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Abstract: Through the analysis of the wave propagation in infinite two-

dimensional periodic frame materials, this paper illustrates the complexity of

their dynamic behavior. Assuming the frame size is small compared to the

wavelength, the homogenization method of periodic discrete media coupled with

normalization is used to identify the macroscopic behavior at the leading order.

The method is applied on a frame material with the vertical elements stiffer

than the horizontal elements. Such a material is highly anisotropic and presents

a large contrast between the rigidities of the possible mechanisms. Thus the

waves associated with different kinematics appear in different frequency ranges.

Moreover, the stiffer elements can deform in bending at the macroscopic scale.

The equivalent continuum is a second grade medium at the leading order and

shear waves can be dispersive. A criterion is proposed to easily determine when

this bending effect has to be taken into account.

1 Introduction

Periodic reticulated (or cellular) materials are obtained by repeating a unit

cell made up of interconnected beams (or plates). Examples of such materials

include wood, bone, foam, honeycomb but also stiffened plates and trussed

beams used in aerospace and marine structures.

As the modeling of each cell element is computationally expensive, discrete

reticulated materials are often replaced by an equivalent continuum. For frame

materials with rigid joints (figure 1), which are the subject of this paper, a

Cosserat or micropolar continuum is frequently used [1, 2, 3]. In this theory,

rotations are introduced as independent degrees of freedom of the material par-

ticles in addition to the usual translational degrees of freedom [4, 5]. It is a

particular case of micromorphic continua, in which the particles can also ex-

perience deformation [6, 7, 8]. All these generalized continuum theories with

additional degrees of freedom correspond to the class of the higher-order the-
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(a) SP material: the cell elements

have similar properties

(b) SC material: vertical beams

stiffer than horizontal beams

Figure 1: Examples of frame materials

ories. Another class of generalized continuum theories is constituted by the

higher-grade theories, which incorporate the gradients of the strain in the strain

energy density function [9, 10]. It has been shown in [11] that trusses of ar-

ticulated elastic beams can behave as such generalized continua. For a more

detailed presentation of the different types of generalized continuum theories,

the reader in referred to [12, 13].

The use of generalized continua to describe reticulated materials is motivated

by the need to introduce a length scale to represent size effects. Indeed, when the

macroscopic length L, defined by the specimen size or the loading wavelength, is

on the same order as the cell size ℓc, the mechanical properties depend on L (see

[14] and the references therein). On the contrary, when the condition of scale

separation is respected (L >> ℓc), several studies based on homogenization

methods [15, 16, 17] have shown that frame materials behave as “classical”

continua in the sense that only the translational degrees of freedom appear at

the macroscopic scale and the strain energy density function does not depend on

the gradients of the strain. These results were established for frame materials

in which the cell elements have similar properties [figure 1(a)]. Such a material

is called SP material afterwards.

In this work, we investigate the consequences on the wave propagation of
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the introduction of a stiffness contrast between the elements in the two direc-

tions [figure 1(b)]. This type of material is called SC material thereafter. In

particular, it can behave as a generalized continuum, of the class of the higher-

grade theories, for wavelengths much greater than the cell size. Indeed, frame

materials with a high stiffness contrast can be viewed as linear fiber reinforced

composites. These composites are known for the existence of bending effects

[18, 19, 20], which have also been observed experimentally [21, 22]. In SC

materials, the combination of the bending effects with the other properties of

frame materials described in [17] for SP materials (anisotropy, shear deforma-

bility much greater than compression deformability, local resonance) leads to

an enriched local kinematics. Consequently, various types of waves generated

by different mechanisms at different frequencies can travel in SC materials. For

example, macroscopic shear waves can be dispersive because of the bending

effects.

Since the study deals with situations with wavelengths much greater than the

cell size, the macroscopic behavior is obtained by the homogenization method

of periodic discrete media [23, 24]. The stiffness contrast is introduced thanks

to the scaling of the parameters during the normalization. This method enables

an equivalent continuum to be rigorously derived from the knowledge of the

properties of the unit cell. It is completely analytic, which provides a clear

understanding of the role of each parameter. Moreover, it is always possible

to come back to the unit cell and study its deformation. This constitutes a

framework for the design of new materials with a prescribed behavior. This

approach has proved to be a powerful tool for the study of reticulated materials

and has been applied in various situations: see [25] for buckling analysis, [26]

for the modeling of the cardiac tissue, [27] for the modeling of graphene sheets

and [28, 29] for the dynamics of reticulated beams. The method also applies

to situations with local resonance of the elements in bending [17]. Generally

speaking, the interest of this approach is to give a “microscopic” basis to models
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which are otherwise postulated on purely logical grounds (e.g. [30] or [31, 32]).

The homogenization method is based on formal asymptotic expansions [33,

34] and the study focuses on the leading order. However, because of the lack of

bracing of the frames [35, 36] and of the stiffness contrast between the elements,

all the mechanisms have rigidities of different orders. Therefore, it is necessary

to consider the higher order equations to obtain a complete description of the

equivalent continuum. This leads to a singular perturbation problem [37]. Such

problems are also encountered in plate and shell theories because of the contrast

between the membrane behavior and pure bending [38]. But for SC frame

materials, the kinematics is richer and the problem is more complex. The study

of the convergence of the solution is out of the scope of this paper.

The latter is organized as follows. The framework of the study is presented

in Section 2 and the implementation of the homogenization method of periodic

discrete media (called HPDM afterwards) is described in Appendix A. Then, the

complexity of the behavior of these materials is illustrated through the study of a

particular case with a high stiffness contrast. This provides a list of the possible

mechanisms and the associated kinematics. Section 3 presents the homogenized

equations obtained in the absence of local resonance and the wave propagation

in different frequency ranges is analyzed in Sections 4 to 7. Section 8 deals

with the behavior of real frame materials. After a summary of the main results

and a comparison with [17] devoted to SP materials, a criterion is proposed

to determine when the bending effects have to be taken into account without

performing homogenization. Finally, in Section 9, a generic model which can

degenerate into any of the previous macroscopic descriptions is built.
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Figure 2: Notation for the frame material

2 Framework of the study

2.1 Studied materials

The studied materials are infinite and periodic in the plane (x, y) of the wave

propagation. They are made up of horizontal elements (called floors) supported

by vertical elements (called walls). Elements are beams or plates behaving as

Euler-Bernoulli beams in the plane (x, y). They are linked by perfectly stiff and

massless nodes. Thus, there is always a right angle between two elements. In

this paper, we assume that the walls are stiffer than the floors.

The following notation will be used (figure 2):

∙ The characteristics of walls (i = w) and floors (i = f) are: ℓi length, ai

thickness, ℎi depth according to the axis z, Ai = aiℎi cross-section area,

Ii = (ℎi a
3
i )/12 second moment of area with respect to the axis z, �i den-

sity, �̄i = �iAi mass per unit length and Ei elastic modulus.

∙ The position of the node located at the intersection of the floor f and the

wall w is determined either in a discrete manner by the ordered pair of in-

tegers (w, f) (this is the local representation) or in a continuous manner by

the coordinates x = w ℓf and y = f ℓw (this is the global representation).
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2.2 Kinematic descriptors

The study is conducted within the framework of the small strain theory and

the linear elasticity. Moreover, the frame material vibrates at a given circular

frequency !. As a result, every variable can be written in the following way:

X(x, y, t) = ℜ(X(x, y) ei!t) where t is the time. Because of the linearity of

the problem, the time dependence can be simplified and will be systematically

omitted.

As explained in Appendix A, the HPDM method begins with the discretiza-

tion of the dynamic balance. The study of the momentum balance of the whole

frame material is exactly replaced by the study of the momentum balance of the

nodes. Since the process is performed without loss of information, it is possible

to use the motions of the nodes as kinematic descriptors of the motions of the

cells. For the node (w, f), the motion in the plane (x, y) is described by the dis-

placements in the two directions U
(w,f)
x , U

(w,f)
y and by the node rotation �(w,f)

(figure 2).

Then, the discrete description is transformed into a continuous description

thanks to the principles of homogenization. The kinematic descriptors are con-

sidered as the discrete values of continuous functions of the space variables x

and y, which are expanded in powers of the scale ratio � = ℓc/L:

X(w,f) = X(�, x = w ℓf , y = f ℓw)

with X(�, x, y) = X0(x, y) + �X1(x, y) + �2X2(x, y) + . . . (1)

where X stands for Ux, Uy or � and Xj are continuous functions of order

j. Afterwards, the physically observable motions of a given order in � will be

written with a tilde: X̃j(x, y) = �jXj(x, y). The exact motion of the node is

X(w,f) whereas the function X0(x, y) is the approximation at the leading order

which appears in the macroscopic description. In the sequel, we will only study

the leading order of the descriptors unless it is explicitly specified.

Note that the macroscopic kinematic descriptors derived by homogenization
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have the same nature in discrete and continuous media: in both cases, the

descriptor is the leading order of the motion of the cell. As a matter of fact, in

usual weakly contrasted continuous composites (i.e. with no local resonance),

the motion at the leading order is uniform in the cell and the average of each

higher order is zero. Thus, the descriptor is equal not only to the mean motion

of the whole cell, but also to the leading order motion of any point in the cell.

For highly contrasted continuous composites (i.e. with local resonance), the

kinematic descriptor of the homogenized behavior is the uniform displacement

of the non-resonant part of the cell (see for instance [39, 40]). Hence, for discrete

media (with or without local resonance), the leading order motion of the node

has the same physical meaning as the kinematic descriptor in continuous media.

2.3 Normalization

The stiffness contrast between the elements is introduced with the normaliza-

tion. For real reticulated media, all the elements are frequently made of the

same material. We therefore assume that the materials of the walls and the

floors have similar properties and we only modify the thickness of the elements:

Ef

Ew
= O(1),

�f
�w

= O(1),
ℓf
ℓw

= O(1),
ℎf

ℎw
= O(1) (2a)

aw
ℓw

= O(�1/2),
af
ℓw

= O(�3/2) (2b)

The choice of fractions for the orders of magnitude of the thickness to length

ratios is motivated by two reasons. First, the most interesting behaviors are

observed for ratios close to O(�). In this case, the local resonance of the elements

in bending occurs in the same frequency range as the propagation of macroscopic

compressional waves [17]. The second reason is that calculations are simpler

when the order of magnitude of the ratio af/aw is an integer. This generally

makes it possible to only consider the whole powers of � in the asymptotic

7



expansions [as in Eq. (1)]. However, we will see in Section 7 that, due to the

local resonance in bending, the order of magnitude of the effective mass is a

multiple of 1/4. In this case, the descriptors have to be expanded according to

the powers of �1/4 for all the inertial terms to be balanced by an elastic term:

X(�, x, y) = X0(x, y) + �1/4X1/4(x, y) + �1/2X1/2(x, y)

+ �3/4X3/4(x, y) + �X1(x, y) + �5/4X5/4(x, y) + . . . (3)

For the scaling of the circular frequency, the reference !r is taken by con-

vention as:

!r =
1

L

√

Ew

�w

Waves can deform the elements in two different ways: in bending and in tension-

compression. Since the first mechanism is more flexible and there is a stiffness

contrast between the walls and the floors, the various types of waves appear in

four frequency ranges:

!

!r
= O(�2),

!

!r
= O(�3/2),

!

!r
= O(�1/2),

!

!r
= O(1)

3 Homogenized equations

This section and the next present the behavior of the frame material at the

lowest circular frequencies giving a dynamic description at the leading order:

! = O(�2 !r). In that case, the implementation of the HPDM method provides

the following equations corresponding to the balance of momentum in the x

direction for orders 0 to 3, the balance of momentum in the y direction for
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orders 0 to 4 and the balance of moment of momentum for orders 0 to 3.
⎧

































⎨

































⎩

Ex
∂2Ũ0

x

∂x2
+Gw

(

∂�̃0

∂y
+

∂2Ũ0
x

∂y2

)

= 0 (x 0)

Ex
∂2Ũ1

x

∂x2
+Gw

(

∂�̃1

∂y
+

∂2Ũ1
x

∂y2

)

= 0 (x 1)

Ex
∂2Ũ2

x

∂x2
+Gw

(

∂�̃2

∂y
+

∂2Ũ2
x

∂y2

)

− EIz
∂4Ũ0

x

∂y4
= 0 (x 2)

Ex
∂2Ũ3

x

∂x2
+Gw

(

∂�̃3

∂y
+

∂2Ũ3
x

∂y2

)

− EIz
∂4Ũ1

x

∂y4
+Mw !2Ũ0

x = 0 (x 3)

⎧









⎨









⎩

∀ j ∈ {0, 1, 2, 3} Ey

∂2Ũ j
y

∂y2
= 0 (y j)

Ey

∂2Ũ4
y

∂y2
+Gf

(

−∂�̃0

∂x
+

∂2Ũ0
y

∂x2

)

+Mw !2Ũ0
y = 0 (y 4)

⎧









⎨









⎩

∀ j ∈ {0, 1, 2} Gw

(

�̃j +
∂Ũ j

x

∂y

)

= 0 (mj)

Gw

(

�̃3 +
∂Ũ3

x

∂y

)

−Gf

(

−�̃0 +
∂Ũ0

y

∂x

)

= 0 (m 3)

(4)

with:

Mw = �̄w/ℓf : contribution of the walls to the mass per unit surface (kg/m2)

Mf = �̄f/ℓw : contribution of the floors to the mass per unit surface (kg/m2)

(it will appear in other sections)

Ex = EfAf/ℓw : elastic modulus in the x direction (N/m)

Ey = EwAw/ℓf : elastic modulus in the y direction (N/m)

Gw = 12
EwIw
ℓ2wℓf

: modulus of the local bending of the walls (N/m)

Gf = 12
EfIf
ℓwℓ2f

: modulus of the local bending of the floors (N/m)

EIz = EwIw/ℓf : modulus of the macroscopic bending (N.m)

The macroscopic parameters are integrated over the depth of the frame mate-

rial and so they do not have the usual units. Their expressions only depend on

the elastostatic properties of the cell elements because of the quasi-static state
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at the local scale. Since beams are more flexible in bending than in tension-

compression and the floors are thinner than the walls, the various parameters

have different orders of magnitude:

Mf

Mw
= O(�),

Gf

Gw
= O(�3), (5)

Ex

Ey
= O(�),

Gf

Ey
= O(�4),

EIz
Ey L2

= O(�3)

In this work, we assume that all the possible motions have the same importance.

As a result, the corresponding terms appear in equations of different orders.

This is the reason why we have to consider higher order equations to obtain a

complete description of the macroscopic behavior of the material.

The balance equations (4) contain inertial terms [in Eqs. (x 3) and (y 4)] and

five types of elastic terms:

�̃j+1
xx = Ex

∂Ũ j
x

∂x
�̃ j+1
xy = Gw

(

�̃j +
∂Ũ j

x

∂y

)

�̃j
yy = Ey

∂Ũ j
y

∂y
�̃ j+4
yx = Gf

(

− �̃j +
∂Ũ j

y

∂x

)

�̃j+3
z = −EIz

∂2Ũ j
x

∂y2

(6)

With this notation, all the terms with the same superscript have the same order

of magnitude.

The balance of moment of momentum shows that the first orders of �xy

vanish and that the first non-zero terms of �xy and �yx, i.e. �̃4xy generated by

the displacement of order 3 and �̃4yx generated by the displacement of order 0,

are equal [Eq. (m 3) of (4)]. Moreover, it is possible to eliminate the node

rotation �̃0 thanks to Eq. (m 0) of (4):

�̃4xy = �̃4yx = �̃4 = Gf

(

∂Ũ0
y

∂x
+

∂Ũ0
x

∂y

)

(7)

This means that the node rotation is a “hidden” degree of freedom. The calcu-

lation of �̃0 is only required for the study of the deformation of the unit cell at

the local scale. The behavior of the frame material at the macroscopic scale is
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(a) Local bending of the elements (b) Bending of the walls at the macro-

scopic scale and local bending of the

floors

Figure 3: Comparison of the two types of bending

completely described by the translational degrees of freedom and the balance of

momentum in the x and y directions.

Finally, these equations contain four types of elastic terms (�xx, �yy, �

and �z) corresponding to the four possible mechanisms and to four different

kinematics. The terms �xx and �yy are related to the tension-compression of

the floors and the walls, respectively. The term � is associated with the shear

strain of the unit cell. Such a deformation is due to the local bending of the

elements [figure 3(a)]. But, because of the stiffness contrast between the walls

and the floors, only the floors are deformed in SC materials and the shear

modulus is degenerate: G ≈ Gf . This is consistent with the connection in series

of Gw and Gf evidenced in [17]. In this previous work devoted to SP materials,

the shear modulus was given by:

1

G
=

1

Gf
+

1

Gw

Local bending corresponds to the deformation of the elements between two

neighboring nodes. It must not be confused with the last mechanism described

by �z. The second derivative of Ũ0
x according to a continuous space variable

indicates that the walls experience bending at the macroscopic scale [figure 3(b)].
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4 Local bending of the floors

We now examine the properties of the waves propagating in SC materials. The

study focuses on plane waves and the displacement field is sought in the following

way (remember that the time dependence exp(i!t) is omitted):

U⃗(�, x⃗) = u⃗ 0 exp[−ik(�) n⃗� ⋅ x⃗ ] + � U⃗1(x⃗) + �2U⃗2(x⃗) + . . . (8)

Only the expression of the displacement field at the leading order

U⃗0(x⃗) = u⃗ 0 exp[−ik(�) n⃗� ⋅ x⃗ ] is imposed. It corresponds to a plane wave with

an amplitude u⃗ 0 and a wave number k(�) traveling in the direction n⃗� (figure 2).

The correctors could be determined without any additional assumptions by the

resolution of the higher order equations as in [41]. Their study is out of the scope

of this paper but the following property will be used. As the material is infinite

and the macroscopic field U⃗0 is invariant under a translation perpendicular to

the direction of propagation, the correctors must also be invariant under such a

translation.

We begin with the lowest frequencies: ! = O(�2 !r). The balance equations

are the same as Eqs. (4) of Section 3. The equations describing the balance of

moment of momentum are used to eliminate the node rotation �̃0. Then the
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expression (8) of the displacement field is introduced:
⎧

















⎨

















⎩

−Ex k
2(�) cos2(�) ũ0

x exp[−ik(�) n⃗� ⋅ x⃗ ] = 0 (x 0)

Ex
∂2Ũ1

x

∂x2
= 0 (x 1)

Ex
∂2Ũ2

x

∂x2
− EIz k

4(�) sin4(�) ũ0
x exp[−ik(�) n⃗� ⋅ x⃗ ] = 0 (x 2)

⎧























⎨























⎩

−Ey k
2(�) sin2(�) ũ0

y exp[−ik(�) n⃗� ⋅ x⃗ ] = 0 (y 0)

∀ j ∈ {1, 2, 3} Ey

∂2Ũ j
y

∂y2
= 0 (y j)

Ey

∂2Ũ4
y

∂y2
+
(

−Gf k
2(�) cos(�)

(

sin(�) ũ0
x + cos(�) ũ0

y

)

+Mw !2ũ0
y

)

exp[−ik(�) n⃗� ⋅ x⃗ ] = 0

(y 4)

(9)

Equations (x 0) and (y 0) show that u⃗ 0 = 0⃗ for cos(�) ∕= 0 and sin(�) ∕= 0.

Thus waves cannot travel diagonally in this frequency range. For cos(�) = 0

(propagation in the y direction), Eq. (y 0) implies that ũ0
y = 0. Moreover, in

Eq. (x 2), the corrector must be invariant under a translation parallel to the x

direction: ∂2
xŨ

2
x = 0. So Eq. (x 2) implies that ũ0

x = 0 and the propagation is

also impossible in the y direction.

As a result, waves can only travel in the x direction [sin(�) = 0]. We deduce

from Eq. (x 0) that ũ0
x = 0. This means that the waves are polarized in the y

direction and that they are pure shear waves. Now the problem is invariant

under a translation parallel to the y direction. In Eq. (y 4), the term with the

corrector vanishes and the other terms give the wave number:

k(� = 0) = !

√

Mw

Gf
⇒ c(� = 0) =

√

Gf

Mw
(10)

The speed c(� = 0) has the same expression as the speed of shear waves in a

classical elastic medium. But for SC materials, the mass and the shear modulus

are degenerate. Since the thicknesses of the walls and the floors have different

orders of magnitude, there is a large contrast between Mw and Mf and between
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Gw and Gf [Eq. (5)]. Only Mw and Gf appear at the leading order. The waves

are generated by the local bending of the floors (figure 4) which is the most

flexible mechanism. The propagation in the other directions is prevented by the

stiff walls. At these low frequencies, they still have a quasi-static behavior at

the macroscopic scale.

Figure 4: Shear wave generated by the local bending of the floors

5 Bending waves in the walls

The circular frequency ! is increased up to O(�3/2 !r) so that the inertia forces

balance the term associated with the macroscopic bending of the walls. The

HPDM method provides the following equations for the balance of momentum.

The equations describing the balance of moment of momentum are the same as
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in Eqs. (4) of Section 3 and are used to eliminate �xy.
⎧



















⎨



















⎩

Ex
∂2Ũ0

x

∂x2
= 0 (x 0)

Ex
∂2Ũ1

x

∂x2
= 0 (x 1)

Ex
∂2Ũ2

x

∂x2
− EIz

∂4Ũ0
x

∂y4
+Mw !2Ũ0

x = 0 (x 2)

⎧









⎨









⎩

∀ j ∈ {0, 1, 2} Ey

∂2Ũ j
y

∂y2
= 0 (y j)

Ey

∂2Ũ3
y

∂y2
+Mw !2Ũ0

y = 0 (y 3)

(11)

The introduction of the expression (8) of the displacement field leads to the

following results. As Eqs. (x 0) and (y 0) are identical to Eqs. (x 0) and (y 0)

of (9) in Section 4, waves cannot travel diagonally. Moreover, Eqs. (x 0) and

(y 3) show that the propagation is impossible in the x direction.

For the propagation in the y direction, we deduce from Eq. (y 0) that the

waves are polarized in the x direction. As the problem is invariant under a

translation parallel to the x direction, the term Ex ∂
2
xŨ

2
x in Eq. (x 2) vanishes

and the wave number is given by the other terms:

Ex
∂2Ũ2

x

∂x2
+
[

−EIz k
4
(

� =
�

2

)

+Mw !2
]

ũ0
x exp

[

−ik
(

� =
�

2

)

y
]

= 0

⇒ k
(

� =
�

2

)

= 4

√

!2 Mw

EIz
(12)

Even if the motion Ũ0
x(y) still corresponds to macroscopic pure shear waves,

the expression of the wave number is completely different. This means that the

waves are generated by another mechanism. They are due to the propagation

in the walls of bending waves synchronized by the floors which are very stiff

in tension-compression (figure 5). Consequently, the macroscopic shear waves

have different properties. In particular, there is dispersion (figure 6) and the

speed of the waves varies according to
√
!:

c
(

� =
�

2

)

= 4

√

!2EIz
Mw
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Figure 5: Shear wave generated by the propagation of bending waves in the

walls

Macroscopic shear waves cannot travel diagonally because it requires to

deform the elements in tension-compression. For Euler-Bernoulli beams, this

mechanism is more rigid than bending and the frequency has to be increased.

6 Tension-compression and bending resonance

of the floors

6.1 Leading order and wave propagation

We consider here the third frequency range at which wave propagation can occur:

! = O(�1/2 !r). In that case, the floors are in resonance in bending, which

means that the bending wavelength in the floors �bf is of the same order as

their length ℓf . However, the compression wavelength in the floors �cf remains

much greater and homogenization still applies with the procedure presented in

Appendix A (also see [17]). Moreover, the walls being stiffer, they have a quasi-

static behavior at the local scale for both mechanisms. As a result, during the

implementation of the HPDMmethod, we have to keep the complete expressions
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Figure 6: Variation of the dimensionless wave number k̂ = k
(

� = �
2

)

× ℓw
2�

according to the dimensionless frequency !̂w for macroscopic shear

waves in the y direction. The dimensionless frequency is defined by

!̂w = !
(

2ℓw
3�

)2
√

�̄w

EwIw
≈ !

!w1

where !w1 is the circular frequency of the first

bending mode of the floors with two fixed ends.

of the shear force and the bending moment in the floors but all the other forces

and moments can be expanded. Then, the following equations are obtained.

Equation (m 0) is used to eliminate the node rotation �̃0 in the other equations.

Ex
∂2Ũ0

x

∂x2
+Mw !2Ũ0

x = 0 (x 0)

⎧









⎨









⎩

Ey

∂2Ũ0
y

∂y2
= 0 (y 0)

Ey

∂2Ũ1
y

∂y2
+Mw !2Ũ0

y = 0 (y 1)

Gw

(

�̃0 +
∂Ũ0

x

∂y

)

= 0 (m 0)

(13)

For the study of the wave propagation, the expression (8) of the displacement

field is introduced in Eqs. (x 0) and (y 0).

(

− Ex k
2(�) cos2(�) +Mw !2

)

ũ0
x exp[−ik(�) n⃗� ⋅ x⃗ ] = 0 (x 0)

−Ey k
2(�) sin2(�) ũ0

y exp[−ik(�) n⃗� ⋅ x⃗ ] = 0 (y 0)

(14)
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The existence of a non-zero solution implies that:

−Ex k
2(�) cos2(�) +Mw !2 = 0 or sin(�) = 0

Moreover, for:

−Ex k
2(�) cos2(�) +Mw !2 ∕= 0 and sin(�) = 0

waves travel in the x direction and Eq. (x 0) of (14) imposes ũ0
x = 0. As the

problem is invariant under a translation parallel to the y direction, Eq. (y 1) of

(13) gives ũ0
y = 0 and the propagation is impossible. Therefore, the following

conditions are always satisfied:

−Ex k
2(�) cos2(�) +Mw !2 = 0 and ũ0

y = 0

The expression of the wave number is:

k(�) =
!

∣ cos(�)∣

√

Mw

Ex
⇒ c(�) = ∣ cos(�)∣

√

Ex

Mw
(15)

Waves can travel in all the directions except in the y direction [cos(�) = 0].

But whatever the direction of propagation, the waves are polarized in the di-

rection of the floors. Thus, the waves traveling in the x direction are pure

compressional waves whereas the waves traveling in the other directions are

shear-compression waves. This type of polarization was called X-mode in [17].

The speed depends on the direction of propagation and is maximal for the waves

traveling in the x direction. However, it does not vary with the frequency.

These macroscopic waves are generated at the local scale by the propagation

in the floors of compressional waves which can be out-of-phase as explained

in figure 7. The gray grid represents the frames before deformation. All the

nodal displacements are in the x direction as shown by the arrows on the left.

The motions are caused by the propagation of pure compressional waves in the

floors. Their amplitude is represented by the gray sinusoids at the bottom of the

figure and their wavelength is Λ(� = 0) = (2�/!)
√

(Ex/Mw). The waves in the

floors are out-of-phase, so that all the points on a straight line perpendicular
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Figure 7: Macroscopic shear-compression wave traveling in the direction n⃗�

with the X-mode

to the direction n⃗� have the same displacement. This is the reason why, at

the macroscopic scale, we observe a wave traveling in the direction n⃗�. The

wavelength of the macroscopic wave Λ(�) is the projection of Λ(� = 0) onto

the direction n⃗�. Consequently, the wavelength (and therefore the speed) is

maximal when the macroscopic wave travels in the x direction. Moreover, this

mechanism cannot generate a macroscopic wave traveling in the y direction.

Because of the phase difference between the compressional waves in the

floors, the unit cells experience a shear strain. This induces the bending of

the walls at the macroscopic scale represented by the vertical black sinusoids.

Since the walls are not in resonance, it corresponds to their total deformation.

Equation (m 0) of (13) shows that the bending of the walls results in the ro-

tation of the nodes. The floors are subjected to local bending in addition to

the compressional waves. For the considered frequency range, the floors are in

resonance and their deformation is drawn with the dotted lines in the top left

corner of figure 7.

6.2 Higher orders and local resonance

The previous section shows that the bending resonance of the floors has no effect

on the wave propagation at the leading order. To identify the consequences of
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this phenomenon, we must therefore analyze the higher order equations. They

are written below and the equations describing the balance of moment of mo-

mentum are used to eliminate the node rotation in the other equations.

⎧











⎨











⎩

Ex
∂2Ũ0

x

∂x2
+Mw !2Ũ0

x = 0 (x 0)

Ex
∂2Ũ1

x

∂x2
+Mw !2Ũ1

x +Mf !
2Ũ0

x = 0 (x 1)

⎧
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⎩

Ey

∂2Ũ0
y

∂y2
= 0 (y 0)

Ey

∂2Ũ1
y

∂y2
+Mw !2Ũ0

y = 0 (y 1)

Ey

∂2Ũ2
y

∂y2
+Mw !2Ũ1

y +Mf f(!̂f )!
2Ũ0

y = 0 (y 2)

⎧
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⎩

Gw

(

�̃0 +
∂Ũ0

x

∂y

)

= 0 (m 0)

Gw

(

�̃1 +
∂Ũ1

x

∂y

)

= 0 (m 1)

Gw

(

�̃2 +
∂Ũ2

x

∂y

)

+
ℓ2w
15

Mw !2 ∂Ũ
0
x

∂y
= 0 (m 2)

Gw

(

�̃3 +
∂Ũ3

x

∂y

)

+
ℓ2w
15

Mw !2 ∂Ũ
1
x

∂y
− �(!̂f ) = 0 (m 3)

(16)

with

!̂f = !

(

2 ℓf
3�

)2
√

�̄f
EfIf

≈ !

!f1
(17a)

f(!̂) =
8

3�
√
!̂ fo(!̂)

sin

(

3�

4

√
!̂

)

sinh

(

3�

4

√
!̂

)

(17b)

fo(!̂) = sin

(

3�

4

√
!̂

)

cosh

(

3�

4

√
!̂

)

+ sinh

(

3�

4

√
!̂

)

cos

(

3�

4

√
!̂

)

(17c)

fe(!̂) = sin

(

3�

4

√
!̂

)

cosh

(

3�

4

√
!̂

)

− sinh

(

3�

4

√
!̂

)

cos

(

3�

4

√
!̂

)

(17d)
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�(!̂f ) =
�Gf

√

!̂f

8 fe(!̂f )

(

−4 sin
(3�

4

√

!̂f

)

sinh
(3�

4

√

!̂f

)

�̃0

+
3�
√

!̂f

2 fo(!̂f )

(

cosh
(3�

2

√

!̂f

)

− cos
(3�

2

√

!̂f

)

)

∂Ũ0
y

∂x

) (17e)

Because of the local resonance, the shear force and the bending moment in

the floors are not expanded in the HPDM method. Consequently, the balance

equations (y 2) and (m 3) of (16) contain terms which depend on the frequency.

They are written as functions of the dimensionless frequency !̂f . It is equal to

the ratio between !, the circular frequency, and !f1, the circular frequency of

the first bending mode of the floors with two fixed ends. Moreover, the natural

frequencies of an Euler-Bernoulli beam that is fixed at both extremities are the

solutions of the following equation:

2 fo(!̂)fe(!̂) = 1− cos

(

3�

2

√
!̂

)

cosh

(

3�

2

√
!̂

)

= 0

where the function fo vanishes at the frequencies of the odd bending modes and

the function fe vanishes at the frequencies of the even bending modes.

In Eq. (y 2) of (16), the local resonance modifies the inertial term. The mass

of the floors Mf = �̄f/ℓw is multiplied by a frequency dependent function f

giving an effective mass. The variations of the function f according to the

frequency are plotted in figure 8. The limit of f at very low frequencies is 1,

which means that the effective mass is equal to the real mass as expected. At

most of the frequencies higher than !f1, f(!̂f ) is between 0 and 1 and the

floors seem lighter. But close to the frequencies of the odd bending modes,

f(!̂f ) becomes infinite and changes its sign. Such an atypical behavior is not

observed close to the frequencies of the even bending modes.

The physical origin of the effective mass is the motion of the floors relative to

the nodes. By definition the kinematic descriptors correspond to the motion of

the nodes. At low frequencies, when every element has a quasi-static behavior

at the local scale, all the points of a unit cell experience almost the same motion.

At the leading order, the sum of the inertia forces acting on the whole cell is
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Figure 8: Variations of the function f according to the dimensionless frequency

therefore equal to the real mass of the cell multiplied by the acceleration of the

nodes. When the floors are in resonance in bending, their motion can strongly

differ from the one of the nodes and the inertia forces are modified. Since the

bending of the floors generates vertical motions, only the vertical component

of the inertia forces is affected by the local resonance. Equation (y 2) of (16)

describing the balance of momentum in the y direction contains the effective

mass, whereas Eq. (x 1) of (16) describing the balance of momentum in the

x direction contains the real mass. During the propagation of macroscopic

waves, neighboring nodes undergo almost the same motion because of the scale

separation. Such boundary conditions excite the odd bending modes of the

floors but not the even bending modes, therefore the effective mass has very

different properties in the two situations. For a more detailed presentation of

the properties of the effective mass and its consequences, the reader is referred

to [17].

In SC materials, the mass is degenerate at the leading order because the

mass of the floors is negligible. The effective mass only appears in the higher

order equations and the resonance of the floors seems to have almost no effect

on the wave propagation. However, the effective mass becomes infinite close

to the frequencies of the odd bending modes of the floors. In this case, the
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normalization is no longer valid and the mass of the floors should be taken

into account. This can sometimes lead to atypical behaviors at the resonant

frequencies and it is important to examine the higher order equations in presence

of resonance. Here, the properties of the waves are determined by the balance

of momentum in the x direction which is not affected even if we consider the

higher orders. Moreover, in the balance of momentum in the y direction [in

particular in Eq. (y 2) of (16)], the effective mass of the floors is multiplied by

the vertical displacement Ũ0
y which is always null. All this confirms that the

wave propagation is not affected by the local resonance in this case. There is

no dispersion and no frequency bandgaps contrary to [17].

Finally, we have to consider the balance of moment of momentum. These

equations describe the inner equilibrium of the unit cell and can impose addi-

tional kinematic conditions. Contrary to the previous sections, they now con-

tain inertial terms and the equality of �̃4xy and �̃4yx as defined in Eqs. (6) is lost.

First, the leading orders of �xy and �yx are different. In Eq. (m 2) of (16), �̃3xy

is balanced by an inertial term and is therefore the first non-zero term for �xy.

Second, �̃4yx is replaced in Eq. (m 3) of (16) by �(!̂f ) the expression of which is

given in Eq. (17e). This term combines elastic effects and inertial effects which

cannot be separated. Its limit at low frequencies is the term �̃4yx defined in

Eqs. (6). The term �(!̂f ) appears in Eq. (m 3) of (16) but its normalization is

not valid close to the frequencies of the even bending modes of the floors. At

these frequencies, fe(!̂f ) = 0 and �(!̂f ) becomes infinite. This prevents the

nodes from rotating and the phase difference between the compressional waves

in the floors is impossible. This behavior is due to the fact that the boundary

conditions of a beam are not independent at its natural frequencies.
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7 Tension-compression of the walls and bending

resonance of the floors

7.1 Leading order and wave propagation

To observe waves generated by the last mechanism identified in Section 3, the

tension-compression of the walls, the circular frequency has to be increased up

to O(!r). As these frequencies are higher than the first resonant frequencies in

bending of the floors, the bending wavelength in these elements �bf is smaller

than their length ℓf . Nevertheless, �bf remains much greater than their thick-

ness af [more precisely af = O(�5/4�bf )] and the Euler-Bernoulli beam model is

still valid. As a result, we can use the HPDM method but we have to keep the

complete expressions of the shear force and the bending moment in the floors

as in Section 6. For the three other mechanisms (tension-compression of the

floors, bending and tension-compression of the walls), the wavelengths gener-

ated in the elements are much greater than their length. The associated forces

and moments can be expanded normally. Note that the walls reach the dynamic

regime for tension-compression without being in resonance in bending.

It is also necessary to modify the asymptotic expansions of the nodal kine-

matic descriptors. Owing to the local resonance in bending of the floors, some

inertial terms depend on the effective mass and, consequently, on the function

f(!̂f ) defined in Eq. (17b). For the studied frequencies, the order of magnitude

of the function is f(!̂f ) = O(�1/4). Therefore, the nodal descriptors have to be

expanded according to the powers of �1/4 instead of � for all the inertial terms to

be balanced by an elastic term [Eq. (3)]. Having 1/4 for the order of magnitude

of f(!̂f ) means that, when the frequency increases, the inertial terms increase

more slowly in situations with local resonance. The physical explanation of this

phenomenon is that the higher modes of the elements in resonance have more

anti-nodes vibrating in opposite directions. Consequently the proportion of the

mass that moves in phase with the nodes of the unit cell is smaller than in
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situations with a quasi-static behavior at the local scale. It is consistent with

the fact that the effective mass is smaller than the real mass at most of the

frequencies higher than the frequency of the first bending mode (see figure 8

and [17]).

With these modifications, the HPDM method provides the following equa-

tions for the balance of momentum.

Mw !2Ũ0
x = 0 (x − 1)

Ey

∂2Ũ0
y

∂y2
+Mw !2Ũ0

y = 0 (y 0)

Gw

(

�̃0 +
∂Ũ0

x

∂y

)

= 0 (m 0)

(18)

Because of the increase of the frequency, the inertial term in the balance equation

in the x direction is greater than the elastic terms. This is the reason why it

appears at the order −1. Consequently, we have Ũ0
x = 0 and Eq. (m 0) imposes

�̃0 = 0.

The wave propagation is described by the balance of momentum in the y

direction. The introduction of the expression (8) of the displacement field in

Eq. (y 0) gives the wave number:

k(�) =
!

∣ sin(�)∣

√

Mw

Ey
⇒ c(�) = ∣ sin(�)∣

√

Ey

Mw
(19)

The macroscopic waves are polarized in the direction of the walls and can travel

in all the directions except in the x direction [sin(�) = 0]. The speed depends

on the direction of propagation but not on the frequency. It is maximal for the

waves traveling in the y direction. This description corresponds to the Y-mode

of [17].

The roles of the floors and the walls are reversed compared with Section 6.1.

The macroscopic waves are generated by compressional waves which travel in the

walls and which can be out-of-phase. This mechanism is described in figure 9

with the same notation as in figure 7. The horizontal black sinusoids at the
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Figure 9: Macroscopic shear-compression wave traveling in the direction n⃗�

with the Y-mode
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bottom of the figure represent the deformation of the floors caused by the phase

difference between the compressional waves in the walls. The total deformation

of the floors is obtained by adding the deflection induced by the resonance in

bending (drawn with dotted lines in the bottom right corner).

7.2 Higher orders and local resonance

At the leading order, the speed only depends on the real mass of the walls and

the resonance of the floors seems to have no effect on the wave propagation.

However the situation is not the same as in Section 6. Now the properties of

the waves are given by the balance equations in the y direction and the higher

order equations probably contain the effective mass of the floors. To determine

if there are atypical behaviors at the resonant frequencies, we have to analyze

the higher orders. Due to the expansions according to the powers of �1/4, there

are more equations than in the previous sections. Only the equations with new

terms are written afterwards. Moreover, the equations of lower order and the

equations describing the balance of moment of momentum are used to reduce
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the other equations.

⎧





⎨





⎩

Mw !2Ũ0
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Gw
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Gw
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∂Ũ1

x
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Gw
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x
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+
ℓ2w
15

Mw !2 ∂Ũ
1
x
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+

11ℓ 4w
(

Mw !2
)2

6300Gw

∂Ũ0
x
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Gw
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�̃5/2 +
∂Ũ

5/2
x

∂y

)

+
ℓ2w
15

Mw !2 ∂Ũ
3/2
x

∂y
+

11ℓ 4w
(

Mw !2
)2

6300Gw

∂Ũ
1/2
x

∂y

− 3�2Gf !̂f

16 fe(!̂f )fo(!̂f )

(

cosh
(3�

2

√

!̂f

)

− cos
(3�

2

√

!̂f

)

)

∂Ũ0
y

∂x
= 0

(m 5
2 )

(20)

The functions f , fo and fe are defined in Eqs. (17).

As expected the effective mass of the floors appears in Eq. (y 5
4 ) and the

correctors probably depend on the frequency. There is dispersion but its effects

are negligible at most of the frequencies (figure 10). Nevertheless, the estimation

of the effective mass is not valid in the neighborhood of the frequencies of the

odd bending modes of the floors which are the poles of the function f(!̂f ). At

these frequencies, it becomes infinite and a rigorous approach would require

to take into account its effects at the leading order. The neighborhood of the

frequencies of the odd bending modes of the floors certainly corresponds to

frequency bandgaps as in [17]. Thus, the validity domain of the leading order is

provided by the higher orders. Here the discrete frequencies of the odd bending
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Figure 10: Variation of the dimensionless wave number k̂ = k(!)
!f1

√

Ey

Mw+Mf
ac-

cording to the dimensionless frequency !̂f ≈ !
!f1

for the Y-mode with � = �/2

and Mf = Mw/10. The dotted line corresponds to the leading order described

by Eq. (19). For the continuous line Mw is replaced by Mw +Mf f(!̂f )

modes of the floors have to be excluded.

Finally, we have to examine the kinematic conditions imposed by the inner

equilibrium of the cell. As the first orders of the horizontal displacement Ux are

equal to zero, the inertial terms in the balance of moment of momentum are null.

The first non-zero term for �xy, which is defined in Eqs. (6) and is associated

with the local bending of the walls, is therefore �̃
7/2
xy in Eq. (m 5

2 ). Concerning

the local bending of the floors, neither �yx [Eqs. (6)] nor the function �̂(!̂f )

[Eq.(17e)] exists. The particularity of this case is that the two terms constituting

�̂(!̂f ) have different orders of magnitude. Consequently, they appear in two

different equations. The first part, which is proportional to ∂xŨ
0
y , is in Eq. (m 5

2 )

and it balances �̃
7/2
xy . Its coefficient becomes infinite in the neighborhood of the

even bending modes of the floors [fe(!̂f ) = 0]. This prevents the phase difference

between the compressional waves traveling in the walls as in Section 6.
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8 Behavior of real materials

8.1 Summary of the main results

In the previous sections, four types of waves with different kinematics were

identified. They are generated by four different mechanisms: the local bend-

ing of the floors, the propagation of synchronized bending waves in the walls,

the propagation of possibly out-of-phase compressional waves in the floors, the

propagation of possibly out-of-phase compressional waves in the walls. The

resulting properties of the macroscopic waves are summarized in Tab. 1.

Normalization
aw
ℓw

= O(�1/2),
af
ℓw

= O(�3/2)

! = O(�2!r)

∙ Propagation in the x direction

∙ Shear waves generated by the local bending of the

floors

∙ No dispersion

c =
√

Gf/Mw

! = O(�3/2!r)

∙ Propagation in the y direction

∙ Shear waves generated by bending waves in the

walls

∙ Dispersion

c = 4

√

!2EIz/Mw
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Normalization
aw
ℓw

= O(�1/2),
af
ℓw

= O(�3/2)

! = O(�1/2!r)

∙ Propagation in all the directions except in the y

direction

∙ Shear-compression waves polarized in the x di-

rection generated by compressional waves in the

floors (X-mode)

∙ Almost no effect of the bending resonance of the

floors

∙ No dispersion

c = ∣ cos(�)∣
√

Ex/Mw

! = O(!r)

∙ Propagation in all the directions except in the x

direction

∙ Shear-compression waves polarized in the y direc-

tion generated by compressional waves in the walls

(Y-mode)

∙ Negligible dispersion (effective mass of the floors

in correctors) and frequency bandgaps because of

the bending resonance of the floors

c = ∣ sin(�)∣
√

Ey

Mw
(leading order)

Table 1: Waves in SC materials [figure 1(b)]

Frame materials are known for being strongly anisotropic [42, 17] because

waves are channeled in the two directions of the elements. The anisotropy

is even more marked for SC materials. On the one hand, the macroscopic

shear waves in the direction of the floors and in the direction of the walls are
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generated by two different mechanisms. The existence of a stiffness contrast

enables the walls to deform in bending at the macroscopic scale. Consequently,

the equivalent continuum is a second grade medium with an inner moment

as it will be explained in Section 9. There is dispersion for the shear waves

propagating in the vertical direction. On the other hand, the elastic moduli

in the two directions of the elements have different orders of magnitude. The

waves generated by the tension-compression of the floors (X-mode) and those

generated by the tension-compression of the walls (Y-mode) appear therefore in

different frequency ranges. The stiffness contrast was introduced by modifying

the thickness of the elements. Since the walls and the floors are made of the

same material, this also creates a mass contrast. The mass of the floors appears

in the higher order equations and the bending resonance of the floors has a

smaller effect on the wave propagation than in SP materials.

To make the comparison between SC and SP materials easier the main results

of [17] are given in Tab. 2. In this work, the HPDM method was used to study

the wave propagation in a frame material with similar walls and floors. Such a

material has the same behavior in the two directions of the elements. The walls

cannot deform in bending at the macroscopic scale. As a result, all the shear

waves are generated by the local bending. They occur in the same frequency

range and there is no dispersion. Likewise, the X-mode and the Y-mode of

the shear-compression waves travel in the same frequency range. In presence of

local resonance, the effective mass of the elements appears at the leading order.

There is dispersion in addition to frequency bandgaps.

Thus frame materials can exhibit two types of behaviors. Either the equiv-

alent continuum is a “classical” medium and shear waves travel in the two

directions of the elements without dispersion. Or the equivalent continuum is

a second grade medium and there is dispersion for the shear waves in one di-

rection. If we now consider a real material with given properties, what is its

behavior? The only difference between the two models is the stiffness contrast
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Normalization
aw
ℓw

= O(�),
af
ℓw

= O(�)

! = O(�!r)

∙ Propagation in the x and y directions

∙ Shear waves generated by the local bending of the

elements

∙ No dispersion

c =
√

G/(Mw +Mf )

! = O(!r)

∙ Propagation in all the directions except in the y

direction for the waves polarized in the x direction

(X-mode) and propagation in all the directions ex-

cept in the x direction for the waves polarized in

the y direction (Y-mode)

∙ Shear-compression waves generated by compres-

sional waves in the floors for the X-mode and by

compressional waves in the walls for the Y-mode

∙ Bending resonance of the elements: dispersion (ef-

fective mass at the leading order) and frequency

bandgaps

X-mode:

c = ∣ cos(�)∣
√

Ex

Mw f(!̂w) +Mf

Y-mode:

c = ∣ sin(�)∣
√

Ey

Mw +Mf f(!̂f )

Table 2: Waves in SP materials [figure 1(a)]
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introduced during the normalization. As this step makes an extensive use of the

scale ratio �, we begin with important comments about this parameter. Then,

a criterion is built for the identification of the behavior without performing

homogenization. Finally, we explain how to determine the effects of the local

resonance.

8.2 The scale ratio

To clearly distinguish the physical scale ratio from the mathematical small pa-

rameter used in homogenization, the physical scale ratio will be written �̃ af-

terwards as in [29]. It corresponds to the ratio between ℓc, the characteristic

length of the unit cell and L, the characteristic length of the deformation of the

frame material: �̃ = ℓc/L. As both lengths are finite, the scale ratio is a finite

quantity. If the condition of scale separation is respected (�̃ << 1), it is possible

to derive an equivalent continuum by homogenization. As mentioned above,

the physics of the problem is introduced in the model during the normalization.

The powers of �̃ are used as a kind of “unit of measurement” to convert the

numerical values of the physical parameters into orders of magnitude. Then,

homogenization consists in replacing the physical �̃ by a mathematical � which

is made to approach zero. Thanks to the normalization, the relative orders of

magnitude of the physical terms are kept identical from the real frame material

to the continuum obtained at the limit. However, as the physical scale ratio �̃

is a finite quantity, the homogenized model is an approximation of the behavior

of the real material. By only considering the leading order as in the previous

sections, the order of magnitude of the neglected correctors is O(�̃).

A reliable estimation of the scale ratio �̃ is therefore needed to identify the

behavior of a given frame material and to evaluate the accuracy of the equivalent

continuum. The size of the unit cell ℓc = ℓw is fixed but the macroscopic length

L depends on the external actions. In the case of wave propagation, it can be
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shown [43] that:

L =
Λ

2�
⇒ �̃ =

2� ℓc
Λ

= ℓc k (21)

where Λ is the macroscopic wavelength and k the wave number. Equation (21)

is very useful for the estimation of the accuracy but it is not convenient for

the determination of the appropriate model. The main problem is that it is

necessary to know the model to calculate the wavelength. This is the reason

why the next section proposes another approach for the identification of the

behavior of a real material.

The expression given in Eq. (21) also shows that the scale ratio �̃ depends

on the frequency. When ! increases, Λ decreases and �̃ increases. As the

physical parameters have fixed values, the orders of magnitude provided by

the normalization are modified: the contrasts become greater. For some frame

materials, this can lead to a change of the homogenized model. Moreover, the

accuracy of the equivalent continuum is related to the value of �̃ and the model

is valid in a limited frequency range. The highest frequency is imposed by the

condition of scale separation. The lowest frequency depends on the specimen size

H. When L becomes greater than H, the material has a quasi-static behavior.

Thus, dynamic homogenization is restricted to the following domain:

ℓc << L < H (22)

Finally, note that the expressions of Λ and L change with the nature of the

macroscopic waves. The homogenizable domain is different in each case. The

waves generated by more rigid mechanisms appear at higher frequencies but the

domains of different waves can overlap.

8.3 Model identification

To build a criterion to determine whether a given frame material behaves as a

second grade or a “classical” medium, we consider here the intermediate situ-

ation. After designing the appropriate geometry, we derive by homogenization
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the richest model with both types of bending and we study how it degenerates.

In balance equations, the term describing the macroscopic bending is the

fourth derivative [see for example Eq. (x 2) of (4)]:

−EIz
∂4Ũ0

x

∂y4
= O

(

EwIw
ℓf

Ũ0
x

L4

)

(23)

according to the expression of EIz given in Section 3. The most general term

corresponding to the local bending comes from the balance equations of SP

materials [17]:

G

(

∂2Ũ0
y

∂y∂x
+

∂2Ũ0
x

∂y2

)

= O

(

G
Ũ0
x

L2

)

(24)

with
1

G
=

1

Gf
+

1

Gw

The moduli Gf and Gw are also defined in Section 3. The moduli EIz and

Gw are related to the bending of the walls at different scales. Consequently the

contrast between EIz and Gw is fixed:

EIz
Gw L2

=
EwIw
ℓf

ℓ 2wℓf
12EwIw

1

L2
= O(�̃2) (25)

When the two types of bending have the same importance, the terms (23) and

(24) have the same order of magnitude. Because of Eq. (25), the only possibility

is that the floors are more flexible than the walls and the shear modulus G

degenerates into Gf as in Eq. (7).

G

(

∂2Ũ0
y

∂y∂x
+

∂2Ũ0
x

∂y2

)

= O

[

Gf

(

∂2Ũ0
y

∂y∂x
+

∂2Ũ0
x

∂y2

)]

= O

[

EfIf
ℓwℓ 2f

Ũ0
x

L2

]

By assuming that the walls and the floors are made of similar materials as in

Eqs. (2a) and that only the thicknesses are significantly different, we obtain

the following condition between ef and ew, the orders of magnitude of the
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thicknesses of the floors and the walls respectively.

EwIw
ℓf

Ũ0
x

L4
= O

(

EfIf
ℓwℓ 2f

Ũ0
x

L2

)

⇒ If
Iw

= O

(

ℓw ℓf
L2

)

⇒
(

af
aw

)3

= O(�2)

⇒ 3(ef − ew) = 2 with
af
ℓw

= O(�̃ef ),
aw
ℓw

= O(�̃ew) (26)

This relation was not verified for the two frame materials previously studied

(Tabs. 1 and 2). There was therefore only one governing mechanism at the

leading order for the shear waves in the direction of the walls.

We now homogenize a frame material respecting the condition (26) to derive

the general model. The normalization is given by Eqs. (2a) and (27).

aw
ℓw

= O(�̃)
af
ℓw

= O(�̃5/3) (27)

In that case, the macroscopic shear waves occur at frequencies such that ! = O(�̃2 !r).

Since the order of magnitude of the ratio af/aw is not an integer, the kinematic

descriptors must now be expanded according to the powers of �1/3:

X(�, x, y) = X0(x, y) + �1/3X1/3(x, y) + �2/3X2/3(x, y)

+ �X1(x, y) + �4/3X4/3(x, y) + �5/3X5/3(x, y) + . . .

whereX stands for Ux, Uy or �. Then, the HPDMmethod provides the following

equations for the balance of momentum. Only the equations with new terms

are written afterwards and the equations describing the balance of moment of
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momentum were used to reduce the other equations.
⎧









⎨









⎩

Ex
∂2Ũ0

x

∂x2
= 0 (x 0)

Ex
∂2Ũ

10/3
x

∂x2
+Gf

(

∂2Ũ0
x

∂y2
+

∂2Ũ0
y

∂y∂x

)

− EIz
∂4Ũ0

x

∂y4
+Mw !2Ũ0

x = 0 (x 10
3 )

⎧









⎨









⎩

Ey

∂2Ũ0
y

∂y2
= 0 (y 0)

Ey

∂2Ũ4
y

∂y2
+Gf

(

∂2Ũ0
x

∂x∂y
+

∂2Ũ0
y

∂x2

)

+Mw !2Ũ0
y = 0 (y 4)

⎧









⎨









⎩

Gw

(

�̃0 +
∂Ũ0

x

∂y

)

= 0 (m 0)

Gw

(

�̃2 +
∂Ũ2

x

∂y

)

−Gf

(

−�̃0 +
∂Ũ0

y

∂x

)

= 0 (m 2)

(28)

As expected the terms associated with the local bending and the macroscopic

bending appear in the same equation [Eq. (x 10
3 )]. The introduction of the

expression (8) of the displacement field shows that macroscopic plane waves can

travel in the two directions of the elements. The shear waves in the x direction

are generated by the local bending of the floors as in Section 4 and their speed

is given by Eq. (10). The waves in the y direction are also shear waves and the

wave number is deduced from Eq. (x 10
3 ).

k2 =
Gf

2EIz

(√

1 + 4Mw !2
EIz
G2

f

− 1

)

To obtain a model which generalizes both the descriptions of Tabs. 1 and 2,

Gf is replaced by the shear modulusG andMw by the total massMs = Mw +Mf .

Since the contributions of Gw and Mf are negligible for the studied frame ma-

terial, this modification has almost no effect on the wave number.

k2 =
G

2EIz

(

√

1 + 4Ms !2
EIz
G2

− 1

)

(29)

This model combines the two mechanisms: the shear of the cell generated by the

local bending of the elements and the macroscopic bending. It can degenerate
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into the other models depending on the order of magnitude of the term under

the square root in Eq. (29).

General model with dispersion:

4Ms !
2 EIz
G2

= O(1) ⇒ k2 =
G

2EIz

(

√

1 + 4Ms !2
EIz
G2

− 1

)

Macroscopic bending and dispersion:

4Ms !
2 EIz
G2

>> O(1) ⇒ k2 =

√

Ms !2

EIz

Shear of the cell and no dispersion:

4Ms !
2 EIz
G2

<< O(1) ⇒ k2 =
Ms !

2

G

This provides a dimensionless criterion to identify the behavior of a given frame

material. The governing mechanism is the most rigid as in a connection in par-

allel. Note that the criterion directly compares the stiffnesses of the two types

of bending and not the thicknesses of the elements. Since it is completely ana-

lytic, it is possible to investigate the role of every cell parameter: the geometry

of the elements and the material properties. The criterion also depends on the

frequency. The same frame material can behave as a “classical” medium at

low frequencies and as a second grade medium at high frequencies. During the

propagation of bending waves, the walls experience deformations on a length-

scale related to the wavelength. When the frequency increases, the wavelength

decreases and the macroscopic bending becomes more rigid.

A similar criterion for the macroscopic bending of the floors is obtained by

changing the definition of the modulus of the macroscopic bending: EIz = EfIf/ℓw.

8.4 Effects of the local resonance

After analyzing the properties of the shear waves, we consider here the properties

of the shear-compression waves. As illustrated in Tabs. 1 and 2, these waves can
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be more or less affected by the local resonance in bending. Their study includes

three steps.

First, we have to determine whether the local resonance occurs in the same

frequency range as the wave propagation. The domain of the shear-compression

waves is estimated thanks to the condition (22) by neglecting the local resonance.

The real mass of the elements is used in the calculation of the macroscopic

length L:
⎧





⎨





⎩

L =
1

k
=

∣ cos(�)∣
!

√

Ex

Ms
for the X-mode

L =
1

k
=

∣ sin(�)∣
!

√

Ey

Ms
for the Y-mode

with Ms = Mw +Mf . As explained in Appendix and [17], there is a quasi-static

state at the local scale as long as 2�ℓ/�b << 1 where ℓ is the length of an element

and �b is the bending wavelength in that element. If this condition is respected

for the walls and the floors in the whole domain of the shear-compression waves,

there is no bending resonance. The speed of the macroscopic waves only varies

with their polarization and their direction of propagation.

If their is resonance, its effect depends on which elements are affected. The

shear-compression waves are generated by the propagation of compressional

waves in the elements. When only the elements deformed by the compressional

waves are in resonance as in Section 6, the equations describing the macroscopic

waves contain the real mass of the elements even at the higher orders. The

local resonance has almost no effect. It imposes kinematic conditions close

to the frequencies of the even bending modes of the resonating elements. On

the contrary, when the elements orthogonal to the compressional waves are in

resonance, the properties of the macroscopic waves depend on their effective

mass. In addition to the kinematic conditions, there is dispersion and bandgaps

close to the frequencies of the odd bending modes of the resonating elements as

in [17]. However, if there is an important mass contrast between the elements,

it is possible that the variations of the speed with the frequency are negligible

as in Section 7.
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9 Generic frame continuum

We now propose to build a generic model which can degenerate into any of

the equivalent continua previously derived for frame materials. Such a model

is obtained by artificially giving the same order of magnitude to every term.

Thus, the tildes and superscripts are removed from the variables. To describe

all the mechanisms, the model must include normal stresses, �xx and �yy, shear

stresses, �xy and �yx, and an inner moment, �z.

�xx = Ex
∂Ux

∂x
�xy = Gw

(

� +
∂Ux

∂y

)

�yy = Ey
∂Uy

∂y
�yx = Gf

(

− � +
∂Uy

∂x

) (30)

If we assume that the walls are the stiffest elements, the expression of the inner

moment is:

�z = −EIz
∂2Ux

∂y2
with EIz =

EwIw
ℓf

(31)

The balance of momentum in the x and y directions and the balance of moment

of momentum are then:

∂�xx

∂x
+

∂

∂y

(

�xy +
∂�z

∂y

)

+ [Mwf(!̂w) +Mf ]!
2Ux = 0 (x)

∂�yy

∂y
+

∂ �yx
∂x

+ [Mw +Mff(!̂f )]!
2Uy = 0 (y)

�xy − �yx + Jx(!)!
2 ∂Ux

∂y
+ Jy(!)!

2 ∂Uy

∂x
+ J�(!)!

2� = 0 (m)

(32)

The function f is defined in Eq. (17). It describes the variations of the

effective mass and its limit is 1 as !̂ approaches zero. The expression of the

dimensionless frequency !̂f is given in Eq. (17a). It is equal to the ratio between

! and !f1 the circular frequency of the first bending mode of the floors with

two fixed ends. Similarly, !̂w is equal to the ratio between ! and !w1 the

circular frequency of the first bending mode of the walls with two fixed ends.

Its expression is obtained by replacing the properties of the floors by the ones of

the walls in Eq. (17a). As in [17], the inertial term in the balance of momentum

in the x direction contains the effective mass of the walls and the real mass
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of the floors, whereas the inertial term in the balance of momentum in the y

direction contains the real mass of the walls and the effective mass of the floors.

The functions Jx, Jy and J� correspond to both the inertial terms which can

appear in the balance of moment of momentum [see for instance Eqs. (16) and

(20)] and the function �(!̂) which combines the elastic and inertial effects in

presence of resonance (see Sections 6.2, 7.2 and [17]). These functions are built

in such a way that they vanish when ! approaches zero.

The balance of moment of momentum describes the inner equilibrium of the

unit cell. It is used to eliminate the node rotation �̃0 which is a “hidden” degree

of freedom as explained in Section 3. As a result, the behavior of the generic

frame continuum is described by the usual translational degrees of freedom and

the balance equations in the x and y directions. But, contrary to the classical

continuum mechanics, there is also an inner moment �z. Since there is no new

degree of freedom and the inner moment is proportional to the second derivative

of Ux, the generic frame continuum is a second grade medium. To make this

point clearer, the balance equations of a second grade medium (see for instance

[12] or [44]) are recalled afterwards in statics with the notation of Germain:

∂

∂xj

(

�ij −
∂�ijk
∂xk

)

+ fi = 0 (33)

where (x1, x2) = (x, y) and the Einstein summation convention over repeated

subscripts is used. The vector f⃗ designates a volumic external force. The

symmetric second order tensor � is the intrinsic stress tensor and the third order

tensor � is the second stress tensor or hyperstress tensor. The comparison with

Eq. (32) shows that there exist hyperstresses in the generic frame continuum.

But the second grade effect occurs in a single direction and only one component

of � is different from zero. It is related to the inner moment:

�xyy = −�z = EIz
∂2Ux

∂y2
(34)

This is another illustration of the extreme anisotropy of frame materials. This

behavior differs from the one of continuous materials reinforced by linear fibers.
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Even if the inclusions are oriented in a single direction, second grade effects

appear in all directions [20]. The second difference with [12] is the presence in

the balance equations (32) of frequency dependent functions. The effect of the

microstructure is taken into account in the definition of the inertial terms in

[12], but it is assumed that every particle has a homogeneous deformation and

there is no local resonance.

The generic frame continuum satisfies atypical boundary conditions in ad-

dition to the usual boundary conditions. They are similar to the boundary

conditions of Euler-Bernoulli beams: bending moment, shear force and gradient

of the horizontal displacement Ux, also see on this point similar situations de-

scribed in [31, 39]. The constitutive law is given by Eqs. (30) and (31). As the

generic frame continuum is a generalization of SC materials, the elastic moduli

in the horizontal and vertical directions can be different. Note that the use of

generalized continuum theories requires additional material constants. Their de-

termination is a common difficulty which is overcame by homogenization. Here

we obtain directly the analytic expression of the second grade modulus.

When the real values of the parameters are introduced in this model, some

terms become negligible and the generic frame continuum degenerates into the

previous continua. For example, at low frequencies, f(!̂) ≈ 1 and the inertial

terms in Eq. (m) of (32) vanish. The expressions of the node rotation and the

shear stresses are then:

� =
Gf

Gw +Gf

∂Uy

∂x
− Gw

Gw +Gf

∂Ux

∂y
(35a)

�xy = �yx = G

(

∂Uy

∂x
+

∂Ux

∂y

)

with
1

G
=

1

Gw
+

1

Gf
(35b)

If in addition, we assume that the walls and the floors have similar properties,

the derivative of the inner moment ∂y�z is negligible compared to the shear
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stress �xy and we obtain:

∂�xx

∂x
+

∂ �xy
∂y

+ [Mw +Mf ]!
2Ux = 0 (x)

∂�yy

∂y
+

∂ �yx
∂x

+ [Mw +Mf ]!
2Uy = 0 (y)

(36)

This corresponds to the balance equations derived in [17] at low frequencies.

The equivalent continuum is a Cauchy medium with an anisotropic constitutive

law.

If we now consider a material with the walls much thicker than the floors,

the mass of the floors Mf becomes negligible and the expressions (35) of the

node rotation and the shear stresses degenerate:

Gf << Gw ⇒ � ≈ −∂Ux

∂y
and �xy = �yx ≈ Gf

(

∂Uy

∂x
+

∂Ux

∂y

)

(37)

Moreover, for the contrast given by Eqs. (2), the shear stress �xy is much smaller

than ∂y�z and we obtain the balance equations of Sections 3, 4 and 5:

∂�xx

∂x
+

∂2�z

∂y2
+Mw !2Ux = 0 (x)

∂�yy

∂y
+

∂ �yx
∂x

+Mw !2Uy = 0 (y)

(38)

On the contrary, for the contrast given by Eqs. (2a) and (27) of Section 8.3, the

shear stress �xy and ∂y�z have the same order of magnitude:

∂�xx

∂x
+

∂

∂y

(

�xy +
∂�z

∂y

)

+Mw !2Ux = 0 (x)

∂�yy

∂y
+

∂ �yx
∂x

+Mw !2Uy = 0 (y)

(39)

Equations (38) and (39) describe anisotropic second grade media with vanishing

terms in the stress tensors.

At higher frequencies, some inertial terms appear in Eq. (m) of (32). As

a result, the shear stresses are different and they are equal to quantities which

depend on the frequency. It is not possible to separate the elastic effects and the

inertial effects. However, the macroscopic behavior of the material is governed
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by the tension-compression of the elements and the influence of the shear is

limited. For the normalization used in [17] [see Eqs. (2a) and Tab. 2], the

elements are also in resonance in bending and their effective mass has to be

taken into account:

∂�xx

∂x
+

∂ �̂xy(!)

∂y
+ [Mwf(!̂w) +Mf ]!

2Ux = 0 (x)

∂�yy

∂y
+

∂ �̂yx(!)

∂x
+ [Mw +Mff(!̂f )]!

2Uy = 0 (y)

(40)

This corresponds to an anisotropic Cauchy medium with an effective mass. The

introduction of a contrast between the elements [Eqs. (2)] leads to a second grade

medium with an effective mass. In that case, only the floors are in resonance:

∂�xx

∂x
+

∂

∂y

(

�̂xy(!) +
∂�z

∂y

)

+Mw !2Ux = 0 (x)

∂�yy

∂y
+

∂ �̂yx(!)

∂x
+ [Mw +Mff(!̂f )]!

2Uy = 0 (y)

(41)

The functions �̂xy(!) and �̂yx(!) have not the same expressions as in Eqs. (40)

because the balance of moment of momentum is different in the two cases. At

most of the frequencies, the effective mass of the floors is negligible in Eq. (y)

of (41). It is written to remind that it becomes infinite close to the frequencies

of the odd bending modes of the floors.

10 Conclusion

This work has emphasized that frame materials have a rich behavior even when

the condition of scale separation is respected. It was illustrated by the study of

the propagation of plane waves in a material with walls stiffer than floors. In

that case, walls can experience bending at the macroscopic scale. The equivalent

continuum is a second grade medium at the leading order as for linear fiber

reinforced composites [18, 19, 20]. But, contrary to the composites made of

continuous materials, the second grade effect only appears in one direction in

frame materials. As a result, there is dispersion for the shear waves traveling
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in the direction of the walls and the anisotropy is strongly marked. The shear

waves in the direction of the floors are generated by another mechanism called

local bending. It is the same mechanism as for the shear waves in materials

with similar walls and floors [17]. It consists of the bending of the elements

between two neighboring nodes. Since the rigidities of the two types of bending

have different orders of magnitude, the shear waves in the direction of the floors

appear in another frequency range. Moreover there is no dispersion.

Likewise, shear-compression waves appear in different frequency ranges ac-

cording to their polarization because they are generated by two mechanisms:

the tension-compression of the floors and the tension-compression of the walls.

These waves might also be associated with the local resonance in bending of

the elements if the frequency ranges coincide. This causes additional kinematic

conditions close to the frequencies of the even modes of the resonating elements.

Moreover, if these elements are orthogonal to the direction of polarization, the

properties of the macroscopic waves depend on an effective mass which is a func-

tion of the frequency. Consequently, there are bandgaps close to the frequencies

of the odd modes of the resonating elements and dispersion. The latter differs

from the dispersion associated with the macroscopic bending of the walls. Its

importance is determined by the distribution of mass between the elements.

These results were established thanks to the homogenization method of peri-

odic discrete media (HPDM) coupled with normalization. The homogenization

of highly contrasted materials creates mathematical difficulties which are out of

the scope of this paper. Since every mechanism has a rigidity with a different

order of magnitude, the higher order equations have to be considered to obtain

a complete macroscopic description. Thus, the study of the convergence of the

solutions is a singular perturbation problem. In addition, the normalization is

not valid close to the resonant frequencies of the elements because the order of

magnitude of some terms in the higher order equations changes.

Nevertheless, this approach is a powerful tool to observe the various behav-
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iors of a class of reticulated materials. As it is always possible to come back

at the local scale to analyze the deformation of the unit cell, the mechanisms

associated with each kinematics can be identified. Moreover, the analytic for-

mulation provides a clear understanding of the role of every parameter, not only

the thicknesses but also the other characteristics of the elements. However, the

HPDM method is not convenient for the direct study of a given material. The

main problem is that the scale ratio �̃, which is necessary to introduce the local

physics during the normalization, is estimated at the end of the homogeniza-

tion process once the equivalent continuum is known. This is the reason why

we proposed a dimensionless criterion to compare the possible mechanisms and

identify the macroscopic behavior. This criterion depends on the frequency. A

given frame material which behaves as a “classical” medium at low frequen-

cies can become a second grade medium at higher frequencies. This provides

a framework for the study of real materials or the design of new materials (for

example filters) with prescribed properties.

This framework is valid for the four types of waves described in this paper but

there probably exist some others. The periodicity of the kinematic descriptors

was assumed identical to the geometric periodicity. Other researches on the

extension of homogenization to high frequencies [45, 46, 47, 48] suggest that

this hypothesis is too restrictive and that the kinematic descriptors are often

periodic on two cells or more [49]. The same approach could also be used to

investigate the behavior of other classes of reticulated materials. The results

would certainly be very similar for three-dimensional frames or materials with

a unit cell in the shape of a parallelogram. However, for braced materials such

as triangular lattices, the shear mechanisms are probably different.
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A Homogenization method of periodic discrete

media

This appendix describes the implementation of the homogenization method of

periodic discrete media in the case of frame materials. A more general presen-

tation of the method can be found in [24] and other examples of the homoge-

nization of frame materials are given in [29, 17]. The method includes two main

steps: the discretization of the dynamic balance followed by the homogenization

process.

Figure 11: Notation for a frame element

The aim of the first step is to concentrate on the nodes the study of the

momentum balance without loss of information. The reticulated material is

considered as a periodic lattice of interconnected beams. The element linking

the node B to the node E is drawn in figure 11. It is characterized by the

parameters ℓ, A, and I. In the local beam frame, s stands for the coordinate

along the beam axis, u, v for the transverse and axial displacements respectively,

and � for the cross-section rotation. The primes denote the differentiation with

respect to s. The axial force N , the shear force T , and the bending moment M

act by convention from the left part to the right part. No external force is

applied on the element which behaves as an Euler-Bernoulli beam. With this

notation, the vibrations of the element in harmonic regime are described by the

following equations.
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Longitudinal vibrations:

⎧





⎨





⎩

N ′(s) = �A!2v(s)

N(s) = −EAv′(s)

⇒
v′′(s) = −�2 v(s)

where � =

√

�!2

E
=

2�

�c

(42)

Transverse vibrations:

⎧









⎨









⎩

T ′(s) = �A!2u(s)

M ′(s) = −T (s)

M(s) = −EI u′′(s)

⇒
u′′′′(s) = �4 u(s)

where � =
4

√

�A!2

EI
=

2�

�b

(43)

where �c and �b are the compression wavelength and the bending wavelength,

respectively, in the element at the studied circular frequency !. Both wave-

lengths are related by a purely geometric relationship:

�2
b = �c2�

√

I

A
= �c

2�a√
12

⇒ �b

�c
= O

(

a

�b

)

<< 1 (44)

Indeed, the Euler-Bernoulli beam description requires that the bending wave-

length is much greater than the thickness of the element. Thus, the bending

wavelength is always smaller than the compression wavelength.

Equations (42) and (43) are integrated between the nodes B and E using

the unknown displacements and rotations of the endpoints (uB , vB , �B and uE ,

vE , �E) as boundary conditions. This provides the expressions of the forces at

the extremities of the element in its local frame:

NB = N(vB , vE) NE = −N(vE , vB)

TB = T (uB , uE , �B , �E) TE = T (−uE ,−uB , �E , �B)

MB = M(uB , uE , �B , �E) ME = M(uE , uB ,−�E ,−�B)

(45)
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where

N(v1, v2) =
EA�

sin(�ℓ)

(

v1 cos(�ℓ)− v2
)

T (u1, u2, �1, �2) =
EI�3

1− cos(�ℓ) cosh(�ℓ)

(

u1

(

cosh(�ℓ) sin(�ℓ) + sinh(�ℓ) cos(�ℓ)
)

− u2

(

sin(�ℓ) + sinh(�ℓ)
)

+
�1

�
sin(�ℓ) sinh(�ℓ)− �2

�

(

cos(�ℓ)− cosh(�ℓ)
)

)

M(u1, u2, �1, �2) =
EI�2

1− cos(�ℓ) cosh(�ℓ)

(

u1 sin(�ℓ) sinh(�ℓ) + u2

(

cos(�ℓ)− cosh(�ℓ)
)

+
�1

�

(

cosh(�ℓ) sin(�ℓ)− sinh(�ℓ) cos(�ℓ)
)

− �2

�

(

sin(�ℓ)− sinh(�ℓ)
)

)

(46)

The dynamic balance of each element being satisfied, it remains to introduce

the geometry of the reticulated material by writing the balance of the nodes.

As their mass is negligible and there is no external force, it consists in adding

the forces or moments applied by the two walls and the two floors connected to

the same node. Moreover, the connection is perfectly stiff and the motions of

the four elements are identical. Therefore, the nodal balance equations are a set

of finite difference equations expressed in the global frame (x, y) of figure 2 and

depending only on the nodal kinematic variables: U
(w,f)
x , U

(w,f)
y and �(w,f).

Balance of momentum in the x-direction:

TE
w (U (w,f−1)

x , U (w,f)
x ,−�(w,f−1),−�(w,f))

− TB
w (U (w,f)

x , U (w,f+1)
x ,−�(w,f),−�(w,f+1))

+NE
f (U (w−1,f)

x , U (w,f)
x )−NB

f (U (w,f)
x , U (w+1,f)

x ) = 0

(47a)

Balance of momentum in the y-direction:

NE
w (U (w,f−1)

y , U (w,f)
y )−NB

w (U (w,f)
y , U (w,f+1)

y )

+ TE
f (U (w−1,f)

y , U (w,f)
y , �(w−1,f), �(w,f))

− TB
f (U (w,f)

y , U (w+1,f)
y , �(w,f), �(w+1,f)) = 0

(47b)

50



Balance of moment of momentum:

ME
w (−U (w,f−1)

x ,−U (w,f)
x , �(w,f−1), �(w,f))

−MB
w (−U (w,f)

x ,−U (w,f+1)
x , �(w,f), �(w,f+1))

+ME
f (U (w−1,f)

y , U (w,f)
y , �(w−1,f), �(w,f))

−MB
f (U (w,f)

y , U (w+1,f)
y , �(w,f), �(w+1,f)) = 0

(47c)

Once these equations are solved and the nodal kinematic variables are deter-

mined, the motions u, v, �, the forces N , T and the moment M inside each

element can always be calculated thanks to Eqs. (42) and (43). The discrete

description constituted by Eqs. (47) is a complete description of the material

which contains all the necessary information. It is thus possible to use the nodal

kinematic variables as descriptors of the motion of the material.

The principles of homogenization are then used to turn the discrete descrip-

tion into a continuous description valid at the macroscopic scale. The aim is to

obtain the differential equations describing the behavior of the equivalent con-

tinuum. The key assumption is scale separation. This means that the cell size

ℓc (here ℓc = ℓw by convention) is small compared to the unknown characteristic

size L of the deformation of the frame material under vibrations. Consequently,

the scale ratio � = ℓc/L is a small parameter (� << 1) used for the expansion

of the kinematic descriptors and the forces.

The classical homogenization considers frequencies much smaller than the

natural frequencies of the elements of the unit cell. In that case, the condition

of scale separation is respected and both wavelengths �c and �b are much longer

than ℓ. It is therefore possible to expand the trigonometric and hyperbolic

functions according to the small parameters �ℓ and �ℓ in the expressions of the
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nodal forces and moment given in Eq. (46).

N(v1, v2) =
EA

ℓ

(

(v1 − v2)−
(�ℓ)2

6
(2 v1 + v2)−

(�ℓ)4

360
(8 v1 + 7 v2)

)

+O
(

(�ℓ)6
)

T (u1, u2, �1, �2) = −12EI

ℓ 3

(

(u1 − u2) +
ℓ

2
(�1 + �2)−

(�ℓ)4

840
(26u1 + 9u2)

− (�ℓ)4ℓ

5040
(22�1 − 13�2)

)

+O
(

(�ℓ)8
)

M(u1, u2, �1, �2) =
6EI

ℓ 2

(

(u1 − u2) +
ℓ

3
(2�1 + �2)−

(�ℓ)4

2520
(22u1 + 13u2)

− (�ℓ)4ℓ

2520
(4�1 − 3�2)

)

+O
(

(�ℓ)8
)

(48)

However, having a quasi-static state at the local scale is only a sufficient con-

dition and homogenization can be extended to situations with local resonance

[17]. As �b is always smaller than �c in beams, there is a frequency range with

�b = O(ℓ) and �c >> ℓ. The corresponding elements are in resonance in bend-

ing and the expansion of the shear force and the bending moment is no longer

possible. But we can expand the axial force and apply homogenization. This

method is also valid at higher frequencies [with �b < O(ℓ)] provided that �c

remains sufficiently long to define a macroscopic scale and that the behavior of

the elements is correctly described by the beam model.

Another consequence of scale separation is that the nodal motions slowly

vary from one node to the next. The kinematic descriptors can therefore be

considered as the discrete values of continuous functions of the space variables

x and y. These functions are assumed to converge as � approaches zero and

are replaced by asymptotic expansions in powers of � [Eq. (1)]. Equations (47)

describing the balance of a node also depend on the motions of the four neigh-

boring nodes. The distances between the nodes are constant because of the

periodicity of the material. They are equal to ℓw = � L in the vertical direction

and to ℓf = � ℓ∗L where ℓ∗ = ℓf/ℓw = O(1) in the horizontal direction. These

values are small with respect to x and y, which enables the variations of the

motions to be expressed with Taylor’s series. This introduces the macroscopic
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derivatives.

X(w,f±1) = X0(w ℓf , f ℓw) + �

(

X1(w ℓf , f ℓw)± L
∂X0

∂y
(w ℓf , f ℓw)

)

+ . . .

X(w±1,f) = X0(w ℓf , f ℓw) + �

(

X1(w ℓf , f ℓw)± ℓ∗L
∂X0

∂x
(w ℓf , f ℓw)

)

+ . . .

(49)

where X stands for Ux, Uy or �.

To correctly take into account the local physics, the physical parameters

have to be scaled according to the powers of �. This normalization ensures that

each mechanical effect appears at the same order whatever the value of �. Thus,

the same physics is kept in the homogenized model, that is to say at the limit

when � is made to approach zero. The choice of the properties of the elements

determines the stiffness contrast between the various mechanisms and then the

nature of the equivalent continuum. The order of magnitude of the frequency is

imposed by the balance of the elastic and inertia forces at the macroscopic level.

Since the elastic forces can have several origins, there are several possibilities

for the frequency.

Finally, all the expansions in powers of � and the normalization of the pa-

rameters are introduced in the equations describing the balance of the nodes.

The obtained relations being valid for any small enough �, the orders can be

separated. This leads to a set of differential equations for each order, which can

be solved in increasing order. The leading order, which corresponds to the limit

when � approaches zero gives the homogenized model. The superior orders are

correctors which improve the accuracy in the case of a poor scale separation.
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Chaussées, 1998.
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