions to make the analysis of the VMD depends on the ADMM are applied to update both uk and wk.
To figure out the mentioned optimisation problem for uk, Equation A.4 is developed as follows:

ûnd+1
s =

F̂ (w)−
∑

i ̸=s ûi(w) + (λ̂(w)/2)

1 + (2× α(w − ws)2)
(A.4)

where the total number of iterations represents by nd, F̂ (w), ûi(w),û
n+1
s and λ̂(w) are related to the Fourier

transforms of u(t), F (t), λ(t), and und+1
s (t) , respectively.

Appendix B. Performance indices of forecasting models

To evaluate and compare the efficiency of the hybrid forecasting models applied, four popular performance
metrics were applied: the average square error (MSE), the root average square error (RMSE), average
absolute error (MAE), and the Pearson correlation coefficient (R-value) [55]. The formulations for RMSE,
MAE and R-value can be seen in the following:

MAE =
1

N

N∑
i=1

|Fe(i)− Ft(i)| (B.1)

RMSE =

√√√√ 1

N

N∑
i=1

(Fe(i)− Ft(i))2 (B.2)

R =
1
N

∑N
i=1(Fe(i)− F e)(Ft(i)− F t)√

1
N

∑N
i=1(Fe(i)− F e)2 ×

√
1
N

∑N
i=1(Fe(i)− F t)2

(B.3)

where Fe(i) and Ft(i) ARE the estimated and true values at the ith data sample. N is the total number
of observed data samples. The variables F e and F t are the means of the estimated and observed power
measures, respectively. With regard to develop the effectiveness of the estimated model, MSE, RMSE and
MAE should be minimised, while R-value should be maximised.
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