

Report. No. STAN-CS-82-905
by

Lloyd N. Trefethen

Department of Computer Science
Stanford University Stanford, CA 94305

A

Dill rise witty
$\begin{array}{llll}82 & 09 & 21 & 008\end{array}$

WAVE PROPAGATION AND STABILITY FOR FINITE DIFFERENCE SCHEMES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR TIE DEGREE OF

DOCTOR OF PILLOSOPHY

N00014-75-C-1132

By
Lloyd Nicholas Trefethen
May 1982

This document has been approved

Abstract

This dissertation investigates the behavior of finite difference models of linear hyperbolic partial differential equations. Whereas a hyperbolic equation is nondispersive and nondissipative, difference models are invariably dispersive, and often dissipative too. We set about analyzing them by means of existing techniques from the theory of dispersive' wave propagation, making extensive use in particular of the concept of group velocity, the velocity at which energy propagates.

The first three chapters present a general analysis of wave propagation in difference models. We describe systematically the effects of dispersion on numerical errors, for both smocth and parasitic waves. The reflection and transmission of waves at boundaries and interfaces are then studied at length. The key point for this is a distinction introduced here between leftgoing and rightgoing signals, which is based not on the characteristics of the original equation, but on the group velocities of the numerical model.

The last three chapters examine stability for finite difference models of initial boundary value problems. We show that the abstract stability criterion of Gustafsson, Kreiss, and Sundstrom (GKS) is equivalent to the condition that the boundary permit no rightgoing signals in the absence of leftgoing ones. Wave propagation arguments yield a proof that for the typical instability of "strictly rightgoing" type, one has unstable growth in the ℓ_{2} norm, not just in the complicated GKS norm. We prove that this growth is at least proportional to the number of time steps n for models driven by boundary data, and to \sqrt{n} for models driven by initial data.

We show further that most GKS-unstable boundaries exhibit infinite reflection coefficients, which gives an alternative explanation of instability with respect to initial data. We conjecture that when an infinite reflection coefficient is present, the unstable growth rate increases from \sqrt{n} to n.

Throughout the dissertation, wave propagation ideas are also applied to various more specialized stability problems. We idenlify new classes of unstable formulas, including some in two space dimensions; derive new results relating stability to dissipativity; give new estimates on unstable growth for problems with two boundarics or interfaces; examine borderline cases that arc GKS-unstable but $\boldsymbol{\ell}_{\mathbf{2}}$-siable or nearly so; and present an explanation based on dispersion for known results on instability in I_{p} norms.

iii

Acknowledgmente

I am indebted to many people for help and advice given in the course of this remearch. They inelude David Brown, Russel Caflisch, Ray Chin, Jonathan Goodman, Bertil Gustarmon, Joseph Keller, Heina Kreiss, John Strikwerda, Bob Warming, and Helen Yee. Financial support has been provided by a National Science Foundation Graduate Fellowship and a Hertz Foundation Fellowahip, and also by Ofiee of Naval Research Contract NO0014-75-C-1132, National Seience Foundation Grant MCS7702082, and NASA-Ames Univeraity Consortium Interchange NCA2-OR745-004.

Technologically, writing the disertation was made posaible By Donald Knuth's superb mathematical typenetting system, TZX. Numerical computations were performed at the Stenford Linear Accelerator Center of the U.S. Dept. of Energy. Symbolic calculations of dispernion relations were checked by means of the MACSYMA system supported by the Mathlab Group, Laboratory for Computer Science, M.I.T.

I have been rortunste to carry out this work amidat a group of "numerical pde" people with closely similar interesta. I gratefully thank my adviser, Joseph Oliger, for bringing together this group and for guiding our work with patience and good nature. The other atudents involved have been William Coughran, William Gropp, and eapecially important to me, Randall LeVeque and Marsha Berger, who have been invaluable friends and researeb companions. Other members of the Stanford Numerieal Analyais Group who have helped make my experience pleasurable and productive have been Petter Bjoratad, Eric Grosee, and Robert Schreiber, who aleo made many valuable additions an a member of my reading committee. I will remember with pleasure my years at Stanford with all of these people.

I would tike to expreme epecial edditional thanke to two people. One is Gerald Hedatrom, of the Lawrence Livermore Laboratory, who has taken an extraordinarily octive interest in my work from the start, pointiag out several errors and bringing innumerable new ideas and references to my attention. It it hard to nee how I could have written a thens idvolving diapersive wave propagation without the benefit of Hedrtrom's exparience.

Secondly, the eredit for making my eraduace student years suceemful in a larger eense muat go to Gene Golub, whoee involvement and generocity have been unlageing. The Staaford Numerical Anolysis group owes its iatimacy and ite enercy principally io Gene, and to the ective faith is the importance of numerical aadycia.

The theis is dedicated to Carolyn Gramlich, with whom I looked at stars and planets at the and of each evening of coffee and group velocity.

Toble of Cor ente

ABSTRACT u
ACKNOWLEDGMENTS iv
table of Contents V
LIST OF ILLUSTRATIONS vi
LIST OF TABLES b
INDEX OF NOTATION I
0. INTRODUCTION 1
0.1 Purpose ... I0.2 History ... 50.3 Outline and summary of reaults ... 8

1. Wave propagation in finite difference models 13
1.1 Dispersion relations and modified equations ... 13
1.2 Phase speed and group apeed ... 18
1.3 Dispersiop ... 25
1.4 Instability in $L_{\text {p }}$ norms, $p \neq 2$... 281.5 Parasitic waves ... 35
1.6 Wave propagation in several dimenuions 41
2. Leftgoing and rigittgoing signals 47
2.1 The general scalar difference formula ... 47
2.2 Cauchy stability and dianipativity ... 52
2.3 Leflgoing and rightgoing volutions ... 55
2.4 Application: three-point linear muitistep formulas ...
2.5 Extension from ecalars to diagonalizable syatems ... 66
3. BOUNDARIES AND INTERPACES11
3.1 Rellaction and transmisaion coefficients ... 71
3.2 Examples ... 73
3.3 Energy fux and eneriy conservation... 87
3.4 Cutoff frequenciea and evanrsecnt waves ... 8
3.5 Retection of a general wave packet ... 90
3.6 General formulation; the "folding trick" ... os
4. STABILITY FOR INJTIAL BOUNDARY VALUE PROBLEMS 97
4.1 An example ... 97
4.2 $\boldsymbol{C}_{\mathbf{g}}$-alability; growth theoreme ... 103 103
1.s Gxs-molviney ... 100
1.4 Steblity for tholpative rchamen 113

b. borderlune casss and the definttion of stabiaty 123
b. 1 hatrodvetion ... 188
s.2 GKS-umenble solutiona with falle relection cocflicienta ... 18
8.3 GKi namable solutione with no mrictly rishtroing composenta... 131
${ }_{140}^{131}$
B.s suan.iakr. and diecumion ... it4
c. STABRITY WITH SEVERIL BOUNDARIES OR INTERFACES 147
6.1 intradection ... 147
0.2 One interfise: resplets of Ciment and Tudmor ... 148
. 3 Two interfices: dineipativity is not enough ... 151
a.4 Two interficees: raciditity and refioctiog coeficienta ... 185
ler p
APPENDIX A: PROPERTIES OF COMMON DIFFERENCE FORMULAS 173
APPENDIX B: PROOFS FOR i_{2}-INSTABLITIIES 177
references 189
INDEX 194

Liat of Muckratione

Fis. 1.1 Numerical diaperaios redation... 16
Fit. 1.2 Propacation of a wave pecket... 2 z
Fis. 1.3 Propagation of a wave front $1.2 \ldots 23$
Fig. 1.4 Separation of a dichromatic wave packet. . . 28
Fig. 1.5 Dispersion of a polychromatic pulce... 20 Fis. 1.6 Physical and paraitic wave packets. . . 36
Fis. 1.7 Sawtoothed paraiten. . . 38
Fig. 1.8 Dispertion plot for two-dimensionad leap frog... 43
Fig. 1.9 Propagnion of a two-dimenaional wave packet. . . 45
Fig. 2.1 Map from κ to x at a polnt $\left|\kappa_{0}\right|=\left|x_{0}\right|=1 . . .58$ Fig. 2.2 Rightroing and leftgoing signals with $|x|>1 \ldots 57$
Fig. 3.1 Lf interfsce... 74
Fig. 3.2 Refoction and tranmimion at an LF interface... 78
Fig. 3.3 LF 4 interfece... 81
Fig. 3.4 Refleetion and tranmimion at an LF4 interfice.... 80
Fig. 3.5 Crude meẹh refinement intericce. . . 82
Fig. 3.6 Coarme mesh refinement interface.... 83
Fig. 3.7 BKO mesh refinement intarface. . . 84
Fig. 3.8 Reflected wave at a boundery... 85
Fis. 3.9 Refection interpreted an dual initial data... $p 2$
Fit. 4.1 Instablitity as apontancoue radialion...op
Fis. 4.2 Instability as an infinile reflection coefficient... 101
Fig. 4.3 Unstable strichy rigblegoing generalized edgeamolution...
Fig. 3.1 Modela $\alpha, \beta, 7,6$ with Gaumian initial dake. . 187 Fis. 5.2 Modeln $\alpha, \beta, 7, \delta$ with rasdom initial data. . . 187
 Fig. 5.4 Models $a, \beta, 7, \delta$ with raidom boundary date... 129 Fit. 5.5 Modele e, 5,7 with random : intial date. . 133 Fig. 5.6 Modela $e, 5, \eta$ with random beondary data: . 134 Fig. 5.7 Modele $, 1,5, \eta$ with three-point initial data... 134 Fig. 5.8 Unatable reflection with $C=0$ in model $\eta \ldots 157$ Fis. 5.9 Modelk $e, 5, \eta$ with pariodic boundary dite . . 137 Fig. S. 10 Strict tranapareat intartice enomaly... 142

Fig. 8.1 GKS instability at interifece... 148 Fig. 6.2 Stendy-alate wolution at atable interfsce. . . 152
\qquad

Fig. 8.3 Two interfaces stable + atable $=x$ untable... 152 Fig. 6.4 Normal mode for two-interface counterexample... 153 Fis. 8.5 Normal mode for two-intefface countarexample. . . 154 Fig. 6.6 Ceometry of a two-interface problem... 156
Fig. $8.7 x_{C}, c_{7}, c_{t}$ for A-stable isterface... 100 Fig. 6.8 Unatable colution in multi-interface problam. . . 171
Fig. B. 1 Proof of Thme 4.2.3 and 4.2.4... 177 Fitg. B. 2 Allerastive proof of Thin. 4.2.5... 183

Liot of Tablee

Table 1.1 Group epende for LF... 57
Teble 2.1 Stationary, rightgoing, loftegoing, atc... 60 Table 2.2 Leftgoing and rightgoing signala with $C=0 . .61$

Table 4.1 Vector group velocition. . . 121
Table 4.2 Suwtoothed wolutions of a two-dimensional model. . 121
Table 5.1 Examples of boundary conditiona for use with LF... 188
Table 5.2 Two-boundary problem for modela $\alpha, \beta, 7,6 \ldots 131$ Table 5.3 Throepoint initial conditions for models $\in, 5, \eta \ldots 135$ Table 5.1 Unstable initial conditiona for modela $\epsilon, \varsigma, \eta, \ldots 138$ Table s.s. Unalable boundtry conditiont for modele $c, r, \eta, \ldots 139$ Table 5.6 Two-boundary problem for modela $e, 5,7 \ldots 140$

Table 4.1 Unetable growh in two-interface counterexample .. 155 Table 6.2 Growth racee for various two-boundary probicma... Ite

Index of Notetion

LF Leap Frot (51.1)
CN Crank-Nicolson (51.1)
3E Backwards Euler (\$1.1)
LF ${ }^{2}$ Leap Frog for $u_{u t}=u_{z *}$ ($\mathbf{\xi 3 . 2 \text {) }) ~}$
LxF Lax-Friedrichs ($\mathbf{j} A$)
S Space Extrapolation (53.2)
MOL Method of Lines (A)

LW Lax-Wendrof (51.1)
LF4 4th-order Leap Frog (51.1)
LFd Dissipative Leap Fros (\$1.1)
UW Upwind ($\{A$)
BX Box (5A)
ST Space-time Extrapolation (53.2)

```
            Z,iR,T inlegera, real numbera, complex numbere
            x,t independent space, time variables (51.1)
v=w(x,t) dependent variable (51.1)
    w}==\mp@code{ay_ ecalar model equation ($1.l)
            \xi,w wave number, frequency ($1.1)
            A,* mesh sixe in x,t (51.1)
            Q difference model (51.1,2.1,2.5)
            \lambda mesh ratio h/h ($1.1)
            0% diflerense spproximation to u(jh,nk) (il.t)
            a,\beta order of dispersion, dimsipation (51,1)
            C,C phase speed w/E, group speed <w/d; ($1.2)
            W,A width, amplitude of wave packet ( }5\cdot3,1.4\mathrm{ )
            d aumber of apmes dimenulom (51,0)
            e,\xi ponition, wive sumber vectors ($1.6)
            e,C phave velocity, group velocity vectort ([1.6)
```



```
            & degree of defeetivenem ($2.1)
            \ell,F,s stameil parmmetere (52.1,8.5)
            P(K,Z) bivariate polyoomial representation of Q (58.1,8.5)
P
            C tranolation spood for sigoal with |M| # i (52.3)
            va,v, muluplicity of lefi, righlyoing dignale (\xi,3)
```

$\boldsymbol{x}_{\ell,} \boldsymbol{c}_{\mathrm{r}}$ leftgoing, rightroing amplification factors (\$2.4)
$\rho(Z), \sigma(Z)$ polynomials tefining ${ }^{3-p l}$. lineat multistep formula ($\$ 2.1$)
N Jimeasion of vector system (52.5)
$u_{4}=A u_{z}$ vector model equation ($\delta 2.5$)
$\mathrm{n}_{\mathrm{e}}, \mathrm{n}_{\mathrm{r}}$ no. of leftgoing, rightgoing signals ($\mathbf{5 2 . 5 \text {) }) ~}$

- vector wave (52.5)
Q difierence model with boundary ($53.1,3.8,4.2$)
A,B reflection, tranamission coefficients (53.1)
A(s) refiection coefficient function (53.1)
k_{i}, κ_{r}, k_{1} incident, reflected, transmitted amplifiration factor: ($\mathbf{\$ 3 . 1)}$
- energy fux ($\mathbf{5 3}, \mathbf{3}$)
ω_{z} eutoil frequency (\$3.4)
$\left\{S_{j=}\right\}$ boundary conditiona ($\$ 3.6$)
$D^{14}(x), D^{10}(x)$ rellection matricet (53.6)
S molution operator (homog. boutidary data) ($\mathbf{5 1 . 4 , 4 . 2 , B \text {) }) ~ (5)}$
$S_{b c}^{(0)}$ solution operator (homog. initial asia) (\$4.2)
- eigensolution or geacralised eigensolution ($54.2,4-3$)
f, g, F initim, boundary, forcing dala (54.8 ;
* apatial amplification factor vector ($\mathbf{5 4 . 5)}$

o. INTRODUCTION

0.1 Purpoee

Many probleme of phymien and engineering talke the form of hymeriotic ayutems of partied differentiol equetions [Co08). Some examples of ficlde in wheh these eque tions are important are fluid mechanice (weather prediction, alrerakt and turbine deaign, occanography...), seophysics (earth modeling, petroleum proapecting...), magneiohydrodynamics, elaticity, and acoualiea. In mont instaneen there ia no hope of obtaining analytical wolutione, and one must recort to numerical approximations. Of thewe the moet important are the finite difference modele, baved an the idea of approcimating partiai derivative by diberete dififereaces.

An irony of the finite diference procees, at to well known, to that the detailed behavior of finite difference formulat ia generally a good deal more complieated than that of the dilierential equations they model. For the mont part thia ie not a problem, because the nonphysical details are unimportant mo long as the numerical solution converges to the correct physical rosult when the grid is refined. This convergence will normally take place provided that the difference model it consistent and stable [Ri47,Gu75]. Therefore the analywis of the behavior of difference models traditionally reduces to entimating truncation errors by Taylor expantiona, in order to determine consiotency and aymprotic accuracy, and to come kind of inveatigation of atebility. Of these the stability analyals is the much more difficult tatk.

To cheek for stability in the ease of lincar problems with amooth coeflicients and no boundaries, it is ementially enough to make ture that the difference formula edmite no exponeatially growing Fouricr mode (Ri67,Th69). But for problems with boundaries, a are almont alwaya present in practice, the queation becomee more difficult. One can atill puah through an analysia based on an exteaded notion of "growing modes," but it is not etreightforward. A general theory of this kind wan developed by Krein and colleagues a decade ago and was reported in an important
paper of Gustafmon, Kreim, and Sundström-henecforth "GKS"-in 1072 [Gu72]. (See also [C080,Gu75,Kr71,Mi81].) This theory is powerful, but mathernatically and ronecptually difficult. The proofs involved are obscure enough that it is fair to ey that most people apply the GKS reaults without understanding them.

This dimertation develope the view that a finite diference model is sot juat a mathematieal corruption of ap ideal problem, but a phynieal medium of a difereat kind with anolyasble proparties of its own. Finite diferance modele de aot erhibit the characteristic feataren of hyperbolielty, sueh as lalte apeod of propagation. Instend, they set as dipperaive media, a aubject about which a creat daal id known [Bro0,Li78, Wh74]. Wave propagation in melh media in characterised by dipproion of diffarent frequencias and by energy propacalion at $\boldsymbol{*}$ frequency-dependeat speed ealled the growp welocity. Theve effects depend on the interference of diatinct frequency components, and therefore represent a atep beyond the euperponition of idividual Fourler modes. Our contention is that disperive wive propagation pheasanena are the easential feature underlying much of the more aublle behavior of dificrenee modela. In particular, the CKS atabillty theory has a imple plyaical explanation ie vermio of group velocity.

Our interpretation of the main GKS reault rune roughly as follows. Let a diffierence model for an initial boundary value problem be applied with homogencoum boundary data. To be atable, the model must admit no molutions that grow exponentially in the number of time atepe (a reault firat exploited by Godunov and Ryabenkil [Ri67]]. But in addition, it muat admit ne solutions conasitiog of a collection of waves radiating from the boundary into the interior. Such waves might be physical (i.e. smooth, elose to waves admitied by the dificreatial equation), or peresitic (not emooth), but this diatinction does not appear in the analyas. For a wave to propacate "into the interior" meant, in the eace of a boundary at the left of a region, for it to have a positive group velocity.

The analysis also makee no explicit distinction between diseipative and nondiaipative difference formulas. Diseipativity, however, guaranteen a priori that moal wavelike modes cannot occur, and this limita the range of potential radiating colutiona that mutt be investigated in checking for atability.

Thus we show that instability for initial boundary value problema bs a kind of regonance phenomenon, in which come energy-radiating solution can oecillate coortinually at the boundary without being continually forced by inhomogencoua
1
boundary data or by signals hitling the boundary from the interior. The question arises as to the extent to which such resonance will be exciled by rounding efrora, truneazion errors, of other data. Regarding stimulation by boundary data, we conclude that the cesonance will in general always be excited. But for stimulated resonance by initial or field data, the matter of reflection coefficients becomes imporiant. Indeed one surpose of this dissertation is to demonatrate how closely atability for initial boundary value problems is tied, both formally and physieally, to reflection phenomena. We show that the "rtandard" GKS-instability io characterised by infinite reflection coefficients, leading to great mensitivity of the molution to energy hiting the boundary, but that there are realistic borderline cases with finite or sero refiection coefficients, and in these the instability is not so casily exited.

Several difficulties have inhibited the theorelical and practical application of the GKS theory. One, as mentioned above, is that the mathematics involved is complicated and not clearly motivated. We hope that the wave propagation point of view can remove some of this mystery. A second is that the GKS auability definition is complicated and unatural-it gives eatimaten in a norm that one would not normally be interested in. We will show that the group velocity analysis allows one to derive eatimates for moot unstable cases in the dimpler ℓ_{2} norm. How best to measure stability for modela of initia boundary value problems is however a complicated queation, ω which there is no universal answer, and we will attempt to shed light on it by a variety of examples and argumenta. A third difficulty is that the algebraic procese of teating for inata bility can be extreincly difficult for nontrivial initial boundary value problem modela [Cos0]. Fundamentally our ideas do not help with thia problem at all. There is probably not much to be done about this in general, we believe, sa the aigebra refectes a phyaica! behavipr that is truly complex. However, reaults will be given that shorteut the analysis for special clasees of problems.

The "wave propagation" approach to stability might be contrasted with the more atandard "semigroup" point of view. The latter conaidera difterence modela as timeevolution operators, and characterislically investigates what "growth" can take place from one time step to the next. The former views space and time more equally, and investigales what qualitative changet oceur betwren time steps-which may indeed caure growth, but indirectly.

The wave propagation view is not always easy to shape into mathernatical proofs. As a general rule, one can prove instability and determine a lower bound for ita magnitude by studying unstable waves with behavior regular enough for asymptotic analyais. This is what we have done for the ℓ_{2} results mentioned above. Proving stability, on the other hand, or establishing upper bounda for unatable growth ratea, takes a greater effort, because it requires consideration of arbitrary signals with no regular behavior.

Au dispersive media with a periodic structure, finite difference models have a great deal in common with solid erystals (and also with certain other periodie phyaicas systems, such as regular electric networks). Aecordingly, the general featuren of waye propagation that we will discuas have close analogs in the colid atate phymics literature [Bo54,Br53,Ma89,So64]. However, the analogy is lenat close in the area of atability, which corresponda approximately to energy conservation for physieal systems. For cryatals, energy conservation ia one of the postulates from which local solution behavior may be derived, while in our conlext, it is the local behavior that is given and the atability that is under queation. (Sce, however, Part III of (Bo54).)

Three main themes will oceupy us throughout the dissertation:
(A) group velocity and parasitic waves... leftgoing and rightgoing solutiona;
(B) reflection and transmisaion at boundaries and interfacea;
(C) stability.

Our first three chapters are devoted to an exposition of the phesomena (A) and (B) and their relationship. Some of our resulte are old, but many are new, and this is the most systematic presentation of such material that has appeared to date. The last three chapters are concerned with stabiiity theory (C) for initial bounoary value problems. They present our analysis of the GKS theory as an outgrowth of (A) and (B). This leada to new results of various kinds. For a detailed oulfine are fo.s, below.

The general purpose of this disecrtation is to shed new light on the existing theory of finite difference modela, and to extend the theory where possible. However, we suspect that moat fruitful applicationa of the wave propagation point of view potentially lic in more novel and difficull areas that are only touched on here, wuch as problems with variable cocficients, nonlincar problems, problems with characteristic boundarics, and multidimensional probletns with irregular boundarica. If our belief is 4
valid that the essential features of discretisation for hyperbolic problems are those of dispersive wave propagation, then further work on these lines ought to point the way to new and hitherto unrecognised phenomena.

0.2 Fistory

Regardiag the application of ideas of dispersive wave theory to the theory of difference models, I am aware of two important sete of predeceseors. The frat are \mathbf{G}. Hedatrom and R. Chin, who in a variety of papert have applied wave theory argumente. to analyse maoy appecte of solution behavior and (Cauchy) atability [He85,He66,He6s, He75,Ch75,Ch78,Ch79,Ch83]. Making extensive use of seddlo-point eatimates, these papers atudy atability in the maximum norm (see $\{1.1$), analyaia by modified equa-
 Vichnevetsiky and his colleagues, who for a particular semi-discrete model of $\boldsymbol{u}_{\mathbf{t}}=\boldsymbol{\Xi}_{\boldsymbol{z}}$ (usually), analyse wave propagation for both smooth and paracitic waves [Vi75, etc.). Vichnevetsky's papers do not perform explicit asddle-point analysis, and as a result they do not obtain the kind of preciae eatimates derived by Hedstrom and Chin. However, his intereat in parasitic wavea and in behavior at boundariea makes these papers the moat direct precursor to this dissertation. Vichnevetaky's work will be summarized ahortly in a book with J. Bowlet [Vi82].

Becides these, there are undoubtedly a large number of group velocity calculations for difference models in the literature, mont of which I am probably unaware of. To the authors of these I apologise in advance. Threc references that 1 do know, from seophysics, are the reports of Alfold, et al. (Al74], Bamberger, et il. [Baso], and Martineau-Nicoletis [Mas1]. These works are mainly concerned with amooth waves rather than parasites; the first treate the acoustic (standard) wave equation, asd the other two the elastic wave equation (pressure and shear).

Similarly, there are no doubt a number of papera that compute numerical reflecLion and cranamision coeflicienta for boundaries or interfaces, as done here in $\mathbf{5 3}$ and thereather. I am aware of such calculationa by Martincau-Nicoletis [Mas1], D. Brown [Br79,Cl79], and Vichnevetsky [Visib]. Only Viehnevetsky makes a connection with group velocity. The general deacription presented here of behavior at an interface in terme of lell. and rightgoing waves admitted on either side appears to be new.

The subility theory for initial boundary value problems that is the main coweern
5
here has a complicated history. The dissertation refers primarily to the paper of Gushafsson, Kreiss, and Sundström [Gu72], which seems to have dominated the field since its appearance in 1972. However, this emphasis does not do justice to many important contributions by G. Strang, S. Oaher, and others. In particular, Osher': paper [Os69b] oblains a large part of the main GKS result by different means. Osber considers only models that satialy a certain root-separation condition, which rules out many nondimaipative difference formulas (those admitting a wave with group vclocity 0); on the other hand, his result has the advantage of using the ℓ_{2} norm rather than the more unwieldy GKS stability definition.

Here is a very brief survey of the hiatory of stability theory for difference modela of initial boundary value problemt. The firat contributions were made by Godunov and Ryabenkii in the early 1960's, who observed that a necesary condibion for atability is that the apectrum of the time-evolution difference operator be contained is the unit disk in the limit sa the mesh sise becomes 0 , and derived conditions for this to occur [Ri87]. This is the beginning of the use of normal mode analysio in atability theory for initial boundary value problems, which pervades the subeequent reaulta. The Godunov-Ryabenkii condition is an analog for initial boundary value problema of the von Neumann condition for initial value problems, and like the von Neumana condition, it is necessary for stability but not sufficient. The next contributions were due to Strang and to Kreiss. Strang applied a factorization technique for Toeplita matrices, related to the Wiener-Hopf method, to obtain necesary and aufficient stability conditions for a restricted set of difference approximations, namely those with purely homogencous boundary conditions [SL64,St60]. By dilferent methods, Kreisa [Kr66] oblained a sufficient condition for atability of diagonalizable (eseentially sealar) two-level explicit dissipative models. In [Os69a], Osher proved a similar result by an extension of Strang's approach, introducing general boundary conditions by means of a finite-rank correction to the Toeplitz operator for the interior difference scheme.

These papers left two main gaps in the available theory. First, they did not say much about nondiskipative models. Second, they did not deal with nondiagonalisable models. In another paper published in 1969, Osher made some progrea on the firat problem, again by the Tocplitz factorisation technique, obtaining a reault that weakens dissipativity to a separation-of-roots condition $\{0 \mathrm{O} 69 \mathrm{~b}\}$. This wata a quite general theorem along the lines of "the absence of eigensolutions and generalized 6
eigensolutions ensures stability," which we will discuss in \$1. Kreiss, on the other hand, derived a sulficient condition for stability of dissipative nondiagonalizabic models in [Kr68], by making use of a Dunford integral to bound the powers of the discrete Lime-evolution operator.

It remained to derive a stability condition for general nondisaipative modela, and if posaible, one that would be necessary as well as suflicient. The groundwork for this was work by Kreise on matrix normal forms for initial boundary value problems for partial differential equations (not difference modela), published in [Kr70|. These results led to necessary and sufficient conditions for well-posediess of hyperbolic partial differential equations in several apmce dimensions. By as extension of the same idesa, the paper of Gustafsaon, Kreisa and Sundiatröm [Gw72] finally proved a general neccsary and sulficient stability theorem for (one-dimeasional) dificrence models, dissipative or nondisnipative, diagonalixable or nondiagonalizable.

Further additions to the stability theory since 1072 have mainly taken the form of embeliahments of the GKS theory. Gustafsoon in [Gu75] catablished connections between GKS-stability and convergence; the main problem here ia working around the idiosyncrasies of the GKS stability definition to as to be able to treat pontero initial data. Ciment [Ci71,Ci72], Burns [Bu78], Tadmor [Tad81], and Goldberg and Tadmor [Ta78,Go78,Go81] have proved additional reaulte. GKS-Eke theorems have been oblained for method-of-lines schemes by Strikwerda \{Si78\}, and for parabolie problema by Varah [Va70,Va71] and Osher [Os?2]. Most receatly, attention hat shifted to problems in several space dimenaions [Coso,Mi8i]; in particular, new reaulte of Micheison's [Mi81] offer promise of a complete extension of the GKS thoory to disaipative multidimensiona' modela. In addition, there have beea numerous papers that apply the GKS theory to atudy atability of partiecular difference formulan or clases of them, including [Ab79,Ab81,Bel1,Br73,Co80,Go78b,O74, Ot78,Su74].

Virtually all of these rasulis, both precedi and following [Gu72], can be given wave propagation interpretations. For example, several of them amount to statements that spontaneous radiation from the boundary implies inatability, but with the radiation restricted to sero-frequency components that correctly misaic the differential equation, instead of the more general poxibility of paramitic waves radiating energy secording to the group velocity [Bu78,Kr6s, Tas1]. None of them are presented in thia way, but the relevance to atability of "energy propagating in the wrong direetion" is mentioned in some of Kresse's papers. In at least two places he performs a catculation

7
in which the parasitic solution of one differenec formula is related to the smost solution of another, whose speed of propagation is then obvious by consistenc;; u is a calculation of group velocity in disguise ([Br73] or [Kr73], 520; [Kr74] or [Kr7. §17). In an early paper with Lundquist $\{K r 68 b\}$, Kreiss also definea the concepi . strietly noneontractive difference formulas in terms of a quantity that is group velori
 closely related to Thm. 4.2.3 here. However, it seems clear that the central posit of group velocity in stability theory has not been ceen before; to my knowiedge, t words "stability" and "group velocity" have not appeared together in the past.

0.3 Outline and summary of renulte

This dissertation is unfortunately quite lengthy, as the following detailed outline makes clear. To mitigate this problem somewhat, a general inder is provided at the end. Readers wishing to go as quickly as posible to the atability theory for initial boundary value problems should proceed to Chapter 4 after reviewing Sections 1.1, 1.2, 1.5, 2.3, and 3.1. For a quick view of our main stability ideak, sse Sections 4.1, 4.2, and 5.5. Published accounta corresponding roughly to Chaptera 1 and 4 can be found in [Tr82] and [Tr83], respectively.

Chapter 1. We begin in $\$ 1$ with a discussion of the behavior as disperaive media of finite difference models of the malar equation $v_{t}=a u_{n}$. Our model approximates $u(x, t)=u(j h, n k)$ by a quantity $v_{j}^{\prime \prime}$, where h and k are the apace asep size and time atep size. In $\$ 1.1$ we define the concepts of frequency ω, wave number ξ, and diaperaion relations, and relate these Lo consintency, aecuracy, and modified equations. We illustrate these ideas by applying them to a number of well-known difference formulas, which continue to serve as examples throughout the disaertation. (These are summarized in Appendix A.) Section 1.2 defines phase apeed $d(\xi, \omega)$ and group speed $C(\xi, \omega)$, and derives the latter by the method of stationary phose. The effect of group velocity is illustrated by numerical experiments involving wave packeta and wave fronts. Thm. 1.2.: points out that for a general nondissipative difference model, erfors in C are greater than errors in c by a factor equal to the order of diapersion. Section 1.3 shows the connection between group velocity and dispersion, with further numerical illustrations. In $\$ 1.4$ we apply these ideas to show that certain knowa resulus on L_{p}-inatability of difference models for $p \neq 2$ ean be explained quantitatively
in terms of dispersion and diasipation. In 51.5 we examine parasitic waves, and show that they too are governed by a group velocity. More numerical illustrations are given. Niew concepts if a-reversing and t-reversing formulas are introduced and applied in Thm. 1.5.1, and Thm. 1.5.2 shows that most nondissipative formulas are x - or reversing. Section $\mathbf{1 . 6}$ briefly surveys wave propagation in multidimentional difference models, where energy propagation is governed by a vector group veloety C and wave packets can be tracked by a process of numerical ray tracing. Some of thesc ideas are new, but we do not develop them. (More details can be found in [Tr82].)

Chapter 2. Chapter 2 sets out to make the ideas of $\$ 1$ more general and more rigorous. In $\mathbf{\$ 2 . 1}$ we definc the general constant-coefficient ncalar difference formula Q in terms of shift operators K and Z, and analyze what solutions it supports that are regular in z of t (Thms. 2.1.1,2,1.2). In addition to ξ and ω, we now begin to work with arbitrary complex apace and time variation factors $\kappa=e^{-i \ell h}$ and $z=e^{i o w k}$. The new concept of a separable formula is defined, and it is shown that for separable formulas, $C(\xi, \omega)$ factors into $C_{1}(\xi) C_{2}(\omega)$. Section 2.2 defines Cauchy stability and relates this to the von Neumann condition and a root condition (Thm. 2.2.1). It also defines (x)-diosipativity and relates this to the new concepls of t-diesipativity and total diosipativity (Thms. 2.2.2,2.2.3). Thm 2.2.1 points out that if Q is x-or t-dissipative, it cannot be x - or t-reversing. In $\$ 2.3$ we catablish that the group velocity makes sense in a general way by proving that every wave admitted by any Cauchy stable formula, whether dissipative or nondissipative, has a group velocity (Thm. 2.3.1). Thm. 2.3.2 proves further that C is the limit of the translation speeds \mathcal{C} of evancacent waves, and that the sign of C can be determined by a perturbation test. We also define the new concepts of stotionary, rightgoing and atrictly rightgoing, teftgoing and stricfly leffgoing signals in terms of group velocity, and these are summarised in Table 2.1. Section 2.4 applies most of the reauits up to that point to the interesting case of three-point linear multistep formulaa atiodied by Beam, Warining, and Yee [Bc79,Be81]. New results are proved relating A-stability and strong A-stability of such formulas to their wave propagation behavior (Thm. 2.1.1) and t-dissipativity (Thm. 2.1.2). Finally, Section 2.5 shows that all of the results established for scalar models carry over directly to diagonalisable syatems. In particular, Thm. 2.5.1 deseribes the general breakdown of time-regular vector solutions into leftgoing and rightgoing componenta.

In summary, Chapters 1 and 2 prenent the essentials of dispersive wave theory for finite difference models in the absence of boundaries, and document the importance
of this theory by showing its many effects theoretically and with numerical demonstrations. The most original ideas here are those related to multidimensional problems ($\$ 1.6$) and L_{p}-instability ($\$ 1.4$). None of the results have much technical depth; perhaps the least trivial is the general justification of group velocity in Thms. 2.3.1 and 2.3.2.

Chapter 3. In $\$ 3$ we begin to deal with boundaries and interfaces. Section 3.1 deacribes our general procedure for computing reflection and transmission coefficients for steady-atate solutions of the form $v^{n}=z^{n} v^{0}$: first determine all leflgoing and rightgoing signals admitted away from the interface, as defined in $\mathbf{5 2}$, then match these by algebraic interface conditions. This procedure depends upon a numerical analog of the Sommerfeld radiction condition. Section 3.2 computes reflection and tranamission formulas for a large number of examples involving both boundaries and interfacea, and verifies two of these with numerical experiments; the most complicated example involves an abrupt change between two arbitrary difference formulas, for which a van der Monde matrix comes into play. Section 3.3 considers energy conserpation a. interfaces, and $\$ 3.4$ discusses cutoff frequencies and stop bonds. Section 3.5 上Noes the question of how a knowledge of the behavi:r at an interface of each cumponent x^{n} can be synthesized to predict the interaction of a general wave packet with a boundary. The answer requires solution of an integral equation, and appears to be related to the Wiener-Hopf technique (but not in the same way as the results of Strang and Oster mentioned in 50.2). This approach is new and, we believe, quite promising, but we do not develop it. Section 3.6 goes on to extend our reflection and transmission resulte to diagonalizable systems of difference equations. First, interface problerns are reduced to boundary problenis by a device known as the folding trick. This leads to a general reflection coefficient matrix $\left[\left.D^{[r \mid}\right|^{-1} D^{|l|}\right.$ describing reflection and transmiasion at an arbitrary boundary or interface.

Many of the ideas of Chapter 3 have appeared beforc, but it is likely that this is the first general description of how $t \cdot$. alyze numerical wave behavior at boundariea and interfaces. What makes the gencral treatment possible is the elimination of any distinction between physical and parasitic waves, and indeed of any reference to the system of equations being modcied, in favor of the notions of leftgoing and rightgoing signals determined by the numerical group velocity

Chapter 4. In $\$ 1$ the dissertation turns to stability for initial boundary value problems (or interface problems), which we view as a direct outgrowth of reflection 10
and transmission studies. Most of the ideas in this chapter are entirely new. They are however heavily influenced by, and closely tied to, the results of Gustarsson, Kreiss, and Sundström [Gu72]. Section 1.1 begins by explaining the instability of a simple example of an initial boundary value problem moded in two ways. Firat, the spontancous rightgoing solution view considers that the model is unstable because it admits as a solution a set of waves all of which are rightgoing (pointing from the boundary into the field). Second, the infinite reflection coefficient view explains instability as the existence for some frequency as a right/left reflection coefficient that is infinite. Sections 4.2-4.3 proceed to analyze mainly the first point of view, which is equivalent to the GKS theory. In 54.2 we first present the Godunov-Ryabenkii stability criterion as a statement on strictly rightgoing solutions with $|z|>1$ (Thm. 4.2.1), and as a determinant condition involving the reflection matrices $D^{(-)}$and $D^{(1)}$ (Thm. 4.2.2). Then it is shown that the existence of an arbitrary spontaneous strictly rightgoing solution implies ℓ_{2}-instability, with a growth rate in ℓ_{2} proportional to \sqrt{n} (Thm. 4.2.3). We conjecture further that this rate becomes n if an infinite reflection coefficient is present. Thm. 4.2.4 shows that such an unatable solution always causeas growth at rate n with respect to boundary data. (Proofs are deferred to Appendix B) Section 4.3 moves to the atricter GKS stability definition, showing by a wave propagation argument why even a non-strictly rightgoing steady-state solution is GKS-unstable (Thms 4.3.t, 4.3.2). In Section 4.4 the results obtained in $\$ 4.1-\$ 4.3$ are specialised to the case of dissipative difference models. Section 4.5 applics the main stability reaults to describe some general classes of unstable differcner mosdels in one space dimension, which are extensions of known cxamples (Thms. 4.5.1-4.5.4). Section 4.6 conaiders atability for multidimenaional initial boundary value problems, sketching the refation between instability in this context and solutiona with rightgoing vector group velocities C, as described in §1.8. An example is described in Thrm. 1.6.1.

Chapter 5. Although certain classes of difference models are unambiguously stable or unstable, there are various borderline canes for which the situation in less clear. This has always been a source of difficulty in stability theories for initial boundary value problems, and in particular it is reaponsible for the complexity of the GKS stability definition. Chapter 5 is devoted to a discumaion based on numerical experiments of four important classes of borderline casea that are GKS-unstable but stable in some other reapects. First, Section 5.2 diecusses models that have finite reflection coefficients. These are found to be unstable with reapect to boundary data,

11
but in practice nearly stable with reapect to initial data, and stable with respect to the introduction of a second boundary. Section 5.3 cxamines GKS-unstable solutions consisting of rightgoing but not strictly rightgoing signals, especially waves with group velocity 0 . For this case too, we conclude that instability appeara in practice mainly in reaponse to boundary data, and it is weak. In $\mathbf{g 5 . 4}$ we exhibit a dame of GKS-unatable problems with both non-strictly rightgoing instabilities and zero refuction coefficiente, the tranaperent interface anomaly, and these are $\boldsymbol{\ell}_{\mathbf{2}}$-stable. Fiaally, $\mathbf{5 5} 5$ aummarisea our views of atability for models of initial boundary value problems in eneral, and of the GKS theory in particular.

Chapter 6. The last chapter examines atability for probleme with aeeerel boundaries or interfaces, such as might occur in modeling the domsin $x \in\{0,1]$, or in mesh refinement, or in compositc difference or boundary formulas. This is a natural place to apoly wave propagation ideas, because a purely algebraic approach becofnos exceedingly complex. We start in $\mathbf{\$ 0 . 2}$ with one interface, examining known results of Ciment and Tadmor to the effeet that diasipativity implies atability. These we extend to more general results in which the notion of t-diosipetivity introduced in $\$ 2$ plays a natural part (Thms. 6.2.1,6.2.2). Seetion 6.3, however, ia devoted to proving by a counterexample that no such theoren holde if two or more interfaces are present, contradicting a claim of Oliger [OI79]. Thus dissipativity is not a atrong enough condition to yield atability in general. For an alternative approach, we move on in $\$ 6.4$ to consider reflection cofficients at the boundaries. Thm. 8.4.1 showa that if all reflection coefficients are at moat 1 in modulus, then stability for two-boundary problems is guaranteed. We apply this result to duplicate and extend certain results of Beatn, Warming, and Yee related to their concept of P-atability for two-boundary probiems (Thms. 6.4.2,6.4.3). The same reflection coefficient argumenta ean be applied quite generally, and in $\$ 6.5$ we consider what growth zates are posable in several important two-boundary or two-interface contexts. The variety of posaible growth rates turns out to be considerable, and they are summarized in Table 6.2. These argunients justify, for example, our claim in 55 that GKS-uniblable growth will not be converted to exponential growth when a second boundary is introduced unlem an infinite reflection coefficient is present. Finally, Section 6.6 discusses very brielly the prospects for problems with three or more interfaces.

1. WAVE PROPAGATION IN FINITE DIFPERENCE MODELS

1.1 Dispersion relations and modified equations

Throughout this dissertation we are concerned with the artificial effecto introduced when a partial differential equation in approximated by a fnite difference scheme. Since these effecta appas no matier how elementary the equation under study may be, we will mainly consider as a model the simple one-dimenaional wave equetion,

$$
\begin{equation*}
w_{1}=a w_{n}, \quad \in \neq 0 . \tag{1.1.1}
\end{equation*}
$$

If initial data are specified for $x \in(-\infty, \infty)$,

$$
\begin{equation*}
u(x, 0)=f(x) \tag{1.1.2}
\end{equation*}
$$

then the eolution $w(1.1 .1)$ for all $t \geq 0$ is the tranalation

$$
\begin{equation*}
v(x, t)=f(z+a t) . \tag{1.1.3}
\end{equation*}
$$

To analy te the behaviot of (1.1.1), one may look for Fourict moded

$$
\begin{equation*}
m(x, t)=e^{2(m-\ell t)}, \tag{1.1.4}
\end{equation*}
$$

where ω is the (temporal) frequency and ξ is the wave number*. Obviously (1.1.4) will satisfy (1.1.1) it and only if

$$
\begin{equation*}
\omega=-s f, \tag{1.1.5}
\end{equation*}
$$

a condition known at the dispersion relation for (I.1.1). Although dandard Fourier analyak amumes $\omega_{1} \in \in \mathbb{R},(1,1.3)$ holds for arbitrary $\omega_{1} \in \in \mathbb{C}$.
"We will be concerned wich linear equationa only, so it is enough to atudy complex exposestials. Rexulue for computations in real arithmetic then follow by tating real parta, or equiv-

 (1.1.4) h designed to
minue signom tece $\mathrm{f1} .2$.

13

Let (1.1.1) now be modeled by a finite difference formula. For this we set up a regular grid in x and t with spatial atep sise h, temporal step size k, and meeh ratie $\lambda=k / h$, and seek to approximate u by 3 grid function v :

$$
v_{j}^{*} \otimes \boldsymbol{m}(j h, n k), \quad j, n \in \mathbf{Z} .
$$

One difference formula for (1.1.1) that we will coanider repeatedly is lamp frog (IT), givea by

$$
\begin{equation*}
L F: \quad v_{j}^{n+1}-v_{j}^{n-1}=\lambda ब\left(v_{j+1}^{n}-v_{j-1}^{n}\right) \tag{1.1.6}
\end{equation*}
$$

Subetituting (t.1.4) iato (1.1.6) give

$$
e^{i \alpha A}-e^{-\omega A}=\lambda \pi\left(e^{-i e n}-e^{i e n}\right) \text {. }
$$

that is,

$$
\begin{equation*}
\text { win wh }=-\lambda e \operatorname{din} 6 h . \tag{1.1.7}
\end{equation*}
$$

This is the diopersion relation for LF. For mall wh and 6h, which is to asy for waves that are well reolved on the grid. (1.1.7) approximates (1.1.5) elosely, but as wh and th incresoe, the approximation becomen poor. Moreover unlike (1.1 .5), (1.1.7) is periodic with period 2π is both th and wh. The explasation of this is that because of the discretedes of the grid, any pair ($\{\boldsymbol{h}, \mathrm{w}$) is indiatinguishable on the grid from all of its "plisess" $(\xi h+i \mu \pi, \omega k+2 \nu \pi)$. Therefore it is enough to comsider the fundamental region $(\xi h, \omega k) \in(-\pi, \pi)^{2}$. Figure 1.1 a shows a plat of (1.1.7) ia this region for $a=-1$ and $\lambda=$.5. It is apparent that even here, each of ε or w correaponda in general to two values of the other variable."

Solving for w in (1.1.7), one obtains

$$
\begin{equation*}
w=\frac{-1}{k} \sin ^{-1}(\lambda \sin \leqslant h) . \tag{1.1.8}
\end{equation*}
$$

Dy laking the atandard branch of the inverse sine here, we confine our attention to the component of the diapersion relation that passes though the arigin in Fig. 1.1a.
-The high-frequency lobeo of the diapertion curves viaible in Fig. 1.1a (nod I.ie) are mugeondive of optical modes of vibration in cryatels, so called becasse their frequencies are wech that they are corinally exciled by light rather than mound (Bos4). The phymica is quite difierenh thowever, For optical modes repreacrst alternative modes of spatial oceillation camed by the thowever, for oplical modes represerts aluernalive modes of spatial oecillation camed by the perwence of mulliphe aperices of atoma

14

(a) LF

(b) CN

(c) LFA

Expanding for $\boldsymbol{\xi} \boldsymbol{h} \approx 0$, we get the series

$$
\begin{equation*}
\omega=-a \xi\left[1-\frac{1-(\lambda a)^{2}}{6}(\xi h)^{2}+\frac{1-10(\lambda a)^{2}+9(\lambda a)^{4}}{120}(\xi h)^{4}+\cdots\right] . \tag{1.1.0}
\end{equation*}
$$

The first term here agrees with (1.1.5), and this must be true for any comantent difference model. From the next term in the series, it is evident that the errore committed by LF will increase with the square of \boldsymbol{E}. Formally, (1.1.9) is equivalent to a dillerential equation of infinite order,

$$
v_{1}=a\left[v_{z}+\frac{1-(\lambda c)^{2}}{6} h^{2} v_{x=z}+\frac{1-10(\lambda c)^{8}+9(\lambda a)^{4}}{120} h^{4} u_{m=k=E}-\cdots\right] . \quad \text { (1.1.10) }
$$

Since (1.1.10) containa derivatives of higher order thas 1 but no even-order derivatives, $\mathbf{L F}^{\circ}$ is asid to be disperaive but not disaipetive. The significance of dispersion is that different wave numbers will travel at different speeds, ∞ that an initial pulae will change whape as time pacees. We will examine this in the next few sections. Disipation will be defined more precively in $\mathbf{5 2 . 2}$.

As a familiar diampakive scheme, we may conaider Lax-Wendref (LW)
LW: $\quad v_{j}^{n+1}-v_{j}^{j}=\frac{\lambda a}{2}\left(v_{j+1}^{n}-v_{j-1}^{*}\right)+\frac{(\lambda a)^{2}}{2}\left(v_{j+1}^{m}-2 v_{j}^{n}+v_{j-1}^{n}\right)$.
Corrcaponding to (1.1.7) and (1.1.10), we find for LW the disperaion relation

$$
\begin{equation*}
-i\left(e^{i \omega k}-1\right)=-\lambda a \sin \xi h+2 i(\lambda a)^{2} \sin ^{2} \frac{\varepsilon h}{2} \tag{1.1.18}
\end{equation*}
$$

and the formal differential equation of infinite order

$$
\begin{aligned}
& u_{t}=\varepsilon\left[u_{\pi}+\frac{1-(\lambda a)^{2}}{6} h^{2} u_{\pi=5}-\frac{(\lambda a)-(\lambda a)^{2}}{8} h^{2} u_{\text {cese }}\right.
\end{aligned}
$$

It is the non-centered shape of the stencil for LW that gives rise to the complex dispersion relation (1.1.12) and to the even-order derivatives in (1.1.13).

If a difference model is applied to a set of initial data that is smooth in the sense that most of the encrey in its Fourier tranaform has $\xi \mathrm{h}$, wk <1, then one may expeet that the model will behave approximately like a dillerential equation obtained by taking the first few terma of an expansion like (1.1.10) or (1.1.13). This is the idca behind modified equations (also known as model equations) of difference formulas [Ch83, Wa74]:

Fig. 1.1. Numerical diaperaion relations for difierence modela $1 F$, CN, and LFi of $m_{2}=-v_{s}$, plotted for mesh ratio $\lambda=$.5. Each plot chows the region $\mid-\pi / h, \pi / h\}^{8}$ of (ξ, ω)-space. The slope at a point (ξ, ω) is the eorresponding group velocity. Additional dispersion plots are given in Appendix A.

Defn. Let a conaistent difference model Q of (1.1.1) be formally expanded as a differential equation of infinite order as in (1.1.13). The modified equation of Q is the difierential equation

$$
\begin{equation*}
w_{1}=a v_{z}+A h^{e-1} \frac{\partial v_{z}}{\partial x^{\theta}}+B h^{\rho-1} \frac{\partial^{\prime}}{\partial x^{\theta}} \quad A_{1} B \neq 0 \tag{1.1.14}
\end{equation*}
$$

with a odd and β even, obteined by dropping all but the firat diesipative and firts disparsive larme from this equation. If there are no dimipative iasms we drop the recoad term and set $\beta=\infty$. 11
For example, the modified equation for LW in

$$
\begin{equation*}
v_{1}=a\left[v_{=}+\frac{1-(\lambda a)^{2}}{8} A^{2} v_{==1}-\frac{\left(\lambda_{a}\right)-\left(\lambda_{a}\right)^{3}}{8} A^{3} v_{\operatorname{man}}\right] . \tag{1.1.15}
\end{equation*}
$$

We define further
Defa. The integers a and β are the order of diaparaion and order of disaipation of Q. The ordar of eceursey is $\min \{\alpha, \beta\}-1$. (Conmistency impliee that the order of aceuracy is at least 1.) //
Thus $L W$, with $a=3$ and $\beta=4$, is sceurate of order 2 , dispersive of order 3 , and diasipative of order 4. If $\beta<\alpha$, then diasipation dominates diapersion at low wave aumbers, while if $\alpha<\beta$ the reverse bolds. We will sce in $\$ 1.4$ that a difforeace scheme for (1.1.1) is stable in L_{p} norma, $p \neq 2$, only in the former canc.

In this diseertation we will mostly be conserned with nondiaipative schemes like LF, becanse their wave propatation properties are mimpler and they are more prone to instabilitiea. Two other nondisespative models of (1.1.1) that we will often conalder are the implicit scheme Crank-Nicolson (CN),

$$
\begin{equation*}
C N: \quad v_{j}^{n+1}-v_{j}^{n}=\frac{\lambda a}{2}\left[\frac{1}{2}\left(v_{j+1}^{n}-v_{j-1}^{n}\right)+\frac{1}{2}\left(v_{j+1}^{n+1}-v_{j+1}^{n+1}\right)\right] \tag{1.1.16}
\end{equation*}
$$

and fourth-ordar leap fres (LFi) (fourth order in opace, second order in time),

$$
\begin{equation*}
\text { 1F4: } \quad v^{n+1}-v^{n-1}=\lambda\left[\frac{1}{3}\left(v_{j+1}^{n}-v_{j-1}^{n}\right)-\frac{1}{6}\left(v_{j+2}^{n}-v_{j-2}^{n}\right]\right] . \tag{1.1.17}
\end{equation*}
$$

For CN the dieperaion relation io

$$
\begin{equation*}
2 \tan \frac{\omega k}{2}=-\lambda a \sin t h, \tag{1.1.18}
\end{equation*}
$$

and for LF4 it is

$$
\begin{equation*}
\sin \omega k=-\frac{4 \lambda t}{3} \sin t h+\frac{\lambda e}{19} \sin 2 \xi h . \tag{1.1.19}
\end{equation*}
$$

These reialiona are plotted, again for $a=-1$ and $\lambda=.5$, in Fig. 1.1b-c. One cas we that LFI approximates (1.1 .5) better at the origio that $\mathbf{L F}$ or CN.

Here are two further examples of diseipative formulas. An implicit formula with $a=3, \rho=2 \mathrm{is}$ beckwardo Ealer (BE):

$$
\begin{equation*}
B E: \quad v_{i}^{n+2}-v_{j}^{n}=\frac{\lambda_{\mu}}{2}\left(v_{j+1}^{0+1}-v_{j-1}^{\omega+1}\right) \tag{1.1.20}
\end{equation*}
$$

 sel.

where $: \in R$ lise in the range $0<e<1$.
The properties of the differeace mehemes we have mantioned are mamarised in Appendix A. The Appendix also pives ioformation on several other formulas: Upwidd, Box, Method of Lines, Lex-Friedrichs, and Leap Prog for the meoad-order equation

1.2 Phowe apeed and group apoed

Consider now a Fourier mode (1.1.4) in which ω and ξ are both real. It in obvioun that in this wave, eneh point of fixed phase travele at a constent rate

$$
\begin{equation*}
e=\frac{\omega}{6} \tag{1.2.1}
\end{equation*}
$$

which in called the phace apoed. To the case of LF. (1.1.8) and (1.1.9) show that the phase apeed in given ma function of ε by

$$
\begin{equation*}
c=\frac{-1}{\xi k} \sin ^{-1}(\lambda e \sin \xi h) \approx-a\left[1-\frac{1-(\lambda \epsilon)^{2}}{6}(\delta h)^{\prime}\right] . \tag{1.2.8}
\end{equation*}
$$

Thus LF introduces phase apeed errora that increase quadratically w the frid becomen more coarse. Numerical aodyato often evaluate difference formulas by examining their phase or phase apeod errors (see e.s. $\$ 4$ of [Ch7eb]).

In moel applications, however, phase apeed is of oaly mecoodary importasee in delermining how an equation behave. Aceording to a theory inilialed by Willian HamilLon (1839) and Lord Rayleigh (1877), and developed furthor by Sommerfed
(1912) and Brillouin, the flow of energy in a dispersive medium obeya a group speed, defined by

$$
\begin{equation*}
C=\frac{d \omega}{d \xi} \tag{1.2.3}
\end{equation*}
$$

For example, suppose a wive train is formed as a sinusoid with wave number f multiplied by samly varying envelope $A(x)$. Then at t increnses the envelope will move, approximately unchanging in shape, at apeed $C(\xi)$, not $C(\xi)$. As a gencral principle, phase speed controls the interfereace of waves, but group apeed controla their propagation in apsee.

Eq. (1.2.3) weems eurpriviag to many people at irta, even imponible. For extmple one might argue, how eas the energy amociated with a wave aumber f foel the influence of nearby wave numbers, as (1.2.3) impliae that it must? The anower io that polychromatic waven cannot be underatood purely in terme of the individual sine waves that make them up-which after all, are ef unbounded in extenk. It is obvious that the position and structure of any poiychromatic pulse are delermined by conatructive and deatruetive interference between sine waver; wo that the "onergy amociated with wave number $\xi^{\prime \prime}$, is the absence of other wave numbers, is not localised at all. Therefore it should not be surpriaing that ite propagalion with t aleo depeade on the intersetion of wave numbers. Neverthelem, eq. (1.2.3) takes some getting ueed to, and readere unfamiliar with group velocity are encouraged to take a look at [Brel], [Wh74], or [Li7e).
 is formed by the superposition of two waves, with $\xi_{1} \approx \xi_{2}$ and $\omega_{1} \approx \omega_{2}$. Then beating will oceur. The composite wave is in fact equivalent to a single wave of wave number $\left(\boldsymbol{\xi}_{\mathbf{2}}+\boldsymbol{\xi}_{1}\right) / \mathbf{2}$ unodulated by a sinueoidal envelope of wave number $\left(\boldsymbol{\epsilon}_{\mathbf{2}}-\boldsymbol{\xi}_{1}\right) / \boldsymbol{z}$, and simple algebra shows that as increaves, the envelope moves at the speed

$$
\frac{\omega_{1}-\omega_{1}}{\epsilon_{2}-\ell_{1}} .
$$

This approaches (1.2.3) in the limit $\boldsymbol{\xi}_{2} \rightarrow \xi_{1}, w_{2} \rightarrow \boldsymbol{w}_{1}$.
A more general derivation of group velocity is based on the method of atationsry phase, due to Lord Kelvin. (Fop further derivations, see [Wh74] and [Li78], and also 52.3.) Let an initial diatribution $w(z, 0)=f(z)$ have the Fourier transform $f(\xi)$. Lat this aignal propagate with t according to a dispersion function $\omega=\omega(\xi){ }^{\circ}$ Then at

[^0]time $t \geq 0$, the solution (ignoring normalisation factors) is
\[

$$
\begin{align*}
v(x, t) & =\int e^{i(-(t) t-\ell x)} f(\xi) d \xi \tag{1.2.4}\\
& =\int e^{i t(-(\varepsilon(\ell)-\xi z / t)} f(\ell) d \xi
\end{align*}
$$
\]

Suppose x / t is held fixed $a n t \rightarrow \infty$. This correaponds to moving our eyes rightward at a fixed speed $s / t=$ conat. After a long time, what will we see? The answor comes from obeerving that estiocresses, the exponential in (1.2.4) oseilletes more and more rapidly with $\xi_{\text {, }}$ hence tende to eancel to $0, t \rightarrow \infty$. Asurning that f is emoech baough, which will be the case if f is localiaed, sueb cancellation will evidently take place everywhere except for any $\boldsymbol{\xi}$ of etetionery pheec, th which

$$
\frac{d}{d f}(\omega-\epsilon x / t)=0
$$

i.e.

$$
\frac{d \omega}{d t}=\frac{2}{t}
$$

As $t \rightarrow \infty$, therefore, our eyes will mee only any wave numbers that matirfy thin equation. In ather words, energy amociated with wave number $\boldsymbol{\xi}$ moves asymptotically at the group apeed (1.2.3).

The atationary phase argument is made quanticative in [Brbo\}, [Li78], and [Wh74]. In App. B (Lemma B.1), we will give a complete argument of a related kind in order to prove the atebijity theorems of Chapter 4.

Since the atationary phace idea ia applieable In various contexts, we have lelt out details such at limite of lategration, but let ue now be more precise for the problem of central intereat. If f is a diecrete function defined only for $x=j h, j \in \mathbb{Z}$, then $\}$ is defined by a infinite sum and has domain $\{-\pi / h, \pi / h \mid$, to the limits of integration in (1.2.4) become $\pm \pi / h$. For $f \in t_{3}(h)$, one has $j \in L_{2}[-\pi / h, \pi / h \mid$, and the more localised f is, the amoother $\}$ will be; when f hat compact tupport, $\}$ will be a trigonometric polynomial. Whether or not f has compact support, its domain can be extended naturally from hiz to all of \mathbb{R} by simply evaluating (1.2 .4) for arbitrary x . The result is a function in $L_{2}(-\infty, \infty)$, namely the (finite or infinitc) trigonometric inkerpolant through the values $\left\{(j(j)\}\right.$. By Parseval's formula, the L_{1} norm of this extension will equal the ℓ_{2} nor. 1 of the diacrete function f (if both are appropriately normalized), wince both are eq-ai to the L_{2} norm of f. Therefore in later acctions we can study the sum-of-equares encrgy of a signal without being too careful at to whether we consider ite domain to be continuous or diecrete.

20

Now let un examine the group speed for waves under LF. By differealiating (I.1.7) implicilly on both aides, oae obleina

$$
k \text { cos wk } d \omega=-a \lambda h \cos \xi A d \xi \text {, }
$$

bence

$$
C=-a \frac{\cos \xi \lambda}{\cos \omega k} .
$$

This tormula show that the effecte of diecrelisation in a and t multiply each othar; for annall $\{h$ and wh the former will tend to decreace $|C|$ and the intter to increase it (ef. 32.1). Sinee etability requires $\lambda \mid$ of <1, the firat effect will dominate. By (1.1.8), we ean climinate ωk to set

$$
\begin{equation*}
C=\frac{-a \cos \xi h}{\sqrt{1-(\lambda a)^{2} \operatorname{tin}^{2} \xi h}} \operatorname{siq}-\varepsilon\left[1-\frac{1-(\lambda a)^{4}}{2}(\xi h)^{2}\right] \tag{1.2.0}
\end{equation*}
$$

A comparieon of (1.2.2) and (1.2.8) chowe that for amall fh and wh, both cand C will be lese than the ideal speed $-a$ in magnitude, but that C will log by roughly three times at much.

Similarly, differentiating (1.1 .18) leadn to the group speed

$$
\begin{equation*}
C=-a \cos \xi h \cos ^{2} \frac{\omega k}{2} \approx-a\left[1-\frac{2+\lambda a^{*}}{4}(\xi h)^{2}\right] \tag{1.2.7}
\end{equation*}
$$

for CN, and (1.1.19) sivee

$$
\begin{equation*}
C=-a \frac{\left\{\cos \xi h-\frac{f}{\cos 2 \xi h}\right.}{\cos \omega k} \propto-a\left[1+\frac{\lambda a^{2}}{2}(f h)^{2}\right] \tag{1.2.8}
\end{equation*}
$$

for LF4. Since $C=d \omega / d \xi$, these functions represent the slopen of the dispersion relation plote in Fig. 1.1.

From these formulas one can caleulate that with LFi and CN as with LF, C lage the ideal value fot $t h \approx 0$ by 3 times as much ase. This fact genernifiseas followns

Theorem 1.2.1. Let Q be enondissipative model of $\mathrm{t}_{\mathrm{t}}=\boldsymbol{m}=\mathrm{w}_{\mathrm{m}}$ with the modified equation

$$
\begin{equation*}
m_{t}=c m_{t}+A h^{-1} \frac{\partial^{\omega_{k}}}{\partial x^{n}} \tag{1.1.9}
\end{equation*}
$$

for some add indeger $a \geq 3$. Then $\boldsymbol{a} \xi h$, wh $\rightarrow 0$, the phase and group opecho matigh

$$
c=-a-(-1)^{\varepsilon-1} A(g h)^{--1}+O\left((g h)^{*}\right)
$$

$$
C=-a-a(-1)^{\frac{e-1}{\top}} A(f h)^{+-1}+O\left((\xi h)^{\omega}\right)
$$

Thus C difers from the ideal aped -a by a times at much ase.

$$
i \omega=-i \omega \xi+A h^{-1}(-i \xi)^{\omega}
$$

i.e.

$$
=-\mathbb{E}-(-1)^{2+1} A A^{e-1} €^{\oplus}
$$

The result now follows from (1.2.1) and (1.2.3). I
This theorem implies that evaluation of difierence formulas by the phase errors they introduce may lead to umrealistically optimistie concluaione.

Demonstration 1.1. As the simplest demonstration of greup speed, Fie. 1.2 sbows the propagation of a pearly monochromatic wave packet under LF with $a=$ $-1, \lambda=.4$. Fis. 1.2a plote the initial digal on a grid with $h=1 / 160$,

$$
v(x, 0)=e^{-(t))^{4}} \sin \Leftrightarrow x_{1}
$$

with $\&$ chosen wo that there are 8 grid pointe per wavelength: $\leqslant \boldsymbol{h}=2 \pi / 8 \approx .79$, $\boldsymbol{f} \approx 251.3$. The exact solution should move right unchanged al apeed 1 , but (1.2.2) and (1.2.6) prediet phase and group apeeda

$$
c \infty .81, \quad C \approx .74
$$

In this experiment the exact solution was used to provide valuee at $t=k$, and then LF was applied up to $t=1$. The result is shown in Fig. 1.2b. Apparently the wave packet has propagated at just the group speed C, aot at the phase apeed, and it has changed little in shape. If one lookod at the wave carcfully a a functios of t, one would ase phase crests conlinually appearing at the trailing edge of the pecket, advaneing through it at apeed c, and disappearing at the front. The ame bebavier appear: in the rippler made when a stone is dropped into a pond, lor gravity weve

22

(a)

(b)

Fig. 1.2. Propagation of a wave packet with 8 points per wave length ($\kappa \approx .70$). The model is $L F$ for $\psi_{1}=-u_{E}$ with $h=1 / 160$, $\lambda=4$. The packet moves not at the ideal speed 1 , but at the group $a p$ oed $C \approx 74$.

Fig. 1.3. Propagation of a wave front gencrated by a foreed oscillaLion with $\omega k=1$ at the lefl boundary. The model is $C N$ for $u_{t}=-u_{z}$ with $h=1 / 500, \lambda=5$. The wave tront travels at the group speed $C \approx 75$.
on deep water aloo satialy a dispersive equalion characterized by $C<c$.
This example demonstrates a principle that makes analysis of group velocity errors in difference schemes possible: there ia more to the insceuracy of a difference scheme than truncation error. The wave in Fig- 1.2b differs completely from the correct solution pointwise, and oo an eatimale of accumulated truncalion error would lead to the conclusion that the computation had been useleas. But in fact, it has been qualitatively correct. Errors cauped by dillerencing are not rapdom perturbatiosa, but a systematic interaction of dispersions and possibly dissipations of varions orders.

Demonstration 1.2. As a mecond example, Fig. 1.3 show the propagation of a wave front. In this experiment a sinusoided forcing oacillation at the left boundary radiates a wave into the interior of the interval $\{0,2]$. Here $h=1 / 500, \lambda=5$, and the scheme is CN with $a=-1$. The oxcillation

$$
v(0, t)=\sin 100 t
$$

has been turned on at $t=0$. At $t=1.5$, only a low-frequency forervanet hat reached $x=1.5$; the main omeillation of amplitude 1 has reached onfy $x=1.0$ or 1.1 , suggesting that the wave front propagaleas at a speed roughly 0.I. Now to amalyte a problem like this we nead to know how C depends on ω, not ϵ. From (1.1.18) and (1.2.7), we obtein

$$
\begin{equation*}
C(\omega)=-a \cos ^{2} \frac{\omega k}{2} \sqrt{1-\left(\frac{2}{\lambda_{d}}\right)^{2} \tan ^{2} \frac{\omega k}{2}} . \tag{1.2.10}
\end{equation*}
$$

For the given problem $\omega k=1$, and (1.2.10) predicte $C \approx .75$. This explaina Fis. 1.3. Throughout this dismertation, we will use both spatial and temporal Fourier tranaforma an convenient; most often it will be the lather, since boundaries or interfaces will be present.

For dissipalive modes, the concept of group velocity breaks down. When dispersion dominates dissipation, the predictions obtained by ignoring dissipation may
*in fact for such waves one has $C=\boldsymbol{f}$ c. For ahort ripples on decp water (eurface tenaioe dominated), on the other hand, one han $C=\frac{1}{i c}$. Other physical problems with $C>\mathrm{c}$ are wave propagation in elantic beame $(C=2 c)$ and movement of a particke when viewed an a quantum mechanical wave packet ($C=2 c$ almo). (The classieal particle apeed correaponda to C, not c.) Closer physical analogs to a finiue difference model of (1.1.1) are presented by problems in which $C \approx c$ for long waveleogtha but $C \neq c$ for short ower. These include mound of cletromagnctic wave propagalion in random media (air, glam, rock) or regular media (cryatha, electric networks). In thene cauce C and C begin wo difer when the
 wavelengiths present
between moleculce.
(
not be far off, and we will make use of this in $\mathbf{5 1 . 4}$. One Juaiticalion of this claim can be found is Thm. 2.3.1 together with Lemma 0.1 ; in lect, Thra. 1.2.1 could be exteaded to even-order dissipative dififerenee approximations. However, a general analysio requires a steepest dencent argument that is more mublle than the stationary phace derivation [Bre0). It turns out that for dimipative wavee one ean diatinguiah group, signel, and enerey veiocities, all of which coincide ia the nondiswipative eave. Thie theory was worked out by Brillouin and Sommerfeld in the sarty 1000's and is described at leagth in [Bre0]. The application of eteepent descent analyais to disaipsUfive finite diforence nodels of (1.1.1) is earried out by Serdjukova in [Sebs,resc), and by Hedetrom and Chin in [He65,Hes6, Iles8,He75,Ch75,C378). The ame approach hee been exteaded to models of a Gramport equation by Gropp [Grsi].

1. ${ }^{\text {E }}$ Dinpertion

In a ifgnal conciating of a superposition of various wave parameter pairs ($\boldsymbol{\xi}, \omega$), the energy amociated with each pair will propagate st the group apeed appropriate to that pair. In generpl these group apeeds will be different, causing the cignal to chasge chape as it propatation. Thie separation of wave numbers is called dirperaion.

DEmongtration 1.3. The cimplest configuration that may lead to diaperaion in - ouperposition of two wave numbers, a dichromatic wase packel. Figure 1.4a dhow mek a signal, diven by

$$
y(x, 0)=\frac{1}{2} e^{-\cos (x-1 / x)^{*}}(1+\sin 200 x)
$$

Thim agnal contains equal amount of enerty at wave numbert $\epsilon \approx 0$ and $\in \mathbb{1 0 0}$. In the experiment the LF formula was applied with $a=-1, h=1 / 100, \lambda=.5$, and the exact solution was used to provide data at $t=k$. For these values (1.2.0) predicts that the low wave number energy ahould move at apeed $C=1$, and the high wave number encrgy at $C \approx 0$. Figures $1.1 \mathrm{~b}, \mathrm{e}$ thow the computed result at $t \approx 2,4$, The inilial packet has aplit into two pieces, and tisey bave evidently craveled at the predicted speeda. (Compare Fig. 1 of [Vi75].)

More geserally, any wave packet that is localised in space muat contain a range of wave numbers. Quantitatively, the product of the width of a wave packet a and the widch of its Fourier traneform 8 is bounded from below by a comatant of order unity (the uncertuinty principle). In particular, the inilial aignal in Fig. 1.4 fo not
(a)

(b)

(c)

Fig. 1.4. Separation of a dichromalic wave pecker with ch as
 $h=1 / 100, \lambda=5$.
(a)

(b)

FIG. 1.5. Dispersion of a polychromatic puise. The model is LF for $u_{1}=-\alpha_{\text {. }}$ wilh $h=1 / 160, \lambda=.4$. Kigher wave number have lower group aprecta and lag behimed the main signal.
exactly dichromatic, but has a Fourier transform consisting of two narrow spikes. Similarly the signal in Fif - 1.2 has a apectrum consisting of one narrow spike. In such caser we muat expect tha each not-quite-monochromatie wave component present will itself disperse with time, since it contains energy with various group velocities. Such dispersion will take the form of a broadening of the wave peeket at a teady gate depending on the range of group apeeds present. We can formulate thia in an approximate way as follown:

Let an initial weve pecket $\mathbf{w}(x, 0)$ have Fourier trensform $(\mathcal{E}, 0)$ with suppert $\left|\xi_{0}-\Delta \xi / 2, \varepsilon_{0}+\Delta \xi / 2\right|$ for some omall vehue $\Delta \xi$. Let $W(t)$ be an ajprezimate meanure of the width of the pecket at time t. Then for large t, W will grow roughly eccording t

$$
\begin{equation*}
W(t)-W(0) \approx t \Delta \xi \frac{d C}{d \xi}\left(\xi_{0}\right) . \tag{1.3.1}
\end{equation*}
$$

The aignificance of (1.3.1) is twofold. Firat, brosdening of a pulse will be approximately lineat. Seeond, the rate of broadening depends on both the wides of the Fourier tranaform and the derivalive $d C / d s$.

In Fig. 1.2, there wore many grid points in the wave packet, m Δf was amall and the packet broadened oaly about 10% or wo in the time ahows. This axample illuytrates a point of practical importath e: the abrence of conapicuous dispersion ia no guarantee that a computation has been securate. In Fig. 1.4 there are not an many grid pointe within the wave packet, so $\Delta \xi$ is large. The componeme with $\} \approx 0$ atill doces not brouden much, becsume $d C / d \xi=0$ at $\xi=0$. But it tevident that the component with $\boldsymbol{\epsilon} \boldsymbol{h}=1$ has broadened considerably. In fact, for this component (1.3.1) hae the approximate form

$$
W\left(t ;-W(0)=4(20)\left(\frac{1}{50}\right)\right.
$$

This leada to eetimates like

$$
W(0)=0.2, \quad W(2)=.8,
$$

which are mot far ofl, coasidering that we have been earelem with constaata.
Demonatration 1.4. Figure 1.5 showe the dispersion of an inditial pulse that in so narrow at lo be thoroughly polychromatic (c?. (Vis8)). This experinent takes place in the aame laboralory as Demo. 1.1: $a=-1, h=1 / 160, \lambda=0.4$, wheme $=1 F$.

But the initial distribution it now

$$
v(x, 0)=e^{-3200(z-t)^{2}}
$$

which is much narrower than before and has central wave number $\boldsymbol{\xi}=0$. Since the pulse is narrow, its transform is broad, and Fig. 1.5b shows that it disperses quickly into a train of oseillations.

Such oecillatory effects of finite difference schemen are common and well known. What is not generally recognized is that all of the bebavior of Fig. 1.5, except for the phases of individual wave cresta, ean be predicted quantitatively by considering group apeed. At the front of the wave train, the low wave numbers travel at apeed nearly 1, at they must. The further back one looks, the higher the wave number one mees; measurementa in an enlargement of Fig. 1.5 b confirm that the relationahip be that of (1.2.8). Furthermore, the amplitude distribution can be predicted from the fact that the initial ℓ_{2} enerty denaity at each wave number is conservod (it must firat be defined carefully, wince $L \mathbb{E}$ is a multilevel scbeme; (Ricil]. Accordingly, the amplitude of a part of the wave train with wave number ξ decreases with time secordiag to the aquare root of the rate of dispersion $d C / d f$. These ideas are made precise aod applied extensively in the field of geametricel eptics (Wh74).

For analyucs of the diepersion introduced by finite difference models in the saighborhood of a dircontinutity in $\%$, wee [Ap68, Ch75,He75,Ch78].

1.4 Inotebility in L_{p} norma, $p \neq 2$

In this mection we digreas brielly to consider our first applieation of wave propagrtion ideas to utability We will show that dispersion is the controlling factor for atability of diflerence models of $u_{t}=a v_{s}$ in L_{p} norms, $p \neq 2$.

In the last two decadea a conaiderable body of resulta hat accumulated on atability in L_{p} norms $\{3 \mathrm{r} 75 \boldsymbol{5}$. Some of the contributors to this work bave been Breaner, Iledatrom, Serdjukova, Stetter, Thomée, and Watbbin. This theory is quite technieal, and doez not draw explicilly on the notious of group velocity or dispersion. " Inetead it is founded mainly on the techniques of Fourser multipliers. Our cos'znlion is that many of these reaults can be readily underatood, and pomably exler,ded, by mimpler

- llowever, G. Hedntrom at keat (privale cammunic ation) has been aware of the inverpretation of t_{4} instability presented here.
:8
arguments. We will only aketch some ideas here without developing them rigorounily, se this diseertation is mainly concerned with stability for problems concaining boundaries or nterisces. However, the discuacion should suffice to provide support for our underlying theas: that the atability of inith difference modela is atrongly affected by phenomena of diapersive wave propagation.

Let Q denole a fixed finite difference approximation Lo $_{u_{1}}=a u_{z}$ with time and spece alepe k and $h=k / \lambda, \lambda=$ conat. We will apply Q at all pointa $x \in(-\infty, \infty)$ but at diserele time levels $n k$, and denote the computed solution at time atep n by v "(2). For simplicity we take Q to be a two-level formula, and let S denole the solution operalor $\nabla^{n}-\nabla^{n+1}$:

$$
\begin{equation*}
\cdot x^{n}(x)=\mid s^{n}, \theta(x) \tag{1.4.1}
\end{equation*}
$$

For $1 \leq p<\infty$ the $L_{\text {, }}$ norm of a function $\boldsymbol{v}: \mathbb{R} \rightarrow \mathbb{C}$ in defined by

$$
\begin{equation*}
\|v\|_{p}=\int_{-\infty}^{\infty}|v(x)|^{P} d x \quad(1 \leq p<\infty) \tag{1.4.2}
\end{equation*}
$$

and for $p=\infty$,

$$
\|\otimes\|_{\infty}=\sup _{x \in h}|\alpha(x)| .
$$

The apace L_{p} consists of those functions of for which this number is finite. If $S: L_{P} \rightarrow$ L_{p} is a bounded operator, the induced operator p-rorm is given by

$$
\|S\|_{P}=\operatorname{mup}_{\|\sim\|_{\rho}-1}\|S \sigma\|_{P} \quad(1 \leq p \leq \infty) .
$$

We define otability in 1,4 follows:
Defn. The model Q in L_{T}-rtable is for each $T>0$ there existe a constant C_{T} sech that

$$
\left\|s^{n}\right\|_{\nabla} \leq c_{\tau}
$$

for all n end k setisfoing $n k \leq T$.
For models of hyperbolic problems the L_{2} norm is most often used, mainly becsuse it is naturaly connected to the Pouriet transform by Parseval's formula. But other L_{p} norma aloo come up cometimes, particulariy the L_{1} and $L_{\infty} n^{-}$. when one hea in mind an extenetion wa nontinear probiem (Lusi). One might expect that moot difiference Pormulae that are mable in L_{2} would be stable in other L_{p} norma too.

Theorem 1.4.1 [Th65). Let Q approsimate $w_{1}=a u_{z}$ to an even order of accurcecy. Then Q in mnatable in L_{p} for ell $p \in[1, \infty], p \neq 2$. 1
It is this and related reaulta that we claim are due to disperaion.
Here is the explanation. Consider as an initial diatribution a narrow palve, an in Pig. 1.5s, whoee width is a few grid points. Following (1.3.1), we write thin in the form

$$
w(0) \approx h_{1}
$$

(1.4.3)
with the understanding that " $\#$ " denolea an order of magnitude agreement, keroring conatank factora, without beiag defined precisely. As n increaces, the pale will disperve into a traid of oceillations (Fis. 1.5b), whove width will increase roughly liseasly with n (ef. (1.3.1)).

$$
\begin{equation*}
W(n) \approx W(0)+t \approx \approx h . \tag{1.4.4}
\end{equation*}
$$

Let $A(n)$ be some measure of the average amplitude of the wave trini. Then we expect to have

$$
\begin{equation*}
\left\|v^{n}\right\|_{\infty} \approx A(n)(W(n))^{1 / n} \tag{1.4.5}
\end{equation*}
$$

Now if Q is nondiscipative, $\left\|v^{n}\right\|_{z}$ will be approximately conserved an n isereaces (exacly, if Q is a two-leved formula). With (1.4.3)-(1.4.5), this implies

$$
\begin{equation*}
\frac{A(n)}{A(0)} \approx\left[\frac{W(n)}{W(0)}\right]^{-1} \approx n^{-1} \tag{1.4.6}
\end{equation*}
$$

Therefore by (1.4.3)-(1.4.8) we have

$$
\begin{equation*}
\frac{\left\|v^{v}\right\|_{p}}{\left\|v^{0}\right\|_{p}} \approx \frac{A(n)}{A(0)}\left[\frac{W(n)}{W(0)}\right]^{\frac{1}{2}} \approx n^{\frac{1}{2}-1} . \tag{1.4.7}
\end{equation*}
$$

For $p<2$, the exponent is positive, and wo we have growth in the p norm. Ih followe that the operator powers $5^{\text {" }}$ must grow at least this fase,

$$
\begin{equation*}
\left\|s^{*}\right\|_{s} \geq_{n}:-1 \tag{1.4.8}
\end{equation*}
$$

and ance $n \rightarrow \infty m t \rightarrow 0$ for fixed $t=n k$, this contradieta the defiailion of L_{p}-atebility. Therefore Q is mnatable in L_{P} for $p<2$.

Thus L_{p} instubility for $p<2$ can be explained by the diaperion of narrow apikee into omeillatory wave traine. Correspondingly, inalability for $\boldsymbol{>} \mathbf{2}$ is implied by the fact that an oxecillatory wave train may coaleace into a spike. Suppose that the
configuration of Fig. 1.5b is Laken as initial data $v^{\circ}(x)$, and then the LF model of (1.1.1) is applied with $a=1$ instead of $a=-1$. (Alternately, one might retain $a=-1$ but reflect the wave train of Fig. 1.5b about $x=0$.) Then as t increases the wave train wilt move left, and the lower wave numbers to the right will overtake the higher oncs to the lell, whose group speeds are not quite as large. The result at $t=2$ will be another spike at $z=0$-not identical to that of Fig. 1.5a, but close. From $t=0$ to $t=2$, each L_{p} norm with $p>2$ will have grown. Now $W(0)$ and $W(n)$ are the same as before except reversed, hence $4(0)$ and $A(n)$ also, and (1.4.7) becomes

$$
\begin{equation*}
\frac{\left\|v^{n}\right\|_{p}}{\left\|v^{0}\right\|_{p}} \approx n^{t-\frac{1}{2}} . \tag{1.4.0}
\end{equation*}
$$

This time the exponent is negative for $p>2$, and (1.4 .8) becomeat

$$
\begin{equation*}
\left\|s^{2}\right\|_{s} \geq n^{t-1} \tag{1.4.10}
\end{equation*}
$$

Eqs. (1.4.8) and (1.4.10) combinc to give the general bound

$$
\begin{equation*}
\left\|S^{n}\right\|_{p} \geq n^{n t-\Delta l} . \tag{1.4.11}
\end{equation*}
$$

(Actually, for the above argument to go through we must be a little more careful. The problem is that the wave train of Fig. 1.5 b is now at all uniform in amplitude, 0 that $\mathcal{A}(n)$ cannot be defined in such a way that (1.4.5) hoids for all p. The explanation for this comes from (1.3.1) and the discustion in $\S 1.3$: our initial spike contains both nonsero wave numbers, which broaden and therefore deeay in amplitude because they have $d C / d \xi \neq 0$, and near-zero ones, which decay very little because they have $d C / d\{\approx 0$. One remedy is to replace Fig. 1.5 a with a signal that looks more like the derivative of a spike. The Fourier transform of the proper signal, instead of being concentrated in a band of width $\Delta \xi$ at $\xi=0$, might consist of a band of width $\Delta \xi$ contered at $\ell=\Delta \in$. Then the broadening rates of the various energy componenta, hener their amplitude decay rates too, will agree up to constant factors, and (1.4.5) will be valid.)

Now suppose Q is dissipative. Here is the explanation for the even-order hypothesis of Thm. 1.4.1. If Q has even order of accuracy, then its model equation has $\alpha<B$ (51.1), and this means that dispersion is stronger than dissipation at low wave numbers. [by considering a apike as before composed of energy with sulficiently low wave numbers, we ean again get growth in all L_{p}, norms, $p \neq 2$. On the other hand
if Q has odd order of accuracy, then dissipation dominates dispersion, and we cannot achicve such growth.

Let us substantiate these claims by estimating the growth rate for an even-order formula with $a<\beta<\infty$. In the nondissipative case, we look an initial signal with width $W(0) \approx h$. The trouble is, the transform of such a signal is mo broad that the energy will tend to diasipate faster than it disperses. On the other hand if $W(0)$ is Laken too large, then although the dissipation is small, we will have a wide packet broadening slowly, and not much growth will take place. Achieving a maximum growth rate will depend on picking $W(0)$ so as to balance these effecti. W(0) will also have to depend on what time step n it is at which we wish to obeerve growth. The reason is that the growth due to dispersion is algebraic, while the decay due to dissipation is exponential; for 'arge enough n, the simple kind of packet we are considering will decay to 0 in all p norme.

The maximal growth solution is this: given n, design an initial packet as before but with

$$
W(0) \approx k n t
$$

The width of the Fourier transform is then

$$
\begin{equation*}
\Delta f \approx h^{-1} n^{-1} \tag{1.4.13}
\end{equation*}
$$

If the order of dispersion is α, a packet of this width will have group velocitice covering a range (Thm. 1.2.1)

$$
\Delta C \approx(h \Delta G)^{-1} \approx n^{\frac{1}{1}}
$$

and so W will increase with n according to

$$
\begin{equation*}
W(n) \approx W(0)+t \Delta C \approx h n^{2+1}=- \tag{1.4.14}
\end{equation*}
$$

Egs. (1.4.12) and (1.4.14) give the ratio of widths

$$
\begin{equation*}
\frac{W(n)}{W(0)} \approx n^{e} \text { 근. } \tag{1.4.15}
\end{equation*}
$$

To get the corresponding ratio of amplitudes, we observe that since Q has order of dissipation β, the L_{2} norm of v will decay according to

$$
\|v\|_{2} \approx\left(1-(h \Delta \xi)^{\rho}\right)^{n} \approx e^{-n(n \Delta c)^{p}}
$$

or by (1.4.13),

$$
\left\|v^{n}\right\|_{2} \approx e^{-1} \approx 1
$$

32

In other words, our initial packet is just broad enough so that the decay up to step n is not significant. (The width (1.4.12) was chosen to be the emallest possible for which this would hold.) Therefore as in (1.4.8) we have by (1.4.15),

$$
\begin{equation*}
\frac{A(n)}{A(0)} \approx\left[\frac{W(n)}{W(0)}\right]^{-1} \approx n^{n}= \tag{1.4.16}
\end{equation*}
$$

From this followe the analog of (1.4.7),
or following (1.4.8),

$$
\begin{equation*}
\left\|s^{n}\right\|_{P} \geq_{n} n^{n}(t-1) \tag{t.4.17}
\end{equation*}
$$

For $p<2$ the exponent is again positive. Therdfore Q is unteble in L_{p} for $p \mathbf{2}$.
Au before, reversing the proces gives the aame ectimate but with the exponent negated, implying growth in I_{p} for $p>2$. All together, we have the bound*

$$
\begin{equation*}
\left\|S^{n}\right\|_{p} \geq n^{e-2}|t-1| \tag{1.4.18}
\end{equation*}
$$

This agrees wilh the nondimipative result (1.4.1t) if one sets $\beta=\infty$.
The above arguments conatilute a metch of a proot of Thm. 1.4.1.
In addition, we have obtained a lower bound for the growth rate of the dififrence operalor. What is remarkable is that this bound is as atrong as powible. The following reault was proved by Breaner, Thomee, and Wahlbia:

Theorem 1.4.2 [Br75, Thma, 3.1,s.2]. Let Q be a consintent difference approximation to $w_{i}=\sigma w_{k}$ with rwen order of eccurecy. If Q is dinsipative, the powers of the selution aperatot S eatipfy for $1 \leq p \leq \infty$ a tound

$$
\begin{equation*}
M_{1} n^{2-2}|t-b| \leq\left\|S^{\omega}\right\|_{P} \leq M_{2} n^{2 \pi}\left|t-\frac{t}{1}\right| \tag{1.4.19}
\end{equation*}
$$

for seme constente M_{1} and M_{1}. U Q is nondisoipative $(\beta=\infty)$ thic reduces to the formule

$$
\begin{equation*}
M_{1} n|t-\phi| \leq\left\|S^{n}\right\|_{2} \leq M_{2} n|t-t| . \tag{1.4.20}
\end{equation*}
$$

-An applicalion of the uolform boundedneen principle atrown that not only doea S^{n} grow at thie rale $\infty n \rightarrow \infty$, but wo doee 0^{n} tor tome suitably chomen initial date 0°. In fect it in
 wether than the lane and each dengiged to sehberc maximuon growth at a particular time nom.

The fect that our eatimate was sharp augeals that not only does the dispersion and gathering of apikes imply iastability in L_{4} norms, but there is nothing more to auch inetability than this.

Much of the early research leading to Thm. 1.4.2 was concerned with growth ratee in L_{∞} of the Lax-Weadroff operator, $Q=\mathrm{LW}$. For thia we have $a=3, \beta=$ $4,7=\infty$, and (1.4.10) becomen

$$
\begin{equation*}
M_{1} n^{1 / 4} \leq\left\|S^{n}\right\|_{\infty} \leq M_{3} n^{1 / 4} . \tag{1.4.21}
\end{equation*}
$$

(Obviously the inatability ia very weak.) This bound was firat entablished by Serdjukova [Sea3], by means of saddle-point eatimates, and independently by Hedatrom [He60] in 1986; see also (StB5), [Th85], (Se88].

The theory related to instability in L_{p}, ham been carried well beyond Thm. 1.4.2. In particular one may ask, how rapidly can \|lvnll, grow if wi atiefies some emoothneen condition? How "nooth must ∇^{0} be to make growth impomibie? The anawer to meh queations naturally involve Besov apaces [Pe76], and a large number are presented in [Br75]; see aleo [Hess]. Although many of them could probably be given dispersion interpretations, we do notergue that this would necemarily be productive is the mere complicated caves.

A more promining applieation of the diaperaion idea may iovolve the axtencion to arriable cosfficients. We have not diveused this fect, but the amontiale of group velocity extend without change to disperaive systema with variable coefikienta, so long as the seale of variation is large compared to the wavelengths of intereat [Wh74]. Therefore we propoes:

Conjecture. Theorem 1.4 .1 continues to hold if Q in a consiotent difference model of

$$
w_{1}=a(x) u_{n}
$$

where $a(x)$ is a L ipschits continuous fenction satiofrinif $0<a_{\text {min }} \leq|a(x)|$ for $a l \mid x$.
A atraightforward extenaion of the atimate (1.4 .19) is probably also valid. At present no auch reaulte appear to have been proved, although some theorems for variable coefficiente appear in [Ap68]. To apply Fourier methods, one would most likely need to move from Fourier multiplier techniques to those of pseudodifferential aperators. Technically this would be intricate, and there is a chance that the resulting theorems
would require an unreasonable degree of smoothness in a. We suspect that a proof by arguments based on dispersion would be easier to carry out.

For some very interesting resuls on stability in $/$.p norms of nonlinear difference formulas, see the recent dissertation by B. Lucier [!.481).

1.5 Paracitic waves

The lase three sections have concentrated on the errors that result from the deviation from linearity of a numerical dispersion relation near the ofigin $\omega=\boldsymbol{\xi}=\mathbf{0}$. These might be called the behavioral errora introduced by differencing. However, a finite difference grid can also support completely nonphysical or parasitic waves, with \&h or wif far from the origin, and these too will propagate at the group speed (1.2.3). In general parasitic waves may travel not only at the wrong speed, but also in the wrong direction. This can be seen from the fact that in Fig 1.1 (aiso Appendix A). the dispersion curvea have negative slope in various regions. In Chapter 4 we will see that energy propagation in the wrong direction is closely related to instability for initial boundary value problems.

It is perhaps surprising that poorly resolved waves should obey a group speed, since the discreteness of the grid might seem to necessitate a more complicated analysis. However, the stationary phase argument sketched in $\$ 1.2$ only required $\dot{u}(\delta, 0)$ to be smooth function of ξ, and has nothing to do with the discreteness of x.

Drmonstration 1.5. To illustrate, Fig. 1.B shows the propagation of five different wave packets. In this experiment $u_{t}=-u_{z}$ with $a=-1$ was modeled on $|-15,1.5|$ by CN with $\lambda=1, h=1 / 100$. In each case initial data conasisted of a wave packel

$$
v^{0}(x)=e^{-(10 x)^{\prime}} \cos \xi x
$$

with varying values of ε. In each case the solution was computed up to $t=1$, and then the result was plotted. From (1.1.18) and (1.2.7), one readily obtains the prediction

$$
c=\frac{\cos \xi h}{t+\frac{1}{2} \sin ^{2} g h} .
$$

for this demonstration. Table 1.1 shows the wave numbers used and the corresponding group speed peedictions:
(a)

(b)

(c)

(d)

(e)

Pig 1.6. Physical and parasitic wave pachets with $\xi h=0, \pi / 4, \ldots$, π. In each experiturnt thr initiai packet was located at $z=0$ and the figure shows the result at $t=1$, so that the position of earh packet plotted equals the group velocity for the corresponding wave number. The model is CN for $u_{1}=-u_{2}$ with $h=1 / 100, \lambda=1$.

Figure	¢	\underline{C}
1.80	0	1
1.85	\%/4	629
1.86	x/2	0
1.9d	3r/4	-. 620
1.6	*	-1

The figure showe clearly that the predictions of thia table are valid.
Demonistration 1.6. Figure 1.7 show the similarity between physical waves and paramites in another way. In addition to the spatially sawtoothed waves that we have already seen, which arise from near $(\epsilon, \omega)=(\pi / h, 0)$, Figs. $1.1 \mathrm{a}-\mathrm{c}$ imply that signals with (ϵ, ω) near $(0, \pi / k)$ and ($\pi / h, \pi / k$) are also possible under LF or LF4. Fig. 1.7 confirms this for the acheme LF with $a=-1$. In the same mesh as before, sinusoidal forcing functiona with $\omega \boldsymbol{k}=\mathbf{0}, 0.1$, π have now been turned on at $t=0$ in the middle of the domain:

$$
\begin{array}{ll}
(1.7 \mathrm{a}) & v_{0}^{n}=1 \\
(1.7 \mathrm{~b}) & v_{0}^{n}=\sin (.7 n) \\
(1.7 \mathrm{c}) & v_{0}^{n}=(-1)^{n}
\end{array}
$$

Each plot show the reaulting distribution at time $t=.68$. This i an artificial experiment, wince it amounts to apecifying data on the outhow boundary of the interval [-1, 0|, but it highlights the completely predictable behavior of paramites. In Figa. 1.7a and 1.7 b one nees waves of type $(\pi / h, 0)$ and $(0,0)$ on the left and right, respectively. In Fig. 1.7e the wavea have become of type $(0, \pi / k)$ and $\{\pi / h, \pi / k)$, allhough to display the aswiooth behavior in t it would be necessary to show an additional plot for $t=$ $.66+k$. All of these waves travel at group apeeds approximately ± 1. The remarkable x-symmetry in each plot is due to the ε-symmetry about $\xi=\pi / 2 \mathrm{~h}$ of Fig. 1.1 a , and the \mathbf{t}-symmetry relating Figs. 1.7 a and 1.7 c is due to the corresponding w-symmetry. These detaila are unimportant, for thry would change with the difference seheme. What is inportant is that smooth behavior in cither z or t is no guarantec of amooth behavior in the other variable, and that even extremely unphysical waves obey a group speed, which may have the wrong sign.

In problems involving parabitic waves the notion of phase speed in not just inadequate, but ill-dcfined. According to ('2.1) the phase speed is $\varepsilon=\omega / \xi$, but sinee wh and th are only determined up to multiples of π, this formula does not give
(a)

(b)

FIG. 1.7. Sawloothed parasites generated by a forced oscillation sin wt at the middle of an interval, for various frequencies ω. In each easc the forcing function was turned on at $t=0$ and the result is plothed at $t=.66$. The model is LF for $u_{1}=-u_{E}$ with $h=1 / 100, \lambda=.5$.
a unique value. The difficulty (regarding wh) is that aince the wave is only observable at diserete time intervals, it eannot be said whethet a sine wave has moved left or right to get from one configuration to the next. But whatever phase speed one selecte will fail to capture the basic fact of the speed at which the edge of the parasite moves. The group speed, by contrast, is well defined, because $d w / d \xi$ has the same value for all choices of ω and t.

The above exatuples have suggested that it is common for sawtoothed waves to pronagate under nondissipative difierenee formulas in the wrong direetion. It is 38

convenient to devise a name for this property:

Defn. Let Q be a scalar difference formula. Suppose that whenever Q admits a solution $v_{j}^{n}=c^{*} w^{\prime}$ with $\omega \in \mathbb{R}$ and group speed $C \in \mathbb{R}$, then it also acimits the solution $v_{j}^{n}=(-1) e^{2 \omega t}$, and this wave has group speed $C^{\prime} \in \mathbb{R}$ satisfying $C C^{\prime} \leq 0$, with $C^{\prime} \neq 0$ if $C \neq 0$. Then Q is r-reversing. Likewise if the existence of a solution $v_{j}^{n}=e^{-v \varepsilon \varepsilon}$ with $\varepsilon \in \mathbb{R}$ and group speed C implies the existence of a solution $v_{j}^{n}=$ $(-1)^{n \prime} e^{-t(x}$ with $C C^{\prime} \leq 0$, with $C^{\prime} \neq 0$ if $C \neq 0$, then Q is t-reveraing. //

Onc may show readily for the scheres we have considered (see also App. A):
Theorem 1.5.1.
(i) $L F$ and $L F\}$ are both x-reversing and t-reversing,
(ii) $B E$ and $C N$ are x-reversing but not t-reversing,
(iii) LFd is t-reveraing but not x-reversing,
(iv) $L W$ is neither a-reversing nor t. .eversing.

Proof. Let us prove (ii) for the seheme CN. Suppose $v_{1}^{n}=e^{i \omega \alpha}$ satisfies $C N$ with $\omega \in \mathbb{R}$. Then v has $\xi=0$ by definition, so (1.1.18) implies tan $\frac{\alpha k}{2}=0$, hence $\omega=0$, and by $(1.2 .7)$ the solution has $C=-a \in \mathbb{R}$. The dispersion relation (1.1.18) implies that $v_{2}^{n}=(-1)$ is also a solution, with $\xi h=\pi$, and by (!.2.7) this solution has $C^{\prime}=+a \in \mathbb{R}$, yielding $C C^{\prime}=-a^{2}<0$. Therefore $C N$ is x-reversing. On the other hand $v_{;}^{n} \equiv 1$ satisfies (1.1 .18) but $v_{i}^{n}=(-1)^{n}(i . e . t h=0, w k=\pi)$ does not, so CN is not t-reversing.

For the other assertions the proof is similar. I
Not every nondissipative difference formula is x-reversing. One way to see this is to observe that a centered spatial difference operator

$$
\begin{equation*}
a \frac{\partial}{\partial x} \approx \sum_{,=1}^{t} a_{j} \frac{\left(K^{j}-K^{-j}\right)}{2 j \bar{h}} \tag{1.5.1}
\end{equation*}
$$

where K denotes the shift operator $K v_{1}=v \boldsymbol{v}_{+1}$, leads to a spatial factor

$$
-\sum_{j=1}^{\ell} a, \frac{\sin j \xi h}{j h}
$$

in the dispersion relation. A difference formula based on this spatial discretization will have

$$
C(\xi, 0)=-\sum_{j=1}^{t} a_{j} \cos j \xi h .
$$

30

Consistency implics

$$
\begin{equation*}
C(0,0)=-\sum_{j=1}^{t} a,=-a \tag{1.5.2}
\end{equation*}
$$

but it implies nothing about the group velocity for a spatial sawtooth,

$$
\begin{equation*}
C(\pi / h, 0)=-\sum_{j=1}^{L}(-1)_{a}, \tag{1.5.3}
\end{equation*}
$$

Thus for exampl - formula

$$
v_{j}^{n+1}-v_{j}^{n-1}=\frac{\lambda a}{3}\left(v_{j+1}^{n}-v_{j-1}^{n}\right)+\frac{\lambda a}{3}\left(v_{j+2}^{n}-v_{j-2}^{n}\right)
$$

has $a_{1}=a / 3, a_{2}=a / 3$, hence $C(x / h, 0)=-a / 3<0$ as welt as $C(0,0)=-a<0$. But there will also be values ξ in $(0, \pi / h)$ with C of the opposite sign. Usually, for earh frequency thicre will be as many wave numbers with $C<0$ as with $C>0$. Thus it is in the nature of nondissipative formulas to reverse some waves. In fact only a one-sided formula can fail to send some energy in the wrong direction, and such a formula is usually cither unstatic or dissipative. (However the Box scheme, liated in App. A, gives an example of a ore-sided, nondissipative, not x-reversing formula.)

In practice, a nondissipative difference approximation to a first-order derivative will often be taken as the optimal formula for the given number of points. For the centered stencil of size $2 \ell+1$, this Cormula has order 2ℓ. (For example, LF and LF4 are based on x-difference approxitnations with $\ell=1$ and $\ell=2$, respectively.) In this important ease, all formulas are reversing:

Theorem 1.5.2. Let Q be a difference model of (1.1.2) whose apatial (resp. temporal) discretization consists of the optimal $2 t+1$-point centered difference approximation to a $\partial / \partial x$ (resp. $\partial / \partial t$). Then Q is x-reversing (resp. t-reversing).

Proof. The optimal approximation in question can be given exactly ($(\mathbf{K r 7 2})$, Remark p. 202): in the notation (1.5.1) one has

$$
a_{j}=2 a(-1)^{+1}\binom{t}{t-j} /\binom{t+j}{\ell} .
$$

By (1.5.3) atid the alternating signs of these cocficients, it is immedinte that one has $C(\pi / h, 0) / a>0$, and since $C(0,0) / a<0$, the assertion is proved.

As mentioned above, Chapler 1 will show that the stability of a difference model of an initial houndary value problem depends on whether the inodel ean support weves 10
with group velocity opposite to the physically correct direction. In practice, numerically unatable solutions often consist of sawtoothed waves under \boldsymbol{x} - or \boldsymbol{t}-reveraing formulas, a fact that we will puraue in $\mathbf{5 4 . 4}$ and $\$ 4.5$.

1.6 Wave propagation in several dimension

Mathematically, linear wave propagation in several dimensiona is much the same as in one, for the different apace dimensions decouple. Nevertheleps, the combination of these one-dimensional effecta introduces geometrical phenomena that are surprising. In particular, difference schemes for isotropic equations are themselvee anisotropic, and as a result imperfectly reaolved waves travel not only at false apeeds but in false directions. Such effecte have received little treatment in the literature, but there are some previous studies, particularly by seophysicists [A174, 0a80,Ma81,Wa80]." There is also a great deal known about wave propagation in crystal latticea, which is atrongly analogous to propagation in finite difference grids, and there the same anisotropy phenomena appear. For relerences see for example [Au73,Bo54,Br53,Je37,So64].

In d dimensiops, Fourier modes take the form

$$
\begin{equation*}
e^{i(w t-t \cdot \pi)} \tag{1.6.1}
\end{equation*}
$$

where ω is still a acalar frequency and ℓ is now a wave number vector of dimension d. From (1.8.1) one may define the vector phase velocity e componentwise by

$$
\begin{equation*}
c_{s}=\omega \frac{\xi_{i}}{|\xi|^{2}} \quad(1 \leq i \leq d) . \tag{1.6.2}
\end{equation*}
$$

The phase velocity points normal to the wave front, but has litle physical significance. Once again, a stationary phase argument [Wh61, Wh74] can be used to show that energy travels at a group velocity, now given by

$$
\begin{equation*}
C=\nabla_{\mathrm{l}} \omega \tag{1.6.3}
\end{equation*}
$$

-In geophysics one faces the inverse problem of inferring the properties of the earth from obscrvations of sound propagntion through it. On a global acale, the sound sourcea are earthquaket or nuclear explosiona, and the goal in to understand the large-seave atrueture of the earth's surface or interior. On a acale of a lew milea, the cound wources are dyanmite explosions or other man-made impubes, and the goal is to detect inhomogeneities of cound apeed that may givee clues to the location of of or other resources. In these problema finive differeace modele are uned exieanively [Bus0,C176.Ma81]. The cride employed are oftea coarse relative to the wavelengthy present, so numerical group velocity errors are potentially aignibesht.
where $\boldsymbol{\nabla}_{\mathbf{f}}$ denotea the gradient (d-vector) with respect to $\boldsymbol{\xi}$.
For simplicity, let us confine ourselves to two dimensions, and write ($\xi, \bar{\eta})$ for $\boldsymbol{\xi}$. Consider the (isotropic) second-order waye equation

$$
\begin{equation*}
v_{w}=w_{x z}+v_{v p} \tag{1.4.4}
\end{equation*}
$$

The diapersion relation for (1.6.4) is a aystem of concentric circles,

$$
\begin{equation*}
\omega^{2}=\xi^{2}+\eta^{2}, \tag{1.6.5}
\end{equation*}
$$

which has two frequencies for each wave number because (1.6.4) is of second order. From (1.6.3) one obtains a group velocity

$$
C= \pm \xi /|\xi|
$$

which aseerta that energy travels normal to the wave front at speed 1 . As a typieal finite difference model of (1.6.1), suppose we define a rectilinear grid with step sige h in both x and y, and consider second-order laep fros ($L F^{2}$):

$$
\begin{equation*}
v_{i, 2}^{n+1}-2 v_{i j}^{n}+v_{i,}^{n-1}:=\lambda^{2}\left[v_{i+1, g}^{n}+v_{i-1,2}^{n}+v_{i, j}^{n}, 1+v_{i, j-1}^{n}-1 v_{1, j}^{n}\right] . \tag{1.8.6}
\end{equation*}
$$

(The reatriction of this formula to one dimenaion is included in the sumnary of Appendix A.) Easy trigonometric manipulations then yield the numerical diapermion relation (cf. [A174], eq. (A2))

$$
\begin{equation*}
\sin ^{2} \frac{\omega k}{2}=\lambda^{2}\left[\sin ^{2} \frac{\xi h}{2}+\sin ^{2} \frac{\eta h}{2}\right] . \tag{1.6.7}
\end{equation*}
$$

From a contout plot of (1.6 .7), one can see the errors in group velocity that LF' will give rise to (cf. [Au73], [Je37, chap. 15]). Fig. 1.8 shows curves of conatant w in ξ-space for $\omega h=\pi / 8, \ldots, 11 \pi / 8$. For simplicity λ thas been taken here equal to $0, t 0$ that $\mathrm{LF}^{\mathbf{2}}$ is reduced to a memi-discrete or "method of lines" approximation. The full domain portrayed is $(\xi, \eta) \in[-\pi / h, x / h]^{*}$ (in eryatal verminology, the first Brillowin zone); any other wave number vector is an alias of a vector in this region. The figure shows that an w increases, the curve of corresponding \boldsymbol{f} vectore becomes less like a circle and more like a dismond. Now (1.8.3) impliea that the group velocity for any wave number $\boldsymbol{\varepsilon}$ points in the direction of the normal to the line of conatadt \boldsymbol{u} through \&. By contrast the phane velocity, since it is normal to the wave front, liea along the ray from the origin through 6 , and so would the ideal group velocity for
(1.6.4). Thus Fig. 1.8 indicates that poorly resolved wave packels will travel more along a diagonal under LF^{2} than they ought to. The figure also shows an increasing separation between curves of constant w as w increases. By (1.6.3) thit indicates that poorly resolved packets will travel too slowly, as in the one-dimensional case, and evidently thiz eilect will be more pronounced at 0° or 90° than at 45°.

Applying (1.6.3) to (1.6.7) reeapitulates these phenomena algebraically (ef. (A14]). One obtains the group velocity components

$$
\begin{equation*}
C_{E}=\frac{\lambda \sin \ell h}{\sin \omega k}, \quad C_{y}=\frac{\lambda \sin \eta h}{\sin \omega k} . \tag{1.6.8}
\end{equation*}
$$

Therefore the group propagation angle (from the 2 axis) and apeed for the wave number vector (ξ, η) are

Fig. 1.8. Dispersion plot for the two-dimensional Leap Frog model of $u_{41}=u_{z z}+u_{y p}$ in the limit $\lambda \rightarrow 0$. The region shown is the domain $\mid-\pi / h, \pi / h)^{2}$ of the $\xi=(\xi, \eta)$ plane. The coneentric curves ploted are lines of conntant w for $w h=\pi / 8,2 \pi / 8, \ldots, 11 \pi / 8$. The normal to the curve passing through a point $\&$ is the dircetion of the corresponding group velocity.

$$
\begin{gather*}
\theta=\tan ^{-1}\left(\frac{\sin \eta h}{\sin \xi h}\right), \tag{1.6.9}\\
|C|=\frac{\lambda \sqrt{\sin ^{2} \xi h+\sin ^{2} \eta h}}{\sin \omega k} . \tag{1.6.10}
\end{gather*}
$$

For infinitesimal'fh these expreseions reduce to the isotropic aed condiaperive formula

$$
A=\tan ^{-1} \frac{\eta}{\xi}, \quad|C|=1
$$

but for finite f they confirm that there is anisotropy and diapersion. Lat 4 deaole the angle from the x axis of the normal to a siven plane wave. Then to mecond order one has

$$
\begin{align*}
|C| \approx 1 & -\frac{(|\xi| h\}^{2}}{t}\left[\frac{3+\cos 41}{4}-\lambda^{2}\right], \tag{1.6.11}\\
& \theta \approx 0+\frac{(1 \xi \mid h)^{2}}{34} \sin 40 . \tag{1.618}
\end{align*}
$$

Eq. (1.6.12) shown again that waves will travel more slowly than the correet apeed 1 , lagging twice as much (for mall λ) at $t=0^{\circ}\left(\bmod 90^{\circ}\right)$ at at θ 를 $45^{\circ}\left(\bmod 90^{\circ}\right)$. Eq. (1.6.13) confirms that wavee with $\theta=0^{\circ}\left(\bmod 45^{\circ}\right)$ will propagate perpendieularly to the wave front (a fact obvious from the symmetries of the erid), but that all other wavea will propagate obliquely, preferring diagonals to horizontals and vertieale. The details would change if the z and y mesh apacingen were pot equal.

Demonstration 1.7. Fig. 1.9 confirms these predictions experimentelly. Here - Gaumian wave packe.

$$
v(x, 0)=\sin (x \cdot \xi) e^{-20|\varepsilon|^{1}}
$$

with $=22.5^{\circ}$ and $|\xi| h=1.6$ has been set up at $t=0$. The experiment take $h=.01, \lambda=.4$, scheme $=L F^{2}$. Superimposed on the same plot is the packet at the later time $t=1.4$. Ideally it should have traveled a distance 1.4 at an angle 22.5°. In fact, it has closely matched the predictions of (1.6.9) and (1.6.10): $\theta=30.0^{\circ}$, $|C|=.81$.

In realistic problems, coeflicients will usually vary in space. Following a atandard theory of ray traciag in inhomogeneous anisotropic media [lit8], it is possible to work out in detail what kind of errors discrelization will introduce. Now one has a apace-dependent dispersion relation

$$
\omega=\omega(x, \epsilon)
$$

44
and the group veincity formula (1.6 .3) beromes half of a system of equations in Hamiltosian form,

$$
\begin{equation*}
\frac{d x}{d t}=\nabla_{\ell} \omega_{1} \quad \frac{d \xi}{d t}=-\nabla_{\mathrm{I}} \omega . \tag{1.8.13}
\end{equation*}
$$

In the special case of a atratified medium, in which the apalial dependence involves one dimension only, one can simplify this system by replacing the second equation by an algebraic formula $\xi=\boldsymbol{\xi}(\boldsymbol{x})$ derived from the numerical dispersion relation, and this is a numerical form of Snall's Law. For an example, see [Tr8z]. Some further remarks on Snell's Law are given at the end of 53.6 .

One might go further, and study wave propagation in nonlinear models by means of the fairly well developed theory of nonlinear wave propagation \mathbf{i} : dispersive media [Wh74]. However, we will not pursue this here.

FIG.1.9. Fropasation of a two-dimensional wave packed with $|E|$ h $=$ 1.6. $=22.5^{\circ}$. The model is the Leap Frot scheme for $u_{u}=x_{1}=+u_{v x}$. with $h=1 / 100, \lambda=.4$. The packet is shown at both $t=0$ (lower left) and $t=1.1$ (upper right). Dots mark the ideal starting and ending
positions, and the aquare the position predicted by (1.6.8)-(1.6.10).
2. Leftgoing and rightgoing signals

2.1 The general ecalar difference formula

The purpose of this chapter is to make the results presented so far more general and enore rigorous. The key to this is an algebraic study of the dispersion relation for an arbitrary scalar difference formula Q-two-level or multilevel, explicit or implicit. For a complete analyas one must permit ω and ξ to be complex, and one must examine the defective solutions that occur when w or ε has multiplirity greater than 1 . In this first section we will define Q and describe the solutions it admits with regular behavior ir \mathbf{z} and t (Thms. 2.1.1,2.1.2). Section 2.2 details the relationships of wave number and frequericy to x-dissipativity, t-dissipativity, and Cauchy stability. Section 23 then sets forth our most important foundational material for Chapters 3 - 6. Firat, Thm 2.3.1 proves that if Q is Cauchy stable, then the dispersion relation is analytic about any point with $\xi, \omega \in \mathbb{R}$, and there exista a real group velocity. Second, Thm. 2.3 .2 describes the conncetion between wavelike mudes, with $\omega, \xi \in \mathbb{R}$, and evanescent modes, with w or ξ complex. Thene results form the basis of definitions of rightgoing and leftgoing, atrictly rightgoing and strictiy leftgoing, and stationary solutions to Q, which will be central to our later work on boundaries, interfaces, and stability. Section 2.1 then goes on to apply these results to the clase of three-point linear multistep formulas, and Section 2.5 extenda them to diagonalizable vector difiference models.

We begin by introducing space and time shift operators:
Defn. The shilt operators K and Z arc defined by"
"To avoid abuse of notation, we would have to be consiatcat as to whether v in a doubly indexed sequence, a time nequence of apace sequenten $(v,)^{m}$, or a apace acquence of time mequences $\left(v^{n}\right)$, Unfortunatily any such lixed choice is too cumbersome to be practical, and we will apply K freely to any object that ham a npatial index, and Z to any object with a time index.

$$
K v_{j}^{n}=v_{3+1}^{n} \quad Z v_{j}^{n}=v_{j}^{n+1} \quad \quad \|
$$

Let us deline complex numbere a, z by

$$
\begin{equation*}
x=e^{-x t h}, \quad z=x e^{m \omega t} . \tag{2.1.1}
\end{equation*}
$$

Then the Fourier mode (1.1.1) takes the form

$$
\begin{equation*}
v_{i}^{n}=e^{\alpha(-1-\ell a)}=x^{n} \alpha^{\prime} \quad(x=j h, t=n k), \tag{2.1.2}
\end{equation*}
$$

and it is an eigenfunction of K and Z with eigenvalues κ, z. The case in which ε of w is real corresponds to the situation $|\boldsymbol{x}|=1$ or $|x|=1$, respectively. In this dissertation we will use ℓ, ω or k, z, of both, according to convenience. Thie use of κ and z follows the stability work of Kreius and colleagues [Gu72,etc.], and we have introduced K and Z by andogy. The remaining ideas of this sectiun are abo heavily influenced by those of [Gu72].

A general a +2 -level inite difference model Q of (1.1.1) with conalant ceeficiente can be written

$$
\begin{equation*}
Q_{-1} \theta^{n+1}=\sum_{n=0}^{\infty} Q_{0} v^{n-*} \text {. } \tag{2.1.3}
\end{equation*}
$$

where each $Q_{\text {. }}$ ie a apatial difference operator.

$$
\begin{equation*}
Q_{\theta}=\sum_{i=-\infty}^{+}{ }_{4, \theta} K^{\prime} \quad(-1 \leq 0 \leq 0) \tag{2.1.4}
\end{equation*}
$$

We asaume that Q_{-1} has a bounded inverse in \boldsymbol{C}_{2}. If $Q_{-1}=1$ (2.1.3) is explicit otherwise it is implicit. We assume that $\lambda=k / h$ ia fixed and that the coeflicienta $a_{\text {so }}$ depend on λ, but not on h and k independently. The integera $\ell \geq 0$ and $r \geq 0$ define how far left and right the stencil extends.

Carrying the shift operator notation further, we can write Q in the form

$$
\begin{equation*}
P(K, Z) v=\left[\sum_{,=-2}^{\infty} \sum_{e=-1}^{\dot{0}} a_{,=} K^{\prime+1} Z^{*-\infty}\right] v=0, \tag{2.1.5}
\end{equation*}
$$

where P is a bivariate polynomial of degree $\ell+r$ with respect to K and degree $a+1$ with respect to Z. The dispersion relation for Q is then aimply

$$
\begin{equation*}
P(\kappa, z)=0 . \tag{2.1.6}
\end{equation*}
$$

48

In this notation Lf takes the form

$$
\left[K\left(Z^{2}-1\right)-\lambda a Z\left(K^{2}-1\right)\right] v=0
$$

or equivalently,

$$
\begin{equation*}
\left[\left(z-z^{-1}\right)-\lambda a\left(K-K^{-1}\right)\right]_{v}=0 \tag{2.1.7}
\end{equation*}
$$

and ite dispersion relation (1.1.7) becomea

$$
\begin{equation*}
z-\frac{1}{z}=\lambda a\left(\kappa-\frac{1}{\pi}\right) \tag{2.1.8}
\end{equation*}
$$

Similarly LW has the shift operator form

$$
\left[z K-K-\frac{\lambda a}{2}\left(K^{2}-1\right)-\frac{(\lambda a)^{2}}{2}\left(K^{2}-2 K+1\right)\right] v=0
$$

that is,

$$
\begin{equation*}
\left[z-1-\frac{\lambda a}{2}\left(K-K^{-1}\right)-\frac{(\lambda a)^{2}}{2}\left(K-2+K^{-1}\right)\right] v=0 \tag{2.1.9}
\end{equation*}
$$

In these inatances the space and time parts of the difference formula are independen. We define in general

Defn. The formula Q is separable if it can be written in the form

$$
\begin{equation*}
\| f(Z)-g(K) \mid v=0 \tag{2.1.10}
\end{equation*}
$$

where f and g are rational functions. //
LF, IW, and many other difference formulas used in practice are separable. For example, CN can be written

$$
\begin{equation*}
\left[\frac{Z-1}{Z+1}-\frac{\lambda a}{1}(K-1 / K)\right] v=0 \tag{2.1.11}
\end{equation*}
$$

and LF4 has the form

$$
\begin{equation*}
\left[2-1 / 2-\frac{4 \lambda a}{3}(K-1 / K)+\frac{\lambda a}{6}\left(K^{2}-1 / K^{2}\right)\right] v=0 . \tag{2.1.12}
\end{equation*}
$$

Any difference formula based on the method of lines, in which the x discretisation is carried out before the t discrelization, will also be separable. An exampie of a nonseparable scheme is I.Fd ($\mathbf{5 1 . 1}$), which has the shift operator form

$$
\begin{equation*}
\left[z-1 / Z-\lambda a(K-1 / K)-\frac{\epsilon}{1 B Z}(K-1)^{2}(1-1 / K)^{2}\right] v=0 . \tag{2.1.13}
\end{equation*}
$$

Separable schemes have the property that their group velocitic factor into a produe:

$$
\begin{equation*}
C(\omega, \zeta)=C_{1}(\omega) C_{3}(\xi) . \tag{2.1.14}
\end{equation*}
$$

We have observed this for particular examples in (1.2.5), (1.2.7), and (1.2.8). The reseon for the factorization in general is that if Q is reparable, its dispersion relation can be written

$$
f\left(e^{i \omega k}\right)=g\left(e^{-i(\lambda)}\right.
$$

Differentiation give

$$
i k e^{i \omega k} f\left(e^{i \omega k}\right) d \omega=-i h e^{-i \ell h} \delta^{\prime}\left(e^{-\Delta \epsilon \hbar}\right) d \xi \text {. }
$$

and hence by (1.2.3),

$$
C=\frac{d \omega}{d \xi}=-\frac{1}{\lambda}\left(e^{i \omega t} f^{\prime}\left(e^{i \omega k}\right)\right)^{-1}\left(e^{-i e n} g^{\prime}\left(e^{-\lambda(\lambda)}\right) .\right.
$$

We will be extensively concerned with the relation between κ and z impoeed by the dispersion relation (2.1.8). To begin with, suppose that x is fixed. We ank the question: what solutions of the form

$$
\begin{equation*}
v_{j}^{n}=\kappa^{2} \psi_{n 1} \tag{2.1.15}
\end{equation*}
$$

where $\left\{\psi_{n}\right\}$ is a sequence in n, does Q support? By (2.1.5), (2.1.15) is a solution of $Q_{v}=0$ if and only if

$$
\begin{equation*}
P(\kappa, Z) \psi_{n}=0 . \tag{2.1.16}
\end{equation*}
$$

This is an ordinary difference equation for to, and the solutions to such equations are well known:

Theorem 2.1.1. Let $\kappa \in \mathbb{C}$ be arbitrary, and astume that the polynomial

$$
P_{n}(z)=I(\kappa, x)
$$

 denote its distinet roots, with 2_{4} of multiplicity ν_{1}, hence $\sum_{i=1}^{\mu} \nu_{1}=a+1$. Then the $s+1$ sequences

$$
\begin{equation*}
v_{n}=z_{1}^{n} n^{4} \quad 1 \leq 1 \leq \mu, \quad 0 \leq \delta \leq \nu_{1}-1 \tag{2.4.17}
\end{equation*}
$$

50
are linearly mdependent solutions of (2.1.16), and they apan the linear apace of all such solutions.

Proof. |O:72|. [4.2.
Remerk. By assumption Q_{-1} is invertible in $\boldsymbol{\ell}_{\mathbf{2}}$, from which it follows that for $|\kappa|=1$ (and hence, by continuity, for $|\kappa|$ sufficiently close to 1), the assumption of exact degree +1 must hold.

Now let un switch the roles of k and z, and suppose \boldsymbol{z} is fixed. Corresponding to (2.1.15), we may ask, what solutions

$$
\begin{equation*}
v_{j}^{n}=z^{n} b_{j} \tag{2.1.18}
\end{equation*}
$$

where $\{\phi$,$\} in a sequence in j$, does Q support? For this one has corresponding to (2.1.18) the equation

$$
\begin{equation*}
P(K, z) \phi,=0 \tag{2.1.10}
\end{equation*}
$$

which is called the retalvent equation for Q (|Gu72], eq. (4.1)). Again we have an ordinary difierence equation whose solution can be characterized completely:

Theorem 2.1.2. Let $\mathrm{z} \in \mathbb{C}$ be arbitrary, and asume that the polynomial

$$
P_{R}(\kappa)=P(\kappa, s)
$$

w of exect degree $\ell+r$. Let $\left\{\kappa_{1}\right\}_{1 \leq i \leq \mu}$ denote its diatinct roots, with n_{n} of multiplieity ν_{1}, hence $\sum_{1=1}^{m} \nu_{1}=\ell+r$. Then the $\ell+r$ sequences

$$
\begin{equation*}
\phi_{i}=\pi_{i}^{j} j^{d} \quad 1 \leq i \leq \mu, \quad 0 \leq 6 \leq \nu_{i}-1 \tag{2.1.20}
\end{equation*}
$$

are hinearly independent solutions of (2.1.19), and they apen the bineer apece of ell such sotutions.

Preof. Same as for Thm. 2.1.1. I
This theorem, which we will use more often than Thin. 2.1.1, providee a complete breakdown of all molutions with regular time behavior that Q ean support. In later eections the analydia usually cornes down to determining which combinations of thene solutions are permitted by particular choices of boundary or interface conditions.
3.2 Cauchy stability and dissipativity

We will be concerned only with difference formulas that are \boldsymbol{t}_{2}-stable in the absence of boundarics or interfaces. The foliowing definition is the same as the definition of I_{7} stability in $\$ 1.4$, except that L_{2} is replaced by ℓ_{2} and we now cover the case of multilevel formulas.

Defn. Q in Cauchy itable if for each $T>0$, there exists a constant $C_{T}>0$ such that

$$
\left\|v^{n}\right\|_{2} \leq C_{T} \sum_{e=0}^{\dot{\infty}}\left\|v^{\sigma}\right\|_{2}
$$

for all n and k satisfying $n k \leq T$, where $\|\cdot\|_{2}$ denotes the norm defined by

$$
\begin{equation*}
\|\phi\|_{2}^{2}=h \sum_{,=-\infty}^{\infty}|\phi,|^{2} \tag{2.2.1}
\end{equation*}
$$

The results of the last section lead to necesary conditions for Cauchy stabitity. Here and in later sections, when we apeak of connections between κ and z, it ahould be understood that we are concerned only with pairs (κ, z) that antisfy the dispersion relation (2.1.6).

Defn. The model Q satisfies the von Neumann condition if $|\kappa|=1$ implies $\mid x_{i}^{\prime} \leq 1 . / /$

Theorem 2.2.1. A necesaery condition for Cauchy stability in that Q setiofiee the won Newmann condition. A further necessary condition is that $|\boldsymbol{x}|=\mid \boldsymbol{\beta}=1$ implies that z is aimple."

Proof. If the von Neumann condition docs not hold, then by Thm. 2.1.1, Q admite a solution

$$
\nabla_{j}^{n}=\pi^{j} z^{n}, \quad n \geq 0
$$

with $|x|=1$ and $|z|>1$. If the simple root condition does not bold, the same theorem shows that Q admite a solution

$$
\eta_{y}^{n}=n \kappa^{j^{n}}, \quad n \geq 0
$$

with $|x|=|x|=1$. It follows that in either eace the nth powers of the amplification matrices corresponding to the Fourior mode $\&$ with $e^{-i \ell k}=n$ grow unbouadedily as
-In fact in the present conalant-coefficient siltalion, the conditions given are aleo auflicieat for stability. But we will not need this result.
$n \rightarrow \infty$ for fixed k. Therefore it siso grow unboundrdly as $k \rightarrow 0$ for fixed T. Since such amplification matrices are continuous functiont of ε, Cauchy instatility follow: by Fourier analysin (see 95.4 of [Ri67]).

The definition of dissipativity is a further strengthening of the von Neumann condition:

Defn. Q is disoipative or r-disaipative if it satisfies tne von Neumann condition, and moreover. $|\kappa|=1, \kappa \neq 1$ implies $|x|<1$, or equivalently, $|\kappa|=|z|=$! implies $\kappa=1$. It is ntrictly nondissipative or unitary if $|\boldsymbol{x}|=1$ implien $|x|=1$. "
Note that atrict nondissipativity is a stronger condition than the negative of dissipativity. Most formulas are one or the other, but an example of one that falls between is $\mathrm{BE}(\mathrm{g} 1.1)$. For $|\kappa|=1, \kappa \neq \pm 1, \mathrm{BE}$ hat $|x|<1$, but the mode $\kappa=-1$, $z=1$ keepa it from heing \boldsymbol{x}-dissipative.

In practice, what one often needs is a slightly stronger property:
Defn. Q is totally dissipstive if it astisfies the von Neumann condition and moreover, $|\kappa|=|a|=1$ implies $\kappa=z=1$. ,

For two-level achemes $(0=0)$, we will show in a moment that x-diasipativity and total dissipativity are equivalent. An $-\cdots m$! schemes the situation is different: 1 ,fd ($\$ 1.1$) is z - lissipative, but it admits the mode $\kappa=1, z=-1$, so it is not tolally dissipative. Th. fact that x-dimapativity does not ensure total dissipativity for multilevel schmes causes occasional confusion and error in papers on finite difference methods, which is why we choose to add the prefix x.

In analogy, one might define a t-dissigative formula to be one for which $|\boldsymbol{x}|=$ $1 z \mid=1$ impliea $z=1$. For generality in later applications (see especiaily 56.2), we choose to make the definition slightly weaker- the minimum necrsary so that x - and p- dissipalivity togeher imply total dissipativity. The following delinition is closely related to condition (3.7) :a the paper $[\mathrm{GuR} \mid]$ by Coldberg and Tadmor, and to the notion of tangential dissipativity introduced by Coughran in [Co80].

Defn. [Gosl], eq. (3.7)). Q is -dienipative if $\kappa=1,|z|=1$ implies $z=1 . / /$ Thus, for example, BE is t-dissipalive but not x-dissipative.

Theorem 2.2.2. Q is totally dissipative $i /$ and only if it is both x-dissipative 53

and t-disaipative

Proof. Both total dissipativity and \mathbf{x}-dissipativity require the von Neumann condition, so that part of the equivalence holds. What remains is to show that $\mid=$ $|\kappa|=1 \Rightarrow z=\kappa=1$ is equivalent to $|x|=|\kappa|=1 \Rightarrow \kappa=1$ plun $\kappa=1,|x|=$ $1 \Rightarrow z=-$, This is immediate.

The example of LFd showed that \boldsymbol{r}-dinapativity doen not imply e -disapativity However, for two-level schemes one hat

Theorem 2.2.3. Any consictent two-level formule Q is \mathbf{i}-disoipative. Any consistent two level z-dissipstive formule Q is totally disaipative.

Proof. By consistency, Q must have a solution $\kappa=z=1$, and if it is a two-leved formula, then by Thm. 2.1 .1 there can only be a single z for each x, wo this in the only solution with $x=1$. Therelore the condition of t-dissipativity holds trivially. If \mathcal{Q} in also x-dissipative, then it is totally dissipative by Thm. 2.2.2.

One readily sees that dissipativity precludes the possibility chat a wheme is reversing:

Theorein 2.2.4. If Q in consistent and x-diosipative, it cannot be x-reveraing. $\| Q$ is consistent and t-disipative, it cannot be t-reversing.

Proof. If Q is consistent, then $\kappa=z=1$ is a solution with $C=-a \in \mathbb{R}$. For Q to be r-reversing, it must therefore admit the solution $x=-1, z=1$. This contradicts the definition of an x-dissipative formula. Similarly for the t case.

For a scalar difference nodel with constant corfficients, dissipativity almost completely determines the behavior and stability of solutions to the Cauchy problem in the ℓ_{2} or L_{2} nerins. In the two-level casc, its influence is complete. Each Fourier component κ will lose L_{2} encrgy at the rate $i z(\kappa)_{i}^{n}$, and by Parseval's formula, the overall solution will decay acrording to the combination of theoe effects. One might say that dissipation acte on individual wave numbers independently, and the L_{2} norm reasures thert independently. For problems with variable coeflicienta, two important theorerns of Krciss [Ri67, 56] nhow that dissipativity still goes a long way lowarda ensuring L_{2}-stability.

Dispersion, on the other hand, has to do with the interaction of wave numbert, and the resulte of $\$ 1.1$ show that this interaction must be taken into account for stabitity in L_{p} sorins other than L_{2}. We will see that the same is true, even the in L_{2}

ofti. for probiems containing toundaries of interfaces.

2.3 Lefteging and rightgoing solutions

We now have the material in place to return to group velocity and give it a fuller explanation. First, the following theorem establishea that "group welocity alwaya makes sense"- - for any wavelike mode, the derivative (1.2.3) exists and is real.

Theorem 2.3.1. Let Q be a Cauchy stcaic scalar difference formala with zonstant corfficienta, a described in 52.1. Suppose that Q admits a sohution

$$
\begin{equation*}
v_{1}^{n}=z_{0}^{n} \kappa_{0}^{1}=e^{2\left(m_{0} t-f_{0} x\right)} \quad(x=j h, t=m k) \tag{2.3.1}
\end{equation*}
$$

wrth $\left|z_{0}\right|=\left|\kappa_{0}\right|=1$, i.e. $\omega_{0}, \xi_{0} \in \operatorname{RR}$. Then
(i) In a newhborhood of $\left(\kappa_{0}, z_{0}\right)$, z io a aingle valued analytic function of κ.
(ii) The group velocity derivative $C=d \omega / d \xi$ existo at (x_{0}, z_{0}), and is real.
(iii) $C\left(\kappa_{0}, z_{0}\right)=0$ if and only $i f x_{0}$ is muttiple (i.e. a multiple root of the polynomial $P_{A_{0}}(\kappa)=P\left(\kappa, z_{0}\right)$ of 52.1$)$.

Proof. If Q admits the solution (2.3.1), then $P\left(x_{0}, z_{0}\right)=0$, where P is the hi.ariate polynomial defined in (2.1.5). By the semark following Thm. 2.1.1, the univariak polynomial $P_{A}(z)=P(\alpha, z)$ has exact degree $\theta+1$ for all κ in a neighborhood of $\kappa=\alpha_{0}$, and by the definition of r, its coefficients are analytic functions of κ (in fact polynomials). Moreover since Q is Cauchy stable, Thm. 2.2.1 implies that \Rightarrow is a simple root of $P_{n-\infty}(s)$. From these facte it follows by the implicit function throrem that in a ncighborhood of (κ_{0}, z_{0}), the equation $P(\kappa, x)=0$ determines a unique analytic function $x(\kappa)$, satisfying

$$
\begin{equation*}
\left(z-x_{0}\right)=A\left(\kappa-x_{0}\right)^{\alpha}+O\left(\left(\kappa-x_{0}\right)^{\alpha+1}\right) \quad A \neq 0 \tag{2.3.2}
\end{equation*}
$$

for some $A \in \mathbb{C}$, where $\nu \geq 1$ is the multiplieity of κ_{0} at a root of $P_{s}(\kappa)=P\left(\kappa_{c}, \varepsilon_{0}\right)$. This proves (i).

Hy differentiating (2.1.1), one oblaine the formulea

$$
\begin{equation*}
d x=-i h x d \xi, \quad d x=i k z d u . \tag{2.3.3}
\end{equation*}
$$

Sinee we have shown that ds/dx exiate at (n_{0}, x_{0}), it follown that $C\left(n_{m}, z_{0}\right)$ exiats and is given by the formuls

$$
\begin{equation*}
C\left(x_{0}, x_{0}\right)=\left.\frac{d \omega}{d \xi}\right|_{80,00}=-\left.\frac{1}{\lambda} \frac{d z}{d x} \frac{\pi}{z}\right|_{\pi 0, x_{0}} . \tag{2.3.4}
\end{equation*}
$$

Hy $; 2.3 .2), r\left(\alpha_{0}, z_{0}\right)=0$ if and only if $u \geq 2$, which proves (aii).
Assume on the other hand $u=1$, so that $z^{\prime}\left(x_{0}\right) \neq 0$. and $(2.3 .2)$ ant: (2.3.4) give
$C\left(x_{0}, z_{0}\right\}=-\frac{1}{\lambda} A \frac{x_{0}}{z_{0}}$.
(2.3 5)

Figure 2.1 indicatea the viluation-the function $z(x)$ mapa a neighborhood of wo conformally onto a neighborhood of x_{0}.

For Cauchy stability the von Neumann condition must be satisfied, which meana that $z(\kappa)$ must map $|\kappa|=\mid$ into $|z| \leq 1$. Obviously, this can onty happen if $z(\omega)$ mape the
 Lie Figure. This tangency condition is the same as the condition that the right hand side of (2.3.4) is real. This completes the prool of (ii).

The significance of this theorem is that it applies to all wavelike solutions, including those involving defective roote x and those admitted by formulas that are 2 - or t-diptipative. For example, BE admits the wave (-1) and LFd admite the wave $(-1)^{n}$, as mentioned in 51.4 , but most solutions with $|\kappa|=1$ under thene formulas have $|x|<1$. Thm. 2.3 .1 shows that neverthelean, these wavon have well defined group velocilics. (For another example, sec the lax-Friedrichs scheme listed in App. A.) Though we will not give any delails until Appendix B, the alationary phase argument of $\mathbf{5} 1.2$ or other related argumente confirm that these group velocities correctly describe the propagation of energy in these modes.

What Thm. 2.3.1 docs not do is assign a group.speed to signals with $|x| \neq 1$ or $|\kappa| \neq 1$. We will now show that for $|z| \geq 1$ and $|\kappa| \neq 1$, there is a aperd of tramalation

56

C' naturally aseociated with a aignal $z^{n} \kappa^{\prime}$, and this apeed approactices C in the limit

Let Q again be a Cauchy stable formula an in 5:.1, and suppose it admila a solution

$$
\begin{equation*}
v_{j}^{*}=r^{n} \phi_{j}=z^{n} \kappa_{j} j^{6} \tag{2.3.6}
\end{equation*}
$$

an deacribed in Thm. 2.12, with $|z|>1$. By Thm. 2.2.1, we must have either $|\boldsymbol{x}|<1$ or $|\kappa|>1$. Let us suppose $|\kappa|<1$, and ascume firat $\delta=0$. Now from one atep to the next, the envelope $|v$,$| increases by the fixed factor |a|$ at all pointa j. However, we may equivalently regard thit as a rightward tramelation, milluatrated in Fig. 2.2m.

In order for $|\boldsymbol{y}|$ to increage by the fartor $|\boldsymbol{z}|$, this translation must cover a distance Δx ant:afying

$$
|x|^{-\Delta \pi / \Lambda}=|x|_{1}
$$

that ins

$$
\Delta x=-h \frac{\log |z|}{\log |x|}
$$

Since the time suep hat length $k=\lambda h$, this amounts to rightward molion at a apeed

$$
\begin{equation*}
\delta=\frac{\Delta t}{\Delta t}=-\frac{1}{\lambda} \frac{\log |z|}{\log |x|} . \tag{2.3.7}
\end{equation*}
$$

For $|x|>1$, illustrated in Fig. 2.1b, the situation is similar and we have lehward motion at a speed given by the same formula. E4, (2.3.7) also applies to signala with $|z|=1$ and $|\boldsymbol{a}| \geqslant 1$, where it gives the reault $\delta=0$.

In the defective situation \& ≥ 1, we can still view the evolution with time as a rightward of Ieflward motion, now coupled with a lower-order change of shape. One
way to make this motion quantitative would be to mensure the inerease in the lota t_{2} energy to the right of a fixed point $;$ (or to the left, for a leftgoing signal) from one step to the next (sce $\mathfrak{\xi 3} 3$). However, we will no' pursue this.

Here is the result on $\dot{C} \rightarrow C$ and related matters:
Theorem 2.3.2. Let Q be a Cauchy stable difference formule as in Thim. 2.s.1, and suppose spain that Q admits \leq solution

$$
\begin{equation*}
v_{i}^{n}=z_{0}^{n} \propto_{0}^{j} \tag{2.3.8}
\end{equation*}
$$

with $\left|\kappa_{0}\right|=\left|x_{0}\right|=1$. Let κ_{0} have muhtiphicity $\nu \geq 1$. Let \cap denote the intergection of $\{z \in \mathbb{C}:|z|>1\}$ with a neighborhood of $z=z_{0}$ chosen omall enough to that for z in that neighbothood, the map $z(\kappa)$ of Thm. 2.9. 1 defines v continuoue knetione $\left\{\kappa_{1}(z)\right)_{1 \leq i \leq v}$ with $z_{2}(z) \rightarrow \alpha_{0}+z \rightarrow z_{0}$.
(i) For eech i, either $\left|\kappa_{1}(z)\right|<1 \forall z \in \cap$ or $\left|\alpha_{0}(z)\right|>\mid \forall x \in \cap$. Let ν_{r} denote the number of κ^{\prime}, in the former catepory and ν_{t} the number in the latter (hence $v=$ $\left.\nu_{l}+v_{r}\right)$. Then if ν is even, $\nu_{l}=\nu_{r}=\nu / 2 ; v_{\nu} \nu$ is odd, either $\nu_{l}=(\nu+1) / 2$ and $\nu_{v}=(\nu-i) / 2$, or the reverse.
(ii) Let $\dot{C}_{i}(z)$ denote the tranalation aped (2.5.7) for the aignel $z^{n} \kappa_{i}^{\prime}(z)$. Then

$$
\begin{equation*}
\lim _{\substack{x \in \mathfrak{\eta}^{\infty}}} C_{0}(x)=C\left(x_{0}, x_{0}\right) \tag{2.3.9}
\end{equation*}
$$

for each i.
(iii) (Perturbation euat) If $C\left(\kappa_{0}, z_{0}\right) \neq 0$ (oo that by $T h m .2 .5 .1, \nu=1$, and we can write $\alpha(z)$ for $\kappa_{1}(z)$), then $C\left(\kappa_{0}, x_{0}\right)>0$ if $|\kappa(z)|<1$ for $z \in \cap$, and $C\left(x_{0}, x_{0}\right)<0|\kappa(x)|>1$ for $z \in \Omega$. That is, $C\left(\kappa_{0}, x_{0}\right)$ is negative $V \nu_{t}=1$ and positive if $\nu_{r}=1$.

Proof. The result $\left|\kappa_{1}(z)\right| \neq 1$ for $z \in U$ follows from the von Neutnann condition together with the fact that $\alpha_{1}(z)$ is a rontinuous function of 2 . The rest of claim (i) is implied by (2.3.2) (cf. Thm. 9.2 of [Gu72]).

The proof of (ii) requires only an algebraic verifiration. If x_{0} is multiple, then (2.3.2) and (2.3.7) imply $\lim _{* \rightarrow A_{0}} C_{0}(z)=0$, the corfeet value. If κ_{0} is simple, then by (2.3.5) and (2.3.7), what needs to be shown amounts to

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\log |z|}{\log |\kappa|}=A \frac{\kappa_{0}}{x_{0}} \tag{2.3.10}
\end{equation*}
$$

where A is the constant of (2.3.2). For $\kappa \in \kappa(\Omega)$, let us wrile

$$
\kappa=\kappa_{0}\left(1+e e^{14}\right)
$$

58

with, >0 Tlwin by (2.3.2).

$$
z=z_{0}+A \kappa_{0} c e^{+}+O\left(e^{2}\right)=z_{0}\left(1+A \frac{\kappa_{0}}{z_{0}} e e^{2 \phi}\right)+O\left(e^{3}\right) .
$$

These two formulas itmply

$$
\log |x|=\varepsilon \cos \phi+O\left(\epsilon^{2}\right)
$$

and, since $A \kappa_{0} / 2_{0}$ is known to be real by (2.3.5),

$$
\log \left\lvert\, z j=A \frac{\kappa_{0}}{z_{0}}\left(\cos \phi+O\left(\epsilon^{2}\right)\right.\right.
$$

By laking the ratio of these equations, one obtains (2.3.10), and this proves (ii) Claim (iii) is a corollary of (ii). using (2.3.7). I
The otrervation $\delta \rightarrow C$ amounts $t o$ our third explanation of group velocity, to supplement those presented in $£ 1.2$ (beating of two waves; stationary phasc). The hdea is simple: since a wave $\left.e^{\text {(wi-f(}} \mathbf{y}\right)$ har uniform envelope 1 , one cannol see how fasd the churlope is moving; as soon as ξ is made slightly complex, however, the envelope arguires shape and its motion becomes apparent. The perturbation test specializes thin to the statenient that if all one cares about is the direction of motion, then all one must chrek is whether $|x|<1$ or $|\kappa|>1$ for $|z|>1$.

Our goal in this section has been to net up definitions of leftgoing and rightgoing signala, which will be of critical importance. fiefe they are.

Defn. Let Q admit a solution v of the form (2.3.8) with $|x| \geq 1$ and $\delta \leq$ $\max \left\{\nu_{l}, \nu_{k}\right\}$ (defined in Thme. 2.3.2).
(i) if $|z|>1$ and $|\kappa|<1$ (resp. $|\kappa|>1$), or if $|z|=|\kappa|=1$ and $C(\kappa, z)>0$ (resp. $C(\kappa, z)<0$), then v is atrietly rightgoing (resp. atrictly leffgoing).
(ii) If v is atrictly rightgoing (resp. strictly leftgoing), or if $|z|=1$ and $|x|<1$ (reap. $|\kappa|>1$), or if $|z|=|\kappa|=1$ and $C(z, \kappa)=0$ and $\delta \leq \nu_{p}$ (resp. $\delta \leq \nu_{c}$), then v is rightgoing (rcap. heftecing).
(iii) If v is both rightgoing and leftgoing, it is atationary. (That in, v is atationary if $|\kappa|=|x|=1, C(\kappa, x)=0$, and $\delta \leq \min \left\{\nu_{\varepsilon}, \nu_{v}\right)$. $) / /$

These definitions divide the sot of colutions (2.3.0) with $6 \leq(\nu+1) / 2$ into nine clanes, ranging from the atrictly fettgoing mode of Fig. 2.2b to the strietly rightgoing mouc of Fig. 2.2n. Table 2.1 aummarizen thia clamafication. We will sec in 54 and 58
 instability for initial boundary value problems
 2.3.2i, are perhaps the most difisule to grast Tatie 2: riarfica the vituation by
 in the sicinity of a point with ξ we \mathbb{R} The figure maken it cipas why it the case of ν odd, the numbers of leftgoing and rightgong murles are unequal

Tablez: 2.1

TABLE 2.2

Dispersion curve $-(x)$	multiplicity of κ_{0}	$C\left(\kappa_{0}, z_{0}\right)$	Leftgoing modes	Rightgoing modes
	1	>0	-	κ^{j}

61

2.1 Applieation: three-point linear multistep formulat

In this section we study the class of acparable difference modela of (1.1.1) with spatial discretization

$$
\begin{equation*}
\frac{\partial}{\partial x} \approx \frac{1}{2 h}\left(K-K^{-1}\right) . \tag{2.4.1}
\end{equation*}
$$

These formulas have been considered previously by Beam, Warming, and Yee |Be79, Be8i]. In examining them we will apply virtually all of the ideat that have been introduced so far, and in later sections they will serve repeatedly as examplea. (See especially 53.2 and f6.4.)

We define these schemes by means of ahif operatora:

- Defn. A three-point linear multistep formula for (1.1.1) is a separable mealar difference formula

$$
p(Z) v_{j}^{n}=\frac{a \lambda}{2} \sigma(Z)\left(K-K^{-1}\right) v_{j}^{*},
$$

where ρ and σ are polynomiala in Z and Z^{-1}. //
The notation and terminology come from the theory of difference methods for ordinary differential equations: if (I.1.1) is discretized in space by meana of (2.4.1), one obtains the system of equations

$$
\frac{d u_{j}}{d t}=\frac{a}{2 h}\left(u_{j+1}-u_{j-1}\right) \quad j \in Z,
$$

and (2.1.2) is the fully discrete formula obtained if one solves this by a linear multiotep method with characteristic polynomials ρ and σ [Be81].

Three of the schemea we have considered in previous sections are three-point linear multistep formulaz:

$$
\begin{array}{lll}
L F: & \propto(Z)=\frac{1}{2}\left(Z-Z^{-1}\right), & \sigma(Z)=1 \\
C N: & \rho(Z)=Z-1, & \sigma(Z)=\frac{Z+1}{2} \\
B E: & d(Z)=Z-1, & \sigma(Z)=Z
\end{array}
$$

The others we have looked at-LW, LF 4, LFd-do not fall into this clasa. For further exatmples sce $[\mathrm{Bc} 79]$.
lect us now examine the propertien of a threc-point lincar mullistep acheme that we assume to be Cauchy stable and consistent with (t.1.1).

Dupersion relation (\$1.1). Front (2.1.2) we oblain immediately the dispersion relation

$$
\begin{equation*}
\frac{p(z)}{\sigma(z)}=\frac{a \lambda}{2}\left(x-\frac{1}{\kappa}\right), \tag{2.4.3}
\end{equation*}
$$

or by (2.1.1),

$$
\begin{equation*}
\frac{\rho\left(e^{2 \omega t}\right)}{\sigma\left(e^{i \omega t}\right)}=-i a \lambda \sin \xi h . \tag{2.4.1}
\end{equation*}
$$

Orders of dxspersion, dissipation, acturacy (fl.1). The spatial discretization (2 1.1) has ordet of dispersion $a=3$, ordet of dissipation $\beta=\infty$, and order of accurary $\min \{\alpha, \beta\}-1=2$. Except in degencrate cases (e.g. LF with a $\alpha=1$), Q rantot do better than this, so it will have $a=3$ (consistency rules out $\alpha=1$), $2 \leq ; \leq \infty$. and opder of acruracy 1 or 2 depending on whether β is 2 or ≥ 4. The consisteney robdition $\alpha, \beta \geq 2$ can also be written

$$
\begin{equation*}
\frac{\rho(z)}{\sigma(z)}=(z-1)+O\left((z-1)^{2}\right) \quad \text { as } z \rightarrow 1 . \tag{2.4.5}
\end{equation*}
$$

Group velocity ($\$ 1.2$). Differrntiation of (2.4.3) gives

$$
\left[\frac{p^{\prime} \theta-\alpha a^{\prime}}{\sigma^{2}}\right] d z=\frac{a \lambda}{2}\left(1+\kappa^{-2}\right) d x,
$$

which by (2.3.1) gives the group speed

$$
\begin{equation*}
C=-\frac{a}{2}\left(\kappa+\frac{1}{\kappa}\right)\left[\frac{\sigma^{2} / x}{\rho^{\prime} \sigma-\rho \sigma^{2}}\right] \tag{2.4.6}
\end{equation*}
$$

for any wave with $|x|=|z|=1$. From this and (2.1.1), of from (2.4.4) and (1.2.3), one ubtains equivalently

$$
\begin{equation*}
C=-a i k \cos \xi h\left[\frac{\sigma^{\prime}}{\dot{\rho} 0-\infty^{\prime}}\right], \tag{2.4.7}
\end{equation*}
$$

whete $\dot{\rho}$ denotes $d^{\prime} \phi\left(e^{+w k}\right) / d \omega$, and similarly for \dot{d}.
Reversing properties ($\$ 1.5$). If κ, z satisfy (2.1.3) with $\pi=1$, then the same holds with $x=-1$. Moreover by (2.1.6), the latter solution has the negative of the group velocity of the former. Therefore Q is x-reversing. One eannot determine whether Q is t-erversing without further information on ρ and σ. (For example, LF is t-reversing, but CN and HE are not.)

Separability ($\$ 2.1$). That Q is separable follows from the definition (2.4.2). Eqs. (2.4.6) and (2.4.7) confirm the consequense (2.1.14), that C factors into the product of a spatial and a temporal term.

63

Catuchy stabulaty (62.2). 13) assumption Q is Cauchy stable, which means that p and a must be such that $|z| \leq 1$ whenever $|\kappa|=1$, with simple roots z for any α, z with $|x|=|z|=1$.
 and from (2.4.3) it follows that $\kappa=-1, z=1$ is also a solution. Therefore Q cannot be x-dissipative, or totally dissipative. (This also follows from Thm, 2.2.4 and the fact that Q is z-reversing.) It can however be t-dissipative, depending on ρ and a, and will necessarily be so if it in a two-level scheme such as CN or BE (Thm. 2.2.3).

Leftgong and rightgoing solutions ($\$ 2.3$). Frotn (2.4.3) follows the quadratic equation for κ,

$$
x^{2}-\frac{2 \rho(z)}{a \lambda \sigma(z)} x-1=0
$$

and from this it is evident that for all $z \in \mathbb{C}$ there are two roots. say κ_{ℓ} and κ_{v}, satisfying

$$
\begin{equation*}
k_{\mathrm{i}} \kappa_{r}=-1 . \tag{2.4.8}
\end{equation*}
$$

For $|z|>1$ these must have modulus different from 1 , so we can write

$$
\left|\kappa_{r}\right|<1<\left|\kappa_{t}\right| \quad \text { for }|z|>1 \text {, }
$$

$$
(2.4 .9)
$$

and hence by continuity,

$$
\begin{equation*}
\left|x_{+1}\right| \leq 1 \leq\left|\kappa_{1}\right| \quad \text { for }|z| \geq 1, \tag{2.4.10}
\end{equation*}
$$

The subacripts ℓ and + refet to "leftgoitig" and "rightgoing", respectively; in fact (2.4.8) implies that the waves $\kappa_{1}^{j} z^{n}$ and $\kappa_{r}^{1} z^{n}$ are strictly left- and rightgoing, respectively, for $|x|>1$. Fer $|z|=1$ the strictness will be lost if $\left|\alpha_{\ell}\right|>1$ and $\left|\kappa_{0}\right|<1$, but it will be preserved if $\left|\kappa_{e}\right|=\left|\kappa_{r}\right|=1$, unless $C=0$, which by Thm. 2.3.1 and (2.4.8) will happen if and only if $\kappa_{r}=\kappa_{t}= \pm i$. It any case there is exactly one leftgoing value $\kappa_{f}(z)$ and one rightgaing value $\kappa_{7}(z)$, continuoualy defined for $|z| \geq 1$.
-••

In many cases where one picks, say, JF to illustrate a point about difference models, it is really its apatial discretization that the illustration depends on, and any three point linear multistep formula will show the same thing. With this in mind we have deacribed this class ph fly to avoid having to preaent future examples in 200 limited a context.

64

For some applications we will be interested in two subelases of the $x t$ of three point linear multistep formulas. The following defintions are derived fron the theory of linear multistep methods for ordinary differentiai muationa:

Defn [Be81]. Let Q be a three poine linear multustep formula eonsistent with (1.1.1). We say that Q is A-stable if it is Cauchy stable and the the property

$$
\text { (i) } \operatorname{Re} a(\kappa-1 / \kappa) \leq 0 \Rightarrow|z| \leq 1 \text {, with } z \text { sumple if }|z|=1 \text {. }
$$

Q is otrongly A-otable if (i) holds and furthermore
(ii) $\operatorname{Re} a(\kappa-1 / \kappa) \leq 0, x \neq \pm 1 \Rightarrow|x|<1$,
(2.412)
(iii) $\propto(z)=0,|x|=1 \Rightarrow z=1\{c \mid 24.5\}, /$ (2413)

The motivation for these definitions, which is dise userd in most beok, on the numerical solution of ordinary differential expations, is that !hey provide eptititions for Q to be stable for arbitrarily large mesh ration λ. Ream et al have peinied out that this is a desirable property if one wishes to apply a timer-dependent dierefice modnl to find the steady-state solution of a physical problem. without bring concernes ac wut the accuracy for the transient computation (see 56 1).

A-stable whemes have some simple propectios thit will turs out to br mportant to their stability analymis:

Theor m 2.4.1. Let Q be a three opint inear multutep firmule consutent with $u_{t}=a u_{i} w t h a>0$.
(v) If Q n A stable, then

$$
\text { Rex. } \leq 0 \leq \text { Rerit }
$$

for all 2 with $|x| \geq 1$.
(i1) If Q ustrongly A steble, then

$$
\begin{equation*}
\text { Rex. }<0<\operatorname{Rex} \tag{2.4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{1}\right|<1<\left|x_{p}\right| \tag{2.416}
\end{equation*}
$$

for alf s with $|z| \geq 1$, except when $k_{t}=-\kappa_{0}= \pm 1$
If $a<0$, the aame resulto hold anth the inequalutie: $m(2418)$ and (2.4.15) erversed.

Proof. Assumer $a>0$, the proofs for $a<0$ are similar.
If Q is A-stable, then the contrapositive to (2.411) asserts that for $|z|>1$, one has $\operatorname{Rc}(\kappa-I / \kappa)>0$ Taking $\kappa=\kappa_{l}$ and using (2.4.9), one obtains Re $\kappa_{l}>0$. With (24.8) this implies $\operatorname{Re} \kappa,<0<R, a_{\mathrm{a}}$ for $|z|>1$, and $(2.1 .14)$ tollows by continuity.

If Q is atrongly A stable, then the contrapositive wo (2.4.12) implies further that for $|z| \geq 1$, either $\kappa= \pm 1$ or $\operatorname{Re}(\kappa-1 ; \kappa)>0$. Together with (2.4.8), (2.4.10), and (2.4.14), the latter tormula implies (2.4.15) and (2.4.18), as required.

So far we have not used condition (2.4.13), but it has a simple eonsequence:
Theorem 2.4.2. Let Q be a three ponnt linear multutep formula for (1.1.1). If Q is atrongly A-atable, then it $u t$-disaspative.

Proof. Suppose $\kappa=1$ and $|z|=1$. The first of these conditions implies $\rho(z)=$ 0 by (2.4.3), and by (2.4.13), the second then implies $z=1$. This cstablishes t. dissipativity. I

2.5 Extension from scalari to diagonalisable syotema

In practice one is generally concerned not with one scalar equation, but with a hyperbolic zystem of equatione. Such a system takes the form

$$
\begin{equation*}
u_{i}=\lambda u_{z} \tag{2.5.1}
\end{equation*}
$$

where $u(x, t)$ is an N-vector and A is a square matrix of dimension N. For simplicity we assume as before that A is constant, and we continue to onit any undifferentiated terms.

Following (2.1.3), we can write a general constant coefficient model Q of (2.5.1) in the form

$$
\begin{equation*}
Q_{-1} v_{j}^{n+1}=\sum_{v=0}^{\infty} Q_{0} v_{z}^{n-1} \tag{2.5.2}
\end{equation*}
$$

Now each v_{j}^{n} is an N-vertor, and each Q_{0} is a constant spatial difference operator with square matrix cocficients of dimension N. If these coefficients are denoted by $A, 0$, then the analog of (2.1.1) becomes

$$
\begin{equation*}
\text { Q. }=\sum_{,=-1}^{\dot{-}} \Lambda_{t o} K^{\prime} \tag{2.5.3}
\end{equation*}
$$

66
matrix coclficierits

$$
\begin{equation*}
P(\kappa, Z) v=\left[\sum_{1,=-\varepsilon}^{\infty} \sum_{0=1}^{\infty} A, 0 K^{\prime+\ell} Z^{\infty-\infty}\right] v=0 \tag{2.5.4}
\end{equation*}
$$

If the systern (25.1) is hyperbolic, then A can be diagonalized and it has real rigenvalurs. in principle. the matrices $\left\{A_{20}\right\}$ might not have this property, or they might earh be diagonalizable without the existence of a single matrix to diagonalize all of them simultaneously. But this rarely happens in practice, and indeed usually eart A, ∞ is a polynomial in A, so they are all diagonalized by the same matrix as A. Thirefore we will make the asssmption ($=$ Ass. 5.4 of [Gu72]):

Assumption 2.1. The matries $\left\{A_{, \sigma}\right\}$ are simultaneously diagonalizable. That 15. there exists a constant nomsingular $\boldsymbol{N} \times N$ matrix T such that

$$
\bar{A}_{\partial a}=T A_{y c} T^{-1}=\operatorname{diag}\left(a_{j o}^{(1)} \ldots, a_{j o}^{(N)}\right),
$$

With this assumption, the study of wave propagation unoer diference models of 125.1) redures direstly the results already established for scalar probletns. From (2 5.4) and (2.5.5), one obtains

$$
\begin{equation*}
i(K, Z) \tilde{v}=\left[\sum_{j=-\ell}^{\dot{\prime}} \sum_{\sigma=-1}^{\dot{i}} \dot{A}_{j \sigma} K^{j+\ell} Z^{,-\sigma}\right] \tilde{v}=0 \tag{2.5.6}
\end{equation*}
$$

where \bar{v} denotes $T v$ anc ${ }^{1} \dot{P}$ denotes $T P T^{-1}$. Now \bar{P} is a bivariate polynomial with diagonal matrix cocificients. This system is equivalent to the N scalar systems

$$
\dot{P}^{(a)}(K, Z) \bar{v}^{(a)}=\left[\sum_{j=-\ell}^{\infty} \sum_{o=-1}^{\dot{1}} a_{j=}^{(a)} K^{\prime+\ell} Z^{p-\sigma}\right] j_{0}^{(a)}, \quad 1 \leq \alpha \leq N . \quad \text { (2.5.7) }
$$

Each equation (2.5.7) has the same form as (2.1.5). Corresponding to the polynomials P_{a} and P_{n} of $\$ 2.1$, we can also define matrix polynomials $P_{a}, P_{n}, \bar{P}_{n}$, and \bar{P}_{n} in the obvious way, and \bar{P}_{*} and \bar{P}_{κ} are diagonal with scalar componctits $\dot{P}_{*}^{(\dot{c})}$ and $\bar{P}_{\kappa}^{(\alpha)}$.

Following (2.1.18), we now ask: given $z \in \mathbb{C}$, what solutions of the form

$$
\begin{equation*}
v_{j}^{n}=z^{n} \phi_{j} \tag{2.5.8}
\end{equation*}
$$

where $\left\{\Phi_{,}\right\}$is a sequence of N-vectors, docs Q support? Such solutions will be precisely those sequences satisfying, in extensiun of (2.1.10), the matrix resolvent 67
equation

$$
\begin{equation*}
P_{z}(\kappa) \Phi_{y}=P(K, z) \Phi_{j}=0 . \tag{2.5.9}
\end{equation*}
$$

The following theorem is an extension of Thm. 2.1.2 (cf. |Gu:2|, eq. (5.5))
Theorem 2.5.1. Let Q satisfy Assumption 2.1, and let z satiffy $|z| \geq 1$. For $1 \leq a \leq N$ let $\left\{\kappa_{1}^{(0)}\right\}_{1 \leq} \leq \mu^{\prime}=$ d denote the distinct nonzefo roots of $\bar{f}_{2}^{(\infty)}$, unth $\kappa_{1}^{(a)}$ of multiplicity $\nu^{(a)}$. Then the sequences

$$
\begin{gather*}
1 \leq \alpha \leq N \\
1 \leq i \leq \mu^{(\alpha)} \tag{2.5.10}\\
0 \leq \delta \leq \nu_{*}^{(o)}-1
\end{gather*}
$$

are hnearly independent solutions of (2.5.9), and they span the linear spare of all such solutions. Here $\boldsymbol{b}^{(a)}$ denotes $T^{-1}(0, \ldots, 0,1,0 \ldots, 0)^{T}$, where the 1 with postion a.

Proof. Diagonalization of (2.5.9) by T gives $\bar{P}_{r}(\kappa) \hat{\Phi}=0$ with $\bar{\phi}=T \boldsymbol{\phi}$. The solutions to this equation are given compnnentwise by Thmi. 21.2 , and hive the form $\left.\dot{\Phi},=\left\{\kappa_{1}^{(0)}\right)^{3}\right\}^{d}(0, \ldots, 0,1,0, \ldots, 0)^{T}$. Multiplying by T^{-1} completes the proof. I

This theorem eompletely deseribes the solutions with regular bethavior in that are admitted by Q. Each pae is nothing more than a scalar signal transforined to the basis determined by T. Therefore all of the theory derivide earlier applies directly. For $\delta=0$ and $|z|=\left|\kappa_{i}^{(a)}\right|=1, v_{j}^{n}=z^{n} \phi$, represents a wave that propagates uniformly at the group velocity (cr. (2.3.4))

$$
\begin{equation*}
c_{:}^{(o)}=\frac{d \omega}{d \xi_{1}^{(a)}}=-\frac{1}{\lambda}\left(\frac{d z}{d \kappa_{1}^{(a)}}\right)\left(\frac{\kappa_{1}^{(a)}}{z}\right) . \tag{2.5.11}
\end{equation*}
$$

W_{e} say that the signal v_{j}^{n} is leftgoing, rightgoing etrictly leftgoing, etrictly rightgoing, or atationar y preciscly when the corresponding terms hold for the scalar signal $\left.z^{n} \mid \kappa_{i}^{(a)}\right]^{\prime} j^{4}$.

The definition: of the von Neumann condition and Cauchy atability given in 52.2 apply as written to the vector model Q. |The symbol $\left|\varphi_{2}\right|$ in the definition of the latter must be interpreted as the two-norm of N vectors father than an absolute value.) It follows from these definitions that Q satisfies the von Neumann condition, or is Cauchy stable, precisely when the same is true for all of the scalar problems in the diagonalization (2.5.7).
 rightgoing signals, respectively, admitted by Q fot some $:$ with $|z| \geq 1$. Then by 68
(2.5.10), the general solution of the form (2.5.8) can be written

$$
\begin{equation*}
v_{j}^{n}=\sum_{i=1}^{n_{1}} a_{i} x_{i}^{\prime} j^{a_{i}} \psi_{i}+\sum_{i=n_{1}+1}^{n_{i}+n_{i}} a_{i} \kappa_{i}^{j} j^{b_{i}} w_{1} \tag{2.5.12}
\end{equation*}
$$

It is obvious that Assumption 2.1 has rendered the developments of this section fairly trivial, and one may wonder why it is worth mentioning syaterns of equations at all if they are oniy to be reduced immediately to acalars. The answer is that an we turn to calculations of reflection and transmission coeflicients, and then to stability for initial boundary value problems, boundary terms will appear that couple the scalar components cogether and cannot be diagonalized away. The meaning of this for practical applications is that although a hyperbolic system of equations can be reduced to characteriatic variables in the interior, it may be desired to give boundary conditions in terms of primitive variables. For more on this distinction see [Co80] and [Gu82].

* *

Let us finish the section with a simple example of a difference model for a system of hyperbolic equations (cf. $\$ 5.1$ of [Co80] and $\$ 4$ of [$\mathbf{G u} \mathbf{y}^{7} \mathrm{f}$).

Example 2.1. Let the hyperbolic system

$$
\binom{u}{v}_{v}=\left[\begin{array}{ll}
a & 1 \tag{2.5.13}\\
1 & a
\end{array}\right]\binom{u}{v}_{=}
$$

be modeled by the vector lcap frog scheme

$$
\binom{u_{j}^{n+1}}{v_{j}^{n+1}}=\binom{u_{j}^{n-1}}{v_{j}^{n-1}}+\lambda\left[\begin{array}{ll}
a & 1 \tag{2.5.14}\\
1 & a
\end{array}\right]\left(\binom{u_{j+1}^{n}}{v_{j+1}^{n}}-\binom{u_{j-1}^{n}}{v_{j-1}^{n}}\right) .
$$

where we have abused notation by using the letters u, v for both exact and computed variables. Eq. (2.5.13) can be diagonalized by the matrix

$$
T=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

which converts it to

$$
\binom{\bar{v}}{\bar{v}}_{z}=\left[\begin{array}{cc}
a-1 & 0 \\
0 & a+1
\end{array}\right]\binom{\bar{u}}{\bar{v}}_{z} .
$$

with

$$
\binom{\bar{u}}{\bar{v}}=T\binom{u}{v}=\binom{u-v}{u+v} .
$$

60

Thus $u-v$ and $u+v$ are the characteristic variables for (2.5.13). The same matrix T diagonalises (2.5.14), and therelore the vector leap frog inodel decouples into $\mathbf{L F}$ for each of the two acalar problems $\hat{u}_{4}=(a-1) \dot{u}_{m}$ and $\dot{v}_{n}=(a+1) \dot{v}_{z}$. It follows that 2. For any z with $\{z\{\geq 1,(2.5 .14\}$ admita four fundamental wolutions (2.5.10), namely

If $\left.|z|=\mid \kappa^{(a)}\right\}=1$, the first two have equal and opposite group velocities in the range between $\pm|a-1|$, and the latcer two have equal and opposite group velocities in the range $\pm|a+1|$.

3. BOUNDARIES AND INTERFACES

3.1 Reffection and transmission coefficiente

Most practical finite difference models are complicated by the presence of boundarics or interfaces, al whirh the properties of the model chatige abruptly with respect tw 1 . 1 toundary may be imposed physically by the problem being modeled, or it may the a thurnerical antifart required to kerp the grid finite [fin77]. Likewise an interface may represent a discontinuity in the physical mrdium (B3r79, M1ast, Su74], or a numeri-
 of of diference lo:mula (hybridisation) |CiT2,0176]. Also, if the solution to a partial diferential equation contains shocks or other discontinuities, it may be useful to think of these as moving interlacts $|A p 68, C h 78, C h 79|$. Whether a boundary or interface is physical of purely numerical does not affect the procedure for analyzing its numerical behavior, which we will describe in this chapter. Of course it does aflect the resulte of this analysis and their interpretation. For example. a physical boundary or interface may be expeeted to reflest some energy backwards when a wave strikes it, even for $\therefore, \xi \approx \mathbf{0}$, whereas any energy reflected by a purely numerical interface is spurious, and must approach 0 for $\omega=\boldsymbol{\epsilon}=\mathbf{0}$.

Our afproach to the analysis of reflection and transmission problems is based on the examination of steady.atate solutions with regular behavior z^{n} in t. On the face of it this is Fourier analysis with respect to t, but the subtlety of the problem comes from the inevitable need to make a connection between the Fourier spectrum in t and that in 1. Fundarnental to this connection is the distinction between leflgoing and rightgoing solutions presented in Chapter 2. In \$j3.1-3.1 we study scalar monochromatic signala, and in $\mathbf{\$ 3 . 5}$ we auperpose these to consider refiection of a general wave packet. In 53.6 the formulation in generalixed from scalars to diagonalizable ayatems, and we introduce a general notation for rellection problema.

Here is the main idea. Suppose that the wave front of a monochromatic wave 71
$c^{\left(\omega t-\varepsilon_{0} \pi\right)}$ with $\omega, \xi_{0} \in \mathbb{R}$, or thore generally of any signal $z^{\pi} \kappa_{i}(2.1 .2)$ with $\kappa_{0}, z \in$ © and $|z| \geq 1$, hits a boundary or interfare from one side. The interaclion will be complicated at first. As t increases, however, a ateady-atate colution will normally be approached in which the ineident signal is balanced by a collertion of monochromatic refliected and possibly transmitted signals $z^{n} \kappa_{?}^{3} j^{6}$. All of there signals will have the sarne time variation factor z, but their space factors κ, will vary. Fot the case of an intefface at $j=0$. with the incident wave coming from the teft, the steady state solution will take the form (cf. Thm. 2.1.2)

$$
v_{j}^{n}=\left\{\begin{array}{c}
z^{n} x_{0}^{\prime}+\sum_{1 \in I_{1}} a_{1} z^{n} x_{1}^{\prime} j^{4} j \leq j 0, \tag{3.1.1}\\
\sum_{, \in I_{0}} a_{1} z^{n} \kappa_{0}^{\prime} j^{b} j \geq j_{0} .
\end{array}\right.
$$

 value of multiplixity v appears t times in the index seft, with corresponding θ valuca $0, \ldots, v-1$. The mumification of (3: t 1) for inerinence frots the right, of for a boundary instead of an interface, are obvious. Depending on labeling of points, the precise Corm of the solution might also change in unimportant ways for $j \approx 0$.

Two principles determine what a's may apprar in (3.1.1):
The set $\left\{\left(x_{1}, N_{1} \mid\right\}\right.$ indexed by I_{t} (resp. I_{t}) consusts of prectsely those distinct pairs $\left(\kappa_{1}, \hat{C}_{1}\right)$ for which:
(1) $\left(\alpha_{1}, z\right)$ salisfies the diapersion relation for the difference formula applied in $j\left\langle j_{0}(\right.$ resp. $\left.j\rangle j_{10}\right)$ with κ_{1} of multiplic:ty $\nu \geq \delta_{1}$ (Thm. 2.1.2); and
(2) The signal (2.9.6) with paramelers $\kappa_{1}, z, \delta_{1}$ is leflgoing (Fesp. nightgeing) (see Table 2.1).

The interesting restriction is (2), for it shows that the numerical betbavior of boundarics and interfaces depends fundamentally on group velocity. The principle is simple: a wave impinging on the interface can stimulate only energy that propagatea outward from the interface, not energy coming in from infinity. In physies this is calicd the Sommerfeld rediation condition. We will not attempt to juatify the condition mathenatically in the sense of showing that transient signals approach $(3.1 .1)$ as $t \rightarrow \infty$. Dy construction, however, (3.1.1) is itself guaranteed to be a solution of the difference model.

We emphasixe that the signals present in I_{ℓ} and I_{f} are determined by mamerical wave behavior entirely, so they may be any mix of physically realistic waves, parasites, or signals in between. For $|z|=1$ some may have $|x|=1$, and others $\mid \alpha<1$ or 72
+

$|\kappa|>1$ Only the amplitudes $\left\{a_{a}(z)\right\}$ of the stirnulated signals are sfected by the algebraic details at the interface, and determining them will be a matter of linear algebra. These amplitudea, one for each outgoing signal, are the reflection and transmission coefficiente for the given problern.

For setting up interface conditions we need to rule out possible degeneracies in the difference model. We will assume that the difference formulas Q appearing on either side of the inlerface aatiafy the following condition (ef. Ase. 3.5 of [Gu72]).

Aanumption 3.1. Q is Cauchy stsble, and for all Σ with $|z| \geq 1$, the polynomial $P_{s}(\kappa)$ of $\$ 2.1$ has nonsero 0 th and $(\ell+r)$ th coefficients. Moreover, of the $\ell+r$ solutions (2.3.6) admitted by Q, exactly r are leftgoing and exactly ℓ are righlgoing. //

We will let the symbol \boldsymbol{Q} denote the complete diference model, consisting of one or more "interior" difference formulas Q, Q_{-}, Q_{+}, etc. Logether with additional cunditions imposed at the boundary or interface.

3.2 Examplen

The best way to show how reflection and transmission coefficients are calculated is through examples. We will now give a number of these, deferring a more formal treatment to 53.6, and in the process explore various problems of interest in their own right. Most of the results derived here will be applied in later sections.

Exsmple 3.1: LF with abrupt coefficient change
Consider a first-order equation with discontinuous cocfficients,

$$
u_{1}=\left\{\begin{array}{ll}
a_{-} u_{x} & (x<0) \tag{3.2.1}\\
a_{+} u_{z} & (x>0)
\end{array} \quad a_{-,} a_{+} \neq 0\right.
$$

If $a_{-}, a_{+}<0$, the solutions to this equation consist of rightgoing waves, which pass through $x=0$ with no alleration but a change in wave number. In particular, no energy is reflectel liackwards. However, let $[3.2 .1\}$ be modeled by LF (1.1.6) on the grid $x,=j h$ for $j=\ldots,-\frac{1}{2},-\frac{1}{2}, \frac{1}{1}, \ldots$, with $a_{,}=a_{-}$for $j \leq-\frac{1}{2}$ and $a, \equiv a_{+}$ for $j \geq 1$. Now, when a smooth wave passes rightward through the interface, a leflgoing refleeted parasite will be generated. If $a_{-}, a_{+}>0$, on the other hand, then a sawloothed wave can travel rightwards through the interfise, and it will generate a reflected signal of low wave number.

73

Let us determine the steady-state configuration that results when a atricuy rightgning signal $x_{i}^{\prime} z^{n}$ (2.1.2) with $|x| \geq 1$ hits the inuerface from the lefl. Whatever the signs of a_{-}and a_{+}, there are three signals to consider: one incident, one tranamitted, and one refected. Their functional forms are indicated ia Fig. 3.1:

FIG 3.1

The j 's in these expressions are half-integers. We will ignore the question of the choice of square roots; it does not affect the final result.

Given z, the quantities $\kappa_{7}, \kappa_{t}, \kappa_{1}$ are determined by the dispersion relation (2.1.8) on the ieft and right:

$$
\begin{equation*}
z-\frac{1}{z}=\lambda a_{-}\left(\kappa_{1}-\kappa_{1}^{-1}\right)=\lambda a_{-}\left(\kappa_{1}-\kappa_{r}^{-1}\right)=\lambda a_{+}\left(\kappa_{1}-\alpha_{1}^{-1}\right) \tag{3,2.2}
\end{equation*}
$$

Our purpose is to find tre reflection and transmission cocificienta A and B. The equations needed to determine them are the "interface formulas" at $\mathcal{A}= \pm \frac{1}{2}$, which assert that the steady-state solution satisfics the difference formulas at those pointa:

$$
\begin{aligned}
v_{-1 / 2}^{n+1}-v_{-1 / 2}^{n-1} & =\lambda a-\left(v_{1 / 2}^{n}-v_{-1 / 2}^{n}\right) . \\
v_{1 / 2}^{n+1}-v_{1 / 2}^{n-1} & =\lambda a_{+}\left(v_{j / 2}^{n}-v_{-1 / 2}^{n}\right) .
\end{aligned}
$$

Inserting the wave forms of Fig. 3.1 in thesc muations given

$$
\begin{align*}
\left(z-\frac{1}{z}\right)\left(\kappa_{t}^{-1 / 2}+A \kappa_{p}^{-1 / 2}\right) & =\lambda a_{-}\left(B \kappa_{i}^{1 / 2}-\kappa_{t}^{-3 / 2}-A \kappa_{p}^{-3 / 2}\right), \\
\left(z-\frac{1}{2}\right) R \kappa_{t}^{1 / 2} & =\lambda a_{+}\left(B \kappa_{i}^{3 / 2}-\kappa_{t}^{-1 / 2}-A \kappa_{p}^{-1 / 2}\right) \tag{3.2}
\end{align*}
$$

We could solve thesc equations for A and H and y get formulas involving $z_{i}, \kappa_{1}, \kappa_{+}, \kappa_{t}, e_{-}$, and a_{+}. In gencral, this is the best that can be done. However, for simple problems one may conveniently eliminate z. In the present case, applying (3.2.2) to (3.2.3) eliminates not only z but $a_{ \pm}$as well, leaving

$$
\begin{aligned}
& \kappa_{1}^{-1 / 2}\left(\kappa_{i}-\kappa_{i}^{-1}\right)+A \kappa_{q}^{-1 / 2}\left(\kappa_{r}-\kappa_{p}^{-1}\right)=B \kappa_{t}^{1 / 2}-\kappa_{i}^{-1 / 2}-A \kappa_{F}^{-3 / 2}, \\
&\left(\kappa_{t}-\kappa_{i}^{-1}\right) / \kappa_{i}^{1 / 2}=B \kappa_{i}^{3 / 2}-\kappa_{t}^{-1 / 2}-A \kappa_{p}^{-1 / 2}, \\
& 74
\end{aligned}
$$

hence because of cancellations,

$$
\begin{align*}
B \kappa_{t}^{1 / 2} & =\kappa_{t}^{1 / 2}+A \kappa_{t}^{1 / 2} \\
B \kappa_{t}^{-1 / 2} & =\kappa_{t}^{-1 / 2}+A \kappa_{r}^{-1 / 2} \tag{3.2.4}
\end{align*}
$$

The solution to this pair of equations is

$$
\begin{equation*}
A=-\frac{\kappa_{t}-\kappa_{i}}{\kappa_{t}-\kappa_{i}} \sqrt{\frac{\kappa_{i}}{\kappa_{i}}}, \quad B=\frac{\kappa_{t}-\kappa_{i}}{\kappa_{i}-\kappa_{i}} \sqrt{\frac{\kappa_{t}}{\kappa_{i}}} . \tag{3.2.5}
\end{equation*}
$$

We have now solved the reflection and transmission problem: given z, first compute $\kappa_{1}, \kappa_{0}, \kappa_{1}$ from (3.2.2), then derive A and B from (3.2.5)

Eqs. (3.2.5) have a pleasing symmetry that becomes particularly useful in the ras" of strictly wavelike solutions, i.e. $|z|=\left|\kappa_{1}\right|=\left|x_{1}\right|=\left|\kappa_{r}\right|=1$. Let us write

Then (3.2.5) is readily meen to take the form

$$
\begin{equation*}
A=-\frac{\sin \left(\theta_{1}-\theta_{1}\right)}{\sin \left(\theta_{1}-\theta_{r}\right)} . \quad B=\frac{\sin \left(\theta_{r}-\theta_{0}\right)}{\sin \left(\theta_{r}-\theta_{1}\right)} . \tag{3.2.6}
\end{equation*}
$$

(Of courne, these formulas are also valid for $\theta \in \mathbb{R}$.)
A further simplification follows from the fact that for LF, κ_{1} and κ_{2} or θ_{1} and $\theta_{\text {. }}$ are related in a simple way. From (2.4.8) one has $\kappa_{p}=-1 / \kappa_{1}$, hence

$$
\begin{equation*}
\theta_{1}=\frac{\pi}{2}-\theta_{1} \tag{3.2.7}
\end{equation*}
$$

With these subatitutions (3.2.5) and (3.2.6) become

$$
\begin{array}{ll}
A=\frac{1}{i} \frac{x_{1}-\alpha_{1}}{\kappa_{i} x_{1}+1}, & B=\frac{\alpha_{1}+1 / \alpha_{i}}{\alpha_{i} \kappa_{i}+1} \sqrt{\alpha_{i} \kappa_{i}}, \\
A=\frac{\sin \left(\theta_{i}-\theta_{i}\right)}{\cos \left(\theta_{i}+\theta_{i}\right)}, & B=\frac{\cos 2 \theta_{i}}{\cos \left(\theta_{i}+\theta_{i}\right)} . \tag{3.2.9}
\end{array}
$$

Theve equations show that in the limit of a vanishing interface, i.e. $a_{-} \approx a_{+}$and hence $0, \approx A_{t}$, one obtian the phymieally correct valuea $A \approx 0, B \approx 1$. in fact they imply $A=O\left(\varepsilon_{+}-e_{-}\right) \approx a_{+}-e_{-} \rightarrow 0$.

Demonithation 3.1. Fig. 3.2 show an experiment with $\varepsilon_{-}=-1, a_{+}=-.8$,
$\lambda=.5, h=.01$ on the interval $\{-1,1 j$. At $t=0$ the oscillation

$$
u(-1, t)=\sin 30 t
$$

has been turned on. This generates a rightgeing wave that is well resolved on the mesh (≈ 21 points per wavelength), and Fig. 3.2a shows that by $t=.5$, it has traveled at the cortect group speed $C \approx 1$ and should hit $x=0$ at $t \approx i$. In Fig. 3.2b, showing $t=1.5$, it is evident that the transmitted wave must have traveled at approximately its correet speed $C=\frac{1}{2}$. We are interested in the reflected parasitic wave that appeara as wiggles in the region $\{-1,0]$. Apparently it has moved ai speed $C \approx-1$, which is
(a)

$t=.5$
(b)

$$
t=1.5
$$

(c)

Fic. 3.2. Reflection and transmission at an LF interface. A forcing FIG. 3.2. Rencection and lransmiasion al an Lf inkerface. A forciag
oscillation with $w k=.15$ has been turned on at $t=0$ and bita a oscilation with $w t=.15$ has been turned on at $t=0$ and bita a
coeflicient-change interface at $t \Rightarrow t$. The model is $L F$ for $w_{t}=-u_{z}$ on the left, $v_{1}=-.5 v_{z}$ on the right, with $h=1 / 100, \lambda=.5$
what we expect for LF. From (3.2.9) we can predict ita amplitude. We have

$$
\begin{aligned}
& \theta_{1}=\xi_{i} h / 2 \approx w h / 2=.15 \\
& \theta_{i}=\xi_{t} h / 2 \approx 2 \xi_{i} h / 2 \approx .30 .
\end{aligned}
$$

E4. (3.2.9) therefore givea

$$
A \approx \frac{\sin .15}{\cos .45} \approx .166
$$

The exact value for (3.2.9) turns out to be $A=.1884 \ldots$ It is hard to tell from Fis: 3.2b how well this agrees with the amplitude of the wiggles in the experiment Therefore Fig. 3.2c isolates these wiggles by ahowing the result of passing the function in $\{-1,0 \mid$ of Fig. 3.2b through a high-pass filter (discrete Fourier transform; seroing of lower half of apectrum; inverse transform). Fig. 3.2d gives a similar filtered plot for $t=2$, after the initial ransients in the reflected wave have died down. The agreement with the predietion $|\Lambda|=.1884$, represented by the dashed line in Fig. 3.2d, is obviously excelleat.

Example 3.2: Abrupt change between arbitrary 3-point achemee
Consider eqs. (3.2.4) of the last example. Although our derivation made use of the dispersion relation for LF, it is obvious that what these equations really assert is this: at $j=-1 / 2$ and at $j=1 / 2$, the lefthand representation $v_{j}^{n}=\left(\kappa_{i}^{\prime}+A x_{r}^{j}\right) x^{n}$ and the righthand representation $v_{j}^{n}=\Delta \kappa_{1}^{3} z^{n}$ are both valid. (A priori, we knew only that the former was valid at $j=-1 / 2$ and the latter at $j=1 / 2$ (Fig. 3.1).) This suggests that the ealculations of Example 3.1 have a wider applicability. This is in fact the case
let Q_{-}and Q_{+}then be arbitrary three-point difference formulas as deacribed in 62.1. to be applied for $j \leq-1 / 2$ and $j \geq 1 / 2$, respectively. By this we mean that the stencils satisfy $\ell_{-}=r_{-}=1, \ell_{+}=r_{+}=1$. (In fact ail we need is $\ell_{+}=r_{-}=1$.) Assume further that Asssmption 3.1 holds. The following argument shows that eqs. (3.2.1) must hold. We know that the representation $v_{j}^{n}=B n_{i}^{j} z^{n}$ is valid for $j \geq 1 / 2$. By the definition of x_{1}, it follows that if $v_{-1 / 2}^{n}=B \kappa_{i}^{-1 / 2} z^{n}$ also, then Q_{+}will be satisfied at $j=1 / 2$. But Q_{+}is atisfied there, and Asa. 3.1 implies that if the values v_{j}^{n} for $j \geq 1 / 2$ are fixed, then this can only happen for a unique value or $\boldsymbol{v}^{n}-1 / 2$. Therefore $v_{-1 / 2}^{n}=B \kappa_{t}^{-1 / 2} z^{n}$. The result at $j=1 / 2$ is similar.

Thus most of the calculatinns of Example 3.1 apply not just to (3.2.1) modeled by LF, but to any interface at which one three-point diferenec formula changes abruplly

$$
77
$$

to another. The interface may involve just a change of coefficient, as before, or it may include a change of difference formula also, for example from LF to LW. For any such problem, one is led by (3.2.1) to (3.2.5) and (3.2.6). Alter this, eqs. (3.2.8) and (3.2.9) are not univerally valid, but aince all they depend upon is $(2.4 .8)$, they will hold whenever \boldsymbol{Q}_{-}is a three-point linear multistep formula

As an example, suppose (3.2.1) is replaced by the second-order wave equation

$$
v_{u t}=\left\{\begin{array}{ll}
a_{-}^{2} u_{w z} & (x<0) \tag{3.2.10}\\
a_{+}^{2} u_{x z} & (x>0)
\end{array} \quad a_{-,}, a_{+} \neq 0\right.
$$

modeled by the leap frog scheme LF ${ }^{2}$,

$$
\begin{equation*}
v_{j}^{n+1}-2 v_{j}^{n}+v_{j}^{n-1}=\left(\lambda a_{ \pm}\right)^{2}\left(v_{j+1}^{n}-2 v_{j}^{n}+v_{j-1}^{n}\right) . \tag{3.2.11}
\end{equation*}
$$

This formula has the diapersion relation

$$
z-2+z^{-2}=\left(\lambda a_{f}\right)^{2}\left(\kappa-2+\kappa^{-1}\right)
$$

from which one may see that instead of (2.4.8) and (3.2.7), κ_{1} and κ_{*} now satiafy

$$
\begin{equation*}
\kappa_{i} \kappa_{i}=1, \quad \theta_{i}=-\theta_{i} . \tag{3.2.12}
\end{equation*}
$$

Now both the incident wave and the reflected wave can be physical (smooth) at the same time, for (3.2.10) permits wave motion in both dircetions. The reflection and transmission coeflicients for (3.2.10) can be oblained by enforcing C^{1} continuity at $x=0$, and are independent of ω and $\boldsymbol{\xi}$ (sec e.g. [Cli6], 58.1):

$$
\begin{equation*}
A=\frac{1 / a_{-}-1 / a_{+}}{1 / a_{-}+1 / a_{+}}, \quad B=\frac{2 / a_{-}}{1 / a_{-}+1 / a_{+}} \tag{3.2.13}
\end{equation*}
$$

These formulas are written in a standard form in terms of the admittances $1 / a_{ \pm}$; one could also use the impedances $a_{ \pm}$directly. For the LF ${ }^{2}$ model, the correspondiag results are by (3.2.5), (3.2.6), and (3.2.12),

$$
\begin{array}{ll}
A=\frac{\kappa_{2}-\kappa_{t}}{\kappa_{1} \kappa_{t}-1}, & B=\frac{\kappa_{1}-1 / \kappa_{1}}{\kappa_{1} \kappa_{t}-1} \sqrt{\kappa_{1} \kappa_{t}} \\
A=\frac{\sin \left(\theta_{2}-\theta_{2}\right)}{\sin \left(\theta_{1}+\theta_{2}\right)}, \quad B=\frac{\sin 2 \theta_{i}}{\sin \left(\theta_{1}+\theta_{2}\right)} \tag{3.2.15}
\end{array}
$$

This last pair of formulas is a trigonometric analog of the admittance formulas (3.2.13), and approaches them for small \leqslant and ω, but it is not the same.

Our calculations apply to dissipative schemes also. let (3.2.1) be modeied, say, by LW (1.1.11). For $a_{-}, a_{+}<0$, a physical signal will then have $\kappa_{4}, \kappa_{t} \approx 1$ and (it follows from (2.1.9)) $\left|\kappa_{r}\right| \approx\left|\frac{\lambda_{0}-1}{\lambda a+1}\right|>1$. Therefore the reflected wave is evanescent, and will have negligible amplitude excepl near the interface. It can by no means be ignored in compuling B, however, for it need not be negiggible at $\boldsymbol{x}=\mathbf{0}$-i.e. \boldsymbol{A} itself need not be amall. This situtation is typical for both dissipative and nondissidative models: evanescent modes are often present that have negligibie sise away from the interface, but their influence is stitl global because they affect the amplitudes of the non-evanescent modea.

Example 3.3: Abrupt change between echemes with larger atencila
The principles of Example 3.2 apply directly to difference schemea with larger stencils. Let Q_{-}and Q_{+}have stencil sizes ℓ_{-}, r_{-}and ℓ_{+}, r_{+}, and assume that both formulas aatisfy Assumption 3.1. We seek the reflected waves that result after an incident signal $\kappa_{0}^{\prime} z^{n}$ with $|z| \geq 1$ hits $j=0$ from the left. For $j<0$ there are r_{-} Iffigoing signals, and if wr denote their amplitudes by $-A_{1}, \ldots,-A_{r_{-}}$, these may be written

$$
-A_{\nu} x_{\nu}^{j} z^{n}, \quad 1 \leq \nu \leq r_{-} .
$$

(We ignore the possitility of defective modes.) For $j>0$ there are ℓ_{+}rightgoing signals, and we denote their amplitudes by $A_{++1}, \ldots, A_{+-+4}$:

$$
A_{\nu} x_{\nu}^{\prime} z^{n}, \quad r_{-}+1 \leq i \leq r_{-}+l_{+} .
$$

Exactly sa in the last example, Assumption 3.1 implics that the righthand representation of v^{n}, must hold not just for $; \geq 1 / 2$, but for $j \geq 1 / 2-\ell_{+}$. This follows by the amme argument as belore by considering in succeasion $j=-1 / 2,-3 / 2, \ldots, 1 / 2-$ t_{+}. Likewise, the lefthand representation must hold for all $; \leq-1 / 2+r_{1}$. All logether, there are $\ell_{+}+r_{-}$matching conditiona in extenaion of (3.2.4), and they take the form of a van der Monde syatem of equationa:

The determinant of this matrix is

Aceording to Cramer's rule, the solution se (3.2.16) ean be expressed in terms of ratios of such detertminants. We find (cf. (3.2.5) and (3.2.8)):

These formulas give the complete solution of the reflection and transmission problem. in practice, if the incident signal is wavelike $\left(|z|=\left|x_{0}\right|=1\right)$, then often some reflected and transmitted signals will be wavelike. others evanescent. However, this distinction affects the values of $\left\{\kappa_{\nu}\right\}$ and $\left\{O_{\nu}\right\}$, not the form of (3.2.17).

DEmONSTRATION 3.2. As a particular example, let us again eonsibse the problem of Example 3.1, but with 1.F replaced by I.F 1 (1.1.17), whose stencil :overs five grid points in \mathbf{x}. Fq. (3.2.16) now becomes a system of dimenzion 1, and for typical
(a)

$t=.5$
(b)

$1=1.5$

$t=1.5$
hich-paes filt bigh-paees filcted

Fic 1.4. Ifenretion and tranamiation al an LFi interface. Same as Fis 32 but with t.f replaced by LFA.
values of z with $|a|=1$ we expect one wavelike newle and one evanewcent mode on each side, as shown in Fig. 3.s.

Fig. 3.4 shows a sepetition of Fig. 3.2 with LF replaced by LF4. Qualitatively, the behavior appeare as before, except for one intereating change: the reflected parasite now travcla at speed $C \approx-5 / 3$, not -1 . This is in keeping with Fig. 1.1e and with (1.2.8) (or $(1.5 .3)$ for $\ell=4)$. Let us predict the amplitude of the reflected parasite. For the given problem $z \sim 1$, and $s 0$ (2.1.12) impliea

$$
0 \approx z-\frac{1}{3}=\frac{4 \lambda a_{ \pm}}{3}\left(\kappa-\frac{1}{\pi}\right)-\frac{\lambda a_{ \pm}}{6}\left(\kappa^{2}-\frac{1}{n^{2}}\right),
$$

i.e.

$$
x^{4}-8 x^{2}+8 x-1 \approx 0
$$

on both sides of the interface. The seros of this polynomial are

$$
\pi=1, \quad-1, \quad 4-\sqrt{15}, \quad 4+\sqrt{15}
$$

The firat two values correapond to right. and lellgoing wave modes, respectively, and the second two to right and leftgoing evanescent modes. We will order the K_{ν} 's according to

$$
\approx_{0} \approx 1, \quad \kappa_{1} \approx-1, \quad \kappa_{1} \approx 1+\sqrt{15}, \quad \kappa_{3} \approx 1, \quad \kappa_{4} \approx 4-\sqrt{15},
$$

but we will need a little more precision for κ_{0} and κ_{3}, namely (at in Example 3.1)

$$
\pi_{0} \approx e^{.30 i} \approx 1+.30 i, \quad x_{2} \approx e^{.00 i} \approx 1+.60 i
$$

Now from (3.2.17) we obtain the amplitude wortht,

$$
\begin{aligned}
& A_{1}=\frac{\left(\kappa_{1}-\kappa_{0}\right)\left(\kappa_{1}-\kappa_{0}\right)\left(\kappa_{1}-\kappa_{0}\right) \kappa_{1}^{3 / 2}}{\left(\kappa_{2}-\kappa_{1}\right)\left(\kappa_{3}-\kappa_{1}\right)\left(\kappa_{1}-\kappa_{1}\right) \kappa_{0}^{3 / 2}} \\
& \approx \frac{(3+\sqrt{15})(.30 i)(3-\sqrt{15})(-i)}{(5+\sqrt{15})(2)(5-\sqrt{15} /(1)}=\frac{-1.8}{20}=-.00 \\
& 81
\end{aligned}
$$

An exact calculation from (3.2.17) gives the alighly larger result

$$
A_{1} \approx-.100478+.001218 i, \quad\left|A_{1}\right| \approx .100484
$$

These numbers are in good agreement with the magnitude of the wisgles observed in Fig. 3.4b, which are once again ieolated by a high-pace filter ia Fig. 3.4c. Excample 3.4: Menb-refinement interfaces

Intead of considering a discontinuous coefficient, let un now look at problema where the mesh sise changes discontinuoully at $x=0$. We will atick to the equation $u_{4}=a u_{z}$ and to models with one leftgoing and one rightgoing mode. Asume that a rightgoing aignal $\pi_{1}^{j} z^{n}$ hits the interface from the left, generating steedy wate refiected and transmitted signals $A x_{1}^{j} z^{n}$ and $B x_{i}^{j} z^{n}$. We will calculate A and B for three different kinds of meah refinement.
(i) Crude mesh refinement. The reflection and transmission properties of the following mesh-refinement scheme (in its semi-discrete limit) are analysed by Vicbaevetsky in [Vi8lb]. Let x; denote $j h_{\text {. For }} j \leq 0$ and $j h_{+}$for $j \geq 0$, where h_{-}and h_{+} are arbitrary. Let (3.2 .51) be modeled at all poince $j \neq 0$ by LF, or more generally by any threc-point linear inullistep formula (2.4.2),

$$
\begin{equation*}
\frac{\rho(Z)}{k \sigma(Z)} v_{j}^{*}=e^{\frac{v_{j}^{n}+1}{2 h_{ \pm}}} \frac{v_{z}^{n}-1}{n}, \tag{3.2.18}
\end{equation*}
$$

and at $j=0$ by the related formula

$$
\frac{\rho(Z)}{k \sigma(Z)} v_{j}^{n}=a \frac{v_{1}^{n}-v_{-1}^{n}}{h_{-}+h_{+}},
$$

as illustrated in Fig. 3.5.

Fic. 3.5

The interface formula for this model are then

$$
\begin{aligned}
& 1+A=B \\
& \frac{\rho(Z)}{k \sigma(Z)}(1+A)=\frac{a}{h_{-}+h_{+}}\left(B \kappa_{4}-i / \kappa_{1}-A / \kappa_{-}\right) \\
& 82
\end{aligned}
$$

After making use of the first formula, the scrond can be rewritten

$$
\frac{h_{-} p(z)}{k \sigma(z)}+\frac{h_{-}-\rho(z)}{k \sigma(z)}+\frac{h_{+} \rho(z)}{k \sigma(z)}(1+A)=a(1+A) \kappa_{t}-a / \kappa_{i}-a A / \kappa_{i} .
$$

The quantities z, k, h_{f}, a can be eliminated from this equation by means of (3.2.18) or (2.4.3), and one obtains

$$
\frac{1}{2}\left(\kappa_{1}-1 / \kappa_{1}\right)+\frac{1}{2} A\left(\kappa_{2}-1 / \kappa_{2}\right)+\frac{1+A}{2}\left(\kappa_{1}-1 / \kappa_{1}\right)=(1+A) \kappa_{1}-1 / \kappa_{2}-A / \kappa_{1},
$$

hence

$$
\left(\kappa_{1}+1 / \kappa_{2}\right)+A\left(\kappa_{r}+1 / \kappa_{r}\right)-(I+A)\left(\kappa_{t}+1 / \kappa_{t}\right)=0
$$

which implies

$$
A=\frac{\left(\kappa_{t}+1 / \kappa_{t}\right)-\left(\kappa_{i}+1 / \kappa_{i}\right)}{\left(\kappa_{v}+1 / \kappa_{t}\right)-\left(\kappa_{t}+1 / \kappa_{i}\right)}
$$

Hy (2.1.8), this leads to

$$
A=\frac{\left(\kappa_{1}+1 / \kappa_{1}\right)-\left(\kappa_{t}+1 / \kappa_{t}\right)}{\left(\kappa_{1}+1 / \kappa_{1}\right)+\left(\kappa_{\mathrm{t}}+1 / \kappa_{t}\right)}, \quad B=\frac{2\left(\kappa_{1}+1 / \kappa_{i}\right)}{\left(\kappa_{2}+1 / \kappa_{1}\right)+\left(\kappa_{t}+1 / \kappa_{t}\right)} .
$$

An alternative expression for these resulto is

$$
\begin{equation*}
A=\frac{\cos \xi_{1} h-\cos \xi_{2} h}{\cos \xi_{1} h+\cos \xi_{1} h}, \quad B=\frac{2 \cos \xi_{0} h}{\cos \xi_{1} h+\cos \xi_{8} h} . \tag{3.2.21}
\end{equation*}
$$

Compare \{Vi81b|, eq. (26).
(ii) Coarse mesh approximation. Suppose that in the above setup, h_{+}is an integral multiple of $h_{-}: h_{+}=m h_{-}$. Then instead of (3.2.10), it is natural to consider applying the coarse mesh formula used for $j \geq 0$ at $j=0$ also, with the lefthand value needed taken from $j=-m$, as illustrated in Fis. 3.8;

$$
\begin{equation*}
\frac{2 \alpha(Z)}{\sigma(Z)} v_{0}^{n}=a \lambda_{+}\left(v_{i}^{n}-v_{-m}^{n}\right) . \tag{3.2.22}
\end{equation*}
$$

Fic. 3.6

With this interface condition in effect, the interface formulas beeone

$$
1+A=B
$$

$$
\frac{2 \rho(s)}{\theta(x)}(1+A)=a \lambda_{+}\left(\kappa_{i} B-\kappa_{i}^{-\infty}-A \kappa_{+}^{-m}\right)
$$

88
which by means of (3.2.18) reduce to

$$
a \lambda_{+}\left(\kappa_{t}-1 / \kappa_{t}\right)(1+A)=a \lambda_{+}\left(\kappa_{t}(1+A)-\kappa_{t}^{-m}-A \varepsilon_{r}^{-m}\right)
$$

i.e.

$$
(1+A) / \kappa_{t}=\kappa_{i}^{-m}+A \kappa_{p}^{-m}
$$

and therefore

$$
\begin{equation*}
A=\frac{\kappa_{1}^{-m}-1 / \kappa_{t}}{1 / \kappa_{1}-\alpha_{i}^{-m}} \tag{3.2.23}
\end{equation*}
$$

By (2.4.8), this leads to

$$
\begin{equation*}
A=\frac{\kappa_{1}^{-m}-1 / \kappa_{t}}{1 / \kappa_{t}-\left(-\kappa_{1}\right)^{m}}, \quad B=\frac{\kappa_{t}^{-m}-\left(-\kappa_{1}\right)^{m}}{1 / \kappa_{t}-\left(-\kappa_{1}\right)^{m}} \tag{3.2.24}
\end{equation*}
$$

(iii) BKO mesh refinement. The following "BKO" scheme was proposed by Browning, Kreiss, and Oliger in [Br73|, and some of its reflection properties are analyzed in [Visib]. Suppose again that h_{-}and h_{+}are arbitrary. Now tet the leftand righthand grids overlap, as follows:

$$
\begin{array}{ll}
\text { right: } & x_{j}^{+}=j h_{+} \quad j=-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots, \\
\text { left: } & x_{j}^{-}=j h_{-} \quad . j=\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots,
\end{array}
$$

Then, as a diacrete analog of C^{\prime} continuily at $x=0$, consider the interface conditions

$$
\begin{gather*}
v_{i}^{-}+v_{-1}^{-}=v_{t}^{+}+v_{-\frac{t}{\prime}}^{+} \\
\frac{1}{h_{-}}\left(v_{i}^{-}-v_{-\frac{1}{-}}^{-}\right)=\frac{1}{h_{+}}\left(v_{i}^{+}-v_{-1}^{+}\right) \tag{3.2.25}
\end{gather*}
$$

(with obvious nolation). The corresponding interface formulat are

$$
\alpha_{i}^{l}+\kappa_{i}^{-\frac{1}{2}}+A\left(\kappa_{i}^{t}+\kappa_{i}^{-\frac{1}{1}}\right)=B\left(\kappa_{i}^{t}+\kappa_{i}^{-1}\right),
$$

$$
\frac{1}{h_{-}}\left(x_{i}^{i}-x_{i}^{-t}\right)+\frac{A}{h_{-}}\left(\kappa_{i}^{t}-x_{i}^{-t}\right)=\frac{B}{h_{+}}\left(x_{i}^{t}-x_{i}^{-t}\right)
$$

84

These have the solution

$$
\begin{equation*}
A=\frac{h_{-} \cot \theta_{i}-h_{+} \operatorname{sot} \theta_{i}}{h_{+} \cot \theta_{i}-h_{-} \cot \theta_{7}}, \quad B=\frac{h_{-} \cot \theta_{i}-h_{-} \cot \theta_{r}}{h_{+} \cot \theta_{i}-h_{-} \cot \hat{\theta}_{8}}, \tag{3.2.26}
\end{equation*}
$$

where $\theta_{i}=\xi, h / 2$ again, ∞ that $\cot \theta_{i}=i\left(x_{i}^{t}+\kappa_{i}^{-t}\right) /\left(x_{i}^{t}-\alpha_{i}^{-t}\right)$, and so on. For the case of three-point linear multistep formulas, (3.2.7) converts the reoult to

$$
\begin{equation*}
A=\frac{h_{-} \cot \theta_{1}-h_{+} \cot \theta_{i}}{h_{+} \cot \theta_{i}-h_{-} \tan \theta_{i}}, \quad B=\frac{h_{-} \cot \theta_{i}-h_{-} \tan \theta_{i}}{h_{+} \cot \theta_{2}-h_{-} \tan \theta_{i}} . \tag{3.2.27}
\end{equation*}
$$

For $L F^{3}$, similariy, (3.2.12) reduces (3.2.26) to

$$
\begin{equation*}
A=\frac{h_{-} \cot \theta_{i}-h_{+} \cot \theta_{i}}{h_{+} \cot \theta_{i}+h_{-} \cot \theta_{i}}, \quad B=\frac{2 h_{-} \cot \theta_{i}}{h_{+} \cot \theta_{i}+h_{-} \cot \theta_{i}} . \tag{3.2.28}
\end{equation*}
$$

Again, these equations are similar to the admitlance formulan (3.2.13).
Example 3.5: Boundariea
Finally, to, justify the title of this chapter we must consider some problems containing boundarics rather than interfaces, at which there will be reffected but not transmitted signals. Let the equation

$$
u_{t}=a u_{z} \quad x \geq 0, \quad a \neq 0
$$

be modeled by a difference formula Q on the grid $x_{j}=j h, j=0,1,2, \ldots$. If Q extends ℓ points to the left of center, then numerical boundary formulas will be needed for the poinla $j=0, \ldots, \ell-1$. Let us assume $\ell=1$, so that only one boundary formula is nceded. If a strictly leftgoing signal $x_{i}^{\prime} z^{n}$ hits the point $j=0$, then in the steady state mome energy will propagate rightward an a signal $1 \kappa_{\boldsymbol{F}}^{\boldsymbol{j}} z^{m}$. We neek the reflection coefficient A.

Fic. 3.8

Suppose first that the boundary formula is ($q-1$)et-order apaee extrapolation,

$$
\begin{equation*}
s: \quad(K-1)^{\varphi} v_{0}^{n+1}=0, \quad q \geq 1 \tag{3.2.20}
\end{equation*}
$$

85
where K is the spatial shifl operator defined in $\mathbf{5 2 . 1}$. Then A will matinfy

$$
\left(k_{i}-1\right)^{\varphi}+A\left(k_{r}-t\right)^{\varphi}=0
$$

hesce

$$
\begin{equation*}
A=-\left(\frac{a_{4}-1}{a_{4}-1}\right)^{\prime} . \tag{3.2.30}
\end{equation*}
$$

If \boldsymbol{Q} is LF or any other three-point linear multistep formula, then ($\mathbf{2 . 4 . 8}$) converto thin to

$$
\begin{equation*}
A=-\left(\frac{k_{1}-1}{-1 / \kappa_{1}-1}\right)^{\prime}=-\left(\frac{1-\alpha_{2}}{1+\alpha_{4}}\right)^{\prime} x_{1}^{\prime} . \tag{3.2.31}
\end{equation*}
$$

Suppose alternatively that the boundary formula is ($q-1$) ot-order opeco-time extrapolation,

$$
S T: \quad\left(K Z^{-1}-1\right)^{\vee} v_{0}^{n}=0, \quad \notin \geq 1
$$

(3.2.32)

Now a will satisfy

$$
\left(\kappa_{1}-z\right)^{\varphi}+A\left(\kappa_{7}-z\right)^{\varphi}=0
$$

hence

$$
\begin{equation*}
A=-\left(\frac{k_{1}-z}{n_{2}-z}\right)^{4} \tag{3.2.33}
\end{equation*}
$$

For three-point linear multistep schemes this becomes

$$
\begin{equation*}
A=-\left(\frac{z-\alpha_{2}}{1+z \kappa_{1}}\right)^{\prime \prime} \kappa_{2}^{\prime \prime} \tag{3.2.34}
\end{equation*}
$$

This is an example in which it is not praclical to eliminale a from the formula.
\qquad

Our purpose in this section has beed to show how reflection and transmission coefficients can be computed, not to apply such computations to the evaluation of partieular numerical treatmente of boundarice or interfaces. But obviounly this kind of information is potentially useful if one is trying to choose betwecn various numerical methods.

The refiection and tranamiasion behavior we have predicted, like the group velocity phenomena of Chapler 1, can be readily confirmed with numerical experimena. We have performed a number of these, but except for Demos. 3.1 and 3.2 aiready presented, we will not lake the space to describe them here.

88
\square
3.3 Energy flux and energy conservation*

Suppese that a Cauchy stable difference formula admits the wave solution

$$
v_{j}^{n}=A n^{\prime} z^{n}
$$

for mome cunstant A, with $|x|=1 .|r| x \mid=1$, then by Thm. 2.3.1, the wave has a well defined group velocity $C \in \mathbb{R}$. It is natural to define the enerey flux (magnitude) \oplus of $\{3.3 \mathrm{~J}\}$ as the absolute group speed times the square of the amplitude,

$$
\begin{equation*}
\phi=|A|^{2}|C| \quad \text { if }|x|=|\kappa|=1 . \tag{3.3.2}
\end{equation*}
$$

One night prove that asyrnptotically, Φ measures the t_{2} energy flow per unit time acruss a giren line $x=50$. Other definitions could be ased for energies other than t_{2} |r $: z^{\prime}=1$ and $|x| \neq 1$, then there is no energy flux,

$$
\begin{equation*}
\Phi=0 \quad \text { for }|z|=1,|\kappa| \neq 1 . \tag{3.3.3}
\end{equation*}
$$

If $|z|>1$, in which case $|\kappa| \neq 1$ by Thm. 2.2.1, then a sectisible definition of ϕ would have so vary with z and increase with f. But we will not define Φ in this case.

Given a difference thodel containing a boundary or inverface, we naturally ask: does the micflace conserve energy? If not, how close does in come? For the atcady state solutions of the last mection, we have all the machinery in place to answer theme qucstions. Asoumic, for example, that $u_{t}=a u_{z}$ is modeled by one threepoint difference sheme for $x<0$ and another for $x>0$, and that a rightgoing wave (3.3.1) is incident on the interface at $z=0$. In the steady atate, reflected and transmitted waves will be generated. We define the efficiency of the interface for the given wave, E, by the formula

$$
\epsilon=\frac{\varphi_{r}+\varphi_{i}}{\phi_{1}}
$$

Energy is abeorbed, conserved, or crasted at the interface if $E<1, F=1$, or $E>1$, seapectively. More generally, it an interface generates a collection of ourgoing sigmala in reaponse to a collection of incoming ones, then the efficiency for that configuration is

- Mang of the ideres in thio mection appear in [Viatb].

87

Of the mesth-refinement problems considered in fxample 3.5 of the last ecetion. two conserve energy exactiy: "crude mesh refinement" for any threc-point linear multistep formula Q, and BKO mesh refinement for $I F^{2}$. Let of verify these claims. For Q spplied to $u_{t}=a u_{z}$ we have by (2.4.7),

$$
C=\cos \xi h f(x)
$$

Por some function ρ. From this formula, the reflection and tramminssion coefficients (3.2.21) for crude aresh refinement become

$$
\begin{equation*}
A=\frac{C_{1}-C_{t}}{C_{1}+C_{t}}, \quad B=\frac{2 C_{1}}{C_{1}+C_{t}} \tag{3.3.6}
\end{equation*}
$$

[nserting these values in (3.3.2) now gives the fuxes (ef. [C176], eq. (8.1-6))

$$
\Phi_{1}=C_{1}, \quad \phi_{1}=C_{1} \frac{\left(C_{1}-C_{t}\right)^{2}}{\left(C_{2}+C_{t}\right)^{2}}, \quad \phi_{t}=\frac{1 C_{t}^{2} C_{1}}{\left(C_{1}+C_{t}\right)^{2}},
$$

and applying these to (3.3.4) yields

$$
E=\frac{\left(C_{t}-C_{t}\right)^{2}+4 C_{t} C_{t}}{\left(C_{t}+C_{t}\right)^{2}}=1,
$$

as elaimed. Similarly, for the case of LF^{2} with BKO mesh refinement, eqs. (1.8.7) and (1.8.8) (ignoring the lerms in 7) imply

$$
\begin{aligned}
& C_{1}=\frac{\lambda_{-} \sin \xi_{1} h}{\sin \omega k}=\frac{2 \lambda_{-}-\sin \theta_{,} \cos \theta_{2}}{2 \sin \frac{\omega k}{3} \cos \frac{k k}{k}} \\
& =\frac{\lambda-\sin \theta_{1} \cos \theta_{1}}{\sin \frac{k^{4}}{2} \cos \frac{k_{2}^{4}}{2}}\left(\frac{\sin ^{2} \theta^{\prime}}{\lambda_{-}^{2} \sin ^{2} \theta_{1}}\right)=\frac{h_{-} \cot \theta_{1}}{k \cot \frac{k \pi}{3}} .
\end{aligned}
$$

with cocectponding expression for $C_{\text {, }}$ and C_{e}. From this formula and (3.2.28), it follows that (3.3.6) holds for this prablem too, and this itmplies $E=1$ as before.

However, it is only in exceptional cases that a boundary or interface conserve energy exacely. The reason is that for this to happen, the errors introduced by the interior formulas and the interface formulat must cxactly counterbalance, so the two sets of formulas muat be fortuitoualy rompatible in some sense. In particular, the other mesh refinement problems of the last section, such \& LF with BKO or with the coarse mesh approximation, do not exactly congerve energy.

Energy conservation is an attractive property, expecially if extensions to nonlinear problems are being considered, but one should not autonatically assume that if one 88
interface exactly conserves energy and another does not, then the former is belter. For LF applind to $u_{4}=a u_{z}$, for example, ($\mathbf{3 . 2} 2.27$) impliea that the nonconserving BKO interface generaks a reflected parasite of amplitude $A=O\left(h^{3}\right)$, while (3.2.21) gives $\Lambda=O\left(h^{2}\right)$ for the "crude" interface. Surely it is no virtue of the latter sebeme that the apurious signal it generates on the left is large enough to balance the flux erfor it introducen on the rigbl.

3.4 Cutoff frequencien and evancacent wavee

We have observed earlier that although a nondissipative differenee model Q inust admit waves of all wave numbers $\{\in \mid-\pi / h, \pi / h]$, the same is not true for all frequencies $\omega \in\{-\pi / k, x / k]$. A frequency that corresponds to no wave solutions may be said to lic in the atop band or forbidden band for Q. In Figs. la- c, thege are the values of w for which no value of ξ appears on the plot. Or course there will be sorne wave number ξ for every w, since Q must do something in response to a forcing oscillation sin ut, but for - in the stop band ε will be complex, corresponding to an evanescent mode that by (3.3) carries no energy.

In a problem involviug an interface, it may happen that a frequency for which a wave may exist on one side lies in the stop band on the other. In this event the responae to such an incident wave will be $\omega_{n}=0$ cotal reflection. Given an interface, one may look for the minimum frequency ω_{c}, the cutoff frequency, at which a transmitted wave cannot exist. The solution to this problen will satisfy the cutoff condition

$$
\begin{equation*}
C\left(\epsilon_{c}, w_{c}\right)=0 . \tag{3.1.1}
\end{equation*}
$$

One can sce this by considering that in a dispersion plot such as Fig. 1.1, $w_{\text {c }}$ is associated with a tero slope. Aigebraically, the explanation is that if $z(x)$ has $|z|=1$ for $\arg \kappa \leq \arg \kappa_{\varepsilon}$ and $|z| \neq 1$ for $\arg \kappa>\arg \kappa_{6}$, then κ_{ε} must be a multiple root, which we know by Thm. 2.3 .1 corresponds to $C=0$.

Culoff trequencies for finite difference and finike element models have been ditcussed previously in [Ok76], [Br 3 3], and [Vi80].

The primary significance of (3.4.1) is that it enables one to determine cutoff frequencies by solving an algebraic equation. Another intereating implication is that although the vanishing of the tranamitted wave as w rises above ω_{4} may be discontinuous (the transmitted wave abriplly becomes rvaneseent, but ita amplitude
does not become sero), the vanishing of the transmitted energy fux is not. Instead, $\boldsymbol{\Phi}$ decreases amoothly to 0 as $w i$ wic, since C decreases smoothly to 0 .

Vichnevelsky points out that in the case of interfaces between LF models, the evancacent wave that appears for $w>w_{4}$ always has wavelength in [Viso, Visib]. The explanation is that by $(2,1,8),|z|=1$ and $|\kappa| \neq 1$ can only happen with κ pure imagifary, which amounts to wavelength th. The "th phenomenon" does not extend to arbitrary difference models, however.

3.5 Reflection of a general wave packet

By the methods described so far we can now determine exactly how a monochromatic signal $e^{(w)-\{x)}$ is rellected and transmitted at a boundary or interface. The question is, how can t; is information be used to prediet the reflection and transmission of a general wave packet' The problem is one of Fourier synthesis in an inhomogeneous medium, and it is subtle. * One might expect, for example, that if the reflection cofficients satisfy $|A(\xi)| \leq A_{m a z}<\infty$ for all ξ, then a general estimate $\left\|\left\|^{n}\right\|_{2} \leq\right.$ $A_{\text {max }}\left\|v^{0}\right\|_{2}$ will hold. However. Thm. 1.2 .3 will show that this is not the case.

We will study the simplest possible example. Let the equation

$$
u_{1}=u_{3} . \quad x, 1 \geq 0
$$

be modeled by a finite diference scheme Q on the grid $\left(x_{1}, f_{n}\right)=(\jmath h, n k)$ for $j, n \geq 0$, with $h=1$ for convenience. Let Q consist of $Q=C N(1,1,16)$ for all pointa $j, n \geq 1$ coupled with sotne two -ievel boundary equation for $\jmath=0, n \geq 1$. For initial data we take

$$
u_{j}^{0}=f, \quad j \geq 0
$$

for some sequence \int. Now v^{n+1} is enmpletely determined by v^{n}. Since CN is nondissipative and \mathbf{z}-reversing, we expert significant reflections at the boundary.

Let ℓ_{2}^{+}denote the sel of square-summable sequences $(f) \geq$,0 . If $f \in \ell_{1}^{+}$, then it has a Fourtier representation

$$
\begin{equation*}
f=\frac{1}{2 \pi} \int_{-\infty}^{*} e^{-*} \dot{j} f(\xi) d \xi \tag{35.1}
\end{equation*}
$$

- A molution for a special exer of thit problem is sikrtehed in $\$ 6$ of MiR1b; but it apperars wo be ilivalid execpl, pertiaps, in some asymptotir scuse for rample, this wolution brginn by considering : wave packet with compart support whom- tratisformial a has compact support, and such a rontibiation eannot oceur.

90
for some function $\dot{f} \in L_{2} \mid-\pi, n$, and \bar{f} in given by the Fourier transform

$$
\begin{equation*}
\dot{f}(\xi)=\sum_{j=0}^{\infty} f, e^{(\xi)} \tag{3.5.2}
\end{equation*}
$$

Hy (1.1.18) and (1.2.7), we know that for each $\left\{\in\left|-\frac{\pi}{2}, \frac{7}{2}\right|, C N\right.$ admits a lefigoing wave, and at the same frequency there is one corresponding rightgoing wave with wave number $\varepsilon_{0}=\pi-\xi_{\mathrm{E}}\left(\right.$ Fig. 1.le). (llere $\xi_{\text {, should be taken modulo } 2 \pi \text {.) Let } A(6)}$ denote the corresponding reflection coefficient function for monochromatic solutions for the given boundary ronditions. Now suppose thal by chance \dot{f} happens to satisfy the refiection condition

$$
\begin{equation*}
\bar{f}(\pi-\xi)=A(\xi) \bar{f}(\xi) \quad \text { for } \xi \in\left[-\frac{\pi}{3}, \frac{\pi}{2}\right] \tag{3.5.3}
\end{equation*}
$$

Then by the definition of $\{\{\xi\} . f$ is the superposition of steady state solutions of \boldsymbol{Q} :

$$
\begin{equation*}
f=\frac{1}{2 \pi} \int_{-\pi / 2}^{* / 2}\left[e^{-+\epsilon}+A(\xi) e^{-\infty i \pi-c)}\right]^{\prime} \leqslant d \zeta \tag{3.5.4}
\end{equation*}
$$

Therefore if $\left\{\mathrm{r}^{\mathrm{m}}\right\}$ is computed with $/$ as initial data, then each steady-state solution evolven under \dot{Q} in a uriform fashion, oscillating according to a factor $e^{\text {awf }}$ (t), and we obtain a F'ourier repesentation for 2 ;, valid for all n :

$$
\begin{equation*}
v_{2}^{\prime \prime}=\frac{1}{2 \pi} \int_{-\infty / 2}^{\infty / 2} e^{-\omega(\xi) t}\left\{e^{-v \theta}+A(\xi) e^{-x(*-c)}\right] \hat{f}(6) d \xi \quad(t=n k) \tag{3.5.5}
\end{equation*}
$$

In general, of course, f will not satisfy (3.5.3). The main idea of this seetion is as follows. Consider choosing arbitrary values f, for,<0 so that f is extended wa bunfinite sequence $(f)_{f \in \pm} \in \ell_{2}$. Any such sequence will have a Fourier representation (3.5.1). where now $f \in L_{2}|-\pi, n|$ is given by

$$
\begin{equation*}
\dot{f}(\epsilon)=\sum_{,=-\infty}^{\infty} f, e^{(\epsilon} \tag{3.5.6}
\end{equation*}
$$

Suppose an extenaion f can be found for which (3.5.3) holds. Then again, (3.5.5) muat
 all $; \in \mathbf{z}$, and in addition matiofies the boundary equation imposed by ϕ at $j=0$. Therefore ita reatriction to $j \geq 0$ must be eractly the colution we seet.

We can therefore determine the refiection in,$* 0$ of a general wave packet if we can oolve the following problem:

HEFIECTION PROLHEM
Given: (i) f, for,≥ 0
(ii) $\hat{\int}$ satisfies $(3.5 .3)$ for a known function $A(\xi)$

Find: (i) f, for all $j \in \mathbb{Z}$
(ii) $广($ () for all $\in \in\{-x, x]$

In effert (i) gives us half of f, and (ii) gives us half of its transform. The parameter count appears right for the problem to be well posed.

The reflection problem as stated has a simple interpretation. Given initial data $(f),, \geq 0$. we seek a distribution of dual initial data $(f,)_{,} \times 0$ such that as increases, the solution $r^{* \prime}$ obtained by applying \because for all $J \in Z$ satisfies the boundary equation of $Q_{\text {at }} J=0$. In other words, the dual parket must be chosen so that it contains rightgoing components that exactly duplicale any peflections of the initial data that should be observed under Q. The idea is illustrated in tig. 3.9;

Mathematically, the reflection problem amounts to the problem of solving an integral equatiun. let f_{+}and \dot{f}_{+}denove the restrictions of f and \dot{j} to $j \geq 0$ and $\xi \in\left[-\frac{\pi}{2}, \frac{\pi}{3}\right]$, respectively. According to (3.5.4), we need to solve the equation

$$
\begin{equation*}
\psi \dot{f}_{+}=f_{+}, \tag{3.5.7}
\end{equation*}
$$

for $\dot{\delta}_{+}$, where $\Psi: l_{2}\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \ell_{2}^{+}$denotes the integral operator

$$
\begin{equation*}
\left(\psi \dot{f}_{+}\right)_{2}=\int_{-\pi / 2}^{* / 2} K(j, \xi) \dot{f}_{\tau}(\xi) d \xi \tag{3.5.8}
\end{equation*}
$$

where K denotea the kernel

$$
\begin{equation*}
K(j, \xi)=\frac{1}{2 \pi}\left[e^{-\tau \theta}+\Lambda(\xi) e^{-2(\pi-\theta)}\right] . \tag{3.5.0}
\end{equation*}
$$

Unfortunately, we have not yet thade any progress in solving the problem as formulated here. It appears that it might be possible to treat the integral equation by some variant of the Wiener. Hopf technique [M053], which is designed to handle Fourier transforms that are split into two halves. However, the solution remains to be worked out. It seems that despite the obvious likelihood that there is a connection between this problem and the Wiener-Hopf methods of Strang and Osher mentioned in $\$ 0.2$, the two formulations are not the same.

3.6 General formulation; the "folding trick"

We will now write down formally the linear algebraic relations that govern steadystate solution behavior for a syatem of rquations at a boundary or interface. In doing so we face the question of how much llexibility to permit in the representation of a diference model. For example, in the interface calculations of 53.2 , it was sometimes conveniunt to use a grid $,=0 . \pm 1, \pm 2 \ldots$ and sometimes $j= \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots$ was better. At issue is a trateof betwrer the simplicity of the general formulation and the simplicity of its application to particular probletns. Our procedure will be to present the generalities in a restricted fort.alism here, but continue to abuse that formatistn later as convenient for dealing with particular cases.

Our main simplification wilf he that instead of treating interface problems as interface problems. we will redure therm formally to boundary value problems by a devier known as the foldi: trick. If the original problem is made up of a systern in N_{1} unk nowns on the icft coupted with a system in V_{2} unk nowns on the tight, the folding trick consiats of raplacing these in the obwous way by atl equivalent system in $\boldsymbol{V}_{1}+\boldsymbol{N}_{2}$ unknowns involving only a boundary. This device has beere used in various
 blessing, however, for it tends to ohseure what is really going un when one deals with an interfier. In particular, one must erenember that the syblem oblained after folding is not an arbitrary systetn in $N_{1}+N_{2}$ variables. but a 2×2 block diagonal system, since the left-side and right-side variables are uncoupled except through the boundary conditions. In particular, it follows that if the difterence motels on each side of an interfare satisfy Assumption 2.1 (diagonalizability see \$2.5), then that assumption also holds for the folded problem.

Consider then the $(5+2)$-level N-vertor differnce model Q of (2.5.2). We assurre
93
that Q satisfics Assmption 2.1. In addition, corresponding to Assumption 31. Iet us impose the following condition:

Aesamption 3.2. For all z with $|z| \geq 1, Q$ admits exactly n_{i} leftgoing and n, rightgoing solutions (2.5.8), where n_{t} and $n_{\text {, are some fixed integers. // }}$

Instead of letting j range over all integers, we now restrict it to $\mathcal{Z} \geq 0 \quad Q$ will apply at all points $j \geq \ell$, and n. additional boundary conditions are then in general needed that invalve $v_{j}^{n+1}, j=0, \ldots, \ell-1$. We can write these in the form

$$
\begin{equation*}
\sum_{j=0}^{\operatorname{man}_{n}} \sum_{i=-1}^{m n x} S_{, \infty} \theta_{2}^{n-\infty}=0 \tag{13811}
\end{equation*}
$$

For some integers $j_{\text {max }}, \sigma_{\text {max }}<\infty$. where each $S_{j 0}$ is constant $n . \times N$ matrix The ${ }^{*} 0^{n}$ on the right denotes the null vector of length n. We let Q denote the d.fference modet consisting of Q for $g \geq \ell$ combined with (3.6 i). For Q wh usable we ned a

Asaumption 3.3. The model \bar{Q} can be solved boundedly in the wrise that : $r^{n-\sigma m a x}, \ldots . t^{n} \in \ell_{2}$ arr given, ther \mathfrak{t}^{n-1} is uniguely determined, and it satiofima bound

$$
\left\|v^{n+1}\right\|_{2} \leq M \sum_{0=0}^{a m n z}\left\|_{v^{n-\cdots}}\right\|_{2}
$$

The two-norm here is defined $(c)\left\{\begin{array}{l}2.2 .11) \text { by }\end{array}\right.$

$$
\| \theta_{2}^{2}=h \sum_{j=0}^{\infty}\left|\phi_{j}\right|^{2},
$$

where $\mid \Phi$,! denotes the vector two nortn. //
It can be shown that such a solvatity assumption ca.....ud only when (3.6.1) hasen. rows, as we have assumed (et $[M ; \mathbb{M}]$, Thm. 11).

Let z be a complex constant sathsfying $|z| \geq 1$. Acrording in (2.5 12), the grierai solution to $\{2.5 .2\}$ can the written

$$
\begin{equation*}
v_{j}^{n}=\sum_{i=1}^{n_{1}} a_{1} \kappa_{1}^{j} d_{1} v_{1}+\sum_{i=n_{r}+1}^{n_{1}+n_{1}} a_{1} \kappa_{i}^{j} d^{l} v_{1} \tag{146.3}
\end{equation*}
$$

94

Ni in ther quantitios are known. since $:$ is given, except for $\left\{a_{4}\right\}$. We can thetefore Fhrite (3 6.1) as the new system

$$
\left.\sum_{i=1}^{n_{0}} 1 \cdots\right] a_{2}+\sum_{n=n_{n}+1}^{n_{n}+n_{1}} 1 \cdots a_{1}=0
$$

where rarh term in brackets is an n_{0}-vector depending on z. If we write now

$$
a^{i r}=\left(a_{1}, \ldots, a_{n}\right)^{T} . \quad a^{[\mid] \mid}=\left(a_{n,+1}, \ldots, a_{n_{1}+n_{1}}\right)^{T}
$$

then theser pquations take the form (cf. eq. (10.2) of [Gu72])

$$
\begin{equation*}
D^{\prime}(z) a^{i v i}(z)+D^{(l)}(z) a^{i(i)}(z)=0 \tag{3.6.4}
\end{equation*}
$$

where I^{\prime} is $n, \times n$. and $i^{i d}$ is n, \times ne. This equation represents the interface forsentit for the general probiem (2.5.2), (3.81).

Now we can solve for reflertion confficients. In the previous sections we just studied the repsetise to a singie incident signal, but of course linearity implies that the tesponse to a sutn of incident signals will be the surn of the responses to each. The getieral problem of finding reflection coefficients is therefore: given a ${ }^{[t]}$, find a ${ }^{[r \mid}$. If D^{\prime} is invertible, ther (3.6 .4) gives the result

$$
\begin{equation*}
a^{[r]}=-\left(D^{[r \mid}\right)^{-1} D^{[c]_{a}}{ }^{[A]} . \tag{3.6.5}
\end{equation*}
$$

This equation is the general solution to the problem of finding reflection coefficienta, and $\left(D^{|r|}\right)^{-1} D^{[n]}$ is an $n, \times n_{\ell}$ matrix that might be called the reflection coeffeient matrix. If the problem $\{2.5 .2$), (3.6 .1) came from an interface problem by folding, then ald describes incident signals and $a^{[r]}$ both reflected and transmitted ones.

It is by no means aiways true that $p^{|r|}$ is invcrtible. In certain circumstances the examples of $\$ 3.2$ demonstiste this problem. In Example 3.1, for instance, if $a_{-}>$ $0>a_{+}$, then for $z=1$ one has $0_{0}=0_{6}=0$, and the denominators in (3.2.6) are 0 Similarly in Example 3.1(ii), for $a<0$ and $z=1$ one has $\alpha_{1}=\kappa_{1}=1$, and if m is even, then the denominators in (3.2.24) are 0 . Apparently for the wrong vaiue of z in these problems, the reflection and transmission coefficienta become infiniteand for nearby valuen, arbitrazily large. This is no flaw in our formulation, but the artual behavior of thenc echemes, as we will verily by experiment in the next chapter [Demo. 1.2]. We will sec there that the singularity of D^{101} and the presence of infinite reflection coefficiente are difectly related to instability in finite difference models of
intitial boundary value problerns.

All of our discussion in this chapler has been restrieted to problems in one space dimension, but the same principles apply in the multiditiensional ease. Suppose for example that a plane wave with freguency e and wave number vector $\xi^{(0)}=$ $\left(\xi_{1}, \ldots, \xi_{d}\right)^{\top}$ in incident upon a plane inverface at $x_{1}=0$. As in the one dimensional problem, the arst step is to solve the dispersion relation to determine all powble reflected and transmitted waw number vectors $\xi^{[0]}$. $\xi^{[n]}$. Sither the inkeffare as paralle! to the axes $x_{2} \ldots z_{4}$, one can use the fact that all components will have mual values of 2 and $\varepsilon_{2} \ldots, \xi_{4}$ differing only in ξ_{1} The various whetions ξ_{1} on parb muld of the interfare then sield wates orimentig at various athgers. The radiation condthon requires that one pick out those waves with wector gros: betocities pointing away From the interface Onet thes arn determined, reflection ant transmisson curfin ints can be computed as usual int the will be angledeperidmat. Thus Snells law for difference modets, already mentioned in \$1.6, fils directiy tuto the framework we have established for intertace probiems.

Abstract

1 ;

4. Stability for initlal boundary value problems

1.1 An example

From here on, the rest of the dissertation is concerned with the stability of finite difference models that contain boundaries or interfaces. According to the folding trick ($8 \mathbf{3} .6$) it is caurugh to consider the stability of models of initial boundary value pobtems. The asabable theory for this was developet by Kreiso, Osher, Gustafson, ant others in the decade preceding 1972 , and was reported in an important paper by Cisstafswon. Kriss, and Sundströn ("CKS") in 1972 (Cuz2] (see ge. 2 for further reformess). For further developments of this theory see [Gu75] and [Mi81], and for a satrmatic introduction to it ser [Co80]. Our purpose in this chapter is to stow that the key fartor determinting stability is dispersive wavr propagation. We will see that the risultes of Kreiss and others ate built around a group velocity test in a disguised form.

We will bring om our hasic ideas with a simple example. Let the problem

$$
\begin{equation*}
u_{t}=u_{z}, \quad u(x, 0)=f(x) \tag{1.1.1}
\end{equation*}
$$

be given on $x \geq 0,1 \geq 0$, no bosudary data at $x=0$ are needed to make (4.1.1) wrlf poscd. To obtai, an approximate solution on the grid $j, n \geq 0$, we can specify
 An addtional boundary formula ; then needed for vâ, $n \geq 2$. Let us pick the zeroth-order spare extrapolation formula (3.2.29).

$$
\begin{equation*}
v_{0}^{n+1}=v_{1}^{n+1} \quad(n \geq 1) \tag{4.1.2}
\end{equation*}
$$

and procerd to blep forward in time.

Instability an apontaneoua radiation from the boundary
Inatability refers to the unbounded amplification of small perturbations. Now imagine that at some pair of adjacent lime steps a rounding erfor or other perturbstion happens to be introduced that has the form of a wave front with $(\alpha, z)=(1,-1)$,

$$
v_{j}^{n}=\left\{\begin{array}{cc}
(-1)^{n} & (j h \leq c) \tag{4.1.3}\\
0 & (j h>c)
\end{array}\right.
$$

for some $\boldsymbol{>}>\boldsymbol{h}$. To be a little more careful, we could make v decrease smoothly to 0 near $x=6$ rather than abruptly. Then what will happen as t increases! At $;=0$, (4.1.3) satisfies both LF and (4.1.2), so the oscillation (4.1.3) witl persist. At $\rho h=e$, the wave front will move at the group speed for the given pair (x, z) which hy (1.2.5) is +1 . Thus as t increases the wave will propagate rightwards into $x \geq 0$ at speed 1 . The initial perturbation. with sump of xquares efirsgy on the order of f, will give rise to a growing solution with energy on the order of e $+t$. Sinee o might be aptritrarily small (so long as h is decerased accordingly), this amounts to an amplifiration of the initial perturbation by an unbounded factor. The diference acheme 4 undable, because there exists a rightgoing wave that natulfies both the mientior formula $L F$ and the boundary condition (1.2.2).

DIMONSTRATION 4.i. Of course fex random perturbations look exactly like ($1.1,3$), bul instability comes about berause almust any data will excite this mode to some netent. Orie can verify this experimentally. Fig. 4.1 shows a computation on a grict with $h=1 / 200, \lambda=1 / 2$. For initial data we took $v_{j}^{\mathrm{C}}=\mathrm{r}_{2}^{\prime}=0$ for all \boldsymbol{g} except for the "random" nonacro initial values

$$
\begin{equation*}
v_{1}^{0}=1, \quad v_{0}^{2}=\frac{1}{2}, \quad v_{1}^{1}=\frac{1}{3} . \tag{1.1.4}
\end{equation*}
$$

Figs. 4.1a ce show the resulting solution at steps $n=1,100,200,20$, i.e $t=.0025$, $.25,5,5025$. Obviously the expected incoming rrode has been excited, and apparently no others.

In a ralistic computation, trumention errors would usually cause a similar radiation of f . تgy in this mode from the looundary. From (1.2.5) of Fig. 1.13 we know that there are many other rightgoing modes for LF in fill, any wave with (h $\leq \pi / 2$ and $\omega k \geq \pi / 2$ or $\xi h \geq \pi / 2$ and $\omega k \leq \pi / 2$. The mode $(\pi, z)=(-1,1)$ is the simplest example. None of these lead to inslability, however, because none of them antisfy (4.1.2).

FIG. 4.1. Inctability as apontancour radiation from the boundary. The initial dath $(1,1,1)$ stimulate a rightgoing wave with $(\xi, \omega)=$ $(0, \pi / k)$ and $C=1$. The model is $I,{ }^{\prime}$ for $u_{c}=v_{2}$ with $h=1 / 200$, $(0, \pi / k)$ and $C=1$.
$\lambda=5, v_{0}^{n+1}=p_{i}^{n+1}$.

Instability an an infinite reflection coefficient

Another way to took at the instability of initial boundary value problems is in terms of reflection coefficients. In Example 3.5 we have considered the boundary condition (4.1.2) already. and derived the rellection coefficient formula (3.2.31)

$$
\begin{equation*}
A(z)=-x_{l}\left(\frac{1-\kappa_{l}}{1+x_{l}}\right) . \tag{4.1.5}
\end{equation*}
$$

where $\alpha_{i}=\alpha_{k}(z)$ is the apatial varistion factor for the incident leftgoing signal. From this formula it is evident that A becornes infinite if (and only if) $x_{8}=-1$. Hy (2.1.8), L.F for (4.1.1) has two modes with $\kappa=-1$, namely $(x, z)=(-1,1)$ and $(-1,-1)$. Or these the latter is the leftgoing one, and by (2.4.8), the corresponding refected rightgoing mode is $\{x,, z\}=(1,-1)$. This is exactly the unstable mode we have identifird in (1:1.3). The difference scheme is unstable, because there esints a leftgoing wave for which the refection cocfictent s infinite.

Demonstration 4.2. It is not possible to observe infinite amplification in reflection. but we cal! come arbitratily close. Fig. 4.2 shows an experiment involving the sarme morel as Demo. 4.1. In Fig. 1.2a, an initial Gaussian packet

$$
\begin{equation*}
v_{2}^{\prime}=-v_{j}^{0}=\frac{1}{10}(-1)^{2} e^{\left.-\left(\{)^{2}-2\right) / 025\right\}^{\prime}} \tag{4.1.8}
\end{equation*}
$$

is shown for $t=n=0$. As t increases, this packet moves left at speed $C(-1,-1)=$ -1 , hits the boundary, and reflects rightward. Fig. 1.2 b shows the result at $t=0.5$. One sees immediately that the inflected wave is not a packel, but a plane wave as in Fig. 4.1 the unatable mode has become lodged in the boundary, where it will continue to radiate forever. In addition, there has been an 18 -fold amplitude increase from 0.1 to 1.7725 .

By doubling the width of the initial packet, one doubiea the rellected amplitude. Figs. 4.2e d thow the experiment repeated with the width 025 of ($4.1,8$) replaced by .05. Now the reflected amplitude is 3.5419 -juat twice the previous value. One can account for this in various ways. The simpleat in to argue that the broadened pulse interacts with the boundary for twice as long, enabling twice as much of the unstable mode to accumulate there. A more elegant explanation atarta from the fact that any finite packet cannot consint of energy at exactly the ceticial wave number $\mathbf{f o}_{0}=0$ (the uncertainty principle again), but will approximate fo with some effective wave number $\xi_{\text {er }}$. Eq. (4.1.5) auggeata that the obeerved rellected amplitude should behave like

$$
\text { amplitude } \approx \frac{\text { conat. }}{\left|\xi_{0}\right|-\xi_{0} \mid} .
$$

Fig. 4.2. Instability as an infinite reflection coofficient. The initial leflgoing wave packrl (1.1.6) with $\left(\xi_{-}-\right)=(\pi / h, \pi / k)$ hits the boundary atd refiects as a wave fromit with $(\xi, \omega)=(0, x / k)$ of mueh greater amplitude. Doubling the widtli, of the parhet ioubles the amplification. The model is $l .1$ for $u_{1}=u_{2}$ with $h=1 / 200, \lambda=.5, v_{0}^{n+1}=v_{1}^{n+1}$.

101

Hy doubling the width of the packet, we have cut $\xi_{0}-\xi_{0}$ in in balf, and therely doubled (4.1.7). In 56.5 we will pursue this kind of reasoning in some detail. It is likely that by an extension of the ideas of $\mathbf{5 3 . 5}$, one could also get an exact expression for the reflected amplitude

Instead of widening the packet, we could have made h smalier. As a general rule one can expect amplitude increases comparable to the number of grid pointa in the initial packet. For fine enough meahes this implies arbitrarily great increases in amplitude. This amounte to instability in any norm.

Discuenion

Of course not all numerical boundary conditions are unstable. To obtain seability in the present problem, we might replace (4.1.2) by the zeroth-order space-time extrapolation formuls (3.2.32),

$$
\begin{equation*}
v_{0}^{n+1}=v_{1}^{n} \quad(n \geq 1) . \tag{4.1.8}
\end{equation*}
$$

From the corresponding equation $z=\kappa$ and the equation (2.1.8) for LF, it is immeciate that now Q admits no regular solutions exeept $(\kappa, z)=(1,1)$ or $(-1,-1)$. Since both of these are ictugoing, no spontancous radiation from the boundary is possible. Similarly for the reflection coefficient point of view, (3.2.34) shows that $A=\infty$ is possible only for $z=-1 / \kappa_{\ell}$, a condition that is never satisfied under LF.

Obviously the possibility of spontaneous rightgoing modes and the existence of infinite reflection cofficients are algebraically related, so our two approaches to instability are far from independert. They are howrver not equivalent, for it turns out that there are a number of probienis that admit a spontancous rightgoing inode, but for which all reficetion coeflicients arc uniformily bounded. To what extent such models act unstable in practice is open to question, and these arc among the "bonderline cascs" of stability 10 be discussed in $\S 5$. Chapter 5 is also concerned with another weakly unstable borderline case, namely the situation in which \boldsymbol{Q} adruits a steady state sotution that is rightgoing hint not strielly rightgoing. This in turn divides into two principal subcascs corfexprading to positions (5)-(6) atd (7) of Table 2.1.

For the fermainder of §4, we will mainly pursue the interpretation of inslability as the existence of a spontancour righlgoing mode. Whlike the reflertion coefficient interpretation, this one eorrespotsds cxactly to the GKS stabblity criterintt. It is also relatively rasy to make rigorous.
'Throughout this discussion our philocoghy is that instabitity thed nut be atudied 102
only abst ractly, for it is mainly caused by simple plysical mechanisms. By coneentrating on these mechanisms we can show that most CKS-unstable difference achemes are susceptitice to unstable growth in the ℓ_{2} norm (Thms, 4.2.3, 4.2.4), not just in the muth less natural GKS nowm (Thms 4.3.1). In the process of isolating this strongly unistable case, we also come to better understand the borderline cases for which the situation regarding stability is less clear.

$4.2 \ell_{2}$-atability; growth theorems

We will consider stability for a getueral difference model of an initial boundary value problem for a hyperbolic system of equations, as described in $\$ 2.5$ and $\$ 3.6$. For much of what follows we could use exactly the formutation of those sections, but to raike contact with the GKS stability definition, it is necessary to include in the model ath iahomegeneous forring function $\boldsymbol{F}(z, t)$ and inhonogencous boundary data $g(t)$.

> Consider then the first-order system (cf. (2.5.1))

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=\Lambda \frac{\partial}{\partial x} u(x, t)+F(x, t) \tag{4.2.1}
\end{equation*}
$$

on the quarter-plane $x, t \geq 0$, where $u(x, t)$ and $F(x, t)$ are N-vectors and A is a constant $N \times N$ matrix Let (4.2.1) be modeled in $z>0$ by a fixed $a+2$-level difference formula as in (2.5.2), but with the inhomogeneous terin added:*

$$
\begin{equation*}
Q_{-i} v_{j}^{n+1}=\sum_{n=0}^{n} Q_{\theta} v_{j}^{n-0}+k F(j h, n k), \quad j \geq c \tag{4.2.2}
\end{equation*}
$$

We let Q denote the homogeneous part of this formula (i.e. with $F \equiv 0$), and we assumic that Q is Cauchy stable and that it satisfies Assumptions 2.1 (diagonalizability) and 3.2 (n_{r}, n_{f}). If ($\mathbf{4} .2 .2$) is applied for $j \geq \ell$, then boundary formulas are required to tetermine valuen v_{2}^{n} for $j=0, \ldots, \ell-1$, as in (3.6.1). These will be of the form (3.6.1), but with the inhomogencous term g added:

$$
\begin{equation*}
\sum_{j=0}^{\operatorname{man}} \sum_{i=-1}^{* m i n} s_{, c} v_{j}^{n-\infty}=q^{n} \tag{4.2.3}
\end{equation*}
$$

where $\boldsymbol{g}^{\boldsymbol{m}}$ is a vector of leagth n_{r}. For initial conditions, we numure a set of formulas

$$
\begin{equation*}
\nabla_{i}=f_{;}, \quad 0 \leq j<\infty, \quad 0 \leq 0 \leq 0 . \tag{4.2.4}
\end{equation*}
$$

-To get a higher noder of eccursey, one night winh to represent F in the model in a more compliented way. Thin it mo probkem Por the stability theory; nee [CodI].

103

The entities $\left\{S_{30}\right\},\left\{g^{n}\right\}$, and $\left\{f^{\sigma}\right\}$ ineotpmate approximations of all of the boundary of initial data that together with (1.2.1). make up the physical problem to fir modeled. $\left\{S_{j \sigma}\right\}$ ineludes in addition any purely numerical boundary ronditiona. We let the symbol Q denote the complete diference model. (4.2.2) (1.2.1).

We assume that the following solvability property holds. the natural extension of Ass. 3.3 to inhomogeneocs boundary data:

Asaumption 4.1. The model Q can be solved boundedly in the sense that if $v^{n-\infty m a s}, \ldots, v^{n} \in t_{z}$ atud g^{n} are given, then v^{n+1} is uniquely determined, and it satisfies a bound

$$
\left\|_{1} i^{n+1}\right\|_{2}^{2} \leq M^{2}\left(\sum_{e=0}^{\cdot m=n}\left\|v^{n-\cdots}\right\|_{2}^{2}+h\left|\xi^{n}\right|_{2}^{2}\right)
$$

where the norma || $\|_{2}$ and | | are defirint as in (3.6.2). /f
In ectling up the problert we have made three ingontant simplificstions. We have left out
(i) variable roefficiente $A=A(\mathbf{z}, \mathrm{t})$;
(ii) grid-dependent formulas $Q_{0}=Q_{e}(k, h(k))$;
(iii) undifferentiated lerm Hu in (4.2.1).

An important feature of the GKS theory is that it extends to probleris with these complications, and although we will discuss only the simplified problem without them, we believe that the kame is true for our own arguminta based on wave propagation. Hlowever, one effect of (i) and (iii) should not be ignored, and that is that they make it possible for solutions to (1.2.1) to grow exponentiatly with t. Tlineffore in rewriting the definition of Cauchy stability from $\$ 2.2$ and $\mathbf{\xi} 2.5$ for initial houndary value problema. we recognize this possibility explicilly, following Defn. 3.1 of [Gu72]:

Defn. Let Q be applied with homogeneous boundary and forring data, $g \equiv F \equiv$ 0 . We say that Q is t_{2}-stable it there cxist constants $\alpha_{0} \geq 0$ and $M>0$ such that, for all $a>\alpha_{0}$. the following catimake hoida for all $n \geq 0$ and all sufficiently small k :

$$
\begin{equation*}
\left\|e^{-\omega t} v^{n}\right\|_{z}^{2} \leq M \sum_{e=0}^{\infty}\left\|f^{\bullet}\right\|_{z}^{2} \quad(t=n k) . \tag{4.2.5}
\end{equation*}
$$

liere $\|\cdot\|_{2}$ denotes the f, norm (3.6.2). \#
The defitition permits an exponential growth of the solution -at a rake eat, however, that does not increase an the incat is refined.

Wr are now in a position to identify mechanisms that can render a diference scheme ℓ_{2}-unstatio The first important inechanism is Cauchy instability. If the interior formula Q is not (lauchy stable, then it cannot salisfy a bound (1.2.5), and easy Fourier arguments show that then \dot{Q} cannot be ℓ_{2}-stable either. But we have assumed that Q is Cauchy stable.

The second important mechanism was studied by Godunov and Ryabenkii in the early 1960's [Ri67]. Since Q does not extend into $x<0$, a solution of the form $\left.z^{n} x^{\prime}\right\}^{t} v(2.5 .8)$ with $|\kappa|<1$ belongs to ℓ_{2} for each n. If such a solution exists with $|z|>1$, then once again we have exponential growth and therefore \boldsymbol{t}_{2}-instability. One can think of this as spontaneous radiation from the bounciary of striculy rightgoing energy of type (9) in Table 2.1, that is, of a signal of the kind illustrated ir Fig 2.2n.

For this kind of instability the boundary is definitely involved, and we know that the boundary can rouple various wave components $w, ~(52.5$). Therefore in general we must look not just for ont solution $z^{n} \kappa^{\prime},^{4} w$, but for linear combinations of such modes. We define:

Defn. l.ct $z \in \mathbb{C}$ satisiy $|z| \geq 1$, and suppose Q with $F \equiv g \equiv 0$ adrnits as a wolution a linerar combination of rightgeing modes

$$
\begin{equation*}
v_{j}^{n}=z^{n} \phi_{1}=z^{n} \sum_{i=1}^{1} a_{1} \kappa_{i}^{j} j^{d} \psi_{1}, \quad a_{1} \neq 0 \tag{4.2.6}
\end{equation*}
$$

as defined in $\left\{25.10\right.$), where for each $1,\left|\kappa_{0}\right|<1$. Then ϕ is an eigensolution of Q with eigenvalue z (Eigransolutions with $|z|<1$ can also readily be defined, but these ate nut relevant to stability) //
In other wards, an eigensolution is a li.ecar rombination of signals from position (7) of Table 2: in the case $|\boldsymbol{k}|=1$, or from position $\mid 9$) in the case $|z|>1$, that satisfies both the honogrneous interior formula (1.2.2) and the homogencous boundary conditions (1.2.3). (Wr will abuse terminology by referring to both ϕ and $z^{\prime \prime} \phi$ as eigensolution", as eonvenient.) We define further:

Defn. A atrictly rightgoing eigensolution is an eigensolution consisting entirely of atrictly rightgoing signals. Equivaiently, it is an eigensolution with $|z|>1$ (position (9) of Table 2.1). //

The Godunov-Ryabenkii theorem now states:

Theorem 4.2.1 (Godunov-Ryshenkii theorem) /R:67: A necessary conds tion for ℓ_{2}-stability of \dot{Q} is that there exist no strictly rightgoing eigensolution.

Proof. Suppose there exists a strictly rightgoing rigensulution ϕ. If $v ;=z^{*} \phi$, is taken as initial data (4.2.1) fot $0 \leq 0 \leq 0$, the solution as n increases will be $v_{j}^{n}=z^{n} \phi$, for all n. Since $t=n k$, this means that v will grow like $|z|^{1 / k}$. This growth is unbounded for any t as $k \rightarrow 0$, which contradicts (4.2.5). I

This theorem has a direct restatement in terms of the reflection matrix $D^{\text {bl }}$ of §3.6:

Theorem 4.2.2 (Godunov-Ryabenkii theorem, determinant condition). A recessary condition for ℓ_{2}-stability of Q is that for all z with $|z|>1$, the matriz $D^{(-1)}$ of (9.6.4) is nonsingular, i.e.

$$
\operatorname{det} D^{[j]}(z) \neq 0 \quad \text { if }|z|>1 .
$$

Proof. If $D^{[\cdot \mid}(z)$ is singular for some z with $|z|>1$, let $a^{[r]}$ be a corresponding homogencous right eigenvector. Then the function

$$
\begin{equation*}
\phi_{j}=\sum_{i=1}^{n_{n}} a_{1}^{\left[l_{1} k_{i}^{\prime}\right.} j^{b_{1}} \psi_{1}, \tag{4.2.7}
\end{equation*}
$$

as in (2.5.10). is an unstable strietly rightgoing eigensolution.
The fimitation of the Godunov-liyabenkii contition is that although it is necessary for stability, it is far from sufficient, both in theory and in practice. What it faits to take into acrount is a third instability mechanism, namely the exintence of strictly rightgitig wavelske solutions (ie. with $|:|=| n\}=1$). For this we nake use of the concept of a generahzed eigensolution, which was introduced by Kreiss but is def...et here from our wave propagation point of view:

Defn. lat $z \in \mathbb{C}$ satisfy $|z|=1$, and suppose Q with $F \equiv g \equiv 0$ adnits an a molution a tinear combination of rightiguing modes

$$
\begin{equation*}
v_{1}^{n}=z^{n} \phi_{2}=z^{n} \sum_{n=1}^{4} a_{1} \kappa_{1}^{3} j^{b_{n}} v_{n}, \quad a_{1} \neq 0 \tag{4.2.8}
\end{equation*}
$$

as defined in (2.5.10), where for at kast one i, $\left|\kappa_{4}\right|=1$. Then ϕ is a generalized eigensolution of Q with generalized cigenvalue $: ~ / /$

In analogy with the eartice iffinition we now state:
106

Defn. A atrictly rightgoing generalized eigensolution is a generalized eigersolution connisting entifily of str, ty righlgoing signals. Equivalently, it is any generalized rigeneolution with $\left|x_{1}\right|=1$ and $C_{0}>0$ for all i. //

This definition leads to the following theorem, which is new. Let $\$$ denote the multilevel solution operator for the homogeneous modei Q with $g \equiv F \equiv 0$:

$$
\begin{equation*}
S:\left\{v^{n}, \ldots, v^{n-*}\right\} \mapsto\left\{v^{n+1}, \ldots, v^{n-s+1}\right\} \tag{4.2.0}
\end{equation*}
$$

Let these +1 -level vectors be normed by

$$
\begin{equation*}
\left\|\left\{v^{*}, \ldots, v^{n-v}\right\}\right\|_{2}^{2}=\sum_{v=0}^{\infty}\left\|v^{n-v}\right\|_{2}^{2} \tag{4.2.10}
\end{equation*}
$$

with the norm on the right defined by (3.8.2), and let $\|S\|_{2}$ be the induced operator norm.

Theorem 4.2.3. A nectasary condition for l_{2}-stabulity of Q is that ithere exist no atrut ly rightgoing generalized eigensolution. If there doet exiat a atrictly rightgoing peneralued eigensojution, then
$\left\|S^{*}\right\|_{2} \geq$ const. \sqrt{n}

for infinitety many integers $n \geq 0$.

Proof. See Appendix B. 1

The proof of this theorem has been deferred to an appendix for clarity here. However, the explanation of the result is exactly what was discussed in §4.1. If the initial date consict of a narrow signal at the boundary of the form of the generalised eigensolution, then at time elapmes it will move steadily rightward, a auggested in Fit. 4.3.

Fic. 1.3

107

As a pesult the solution grows in ℓ_{2} as fist as \sqrt{n}. I'ecrisely this argument can be made rigorous, but for technical simplicity the proof in App. 13 prorecds somewhat differently.

Whether (4.2.11) captures the rate of growth observed in practice for an unstable difference model appears to depend on reflection coefficients. In Demo. 4.2 we saw that if an infinite reflection coefficient is present, then amplitude growth may be observed that is proportional to n, not \sqrt{n}. Therefore we propose:

Conjecture. The bound (4.2.11) w sharp in the sense that there are some t_{1} unatable models Q admitting atrietly rightgoing generalized rigensolutione for which

$$
\begin{equation*}
\left\|S^{n}\right\|_{2} \leq \text { const. } \sqrt{n} \quad \forall n>0 \text {. } \tag{1.2.12}
\end{equation*}
$$

However, suppose that Q has a strictly rightgoing generalized engensolution for which the refiection matrix $\left\{D^{i-1}(z)\right\}^{-1} D^{(k)}(z)$ it infinte. Then (4.2.1i) can be atrensthened to
$\left\|S^{n}\right\|_{2} \geq$ const. $n \quad \forall n>0$.

In addition to atability with respect to initial data f, it makea sense to consider stability with respect to foreing data F or boundary data g. Our proof of Thm. 4.2.3 can in lact be used to show that a bound analogous to (4.2.11) holds for problems driven by F. Probably the natural analogs of (4.2.12) and (4.2.13) hold also. For boundary data, however, the situation is different-we get growth proportional to n regardless of the reflection coefficients. Let \bar{Q} be applied with $/ \equiv F \equiv 0$ but with $\rho \neq 0$. Let $S_{b c}^{(\sigma)}$ denote the operator
$S_{b c}^{(n)}: g m v^{n}$
(4.2.14)
with norm induced by ℓ_{2} norms for g and v^{*} with respect to t and x, reapectively.
Theorem 4.2.4. A necessary condition for atabilty of Q with respect to boundary deta is that there exiut no atrictly rightgoing eipenaolution of generalived eigensohetion. If there does exist such a solution, then
$\left\|S_{b e}^{(n)}\right\|_{2} \geq$ const. $n \quad Y_{n}>0$.
(4.2.15)

108

Proof Ser Appetudix B.

There is litule doubt that as with (1.2.13), this bound is sharp for the class of strictly rightgoing gencralized eigensolutions as a whole, although faster growth can be obtained in particular cases.

-••

It is natural to ask whether the growth rates (4.2.11), (4.2.13), (4.2.15) are severe enough to cause trouble in practice. For the latter two cases (linear growth) the answer is clearly yes. Whatever the problem being solved, rightgoing radiation at the boundary will tend to appear in these cases, causing the computation to give unreasonable answers. As a minimum it will result in failure to converge as the grid is effined. The numeriral examples of the next chapter will illustrate these claims (see especially Figs. $5.26,5.1 .3$ \&). For the question of stability with respect to initial data in the finite reflertion corflicient case (1.2.1t), however, the situation is more delicate. We will give evidence in Chapter 5 that the instability here is quite weak in practice.

There in another important justification for considering the kind of growth we have described unstable, which is often mentioned by Kreiss. That is, if a second boundary is introduced in the problem being modeled, say at $x=1$, its effe:t may be to convert an algetritic growth rate to exponential. If one hopes for a stability throry that permits one to investigate the stability of each boundary individually, it follows that a model with a strictly rightgoing gencralized eigensolution will have to be cotisiderad unstable llowever, wr will discuss problems involvir. , is bouncafies at leneth in 55 and $\$ 6.5$, and conclude that the exponential growth eveurs only if the ungtable boundary has an infinite reflection coefficient.

4.3 GKS-stability

Thenrems 1.2 .1 and 4.2 .3 give necessary but not sulficient conditiona for stability. As has been stated, wr believe that ill practice these conditions are more or less sulficient also, at least for stability with respect to initial data, and we will give various examples in sepport of this view in $\mathbf{5 5}$. However, no estimnte on the growth of t is available of make this opinion precise. In fact in at least one (quite contrived) situation, these ronditions are demonstrably too weak to ensure $\boldsymbol{l}_{\mathbf{2}}$-stability. This

109
is the ease in which \bar{Q} admits an rigensolution with $\mid z=1$, but in which z is a defective eigenvalue of $P_{n}(z)(\$ 2.5)$ and it is also defective with respect to the boundary conditions. In this event Thme 2.4.1 implies that one must expeet algebraic growth with n.

A striking urhievement of the GKS theory is that it oblains a necessary and sufficient condition for stability. This is accomplished by extending the stability conditions of Thms. 4.2.1 and 4.2.3 to include non-stricty rightgoing solutions, and by strengthening the definition of stability. Here is the new definition, which appears as Defn. 3.3 in \{Gu72\}:

Defn. Let Q be applied with homogenrous initial data $\zeta=0$. We say that \bar{Q} is GKS-stable if there exist constatts $a_{0} \geq 0$ and $M>0$ such that, for all $a>0_{0}$. the following estimate holds for all sufliciently sinall k :

$$
\begin{align*}
& \left(\frac{a-a_{0}}{1+a k}\right)^{2}\left\|e^{-a t} v\right\|_{x, s}^{2}+\left(\frac{a-a_{0}}{1+a k}\right) \sum_{j=0}^{p-1}\left\|e^{-a t} v_{j}\right\|_{i}^{2} \tag{1.31}
\end{align*}
$$

$$
\begin{align*}
& \text { Here } t=n k \text { and }\|\cdot\|_{z, t} \text { and }\left\|\|_{t} \text { denote the } t_{2}\right. \text { norms defined by } \tag{1.32}
\end{align*}
$$

This definition is quite forbidding, and some remarks orb it ate in order:
(1) Ualike (4.2.5), the bound (13.1) imosive f (and of rather that f. This is at unfortunate technical limitation hiat is made necossaty by the proofs if the CKS theorens, which are based on a Fourier tearsform in e. If \{4 31, involved $/$ bist not F, then one would be able to extend it to a bount inselving F alse ty theans of the disercte anaig of Duhanel's principle. The connetion in the other direction is however not so easy; the whious approach reguita the introdurturn of a factor $1 / k$ if the right hand side of (4.3.1) for the probleth of well madness of partial differential equations (as opposed to diferener mominh), by whtrast, a womphete connection between \int and F is known to holif [Raiz2].
(2) The Fourice transform arpuments are also eesponitile fur the apmarame of deray factors $r^{-a t}$ on the right as woll as the left, and for the marmatiating frations

(3) The boundary term $\sum\left\|e^{-a t} v,\right\|_{2}^{2}$ gives special weight to the berhaviot of the solution near $x=0$. This is an important point that we will discuss betow and in $\mathfrak{\xi s}$.
(1) A valuable property of this definition is that one can show that the set of GKS-stable difference schemes is open in the foliowing sense: if \mathbf{Q} is stable, then a perturbed scheme \bar{Q} is stable also, provided $\|\bar{Q}-\bar{Q}\|=O(k)$ a $t \rightarrow 0$ (Thm. 4.3 of (Gu72]). It is this robustneas that makes the GKS theory cextend readily to problems with the complications (i)-(iii) listed in 54.2 , and also to problems with two boundariea.

Because of (3), GKS-stability is a substantially more stringent requirement than ℓ_{2}-stability. However, it is not known whether GKS-stability actually impliea ℓ_{2} stability. Kreins et al. conjecture in $\mathbf{5 3}$ of $\{\mathrm{Gu} 72$] that it does.

The main GKS theorem is like Thms. 4.2.1 and 4.2.3, except that the hypothessis of a atrictly rightgoing mode is removed and an additional dissipativity restriction is sadded:

Theorem 4.3.1 (GKS atability theorem). Assume that Q is either x-dissipative of struetly nondwaspative." A necessary and aufficient condition for GKS-stability of Θ n that there exsot no rightgoing eigennolution or generalized eigensolution (i.e., no eagensolution or generaluzed eigensolution with $|z| \geq 1$).

Proof This theorem is equivalent to Lemma 10.3 and the sentence following in (Ciu72). 1

The proof given in $|\mathcal{C i u 7}|$ is a $^{\text {a }}$ lengthy one, and to prove that the eigensolution condition is suffirient for stability, we know of no alternatives. But as in Tbm. 4.2.3, the noreasity can be established by arguments of dispersive wave propagation. We have stated that the ceserntial feature of the GKS stability definition is the integral dong $x=0$ that it includes. The following argument will work for any stability definition involving nuch a boundary integral.

Sketch of proof of necessity in Thm. 4.s.1. As in the proof of Thm. 4.2.3, suppose Q admis a rightgoing solution (4.2.8). Once again, we want to conatruct an initial menal consisting of this solution for x near 0 , cutting off smoothly to $0=0$ near $x=$ A. min Fig 4.3e. (Since the GKS-stability defnition involves F ratber than f, this
-This is Acoumption 8.4 of $[\mathbf{C u 7 2]}$. It appeara to be unknown to what extcer chim restriction in percavery for the theorem to go through. We conjocture that for diagoantisable difierence in neekery for the theorem to so through. We conjoctare that for dingoanhisable divierence modela, at icmel,

111
signal must be introducd through f rather than f.f Now as t increases, each wave front in (4.2.6) remains stationary or moves right. In either event the initial signal sits easentially unchanging near the origit. Because of the boundary term $\sum\left\|^{-a t} v,\right\|_{i}^{2}$ on the left of (4.3.1), this stationary behavior can be seen to be GKS-unstable.

The GKS theorem has a simple restatement in verms of a deverminant condition (cf. Thm. 1.2.2);

Theorem 4.3.2 (GKS stability theorem, determinent condition). A necessary ard sufficient condition for GKS-stability of Q in that for all z with $|z| \geq 1$, the refiection matrix $D^{[5]}$ of (9.6.4) is nonsingular, ie.

$$
\operatorname{det} D^{|r|}(z) \neq 0 \quad \text { if }|z| \geq 1
$$

Proof. The determinant condition is equivalent to the condition of Thm. 4.3.1, by the same argument as in the proof of Thm. 4.2.2 1

$$
* \cdot
$$

To summarise $\$ 4.2$ and 54.3 , we have shown that unstable difference models of initial boundary value problems can be recognized by the unstable steady-state solutions they admit. If Q admits a strictly rightgoing solution. it is unstable in \boldsymbol{C}_{2} with a growth rate of at least \sqrt{n}, and probably n when an infinite reflection coefficient is present. If it admits a rightgoing solution with no strictly rightgoing components, it is still unstable according to the GKS defnition. Since the definition of "rightgoing" for wavelike modes dependr on the group velocity, these results demonatrate that group velocity has a fundamental role in determining stability.

We have not mentioned stability for problems with interfaces, except to fold them into initial boundary value problems. However, the results above unfold casily, and we find: an interface model is unetable if it admitt a steady-state solution that is outgoing from the point of view of the interface (lellgoing on the left, rightgoing on the right).

We have also not mentioned the "perturbation least for gencralized cigensolutions," which is described in various accounts of the GKS results, but which many practitionera find mysterious. This is nothing more than the perturbation kest for distinguiahing positive and negative group velocities that was described in Thm 2.3.2.

4.1 Stability for disaipative schemea

All of the statements of the past three sections apply to dissipative formulas, for nowhere have we assumed nondissipativity. In particular, recall that Tum, 2.3.1 guarantees that the group velocity makes sense for any mode with $|z|=|\kappa|=1$, even if it is admitted by a dissipative formula. However, it is worth discussing dissipative models explicitly, both berause the stability critcria can be simplified in this case, and because dissipative modrls are a natural point of confusion regarding the validity and scope of the group velocity approarh to stability.

Suppose first that the interior formula Q is totally dissipative, which means that $|\kappa|=|z|=1$ is possible only for $\kappa=z=1$ (51.2). From Table 2.1, it is evident that this restricts the set of rightgoing solutions admitted by Q, apart from $2=$ $\kappa=1$. to the possibilition $|z|=1>|\kappa|$ and $|z|>1>|\kappa|$. From the definitions of eipensolutions and generalized cigenwolntions in fid it follows that the CKS theorem (Thm. 13.1) :akes the frilowing special rorm:

Theorem 4.4.1 (GKS theorem for totally dusipative sehemes). Let Q be totalty dissipative. A necesgary and suffictent condition for GKS.stability of \bar{Q} is that the following conditions hold:
(1) Thete are no (rightgoing) eigensolutions witn $|z| \geq 1$;
(13) There are no (rightgaing) generaized etgensolutiows that involve the wase made $K=z=1$. 1
Similar ancial formulatione could be piven for the theorems of $\$ 1.2$.
The adrantage of this statement over Thm. 4.3 .1 is that it mabirs one to limit the srarch tor unstiable wavetike modes to the single point $\kappa=z=1$. This point is sperial, of course. in that it corresponds to the partial differestial equation being rnodilded uhertever Q is a consistent approximation. Therefore one is tempted to peurite contition (ia) alove as the condition that \bar{Q} is consistent with a well-posed initial tumblary value problent. Howeves, this is mal strong enough, becaume, for example, of the possibitity of an unstable rightgoing solution cousisting of some energy in the grode $x=z=1$ plus adritional energy in a component with $z=1,|\kappa|<1$.

As mestioned in: 502 , much of the carly work on stability for models of initial heuradary value protioms was confined to the cuare in which Q is a two-level z dissipative Perinula. hores by Then. 2.2.3, cotally dissipative. Therefore the point $x=1$ takes on a speciat signifieatire in these papers. The results derived in theme 113
are nut liceessary abd stificient comblions, but they these the emwdreable advartage
 and (higet state approsimatety that for two land diswipative models, conditions (1) and (ii) above are sufficient for ℓ_{2}-stability.
 This possibibty eomes up only for uuhtilevel schemes, such as L.Fid (Leap Frog with dissipation, g1.1). Then Thm 4.fitholds if (it) is replared by the condition that there is no pightgoing generalized rigenolution involving a wave mode with is! $=1, \kappa=1$. This class of problenis has nat recribed -r parate treatment in the literatire.

 of Culatid do not cover thes case.
-••

 111

implies stable" becomes less and less reliable
An example will suffice to show that even for very simple problems, onc can devise unstable cotally dissipative models. Let $u_{1}=u_{1}$ be modeled by I.W with $\lambda=1 / 3$ for $j \geq 1$, togethes with the boundary formula

$$
\begin{equation*}
v_{0}^{n+1}=v_{0}^{n}+\lambda\left(v_{2}^{n}-v_{i}^{n}\right) . \tag{4.4.1}
\end{equation*}
$$

One readily verifies that this achetne admits a strictly rightgoing eigensolution of Godunov.Ryabenkii type: $z=31 / 27, \kappa=-1 / 3$. Numerical experiments confirm that any solution attempted with this scheme is rapidly oblikeraked by moise growing al the rate ($31 / 27)^{n}$. However, note how contrived the condition (4.1.1) is it would liever be proposed in practice

Surtions 62 and 6 3 invertigate the connection between dissipativity and stability further for wome boumbary and interfare problems.

4.5 Some general classer of unstable diflerence modola

In practice. as we have mentioned, a large proportion of instabilities that appear in differrice models of initial boundary value problems are not cigensolutions but gentrahat ergensolutions. Within the range of genefalized egensolutions, it turns out further that in prartice. a large proportion of instabilities involve simple aawtoothed waven with $z=-1$ and/ur $x=-1$. (Analogously, when a difference model for an inital valur problem is unstable, it is usually an unstable sawtoothed mode that dominates.) As we saw in 51 , sawtoothed modes are by no means the only waves that travel in the physically wrong difection. The scason for their predominance in practice is that other waves which do so, for which κ and x have values on the unit sirele other than ± 1, do not as often satisfy the numerical boundary comditions.

It was with the significance of sawtoothed parasites in mind that we defined the concepla of z and 1 -reveraing difference formulas in 51.5 . We can now apply these definitions to delineale some gencral cianges of unatable difference modelm. All of the theorema in this mection are new, but they are straightforward generalizalions of well known examples. One purpose in collecting them together is to demonstrate that once the stability question for inilial boundary value probleme ie given a physical meaning, it becomrs natural to consider diflerence sehemes in groupe rather than one by one.

1: space extrapolation with 1 -reversing formulas
Let $u_{c}=u_{x}$ be modried by a diferener formula Q for $; \geq \ell$ coupled with $(q,-1) s t$ order apace extrapolation troundary conditions (ef. (3.2.29))

$$
s: \quad\left[(K-1)^{n} \cdot v^{n+1}\right]_{1}=0 \quad(0 \leq 2 \leq t-1)
$$

for the boundary points $j<\ell$. with $q, \geq 1$ for each j. For the case of $Q=L F$ and $t=q_{0}=1$, we stowed in 54.1 that this scheme admits the unstable strictly rightgoing mode $(\kappa, z)=(1,-1)$, and the same result has appeared in [Gu72, 56] and in various other places.
licre is a natural generalization
Theorem 4.5.1. Any consistent t-reversing difference formula Q for (1.1.1) s I_{2} and GKS.unstabir in combination with the boundary condition S.

Proof Assume first $a>0$. The sawloothed wave $v_{9}^{n}=(-1)^{n}$ satisfics S for any sel $\{\pi$,$\} , and if Q$ is t-foversing, it also satisfies Q and thas $C>0$. sinee by annsistency $r, \equiv 1$ must satigfy Q with $C=-a<0$ liy Thulis. 1.2.3 and 4.3.1, the mudet is therefore t_{2} and Ciks-unstable For $a<0$. on the wher hand, $v_{j}^{n} \equiv 1$ is itself an minstable rightgoing mode. (th this case the model is not consistent with any w.tl-posed differential equation.)

This is an example if which the reflection rofficient for the unstable mode is infinite, as wisy pointed out in 51.1 , so that growth like $\left\|={ }^{-1}\right\| \geq$ innst. n rall be expected. Then. 4.5.1 applies even for schemes that are x - but not t-dissipative, such as l.Fd or various analogous schemes consisting of $1, F$ with spatial disspation atded. The instatility of $\$$ with LFid has been pointed out by Goldherg and Tadinor in Example 4.1 of [Gu81]. One can also readily extend Thm. 4.5.1 to t-reversing formulas in combination with arbitrary extrapolation boundary conditions. provided that they are at leant zeroth order accurate and confined to a single time level.

2: "one-sided leap frog" with t-reversing formula
Sitnilarly, it has been noted in various papers that if (1.1.1) is modeled by I.f for $j \geq 1$ logether with the boundary condition

$$
v_{0}^{n+1}=v_{0}^{n-1}+2 \lambda a\left(v_{1}^{n}-v_{0}^{n}\right),
$$

then the iesult is GKS-unalable. As a generalization, consider any act of boundary conditions

$$
\begin{equation*}
v_{2}^{n+1}=v_{j}^{n-1}+2 k a D_{j} v_{2}^{n} \quad 0 \leq j \leq t-1 . \tag{4.5.2}
\end{equation*}
$$

where each D, is a spatial diferener eperator robisistent with $j / \partial x$ that involves at nost j points to the irfi of center We oblain just as above

Theorem 4.5.2. Any consutent t-reversing difference formula Q for ($1.1,1$) is ℓ_{2}. and GKS-unstable in combination with the boundayy condition (4.5.2)

Proof. Same ss for Thm. 4.5.1.

3: sign-changing coefficienta; nonlinear instability

Consider the coeffirient-change problem (3.2.1). As in Fxample 3.1, suppose we model this on a grid ($j h, n k$) by consistent difference formulas Q. for $j \leq-1 / 2$ and Q. for $j \geq 1 / 2$. respectively. According to (3.2.5) or (3.2.6), the reffection and tramsmission corflicionts will berome infinite in this problem if there exists a steadystat selution in which $\kappa_{0}=\kappa_{t}$. that is, a uniform wave that is leftgoing on the left and rightging on the fight if sgit $a_{-}=$sgna a_{+}, then most models do not admit such whintomis. atul they afe stable But statality vanishes if sgna- $\neq \mathrm{sgr} \mathrm{a}_{+}$

Theorem 4.5.3. Let (g.2.1! be modeled by consistent formulas Q - and Q, as indiratec above $I / a .>0>a_{.}$, the model ss f_{2}. and $G K S$ unstable. If $a_{-}<0<$ a. and Q and Q. are both x-peversing of both t reversing, the model is again ℓ_{2}. and GKS unstable

Proof la the first case, the colistant function $v_{j}^{n} \equiv 1$ is an outgoing wave that satisfirs all of the differener formulas, wo the model is unstable by Thms. 4.2.3 and 131 In the second case, the same gons for a spare or time sawtooth (-1) or $(-1)^{n}$ t

This elemestary "xample is related to ecrlain known examples of nonlinear instabatity if the Burgers equation

$$
u_{1}=u u_{x}
$$

is twadeled hy the loap frog seheme

$$
v_{1}^{n+1}-v_{1}^{n-1}=\lambda v_{j}^{n}\left(v_{j+1}^{n}-v_{j-1}^{n}\right) .
$$

then erponentially growing instabilities arise that are marked by oacillations of the

$$
\begin{gathered}
v_{i}^{n} \approx 0, \quad v_{j+1}^{n}<0, \quad v_{t+2}^{n}>0, \quad v_{j+1}^{n} \approx 0 \\
117
\end{gathered}
$$

 Ther 1.3.3 from the print of view of the sighectatger interface at $x_{g}, 3$ 2. The linear growth of this ontgong wave would the comerted to exponcotial by reflection at pointa x, and $x_{j}+3$ even if the coefficients v, did not thange from one time step to the next; the fact that they do makes the growth still more rapid

For at interesting study of a nonlinear instability with a more subte explantion related to wave propagation, see the paper $\{$ Be81 \mid (esperiali; g 4$\}$ by Briggs, et al.

4: "coarse mesh" menh refinement

Consider the "roatse mesti approximation" tuesth refinement wheme of lixample 3.4, in which a therepuint litiear ingitastep formala is afplion with space step h.

 somewhat:

Theorem 4.5.4. Let (1.1.1) be modeled by a carsisten: \& eceersmg 9 pont formula Q - on $x_{2}=$ jh for,≤-1 coupted wath ang consitent formuia Q, on $x_{y}=j{ }^{m h}$ for,≥ 0. whth icft hand values for the tatter near the interface taken where needed from points imh with $1 \leq-1 / f a<0$ and m is ecen, the model is I_{2}. and GKS unstable, If $a>0$ and m is even and boch Q and Q. are: peversing, the mode' 2 again ℓ_{2} and GKS tinstable. I

Proof. In the case o <0, col sidet a wave

$$
v_{2}^{n}=\left\{\begin{array}{cc}
(-1) \gamma & (j \leq 0) . \tag{1.53}\\
1 & (j \geq 0) .
\end{array}\right.
$$

On $x \geq 0$, this wave is constant and has $C=-a>0, O_{n} x \leq 0$, it is sawtocthed
 interface. Morcover of maven, it obviously satislems the forthilaty formulas, sw we have instability. In the case a >0. muitiply (1.5, 3) thy $(-1)^{n}$. :

118

4.6 Unatable difference schemes in orveral apace dimention

In the study of well-posedness of hyperbolic partial differential equations on a region with a boutadaty. probiems in one space dimension are easy to treat (by the method of chararteristirs), byt in two or more space dimensions the situation becomes complicated Ry a muitidimenaional problem, we have in mind an equation defined on the d-ditetensional half space $z_{1} \geq 0, x, \in \mathbb{R}$ for $2 \leq j \leq d$. The main theory availathe for this mas derived in an important paper by Kreiss in 1970 [Kr70], by techniques that formed the basis of the GKS theory for difference models published Iwr, years later |Cuis! Like the stability eriteria that we have discussed in 554.2 1.3, hrrise's well poseduess criterion is a determinant condition that requires, soughly, that the problern admit no spontaneous rightgoing signals at the boundary. The differner is that fur the differential equation, the question of whether a signal is reghtging depend on muttidimensional geometric efferts, but does not involve a
 What hypermine erpiatwis in the-e thati one space dimersion ate generally itl-posed if: I_{p} norms for $p \neq 2$ as we have seen for finite-difference modela in ane space

For finte diflereice mudels in two or more dimensiuns, focusing and dispersion rffres afe combthel The corresponding stability theory has breti late in appearing. sine ereult, follow frem the one-dimensional theory by a Fourier traneform in the vaprables $z_{2} \ldots, z_{4}$. but these were never developed ty Kreiss, et al. See also the paper Os6gr; by Osher More recent results in this ares are due to Coughran [Co80] and mopecially Michelson [Mini| Both of these authors consider only diference schemes that satisfy a dissipativity condition in the former case, one that is related to our definition of \mathbf{f} - Jissipativity ($\mathbf{5 2 . 2}$).

Our purpose in this section is to point out that the wave propagation argumenta wr have developed for one space dimension provide immediate necessary conditions for stability of both dissipative and nondissipative differrnce inodels in acveral dimensions, too.
-••

We will confine the dimeustion to a simple clase of examples. Abarbanel and Gotlicb [Ab79] and Abarbanel and Murman [Ab81] have atudied the stability of various difference seliemes for the following probletn in two space dimenaions:

$$
u_{t}=u_{z}+u_{y} \quad x, t \geq 0 . \quad y \in(-\infty, \infty) .
$$

The surlutions to this equation consist of functions

$$
u(x, y, t)=u(x+t, y+t, 0)
$$

That is, information propagates with a vector velocity $(-1,-1)$. Since the How is outward across the boundary $x=0$, no houndary conditions should be given there.

Fior a multidimensional problem like this, we saw in $\$ 1.6$ that ξ becomes a wave number vector $\boldsymbol{\xi}$, and the group speed $($ generalizes to a vertor group velocity given ty the gradient

$$
\begin{equation*}
C=\nabla_{\xi} \omega . \tag{4.82}
\end{equation*}
$$

By the same atguments as in Thens. 1.23 and 1.3.1, one can readily obtain the pollowing stability result: $1 /$ a finte difference medet of (4.6.1) admits a solution consinting of waves with group velocity C pointing into $x \geq 0$ tie. with $C=01$, t w GKS unstabie. Ueach wave has $C_{z}>0$, then it walso $!_{2}$ unstabie, with a grouth gate at least poportional to \sqrt{n} We will not go to the trouble here oid developing the stablity definitions in this thromem, or of writing diwn a proof, berause there ate no ideas involved that were nut present in one dimension

As an example, suppose (1.6.1) is monderd thy the leay. fog formula

$$
\begin{equation*}
v_{1,}^{n+1}-v_{i, 1}^{n-1}=\lambda\left(v_{i+1, j}^{n}-v_{n-1, j}^{n}\right)+\lambda\left(v_{i, j+1}^{n}-v_{i, j-1}^{n}\right) . \tag{4.6.3}
\end{equation*}
$$

The dispersion relation for this scheme is

$$
\sin \omega k=-\lambda \sin \xi h-\lambda \sin \eta h,
$$

where $\epsilon=(\xi, \eta)$, and from (1.6.2) there follow the group velucity components

$$
C_{z}=-\frac{\cos \xi h}{\cos \omega k}, \quad C_{v}=-\frac{\cos \eta h}{\cos \omega k} .
$$

As usual, these reduce to the ideal value $C=(-1,-1)$ for $\subseteq h$, wt ≈ 0. If wr look at parasites, on the other hand, we see that a sawtooth formin x or y negates C_{8} or C_{y}, respectively, and a sawtooth in t negates bolh. Table 4.1 summarizes the situation:

$g h, \eta h, \omega k$ $(0,0,0),(\pi, \pi, \pi)$	$(-1,-1)$
$(\pi, 0,0),(0, \pi, \pi)$	$(+1,-1)$
$(0, \pi, 0),(\pi, 0, \pi)$	$(-1,+1)$
$(\pi, \pi, 0),(0,0, \pi)$	$(+1,+1)$

Table 4.1

Thus sawtoothed parasiles can travel in any of the difections at 45° to the grid. If any parasite of form (b) or (d) is permitted by the boundary conditions, the difference model is unstable.

Abarbanel it al consider various boundary formulas. Four of these are space extrapoiation and skeured space extrapolation (ef. (3.2.29)),
$\mathrm{s} \quad \quad\left(h_{s}-1\right)_{M_{0}^{n+1}}=0$.
ss. $\quad\left(\kappa_{z} K_{k}-1\right)^{4} r_{n}^{n+1}=0$.
and opace tome entrapolation atil sketued space tume exirapolation (cr. (3.2.32)),

$$
\begin{aligned}
& \text { ST: } \quad \kappa_{ \pm} Z \quad 1 \quad 0 \hat{0} \cdot 0 .
\end{aligned}
$$

 in Tinat in Table 1:2:

	Stabie sauteoths	unrtabie squfooths	
s	(0.11.01, 00.700	(0,0.3), (0, x, $\times 1$	Tance 4.2
ss			
sT			
sit	(11,0,0 - - 0, -1	(0. $\pi, \times,\{\pi, \pi, 0\}$	

 for $1 \leq 1 \leq d$, with $C^{\prime} \neq 0$ if $C ; \neq 0$. Then Q is i-reversing. //

Now let Q be a consistent difference model of

$$
u_{1}=-\sum_{i=1}^{d} u_{x_{1}}
$$

 action we abtate the following theorem:
 the: ranteres are not in generai vata)

5. Borderline cases and the definttion of stabllity
5. 1 Introduction

If Chapter 1 we have seen that a difference model Q of an initial boundary sure peribirn ray atmit solutions extibiting various degrees of instability At one
 ; wenc: r:gensohthoni. whirh graus exponefitially with n and is thercfore unstable
 yemealised eqgensolu:ion (1a $|z|=, \kappa=1$ with pusitive group velocity with an

 this ment it will belaw stably in almost any sectu. The complications come when ote mumbigatos sithation, between these two extremes, and this chapter is devoted a lewhing at whef of them bordirline rases Ther guiding guestions are, what 3 the Fi, aty :p, of atabity for atlial boundary value probiotns" How appropriate is the GKS stalulity definition"

We art mainly conerned with two classes of borderline cases. Suppose that \dot{Q} is
 Thern how does \bar{Q} behave, if
(1) The reflertion corflicient matrix $\left.(I)^{1} \mid\right)^{-1} D^{(f)}(3.6 .5)$ corresponding to $z^{n} \phi$ is finite rather than infinite"
(2) $z^{*} \phi$ contains no strictly rightgoing modes? fi.e. $|z|=1$, and for each mode in ϕ. either $|x|<1$ or $C=0$?

The various combinations implied by (1) and (2) do not exhaust the range of GKS :"utabilities, but we beliere they touch the important issues. In this chapier our aill is to examine these problems, illustrating them with numerieal expr..ments, in
 vasue problems and to reach some tentative conctusons infortnately it has not treen possible to be rigotous here, and our conclusions will he expressed as a sefies of "observations." not theorems. We do not attemp: to state these abservations peaciscly, and we do not claim that they fould as stated for all possitole problems. What wr do daim is that the observations capture some of the fundamentai mechanisms that cause instability, and that many of them could probably be made rigorous, after approptiate modifications of detaits.

In $\$ 5.2$ asd 95.3 wr consider situations (1) and (2), respectively. We will sec that all of thear lwodefine (ins-unstable shmations behave stably in sume respects.

 houndary value probimes.
5.2 GKS-untable solutions with finite reflection coefficiente

For a meneral diagnalizatbe modet Q of a hyerbotir initial boundary value problem. We derived in $\$ 3.6$ the equation

$$
\begin{equation*}
D^{[\cdot]} a^{[\cdot]}+D^{i f]^{l} a^{l!}}=0 \tag{5.21}
\end{equation*}
$$

relaling rightgoing and lefgoing modes at the boundary with uniform time dependence z^{n}. Here a^{i+}, and $a^{i t i}$ are coefficient vectors of lengtit n_{+}and n_{e}. respertively, and $D^{\circ \cdot}$ and $D^{!\epsilon T}$ are matrices of dimension $n_{r} \times n_{\text {, and }} n_{e} \times n_{t}$. According to Thm. 4.3.1. \bar{Q} is CKS-stathe if and only if $D^{\mid r}$: is nonsingular fur atl z with $|z| \geq 1$, in which ease for any such $z, a^{\mid e!}$ determines $a^{\text {ir! }}$ by means of the formula

$$
\begin{equation*}
a^{[r i}=-\left(b^{|\cdot|}\right)^{-1} D^{[\theta]} a^{[\boldsymbol{C}]} \tag{5.2.2}
\end{equation*}
$$

On the other hand if D^{i+1} is singutar for some $z=z_{0}$ with $\left|z_{0}\right| \geq 1$, then $\left(D^{i \cdot}\right)^{\prime \prime}$ is undelimed, ard there is a risk that we may have in effect an infime reflection. coefficient.

What happens to (5.2.2) in this rase? Obviously the equation as it stands hiv tho meaning. However, assume that $D^{\mid \boldsymbol{\theta}}$ and $D^{|f|}$ are smooth, runctions of z in a point
!

1
set 0 consisting of the intersection of $\left\{z_{1} \geq 1\right.$ with a :"ightorhoul of z_{0}. and that $D^{\mid f!}(z)$ is motisingulat in $\Omega-\left\{z_{0}\right\}$ The bases of right and leftgoing solutions with respeet to which $a^{\prime \prime}$ and a^{ℓ} are defined also drpend on 2 , but let us assumer that this dependence is also smoth in a Consider the limiting matrix

$$
\begin{equation*}
A_{0}=\lim _{\substack{x \rightarrow \pi_{0}}}\left(D^{\mid r j}(z)\right)^{-1} D^{|\varepsilon|}(z) \tag{5.2.3}
\end{equation*}
$$

The existence and behavior of A_{0} will depend on whether $D^{!} f_{\left(z_{0}\right)}$ has singular behavior that cancels the singularity of $D^{\prime \prime}\left(z_{a}\right)$ Wer ronsider three possibilities:

- If the product in $(5.2 .3)$ blows up as $z \rightarrow z_{0}$. then the limit does not exist, and A_{0} is infinite.
- If the limit rxisto, thon zo se a remo...ble smgularity, and A_{0} is finte.
- Suppose that A_{j} exista and is fitite, and mureover

$$
\operatorname{ker}\left(D^{+}+s_{1}, \bigcap \operatorname{rangel} A_{0}\right)=\{0\}
$$

If we sperialite the discussion we aralar peoblenes with ube leflgong and une rightgoing salation for cach z with $: \geq 1 \geq$ then (5.2 2) tecomes

$$
\left.a^{\mid \cdot(z \mid}=-\frac{d^{n f}\{z \mid}{d^{r n}(z)} a^{f} \cdot(z\}\right\}
$$

 on whether $d^{\prime \prime}$ has a wro at $z=z_{0}$ of order lower than, pqual to. or highes than that of $d^{[+]}$.

The fucstion wr wish to ask is: assuming \varnothing is CKS-unstathe, how is its unstabie behavior, if any. affected by whether t_{0} is infinite, finite, or zero?

Let $u_{t}=u_{z}$ be mi.deled by LF with $\lambda=\frac{1}{2}$ for $j \geq 1$. It turns out that by irting Q cansint of various boundary formulas for v_{0}^{n+1} logether with this scheme, we can wer a full range of defrecs of stability. Consider the four possibilitirg $n, A, \gamma, 8$ listed
 coultirimbs.

125

Tame 5.1					
Label	$v_{0}^{n+1}=\ldots$	Rellection Punction A	GKS. unstable 	$\begin{aligned} & A_{0} \equiv \\ & A_{120} l \end{aligned}$	$C\left(x_{0},=0 \mid\right.$
a	v_{1}^{n}	$-\frac{2084}{-\frac{1}{4}}$	CKS-stable	-	-
B	$\nu_{0}^{n}+\frac{1}{2}\left(v_{2}^{n}-v_{0}^{n}\right)$	$-\frac{2(0-1)+\lambda\left(1-x^{\prime}\right)^{\prime}}{2(-1)+\left(1-x_{0}\right)}$	(1,-1, 1)	0	+1
7	$\frac{1}{8}\left(v_{0}^{0}+v_{2}^{n}\right)$	$-\frac{(2 x-1)-x^{2}}{(2 z-1)-2}$	(1, -1, 1)	$\frac{2-1}{x+1}$	+1
δ	v_{1}^{n+1}	- $\frac{1-2 x_{0}}{-a_{0}}$	$(-1,1,-1)$	∞	+1

Initial data

 of phor a whom the wht hat data at $t=0$ and the result at $t=0.5$

 We. tentalivels :unclude."

Observation 5.1. instatie amplification. - nital dato oresrs oriy f an anfinter refection coefficuent wo present.

126

FIG. 5.1. Models $a, B, 7,8$ with Gaussian initial data (5.2.5).

Fig. 5.2. Modela $\alpha, \beta, \gamma, \delta$ with randorn initial data (5.2.0).
127

 mdistinguishatie from the result for the Clis-stable rase a and it certandy appears that conurgeothe is takink place the propose

Observation 5.2. Xonconvergence in a problem derven by amooth intial data ocevis only if o nonzero reflection coefficient is present.

Denonstration 5.2. Onc may wonder whether the same obscrvations remain valid if a more romplicated initial data distribution is rotisidered. In Fig: 5.2, Demo. 51 is repeatrid with uniformly distributed randam initial data,

$$
\begin{equation*}
v_{2}^{\prime \prime}=\frac{1}{4} \text { random }-1.1 ; \quad 0 \leq j \leq 1 / h . \tag{5.2.6}
\end{equation*}
$$

The plots show that the GKS-unstable problems 3 and fare virtuat! indistinguish. athe from the chs-stable problesn a. But in the infinite reflection corflieient case t. the comphiation is completely unstathe, This supporis Observation 5.1. This experimert does not shed any further light on Observation 5.2.

Boundary data

Dramonstiation 5.3. Now let us look at unstable behavior with respect to thoundary data. In Fig. 5.3, Figs. 5.1 and 5.2 are dupleated with the now intial data distribution

$$
\begin{equation*}
v_{1}^{0}=\frac{8}{5}, \quad v_{0}^{\prime}=\frac{4}{5}, \quad v_{1}^{\prime}=\frac{8}{15}, \tag{5.2.7}
\end{equation*}
$$

which is the same as in Demo. 1.1 up to a scale factor. This amounts to an initial input of more or less random energy at the boundary. Fig. 5.3 shows that an t itcreases, spontancous rightgoing waves arc generated in alt threc cases $B, 7, \delta$. Their amplitudes differ, but qualitatively all are the same fexcept of course for the difference in κ_{0} between $\beta-7$ and δ). They are all qualitatively difereat from the GKS-stable problem α, whre the initial data has apparently caused a rightgoing pulse of finite duration. A table of $\|v\|_{2}$ as a function of t confirms that a linear growth ie energy is taking place in problems is δ, but there is no growth for problem a We ronelude:

Observation 5.3. A GKS. unstable differnce model acts unstable with respect to boundary data regardiess of whether the reflection coefficient us zero, finite, or infinite.

This obscrvation is in keeping with the fact that Thrme 121 made no thention of reffertion cocltaients.

128

identical to that of Denm. 5.3. but carried op to $t=11$, which is time enongh for many reflections betwern the boundaries to take place. Each entry shows the $\boldsymbol{t}_{\mathbf{2}}$ norm $\left\|v^{*}\right\|_{2}$ at a fixed timue step:

	a	β	γ	δ		
$t=0$.154	.154	.154	.154		
1	.150	.187	.170	.513		Table 5.2
2	.104	.132	.136	.990		
6	083	.124	.135	5.66×10^{5}		iwo boundaries
10	.051	.118	.149	1.80×10^{7}	LF	$h=\frac{1}{50} \quad \lambda=\frac{1}{2}$
14	.073	.130	.171	4.52×10^{10}		

Again the equation $u_{1}=u$, was moduled on $[0.1 \mid$ by LF with $h=1 / 50$, and the hol, rutary mondition at $x=1$ was $v_{0}^{n+1}=0$. The table shows that problem δ exhibits catastropiditheth, hut for prablems α, β, γ there is no growth at all. Obviously
 3 ant , Wr propose

Observation 5.4. An unstable generalized eigensolution can cause
exponintial growth when a second boundary is introduced only of the assoriated reflection coefficient winfinite.

There is a simple argument involving z, x, and $A(z)$ that explains why Observation 5.4 stould huid fint this ser $\$ 6.4$ and $\$ 6.5$, where we discuss two-boundary problems in telail.
5.3 GKS-unstable solutions with no strietly rightgoing componente

Suppose that Q, a diference model of an initial boundary value problem, admits an rigensolution or generalized eigensolution (1.2.6)

$$
\begin{equation*}
v_{j}^{n}=z^{n} \sum a_{1} \kappa_{1}^{2} \psi_{1}, \quad a_{1} \neq 0 \tag{5.3.1}
\end{equation*}
$$

with $|z|=1$ (For simplicity we ignore defective modes.) The assumption $|z|=1$ rules aut (iodunov-Ryabenkii eigensolntions, but the solutions that romain are GKSunstable thy Thm 13.1. They fall into three categories, which correspond to positions (9). $\{5 ;$, and (7) of Table 2.1 , respectively:

$$
\begin{aligned}
& { }^{\text {"Case } C}>0 \text { :" For at a least onf } i,\left|\kappa_{2}\right|=1 \text { and } C,>0 \text {. } \\
& \text { "Case } C=0 \text { :" Not Case } C>0 \text {, but for at least one } 1,\left|\kappa_{2}\right|=1 . \\
& \text { "Case }|\kappa|<1: \text {. Neither of atove. i.e. }\left|\kappa_{1}\right|<1 \text { for all i. }
\end{aligned}
$$

By definition, each signal $z^{n} \kappa, v_{1}$, in (5.3.1) is rightgoing, but in the cases $C=0$ and $|\kappa|<1$, none of them are strictly rightgoing ($\$ 2.3$). We want to investigate how this affects their unstable behavior, if any.

As in the last section, we will work with representative examples. Here is a contrived but very simple model of type $C=0$:

$$
\begin{equation*}
\therefore \quad \text { LF for } u_{t}=u_{x} \text { with } \lambda=\frac{1}{2} ; \quad v_{0}^{n+1}=v_{1}^{n-2} \tag{5.3.2}
\end{equation*}
$$

(We continue as in the last seetion wo label examples with Greck letters.) It is easy to verify that (5.3.2) admits the GKs-umstable generalized cigensolution $(\alpha, z)=$ $\left\{ \pm 2, \pm 1^{1^{\prime}}\right\}$. For wheh one has $C=0$.

For an cxample of type $|\kappa|<1$ we tarn to a dissipative Lax-Wrodrolt model:

$$
\begin{equation*}
\zeta: \quad i n \text { for } u_{1}=u_{2} \text { with } \lambda=\frac{1}{3} ; \quad r_{0}^{n+1}=2 r_{2}^{n+1}-v_{1}^{n+1} . \tag{5.3.3}
\end{equation*}
$$

One tradily verifies that this modrl admits the CKS. anstable cigensolution $\{x, z)=$ $\left(-\frac{1}{2}, 1\right)$.

By straightforward computations of the sott we have done fiany times, one can see that examples, and ; share the feature that thrie right/left erffection coeflicienta are finite. (In fact one gets $A_{0}=-1$ and $A_{0}=4$, respectively.) This will make it difirult to separate the effects of one borderline cirrumsiatier from those of the other. To get an example with $C=0$ but $\Lambda_{0}=\infty$, we invent the following 2×2 problem:

$$
\begin{align*}
\eta: \quad \text { LF for }\binom{u}{v}_{1} & =\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]\binom{u}{0}_{0} \text { with } \lambda=\frac{1}{2} ; \tag{5.34}\\
u_{0}^{n+1}+v_{0}^{n+1} & =u_{i}^{n-2}+v_{1}^{n-2}, \quad v_{0}^{n+1}=v_{1}^{n}
\end{align*}
$$

Like $\{$, problem η admits a rightgoing solution of type $C=0$. namely $(\kappa, z)=$ $\left(\pm i, \pm \mathbf{t}^{1 / 3}\right), \mathbf{\psi}^{1}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$. But now the rellection roeflicient with eespert to (atrictly) leftgoing energy incident in the v component is infinite. Let κ, μ be the κ variables for the u and v components, respectively. Then (5.2.1) takes the form

$$
\left[\begin{array}{cc}
z^{3}-\kappa & z^{3}-\mu \\
0 & z-\mu
\end{array}\right]\binom{a_{1}^{[1 \mid}}{a_{2}^{\mid+i}}+\left[\begin{array}{cc}
z^{3}+1 / \kappa & z^{3}+1 / \mu \\
0 & z+1 / \mu
\end{array}\right]\binom{a_{1}^{i l \mid}}{a_{2}^{i \ell)}}=\binom{0}{0},
$$

132
and mulliplying through by the inverse of the first matrix gives for (5.2.2), after some simplifications,

For $(x, z) \doteq\left(\pm i, \pm i^{i / 3}\right)$, the diagonal elements of this matrix are finite, but the upperright element is infinite. Therefore we expect lefigoing energy in v with $\omega k=\pi / 8$,

Demonstration 5.6. As a first test of examples $\boldsymbol{t}-\eta$, Figs. 5.5-5.7 repeat the computations of Dempos. 5.2-5.4 (Figs. 5.2-5.4). The three figures show the retponse of modets ε, ς, and η to the atimuli

Fig. s.5: random initial dats (5.2.6),
Fig. 5.6: random boundary data (5.2.8),
Fig 5.7: three-point initial/boundary dats (5.2.7)
For problem η, the forcing data are applied to v but not u, and both u and v are plothed, with the labels η_{0} and η_{v}. Since the v component of this problem is identical to problem α of the last saction, except for the coeflicient $3 / 2$ in place of 1 , the η_{0} plot gives a convenicnt GKS-stabic comparison to the others. As before, each plot shows $t=0$ and $t=5$ for $h=1 / 50$ and $h=1 / 100$.

\qquad

Fic is thorkfo e.s.7 with random initial data (5.2.6)
133

Fig 5.6. Models $6,5, \eta$ with random boundary daus (5.2.8).
\qquad
s

η \qquad
\qquad
\qquad

Fig 5.7. Models e, 5,7 with Lhere point initial data (5.2.7).

134

Growing mode:

The fiest thing eo obseeve in these figures is that, in contrast to the situation with exartplos, is in Figs. E.I 5.1, tio catastrophic growth is laking place. For problem \therefore with $|\kappa|<1$, all of the solutions shown afe quite small, as the dissipativity would make one expert. Note that in Figx. 5.6 and 5.7 , the distribution at $1=.5$ for this problem looks exactly like the eigensolution $\left(-\frac{1}{2}\right)$. For problem ε, with $C=0$ and $A_{0}<\infty$, the randotn initial and boundary data do not seem to have caused instability (compare prablem \propto in Figs 5.2 and 5.1), but the situation with the three-point initial data at the boundary is not so clear. In fart near the boundary in Fig. 5.7, the solution louke aporuxitrately like the "4h wave" with $x= \pm i$ that the CKS theory says is unstabte The ersults for the u romponent in problem η, with $C=0$ but $A_{0}=\infty$, are amitar, while the remponent is cmitels stable, which is what one expects from (5.3.1/ or (5.3.5)

The situation is clitrified if we look at l_{3} norms as a function of t for the threepoint problerers of Fig 5.7. Table 5.3 lists $\left\|v^{*}\right\|_{2}$ for $\boldsymbol{\eta} \boldsymbol{\eta}$ for $h=1 / 50$ and $h=1 / 100$ at umes $t=n k=0,2, \ldots, 1$.

	1	5	7.	η	
$t=0$. 135	135	0	. 135	
2	. 132	. 125	. 104	. 077	
. 4	. 114	125	. 076	. 075	$h=18$
. 6	. 698	. 125	. 098	. 075	
8	. 117	. 125	. 003	. 074	
1.0	. 110	. 125	. 076	. 070	Table 5.3
$t=0$. 096	. 096	0	. 098	3-point boundary data
2	. 081	. 089	. 054	. 054	
4	. 083	. 089	. 066	054	
6	072	. 089	066	. 054	
. 8	. 077	.089	. 058	. 057	$h=1 / 2$
1.0	080	088	. 062	. 053	

In no case to we nbecrue any growth ir rnergy. (Note how the numbers confirm that for probileth i, the oslution rapidly sethles down to the firm of a fixed cigensolution.) Therefore we suggent:

Observation 5.5. In case $(\because=0$ or x 1. प admite no solutions that grou steadily u:in t

Tsually a diference seheme exhibite conepheuous instahilite in practeal caamples only
 for example, in Fig. 5.5. Of course we have long ago observed that non-strictly rightgoing solutions have zero energy flux ($\$ 3.3$), and one would capeet Obs. 5.5 to hold as a consequence of this.

Initial data

The absence of growing modes, even if we rould prove if rigorously, would not imply f_{2}-stability, because there could stiff exist inital data detributions that would grow arbitrarity much at first befure ulimately liseting off Nevertheless, we conjecture that probleme is δ_{2}-stabir. as defined in $\S_{1} \xlongequal{2}$ desfite bring Ciks unstable. If true. this ran protably be prowed by an energy mettead argument \{rib7], and possibly also by an application of the ideas of g.3.5. In geteral, one appeats to have something like the following:

Observation 5.6. In case $C=0$ or $\mid x!<1$. 0 w stable with respect to initial data provided that the reflection coefficients are finite.

Demonstantion 5.7. By contrast, a probicte with $t_{0}=\infty$ need not be slable with respert to initial data. To demonstrate this. Fig. 5.8 shows a computation with problem η in which initial data have been chosen to stimulate as much grawth as possible, as was done for examples $\beta \delta$ in Pig 5.1. The initial data are

$$
\begin{align*}
& v_{j}^{0}=v_{j}^{\prime}=\cos (\xi x) e^{-((x-2 s) / 1!} \quad(x=\rho h) \\
& u_{j}^{0} \equiv u^{\prime} \equiv 0
\end{align*}
$$

with $f h=\sin ^{-1}\left(\frac{3}{3}\right)$. Fig. 5.8 shows the resulting signals u and v at $:=0,5,1$ for $h=1 / 100$ and $h=1 / 100$. It appeaes that there is some instability, but it is extremely weak. The initial wave (5.3.6) with $h=1 / 100$ has right titnes as many grid points in the wave packet as (4.16) with $h=1 / 200$ or $(5.2 .5)$ with $h=1 / 100$. yet it generates nothing like the 18 -fold amplitude inerease that we swe in Fig 4.Ea,b and that is lurking off-scale in Fig. 5.1. Morcover, the siftial that it gruetates does not radiate rombinually from the hondary, but evintuly inses ampliturie as it drifts into the interior.

136

7 \qquad

FIG. 5.8. Unstable reflection with $C=0$ in model 7 . The initial packet is the Gaussian (5.3.6).

FIf: 59 Models e, $\{.7$ with periodic looundary data (5.3.7).
137

Again, a tabie of ℓ_{2} norms mahes it clear what is geing oft. Table 5 \& shows \|ulla and $\| t l_{i z}$ in this problem for both values of h and various limes.

	$h=\frac{180}{106}$		$h=\frac{1}{160}$	
	η	7	η	7
$t=0$	0	. 177	0	. 177
. 2	. 185	. 150	. 207	. 143
. 4	. 108	. 060	. 301	. 059
. 8	. 185	. 060	293	. 050
. 8	. 182	. 060	. 291	. 059
1.0	. 184	. 060	. 292	. 059

"bad" initial conditions

For $h=1 / 100$, we observe an amplification $\|u(1)\| /\|v(0)\|$ of about 1 , and for $h=$ $1 / 400$ it has inereased to more like 2. Evidently the ratio can be made arbitratily large by refining the mesh. But it is hardly large as things stand, and-confirming Obs. 5.5 -there are no solutions in evidence that grow with t. We propose:

> Observation 5.7. If \bar{Q} has $C=0$ but $A=\infty$, it is weakly unstable with respect to initial data.

Boundary date

From Figs. 5.6 and 5.7, we expeet that if Q has $C=0$ or $|\kappa|<1$, then it will not be dramatically unstable with respect to boundary data. In fact, as in Obs. 5.7, it turns out that there is a weak instability. As we found in Obs. 5.3 , the presence of this itstability does not depend on whether A_{0} is infinite.

Demonstiration 5.8. Fig. 5.9 shows an experiment like those of Figs. 5.6 or 5.8, except that now the computation is foreed by regular boundary data oscillating at the GKS-unstable irequency. The boundary condition is

$$
\begin{equation*}
v_{0}^{n+1}=(\text { homog. b.c. })+\frac{1}{10} \cos \omega k n \tag{5.3.7}
\end{equation*}
$$

with wh $=\pi / 6,0$, and $\pi / 6$ for $\cdot, 6$, and η, repersively, and the figure shows $h=$ $1 / 50$ and $h=1 / 100$. The ensults ate muth like those of fis 5.7. but stronger. Some instability is definitely in evidenee for all three probtrms (taste the small amplitude of

138

Nevertheless, to arhieve this amount of growth we had to stimulate just the right frepactry, nof if we had done the same for the strictly rightgoing problems of the last sertion. the resylt would have been muth more dramatic. We conelude:

Despite the impressive ℓ_{2} norm, it is obvious (and expected) that nothing happens in rase s except at the boundary:

Observation 5.g. In a problem of type $|\times|<1$, any unstable groweth is) confined to the regton near the boundary.

Two boundaries

Oberevation 5.9 sughests that in a two-boundary problem, as we considered in The tast asetion. the presence of an unetable houndary of type $|\boldsymbol{\alpha}|<1$ probably will
 Wi. Bave the following complement of Obs. 5.4:

bemonstiation 5.9. To illustrate Obs 5.10 rxperimentally, we tan problema

 anct i and

$$
4_{s 0}^{n-1}=0, \quad u_{s 0}^{-1}-1 n_{10}^{n-1}=u_{99}^{n}-v_{49}^{n}
$$

 cruphang betwen u and x at the right boumary! The resules are summarized in Table 5.6.

	,	\checkmark	7	7.	
: $=0$	1:3	0	153	15.3	
100	022	.037	1 N .2	312	Tamer 56
200	021	035	241×10^{4}	$36.51{ }^{5} \cdot 10^{3}$:wir berndaries
300	021	0.3	$3.15 \cdot 10^{\circ}$	$1 \mathrm{in} \cdot 10^{6}$	
100	01s	037	115 \& 10^{10}	$6.8 \mathrm{~N} \times 10^{6}$	

5.4 The transparent interface anomaly: inflaw-outlow theoreme

The "tram-parent morface anomaly" is an "ample that it addition wo being

 If which a griy with $h=h$. for $;<0$ is combetid to a 5 int mith $h=h$. for $\jmath>0$.

 110

 (1: 5) , hes watr he group velority $(\prime=0$, and this impies that if a nave parket of Whe tind in torated intiatly aronnd $j=0$, it wili remain approximatply fixed there as : Arreawe Wr have alrady observed ia 54.3 that berause of the boundary integral in the deflution of Chiscrability, surk stationary behavior ronstitutes CKS-instability

In tefens of Thm. 1.3.1, the instabitity results from the fact that the wave with $r=0$ os by definition theth rightgoing and leftgoing (position (5) in Table 2.1), and
 Then 432 , ha insatatity in due to the fact that for $\kappa_{1}=\kappa_{t}= \pm t$, the denominators

Wi. Sur show:
Observation 5.11 GK matabitity does nat mplyta instabidty
In has instane it is pusetble to state the entiminion as a theorem, witich we have

Theorem 5.1.1 let Q be onv scciap ar vector diference model applied for
 Ie:,$=$ in be thought of as an mete:ace point of Q and the GKS theory applued by foiding" the model at the pont F_{3} b! Then the result w GKS unstable.

 wr - !., :

 for the transparent interfore problem, and that this is the to the fact that the GKS theory is oriented whathe boundaries while the tranoparent inkerface froblem concerns initial data. If is hatural to suppose that tiarer may be othet models of initial boundary value probiems for which the (OK's result is also unerasonable, but where the true state of affairs would not be so obvious.

$$
\cdot \bullet \cdot
$$

A. "strict tramsparent interface anomaly"

The identically zero reflertion coeflicient functing is the essential reasofi for the stability of the teansfarent interface annmaly, fant the fart that the cisennstable
 setup as before, tut witl; LF replaned by If ${ }^{2}$, the leap limg model of $u_{t 1}=u_{*}$
 rightgoing with $C=1$. atal nter strict: lefigoing with $C=-1$. The dipersion
 illustrated in Fig. $\mathbf{5} 10$, which ate strectly outgong from looth sides of a tratipatent interface:

fic. 310

 112
pretire a completely reliable Aithernee motri. The standard way to show this, in
 A., iving fanction waiues and hicir first-order differeners. But in the present context, w. ar: werw its stabhlity in practice as a consequenee of the identically zero refiection ruthererts. That in, the I. F^{2} mudel possesses unstable resonant modes, but they are reet wignilicantly ceriled by initial data.

$$
\cdot \cdot
$$

Inflow-outflow theorems

However. wr will now show that the GKS-instability of the transparent interface anden, wen the case $C:=0$. is not rompletely iredevant on questions of stability with. respert th mitial data. The following is a paraphrase of an "inflow-outflow"
 14. "uthon" and! "onthow" bariables, we mean wariables corresponding to components of the fortist iffremtai muation with characteristies pointing into or ult of the *gioll at the bexndary, respretively not to rightgoing or keftgoing modes admitted by the diferetice niodel. This use of the terms is standard."

Theorem 5.4.2 Gosi/. Let Q be a diagonalizable Cauchy stable difference model consistent with \boldsymbol{c} uell posed hyperbatic mital boundary value problem. Assume that at the boundary the inflow rariables, u, are given as functions of the outfow variables, v. Then Q w GKS stable y and onty f ita restriction to the ouffiou variables : is CKS stable.

Sketch of proof. If the restriction of \bar{Q} to t is CKS atable, then by the definition ir siks-stability (1.3.1), the t-integral of v at the bonndaty $x=0$ can be estimated. Thi se troundary values are jusi the boundary data for u, so it follows that u can be rstimated too. I

Wi. daith the fullowing:
Obervation 5.12. An infow outlow theovem tike Thm. 5.4 .2 ceases? to hold $\mathrm{f}^{\text {COKS stable" w replaced by "t stabie". }}$

 so that data in these romponente at sombercyurs': in rat remain whtionary at the boundary. leet u_{2} obey any smuted unter which bousidaty dala at ismuency wo generate a rightward flux of encegy Phern obsuatiy the sulem cannot ter l_{2} stable. but its restriction to v is.

The difficulty again has to do with boumdaries The infiow-owtion dea depends on having control of the numetrat woluthot alotig the beutary. siner that is where the inflou and outhow variatiles arr couphind. The (ifis stablity defintion is strong cricugh for this to gr through, berauss of the bemedary entegral it iscludes, while

 conpurients, it is passible that a sracil with witg signal could generate a strongly

a

5.5 Summary and discuanicn

 isms of instaththy amplificator factor- of mombine grater than unity, atuldefertive

114
invisible. No: ran one assume hat these various mechanisms will not inecrart to produce further complication

The varrety of stability questions that one may wish to answer is equally complicated One may be conecrned with a difference model driven by initial data, lorcing data. or boundary dala, or some combination of these, and ane may or may not be willing co assume that they have some degree of smoothneas. One may be interested in ℓ_{2} or in maximum errors, at fixed time steps or aver aged over time, in the field only or at the boundary also. One may want a guarantee that stability wilt be preserved when a second boundary is introduced, or when one outfow trodel is used to drive a distinet infiow nodel, or when undiferentiated terms or other perturbations are added And of course, techniral limitations inevitably lead to the consideration of further stability definitions that would never cornc up naturally, as one tries to find a wotkable compromise between what can be proved and what can be used.

In summary, the first point chat we wish io emphasize is this:
Instabilty for difference models n caused by identifiable physical mechan-
ume, especially phenomena of dispersive wave propagation. A complete understanding of matability requires a recognition of these mechanisms. Different mechanisms are relevant to different stablity questions. No single defintion of stabiaty, of identification of its cause, can satufactorily ac count for all pogsibsities.

We have rearhed many more specific conclusions about what physics normally causes what kinds of instability. The most important ones can be summarized as follows:

Instability with respect to initial data us ually associated with the exwtence of infinite refiection coefficienta (Ob. 5.1,5.2,5.6,5.7). Instabiity with respect to boundary data t usually acsociated with the existence of aportaneous strictly rightgoing solutions (Obs. 5.9,5.5.5.8.5.9). Instability with respect to the introduction of a second boundary u associated with infinte refiection coeffierents involuing waveike moder (O6s. 5.4, 5. 10).

The CKS theory representa an extreme point in several respecta. For one thing, it gors far in the direction of emphasizing mathematical unity at the expense of natural ness, combining alt stability isences into a single eemarkably complicated definition, about which a permarkably simple theorem ean be proved. Sccond, the CKS stability

145
definition is also close to extreme in its conservativeness: if a problem is GKS-stable it is almoat certainly stable in practice, whereas we have scen in this chapter that the converse does not hold. However, in some respects the GKS definition is not so strict. Its generous alowance for exponentially growing solutions leads to probierse related to "P-stability" that we will diacuas in 56.4 ; and its failure to give eatimates at fixed time stepa rather than integrated over all t makes its application to adaptive mesh refinement problems difficult (Joseph Oliger, private communication).

The GKS theory is focused on bourdaries. The stability definition (4.3.1) requirea that the solution along the boundary satisfy an estimate in terms of the data along the boundary, and the proof of the GKS theorem (which we have not discussed) given evidence of this bias: it proceeds by reducing the difference model to a ree ,rsence relation in g, with the bonndary conditions for initial data, and the forcing data F are introduced only as an inhomagencous term in this recurrence relation. In fact, the result labeled "main theorem" in the GKS paper is not our Thm. 4.3.1, but an assertion that (WKS-stability is equivalent to a boundary eatimate (Thm. 5.1 of [Gu72]). Initial data do not figure naturally in the theory at all, and must be introduced by way of the forcing function F at the cost of a factor of h (Thm. 3.1 of $[G=72)$), or by way of the boundary data g at the cost of a smoothness rentriction (Thm. 2.1 of (Gu81]). Ideally, an analogous theory would be available that was fundamentally oriented towards initial conditions instead, but although Osher's results of [Os69b] are of this type, they do not have full generality.

Our summary assessment of the GKS theory is this:
There wo probably no better all.purpose stability criterion than the GKS determinant condition. However, the theory in support of this condition, in particulat the GKS stabicity defintion, are relotively unsatiafactory, and fully fustify the determinant condition only with reapect to the prolizm of estimating boundary vatues in terms of boundary data. For addrtimal insight in particular problems, it is worth checking whether any GESS. unstable aolution has infinite refiection cofficients and strictly riphtgenieg modes.
6. Stabllity for models with several boundaries or interfaces

6. 1 Introduction

An the final chapere we consider difference models rontaining two or more bound athe of merffares The question is, when is such a model stables' In most cases the Gis: theory gives a procedufe for answering this gurstion, but the algebra involved is often very complicated, and in addition tagertably prohiemsperific. To avoid thers ditherultirs. 1 is natural to look fot stathlity ersults that depend only on the propertics of each interface independently. One asks, what properties of an interfarr ean gitarantee that models containing serveral such ir seffaces will be atable, or Imistable'

The simplest problem of this kind is that of modeling a byperbolic aystem of tubatiuns on a strip, say $0 \leq x \leq 1$, with numerical conditions prescribed on each brundary For this the GKS theory gives what appears to be the ideal result, which we quoted as Thm 5.21 for GKS-stability of the strip model. CKS-stability of each benndary individually is sufficient. In faet. Then. 5.2 .1 is not quite ideal. The dificulty is that for fixed h and k, a GKS-stable differctice model often exhibits exponential growth for a problem whose solution does not grow, and the rate of growth need not decrease as h and k are redyeed unless the model is totally diasipative. We will look at this problern in $\mathbf{5 6 . 4}$. Still, for most purposes Thm. 5.2.1 is grod enough for realistic strip problems.

Wis will be mainly interested in a different class of diference modela, those in which the interfaces are not separated by a fixed distance Δx in x as $h, k \rightarrow 0$, but by a fixed number of mesh intervals Δj. (Of course in reality, every computation is done on a finite enesh, so this distinction is sometimes delicate.) Such problems come up. Fat exampie, when one has an iritial boundary valus proilem model that involves two ,r more distiart bo medary formolas in adtition to the aterior formula, as wonld

147

 formulas separated by interfaces, but we beliove this appracti may be use ful. They might also occur in modefing an adative enesth ectinement sthome, where there can be no guaranter that one interface betwern theshes will renain a fixed distance from the next as h is decreased.

For these riulti-interface problems of "fixed $\Delta \mathrm{J}$ type", to theorem as simple as Then. 5.2 .1 holds, and we will demonstrate this in 56.3 . Huwever, 564 and 965 will show that stability tesults can sometimes be obtained by arguments based on eflection coefficients

6.2 One interface: result, of Ciment and Tadmor

 formula Q applicd for $-\infty<j<j$ coupled with a second formula Q, applied for $\jmath_{0} \leq,<\infty$. This is an interface of the "abreph shange" tyger ronsideted in $\mathrm{ga}_{\mathrm{g}} Q$ may represent a disenntinuous phasical sostom, of the intorface may be a numerical one (tuesh eefinement, hybridization) Assume that Q asd Q, earh satisfy Ass 31. so that Q_{-}has stencil parametefs ℓ, r and whmats exactly r. Iefigoing and ℓ rifhtgoing solutions for all $:$ with iz, ≥ 1, similarly for Q. . Wr have discussed the
 ard only if it admits some strady-ntate whtution that is chatioing from both sule of the interface, as migested by Fig 61 :

a fixed boundary formula $Q_{\text {_ }}$, also satisfying Ass 3.1, which to be applicabie will have to be onesided in the sense of having $\ell_{-}=0$. Boundary conditions of this kind. namely identical at all points $0, \ldots, j_{0}-1$. are called tranolatory boundary conditions by Goldberg and Tadmor [Go78,Go81]. Now for GKS-stability, since Q_{-} applies only at a fixed set of points, it is neesssary and sufficient that \bar{Q} admit no steady state solutions that for $j \geq j_{0}$ consist of tightgoing modes. That is, we can drop the requirement that the solution on the left is lettgoing. However, since $l_{-}=0$, Q admits no rightgoing solutions anyway, so the change is vacuous. Therefore as berore, \mathcal{Q} is CKS-u1,stable if and only ir it admits some steady slate solution that is outgoing on both sides of $j=j 0$, as in Fig. 6.1.

For problems of both of these kinds one main general result appears in the literature: roughly, total disspativity ensures stabilly. The original theurem in this direction is due to M . Ciment:

Theorem [Ci7e]. Constder the intefface problem of the first paragraph above. Let both Q and Q. be explicti, two level formulas consistent with the equation $u_{t}=$ $a_{1} \| Q$. and Q. are disspative (i.e r.dissipative), Q is $G K S$-stable. I

A similar result for thundary rather than interface problems was derived a few years !ater, perhaps inimperidentiy, by Tadmor and Goldberg [Ta78,Gu74,Go81]. We express their results in our terminology, in particular replacing their condition (3.7) wifin the idea of t-disspativity ($\$ 2.2$). For a full statement see Thms. 3.3 and 3.4 of (Cio81).

Theorem [Go8t! Consider the initial boundary value probiem of the second paragraph above Let Q_{+}be consutent with $u_{t}=a u_{\Sigma}$ for $a>0$, and assume that Q satwfies the von ticumann condition and a certa,n solvabilty condtion (Defn. s.t of Gori? but doop the assumption that it satiofies A.s. s.1. If Q is tdissipative and ether Q_{-}or Q_{0}, I disspative, then $Q \in G K S$ stable. 1

Obviously these two theorems are related, and by isolating the idea of t-dissipativity. we can brink out the connection and genetalize them both. In particular, Ciment's restriction to two-level formulas gerves no puipose except to ensure that x dissipativity will imply t -dissipativity (Thin 2.2.3). Sinilarly, Tadmor's assumption is unneressary that it is Q_{-}rather than Q_{+}that is t dissipative. We propose the following erseralizations in each of these throrems, Q, and Q_{+}may be explicit or implicit, two level or multilevel.

Theorem 6.2.1.* Consider the interface problem described in the first paragraph adove. Let Q_{-}and Q_{+}be conssistent with $u_{i}=a_{-} u_{i}$ and $u_{c}=a_{+} u_{s}$, respectively, with $\mathrm{s}_{\mathrm{a}} a_{+}>0$. I/ at least one of them w r dassipative ond at least one ut dissipative, then θ is GKS-stable.

Theorem 6.2.2.* Considet the initial boundary value probiem deseribed tn the second paragraph above. Let Q_{+}be consistent with $u_{t}=a u_{x} f 0^{-} a>0$. If at leathone of Q_{-}and Q_{+}in x-disisative and at least one is t-dissipative, then $Q_{\text {in }}$ rKS stable.

Proofs. Consider first the case $\ell_{+}=r_{-}=1$, which covers interlaces between typical threc-point formulas. Given z with $|z| \geq 1$, let κ, and $\kappa+$ denole the κ values for the unique leftgoing and rightgoing modes admitted by Q_{-}and Q_{+}, respectively. The abrupt-change interface imposes the condition

$$
\begin{equation*}
\kappa_{-}=\kappa_{+} \tag{6.2.1}
\end{equation*}
$$

for a steady-state solution; call this number κ. Now since the signals are outgoing from the interface, we must have $\left|\kappa_{-}\right| \geq 1 \geq \mid \kappa_{+} 1$, hence $|\kappa|=1$. and the von Neumann condition for Q. then implies $|z|=1$ also (Thm. 2.2.1). Since one scherne is r-dissipative. theser equalitios imply $\kappa=1$ Since one scherme is t-dissipative, this implies furthet $z=1$. Now by the consistency assumption, the only signal with $z=\kappa=1$ is stristly leftgoing on the right of the interfare in the initial boundary value problem. white in the interface probletn. either it is strietly ieflgoing there (case a..a+> $>$), or .. is strictly rightgong but so ss the solution on the left of the interfare (case $a_{-}, a,<0$) In any case there can be no unstable solution of the kind illustrated in Fig 6.1.

Now consider the getras froblem, in whet Q and Q, have arbitraty stencil
 of this hind in the context of reflectafi oufficients. Given z with $|z| \geq 1$, fet $\kappa_{1}^{-}, \ldots, \kappa_{-}^{-}$demote the leftgotig κ valurs fur $Q \ldots$, and $\alpha_{1}^{*} \ldots, \kappa_{e_{+}}^{+}$the rightgoing κ
 arth only if the equation
$v .1=0$
has a solution $A \neq 0$, where b is the van der Monde matrix of size ℓ. + formed frum $\left\{\kappa_{1}\right\} \backslash\left\{\kappa_{1}^{+}\right\}$, and A is a vector of the smine Ieneth Wie assumed in $\xi_{3}, 2$ that
-Sce the phalification :" the final paratagh of the proofs.
$1: 0$
\qquad

$$
\begin{equation*}
r_{3}^{n+1}=\frac{1}{2}\left(, r_{2}^{n-1}+11_{j+1}^{n-1}\right) \tag{6.2.3}
\end{equation*}
$$

6. 3 Two interfaces: dissipativity is not ensugh

1.1
 interface.

Fic: 6.2
where the lengits of the arrows are mited somblow to the amplitudes or energy月uxes of the ecresponding sigats. Vow from 6.53 , wr know that (iks-stability does not imply that the intorfact coliorrbes chergy or an, pltade, or aty thing dor. It

 abseter of any iocident merfy that would constithar instability.
 sort serparated by a fixed number of grid points Δy. Thes it thay happen that each one stimatate the othes's reflemted and transmitted energy.

Fic 63

If the twos-interface systen, indoditg ald the grad parats in betwern, is thenght of as

 it is Coks-unstatic.

Example 6.3: an ungtable combination of dissipative stable formulas

 $1: 2$
in that it admits a: exponentially growing eigensolution of Godunov-Ryabenkii type, i.e with $|\boldsymbol{z}|>1$.

We start frum an intended normal mode and build the difference schemes in such as way as to make it indeed an rigensolution of Q. We will take

$$
\lambda=\frac{1}{8}, \quad z=\frac{129}{128},
$$

ard aim for the normal mode shown in Fig. 6.4:

1NTERIOR FORMLLA: UDWIND DhFERENCE PICS DISSIPATION Q_{2} is defined by

$$
v_{j}^{n+1}=v_{j}^{n}+\lambda\left(v_{j+1}^{n}-v_{j}^{n}\right)+\frac{9 \lambda}{8}\left(v_{j+1}^{n}-2 v_{j}^{n}+v_{j-1}^{n}\right) \quad j \geq 2 .
$$

With $\lambda=\frac{1}{1}$ this has the characteristic equation

$$
\begin{aligned}
z & =1+\frac{1}{8}(\kappa-1)+\frac{9}{64}\left(\kappa-2+\frac{1}{\kappa}\right) \\
& =\frac{38}{64}+\frac{17 \kappa}{64}+\frac{9}{64 \kappa} .
\end{aligned}
$$

From this formula one may pradily verify that $|\alpha|=1$ implics $|z| \leq 1$, with equality orily for $\kappa=z=1$. This shows that Q_{2} is Cauchy stable and totally dissipative. The Surmula also confirms that for $\kappa=\frac{1}{2}$. as in the inode we have chosen, $z=129 / 128$.

Leftmos 5 formula combination of utwind diffrences Q_{0} is defined by

$$
v_{0}^{n+1}=v_{0}^{n}+\frac{\lambda}{8}\left(\frac{v_{2}^{n}-v_{0}^{n}}{2}\right)+\frac{i \lambda}{8}\left(\frac{v_{3}^{n}-v_{0}^{n}}{3}\right) .
$$

With $\lambda=\frac{1}{1}$ this has the characteristic equation

$$
\begin{aligned}
z & =1+\frac{1}{128}\left(\kappa^{2}-1\right)+\frac{7}{102}\left(\kappa^{3}-1\right) \\
& =\frac{367}{381}+\frac{3 \kappa^{2}}{384}+\frac{14 \kappa^{4}}{381} .
\end{aligned}
$$

$$
153
$$

This formula implies that Q_{0}, like Q_{2}, is Cauchy stable and totally dissipative, since $|z|<1$ for $|\kappa|=1$ cxcept when $\kappa^{2}=\kappa^{3}=1$, hence $\kappa=1$. Applying it to the chosen normal mode gives again the growth factor $z=129 / 128$.

MIDOLE FORMULA: LEAP FROG PLUS implicit dissipation. Q_{1} is defined by

$$
v_{1}^{n+1}=v_{1}^{n-1}+\lambda\left(v_{2}^{n}-v_{0}^{n}\right)+\varepsilon\left(v_{2}^{n+1}-2 v_{1}^{n+1}+v_{0}^{n+1}\right)
$$

with e >0 (cf. LFd), which for $\lambda=1$ has the characteristic equation

$$
z(1-\epsilon(x-2+1 / \kappa))=\frac{1}{2}+\frac{1}{8}(\kappa-1 / \kappa) .
$$

For $|\kappa|=1$ and $\kappa \neq 1$ this becomes

$$
M z-\frac{1}{z}=\frac{1}{8}\left(\kappa-\frac{1}{\kappa}\right)
$$

with $M>1$, and as the right hand side is pure imaginary it can equal the left hand side only when $|z|<1$, so the scheme is Cauchy stable and dissipative. The possibility $z= \pm i$ must be disposed of acparately.) We are entirely done if $e>0$ can be chosen so that when the characteristic equation is applied to the normal mode of Fig. 6.4, the growlh will be $z=129 / 128$. For this one needs

$$
z=\frac{1}{z}+\frac{1}{8}\left(\frac{1}{4}\right)+c z\left(\frac{-5}{4}\right)
$$

that is,

$$
c=\frac{z-1 / z-1 / 32}{-5 z / 4}=\frac{1036}{83205} \approx .01245117
$$

According to these definitions Q_{1} and Q_{2} cach have one leflgoing and rightgoing mode for all $|z| \geq 1$, while Q_{0} has thiree inftgoing modes. All logether, therefore, the proposed normai mode has the sehematic form
$J=2$
154

This is comistent with the geteral form of a (iKs imstability illustrated in lig. 6.i. Demonstraton til. To confirm the above analysis, the matiol Q was applied on a grid $h=1 / 100, k=1 / 800$ on $\{0,2 \mid$ with initial data

$$
t^{0}=1-\frac{j h}{2},
$$

with inllow boundary condition $v_{200}^{n+1}=0$. The following unstable growth was observed

\underline{t}	\underline{n}		$\left\\|\mu^{n}\right\\|_{\text {RMS }}$
0	0	.5781	
0	800	.2010	.348
1	$\mathbf{R a t i o}$		
2	1600	8.404	11.8
3	2400	4.251×10^{3}	506
4	3200	2.149×10^{6}	506

Table 6.1
$43200 \quad 2.149 \times 10^{6} 506$

The ratur rapurly appeoaces the predicted value $(129 / 128)^{800} \approx 505.6$. A phat of the enmputed distribation also shows exactly the form of the predicted normal monde.

6.4 Two interfaces: stability and reflection coefficiente

The example of the last section showed that when livo or more GKS-stable interlaces interact, the presence of reflection cocllicients greater than i in modulus may cause the combination to be unstable. Here we will show, conversely, that if the moduli are not greater than 1 , this implies stability. The problen we apply this idea in comes from a paper of Beam, Warming, atid Yec [He81], in which they motivate and define the notion of P-stability. (Beam et al do not argue by means of reflection coefficients.) We will reproduce and extend their main resules.

The buckgronnd in $\{$ Beat $\}$ is as follows. In studying certain fluth now problems namerirally on an interval $[0,1]$, Beamet al applied time-dependent finite-diference modets for the purpose of determining steady state solutions, i.e. $t \rightarrow \infty$. Sinee they had :clatively litcle interest in aboleling the transient behavior acrurately, it was natural to congider large time steps, lience large mesh ratios λ, and even to consider the limit $\lambda \rightarrow \infty$ When they did this, they observet that in mome rases. farge values of x led to anotels that adnitted exponentially growing solntions. evers though ach

155
inundary individually was Chs-stabic such exponential frowth does not violate Chs-stability, provided it dors not become more servere an the mesh is refincd, but it is fatal for computations in which onc wants a meaningful limit as $t \rightarrow \infty$

Therefore Bram et al. delined

Defn. $\{B \mathrm{Be} 8\}$. A difference modet is P-atable if it is CK S -stable, and further more, for all $h>0$ it admits no eigensolutions with $\mid z i>1$. //

Hy an eigensolution, we mean here in eigensolution in the standard functional analytic sense of the operator representin the entite difference seheme, ineluding boundary enaditions at both ends. This definition rules out the troublesonc exponential growth. The trouble is that it is not a stability definition of the usual sort, since it is not connected with any estimate like (4.2.5) or (4.3.1). Howerer, the complexity of the (ikS theory in general. and of (4.3.1) in partictiar, suggest that it may sometimes be useful to diserses practical stability criteria without waiting for a complete theory to justiry thent. (This is what we did in g5.) In experiments on their original nonlinear linisk probirm, Beam et al. Found that I'statility is a reliable guide to observed suceess of the computation.

The observation that CkS-stabic strip models may admit exponemtially growing solutions is not new, and in fact ξ of $\{\mathrm{Gu}$ 解\} is devoted to this phenomenon. For a particular example involving a 2×2 systrm, that section derives conditions in terms of λ ande the number of grid points between the houndaries for there to be no growing rigensohtions. The contritution of [Br81] is that it applies similar ideas it a more realistic context, and it particular it derikes 1 'stability results for an interesting class of models basedi on A-stable formulas.

We will now desive P-stability results by means of reflection coeffieients. Consider the two-interfice grometry shown in $\mathbf{F}_{\text {in }}$ 6.6. of which a composite difference model \bar{Q} is applied.

$$
\cdots \times \times \prod_{j=0}^{\infty} \times \times \times \times{ }_{j=J}^{i} \times \times \times
$$

FIG 6.6

 lis
point scalar formula satisfying Ass. 3.1 with $\ell=r=I$. (The ideas to follow can all be extended to more complicated difterence models, including systerns as well as scalars.) For $j \leq 0$ and $j \geq J$, two additional Cauchy stable formlas Q_{-}and Q_{+} are applied. Though the figure illustrates the pure interface case $-\infty<j<\infty$, we will permit one or both interfaces to degenerate to boundaries, as in $£ 6.2$ - in which case Q_{-}or Q_{+}becomes onc-sided, and we ccase to require Cauchy stability for that formula. If both interfaces are boundaries, we speak of the "boundary case"; if at least one is an internal interface, we speak of the "interface case".

Suppose that Q admits a steady-state solution with $|z| \geq 1$. For $0 \leq j \leq J$ it will necessarily have the form

$$
\begin{equation*}
r_{j}^{n}=z^{n}\left(\alpha \kappa_{l}^{j}+\beta \kappa_{r}^{j}\right) \quad(0 \leq j \leq J) . \tag{6.4.1}
\end{equation*}
$$

Let A_{I} and A_{z} (functions of z) denote the reflection coefficients at the lefl and right, respectively, as considered in $\S 3$. That is, A_{1} denotes the ratio of amplitudes of the rightgoing signal to the leftgoing one at $j=0$, and atalogously for A_{2}. Then (6.4 .1) implies that a and 3 satisfy

$$
\begin{equation*}
\beta=A_{1} \alpha, \quad \alpha \kappa_{2}^{J}=A_{2} \beta \kappa_{p}^{J} . \tag{6.4.2}
\end{equation*}
$$

(We permit the GKS.unstable possibilities $\Lambda_{1}=\infty$ and $A_{2}=\infty$.) If we set $\alpha=1$, then $\beta=A_{1}$, and (6.4.1) hecomes

$$
v_{j}^{n}=z^{n}\left(\kappa_{t}^{\prime}+\Lambda_{1} \kappa_{y}^{\prime}\right) .
$$

But the second equation of (6.4.2) implies further

$$
\begin{equation*}
A_{1} A_{2}\left(\kappa_{1} / \kappa_{\ell}\right)^{\prime}=1 \tag{6.4.3}
\end{equation*}
$$

We can interpret this as follows: if at a fixed time step we trace the rightgoing mode Prom $j=0$ to $j=J$, reflect it by a factor A_{2} to a leftgoing mode, trace this back to $j=0$, and reflect it by A_{1} to the rightgoing signal again, then we must have the same value we started with.

In (6.4.3), all of the quatitities $A_{1}, A_{2}, \kappa_{f}, \kappa_{7}$ depend on z. This equation contains all the information relevant to stability analysis: Q admits an eigensolution for a given $z \in \mathbb{C}$ if and only if ($(\mathbf{1 . 1 3)}$) is salisfied for that z. Determining whether this is so for a range of values of z may be difficult. The advartage of $(6.1-3)$ is that it permits one

157
to make simpler infereners if the reflection coefficients are well behaved. Here is the most natural such result:

Theorem 6.4.1. Let the two-interface model Q be defined as above. $\|\left|A_{1}\right| \leq 1$ and $\left|\Lambda_{2}\right| \leq 1$ for all z with $|z| \geq 1$, then Q admith no cigensolutions with $|z|>1$. If in addition $\left|\Lambda_{1}\right|<1$ or $\left|\Lambda_{2}\right|<1$ or both for each such z, then Q edmite no eigensolutions or peneralised eigenolutions with $|z| \geq 1$.

Proof. Since $\left|\kappa_{r}\right| \leq 1 \leq\left|\kappa_{\ell}\right|$ for $|z| \geq 1$, one has $\left|\mid \kappa_{r} / \kappa_{l}\right)^{\prime} \mid \leq 1$, and the second statement is an immediate consequence of (64.3). For the first, one uses the additional fact that Cauchy stability implics $\left|\kappa_{+}\right|<1<\left|\kappa_{1}\right|$ for all $|z|>1$, ∞ that one has $\left|\left(\kappa_{r} / \kappa_{l}\right)^{\prime}\right|<1$.

Remark. This result holds even if one or both interfaces are CKS-unstable (ef. Observation 54).

Theorem 6.4.1 yields a simple proof of the first main theorem of Beam, et al. Recall the notions of three.point hinear multistep formulas and \boldsymbol{A}-stability deacribed in $\mathbf{\xi} 2.4$.

Theorem 6.4.2 (|Be81), Thm. 4.1). Let $u_{t}=u_{x}$ be modeled on $[0,1 \mid$ by a difference scheme Q consisting of a three point lineap multistep formula Q_{0} for $j=$ $1, \ldots, J-1$, together with boundary conditions $\nu_{j}^{n+1}=0$ at $z=1$ and $(q-1)$ st-order space extrapolation $S(9.2 .29)$ at $x=0$ for some $q \leq J . \| Q_{0}$ is A.stable, then Q i P stable.

Proof. From (3.2.31) or by a simple computation, the left-hand reflection coefficient is

$$
\begin{equation*}
A_{1}=-\left(\frac{1-\kappa_{t}}{1+\kappa_{t}}\right)^{\prime \prime} \kappa_{t}^{\prime} . \tag{6.4.4}
\end{equation*}
$$

By (2.4.14), the A-stability implies $R e x_{t} \geq 0$, and it follows that the term in parentheres has .nodufus at most 1 . This implics

$$
\begin{equation*}
\left|A_{1}\right| \leq\left|\kappa_{1}\right|^{4} \quad \text { for }|z| \geq 1 \tag{6.4.5}
\end{equation*}
$$

Morcover, the nonvanishing of the denominator of (6.4.1) implies by Thm. 1.3.2 that the boundary at $j=0$ is GKS-stable.

The right-hand condition $v_{j}^{n}=0$ is trivially GKS-stable. This condition is equivalent to the imposition of a reflection cocflicient

$$
\begin{equation*}
A_{2}=-1 \tag{6,1.0}
\end{equation*}
$$

158

Siner vach boumdary is CKS-stabler, \dot{O} is CKS-stable by Then. 5.2.1. It remains Los shou thit there are no eigensolutions with $\mid \approx 1>1$. By the first statoment of Thm. 6.1.1 tugether with eqs. (6.1.5) and (6.1.6), we would be done if the inequality $\left|\kappa_{\ell}\right| \leq 1$ were valifl. Siner $\left|x_{d}\right|>1$ for $|z|>1$, the situation is not quite this simple, but the idea of Thme 6.4.1 still applics, and with the use of the fact $J \geq q$, the proof can be finished in either of two ways. Bypassing Thm. 6.4.1, one can return to (6.4.3) and obtain immediately the contradiction

$$
1=\mid A_{1} A_{2}\left(\kappa_{n} /\left.\left.\kappa_{l}\right|^{J}\left|\leq\left|\kappa_{\ell}\right|^{q}\right| \kappa_{0}\right|^{\prime}\left|\kappa_{\ell}\right|^{-J}=\left|\kappa_{1}\right|^{2 J-4} .<1\right.
$$

for any solution with $\mid z i>1$. (For the seond equality we have made use of (2.4.8).) Necrnatively, one call shift the interface by renumbering the indices so that the old $j=r$ beconnes a new $j^{\prime}=0$, after which i_{1}^{\prime} will satisfy

$$
\left|A_{1}^{\prime}\right| \leq\left|\kappa_{\theta}\right|^{\varphi}\left|\kappa_{r} / \kappa_{t}\right|^{\varphi} \leq 1
$$

for $|z| \geq 1$. Then Thm. 6.4.1 applies directly.
Theortll 64.2 has the following simple, if not very practical, anatog for probiems in which threr A stable formulas are seymerated by abruptechange intefaces.

Theorem 6.4.3. Le: $u_{t}=a u_{z}$ be madeled on $(-\infty, \infty)$ by the two interface model Q of Fig. 6.6, composed of consistent t stable three point tunear multatep fomulas Q_{-}, Q_{0}, and Q_{+}. Then \bar{Q} admits no eigensolutions of generalized eigensolu. tions with $|z| \geq 1$, except possibly an eigensolution or generabized eigensoiution with $i z i=1$ that w non-strictly leflgoing in $j \leq 0$ and non-stictiy righigoing in $j \geq J$.

Proof. To begin with we have a probletm with interfaces at $j=0$ and $j=J \geq 1$, hut as in the last proof, let us shift the indires so that the interfaces lie at $J=\frac{1}{2}$ and $\nu=J-\frac{1}{2}$. This will multiply both reflection coelficients A : and $A z$ by the fartor $\sqrt{\kappa_{0} / \kappa_{1}}$. Now by (3.2.5), taking into acrount the shift of indices, A_{2} has the value

$$
\begin{equation*}
A_{2}=-\frac{\kappa_{t}-\kappa_{t}}{\kappa_{t}-\kappa_{t}} \tag{6.1.7}
\end{equation*}
$$

(Here ℓ. r , and t stand for "Icftgoing", "rightgoing", and "transtmitted"; these abbreviations differ from those of (3.2.5), where istands for "ineident" and r for "reflected".) Assime without toss of getierality $a>0$. Then by Thm. 2.4.1, κ_{r} and κ_{t} lie in the

1.59

FIG. 6.7

By simple geometry there follow the inequalities

$$
\left|x_{t}-x_{t}\right| \leq\left|x_{t}-\left(-\bar{x}_{r}\right)\right| \leq\left|x_{t}-\kappa_{t}\right|
$$

the first two terms are equal if and only if $\operatorname{Re} \kappa_{r}=0$ or $\operatorname{Re} \kappa_{t}=0$, and the latter two if and only if $\left|x_{r}\right|=1$. Applying these facts to $(6,4.7)$ givea

$$
\left|\Lambda_{2}\right| \leq 1
$$

with equality if and only if either Re $\kappa_{i}=0$ and $\left|\kappa_{-}\right|=1$, or $\kappa= \pm i$. Obviously one must then have $\left|A_{1}\right| \leq 1$ for the reflection coefficiont at the left hand interface, also, with equality utider analogous conditions.

By the first statement of Thm. 6.4.1, (6.4.8) and the corresponding bound $\left|A_{1}\right| \leq$ 1 imply that \bar{Q} admits no eigensolutions with $|z|>1$. By the econd statement of that theorem, there can be no cigensolutions or generalized eigensolutions for $|z|=1$ either unless $\left|A_{t}\right|=\left|A_{2}\right|=1$, which by the rematks above implies either $R e x_{t}=0$ or $\kappa_{0}=\kappa_{l}= \pm i$, and analogously at the left-hand interface. To complete the proof it is therefore enough to show that each of these last two possibilities implies that the transmitted signal $\kappa_{i}^{\prime} z^{n}$ is non-strietly rightgoing. In the first case, Ren $\boldsymbol{K}_{\mathrm{t}}=0$, this is immediate: either $\left|x_{t}\right|<1$, and the signal is evancsecnt (position (7) in Table 2.1), or $\kappa_{t}= \pm$ i, and it is a stationary wave with $C=0$ (position (5)). In the second case, $\kappa_{r}=\kappa_{l}= \pm i$, then we are done as before if it happens that $\kappa_{i}=\kappa_{r}= \pm i$ also. On the other hand if $\kappa_{7} \neq \kappa_{1}$, then by (6.4.7), $A_{2}=-1$, in which case the leflgoing and rightgoing components cancel cach other and there is no generalized cigensolution after all. I

Now let us return to the two-boundary problems. The more complieated results of [Be8i] involve strongly A-stable schemes used in conbination with the boundary fortulala $\mathrm{ST}(3.2 .32)$ at $;=0$. It is in this case that Beam, et al. observed P-instability. Fo: odd wabes of J, the formilas they consiserect appeared to be P-stable, but for

We can explain and extend these results by means of reflection coefficients. First we establish GKS-stability for strongly A-stable formulas:

Theorem 6.4.4 (|Be81), Thm. 4.2). Let Q and Q_{0} be defined as in Thm. 6.4.2, except with S replaced by the $(q-1)$ st-order apace-time extrapolation boundary condition ST (9.2.32) at $j=0$. If Q_{0} is strongly A-stable, then Q is GKS-atable.

Proof. For GKS-stability of Q we need only prove GKS-stability for the interfaces $j=0$ and $j=J$ independently, by Thm. 5.2.1, and we considered the latter interface already in the proof of Thm. 6.4.2. At $j=0,(3.2 .31)$ gives the reflection coefficient

$$
\begin{equation*}
A_{1}=-\left(\frac{z-\kappa_{l}}{1+z \kappa_{l}}\right)^{\ell} \kappa_{l}^{q} . \tag{6.4.9}
\end{equation*}
$$

We need to st ow that the denominator cannot vanish, i, e. $z \kappa_{t} \neq-1$ for all z with $\mid z^{\prime} \geq 1$. Hy Thm 2.4.1, the strong A-stability implies $\left|\kappa_{\ell}\right|>1$ for all z with $|z| \geq 1$ except in the case $\varepsilon_{t}=1$. By Thm. 2.4.2. Q_{0} is t-dissipative, and therefore with $\pi_{l}=1$ one has wither $z=1$ or $|z|<1$. Neither of these possibilities permits $z \kappa_{t}=$ -1.1

Now let us show that although the model based on ST is CKS-stable, it can no longer be expected to be 1 -stable, at least when the mosh ratio is large. Assume $\lambda \gg 1$. Then by $(2,4,3)$, onc has $\kappa=1 / \kappa+O(1 / \lambda)$, hence

$$
\begin{equation*}
x_{*}=-1+O\left(\frac{1}{\lambda}\right), \quad x_{l}=1+O\left(\frac{1}{\lambda}\right) . \tag{6.4.10}
\end{equation*}
$$

In particular this will hold for $z \approx-1$. But for these values, the denominator of (6.1.9) has magnitude $O\left(\lambda^{-9}\right)$, which implies that the reflection coeflicient will be very large:

$$
\left|A_{1}\right| \geq \text { const. } \lambda^{4} \text {. }
$$

This explains the observed P-unstable behavior. For large λ, the ieft boundary of Q is "nearly CKS unstabie" it admits a rightgoing signal $\left(\kappa_{r}, z\right) \approx(-1,-1)$ stimulated by only a very weak leftgoing signal $\left(\kappa_{\ell}, z\right) \approx(1,-1)$.

F -stability to be assured by arguments based on (8.4.3), the attenuation $\mid \kappa_{r} / \kappa_{\text {. }}$. the interior must be strong enough to more than balance the amplification due to A_{1}. Since $\left|\kappa_{1} / \kappa_{l}\right|=1-O(1 / \lambda)$, by (0.4.10), this will require

$$
\left(1-\frac{1}{\lambda}\right)^{\prime} \leq \frac{\text { const. }}{\lambda^{4}}
$$

161
or by Laking the logarithms of both sides,

$$
J \log \left(1-\frac{1}{\lambda}\right) \leq \text { const. } q \log \frac{1}{\lambda}
$$

hence

$$
\begin{equation*}
J \geq \text { const. } q \lambda \log \lambda \tag{6.4.11}
\end{equation*}
$$

This kind of reistionship between λ and J is just what Beam, et al. observed in practice.

By performing the above estimates carefully, one could derive a precise condition like (6.4.1t) that would be sufficient for P-stability. This would complement nicely the third main result of [Be81]. Thm. 4.3 there, which gives a bound mueh like (6.4 .11) that is necessary for P-stability when J is even.

It temains to give an explatation of the odd-even cfiect described above. We have shown that for J smaller than the order of magnitude indicated by (6.1.1t), the left hand side of (6.4 .3) cannot be guaranteed to have modulus les than 1 , and so an argument balancing refection and attenuation does not rule out growing eigensolutions. However. from the above results it follows that in the region $z \approx-1$, $\kappa_{1} \approx-1, \kappa_{\ell} \approx 1$, where A_{1} is large, A_{1} will be approximately negative. That is to say, it will have large negative real part and relatively small imaginaty part. Combining this fact with (6.4.6) shows that the left hand side of (6.4.3) has sign approximately

$$
(-1)(-1)(-1)^{J}=(-1)^{J}
$$

If J is odd, the sign is negative and (6.4 .3) cannot hold, despite the large reflection coefficient. This is why Γ-instability does not occur when J is odd.

6.5 Growth rates for two-interface problema

In this section we continue the pattern of argument of $\$ 6.3$, in which necessary conditions for instability were derived by balancing amplification by reflection at the interfaces against attenuation in the interior (eq. (6.4.3)). The difference is that here the aim is not frimarily to rulc out solutions with $|z|>1$, but to estimate their ratea of growth when they do occur.

Both 50.3 and 56.4 were coneerned with the fact that the combination of two GKS-stable boundaries or interfaces may be utistable Scetion 6.3 considered calastrophic instability in the case of fixed arparatio', Δj, and $\S 0.1$ considered P'instability

162
in the case of fixed Δx. A third, ectated phenomenon is described by Krfise in vatious patpers, and wr have diserused this in Chapter 5: if a GKS-unstable boundary is used if: a strip froblem with fixed Δx, the interaction of the two boundaries may convert an instabitity with $:=1=1$ to exponential $[\mathrm{Ki} 71, \S 2 ; \mathrm{Kr73}, \mathrm{\xi} 17]$. Alf of these are just three of a variety of effects which can arise that involve "reflection back and forth" between two boundaries. The analysis in this section will consider phenomena of this sort systematically. to see what kind of reffection is really going on, and what degree of unstable growth, if any, to expect in various cireumstances.

Again. consider a two-interface constant-coefficient model \bar{Q} of the kind described in $\$ 6.4$ and illustrated in $\operatorname{Fig} .6 .6$, with either J constant (the "fixed Δj " case) or $J h=\Delta x$ constant (the "fixed Δx " case). From (6.1.3), we know that a steady-state solution (6.1.1) for some $z \in \mathbb{C}$ can exist only if

$$
\begin{equation*}
\left|\kappa_{.} / \kappa_{l}\right|^{J}=\left|A_{1} A_{2}\right| \tag{6.5.1}
\end{equation*}
$$

For that z. It is this equation that ssiserts that attenuation and amplification must balance. For simplicity let us write

$$
\begin{equation*}
\kappa=\left|\kappa_{r} / \kappa_{\ell}\right| \leq 1, \quad A=\left|A_{1} A_{2}\right| . \tag{6.5.2}
\end{equation*}
$$

Then (6.5.1) can be written

$$
\begin{equation*}
A \approx \kappa^{-1} \tag{6.5.3}
\end{equation*}
$$

We usc the symbol " \approx ", without defining it precisely, because throughout this section we will ignore constant factors. (Or course, in (6.5.3) the two sides are actually equal.) The pattern of argument we will use is to show that $(6.5 .3)$ can hold only when $|z|$ has a certain size, dependent on J. It then foliows that one can observe no unstable growth worse than $|z|^{n}$, for values of $|z|$ in this range. If $|z|=1+c$ with $\ll 1$, the rate of growth becomes

$$
\begin{equation*}
E(n) \approx|z|^{n}=e^{n \ln (1+a)}=(\text { const })^{n e}, \tag{B.5.1}
\end{equation*}
$$

where $E(n)$ denotes, say, the z_{2} norm $\left\|v^{n}\right\|_{2}$.
Our airn is to find worst-case rates of growth $E(n)$ for various classes of twointerfare problems. The worst-ease idea amounta to assurning that (6.5 .3) is a sufficient as well as meressary condition for a st cady-state wotution to cxist. Of course for parliculat problems this may not be so (we ringht have $\Lambda_{1} \lambda_{2}\left(\kappa_{0} / \kappa_{l}\right)^{J}=-1$ instead of
(6.4.3), for example), but arross clansws of probletne it should be valud. The sot of problerns to be considered is diffited by the fullowing patameters, to which we tiave given labels for convenience:

> (ΔJ) fixed $\Delta j(=J)$,
> (Δx) fixed Δx (i.e. $J \rightarrow \infty$);
> (1) $A \leq 1$ (GKS.stable or unitable),
> (2) $1<1<\infty$ (CKS-stable or unstable),
> (3) $A=\infty$ with $|z|=1$ (GKS unstable),
> (1) $A=\infty$ with $: z \mid>1$ (GKS-unstable);
> (D) $\kappa \leq \kappa_{0}<1$ for $\mid z 1 \geq 1$ (Q_{0} totally dissipative),
> $(N D) \kappa=1$ for z with $|z|=1\left(Q_{0}\right.$ nondissipative $)$.

Rxerpt in case (4), we assume that no Godunov- Ryabenkii eigensolution with $|z|>1$ is present. As the list suggests, the arguments will depend on A but not on (aKS. stability per se. This fact supports Obs. 5.1.

We will ignore exceptional cases, such as those involving defective values of k or z. First we classify the "best" cases ($E \leq$ const.), then the "worst" ones ($E \approx$ (const.)"), then various cases in between. The results are summarized at the end in Table 6.2.

Case $A \leq 1$

Suppose $A \leq 1$ (ase (1)). In Thm. 6.4.1, we have scen that thefe can be no steady-state solutions with $|z|>1$. This rules out an exponential ghuwth no matter what combination of the remaining parameters above is in effect. Wh can interpret this in ternas of energy moving back aud forth betwern interfaces as follows: an initial pertutbation may persist for all time, reflecting back and forth betwepn interfaces, hut it will not grow. If Q_{0} is totally dissipative, it should die out.

One kind of growth may still be expected. In the case of an interface fnot than midary problem, with Q_{0} nondissipative ($N D$), a signal of the above sort trapped betwen the i terfares may radiate wavelike energy into the left or righthand semiafinite region. This will rause algebraic growth in E. In the fixed Δx case, the srowlh will look guatiatively like $E \approx 1+\sqrt{t}$, which is not unstable berause of the initial magniend 1 . In the fixed J case, it wi: took like $E \approx J h+\sqrt{t}$, which is untable,

In summaty, the catir $1 \leq 1$ shomids frow at wose : is follows. The symbel (o) is 164
a wild eard indicating any of the choices of the parameter in that position.
$(\Delta j) \cdot(1)-(N D):$ unstable algebraic growth, $E \approx h+\sqrt{t}$ (interlace case oniy);
$(\Delta x)-(1)-(N D):$ stable algebraic growth, $E \approx 1+\sqrt{t}$ (intertace case only); (•)-(1) (D): no growth.
Case $A=\infty$ with $|z|>1$
At the other extreme, suppose that one or both interfaces admits an cigensolution of the Godunov-Ryabenkii kind (case (4)), as deacribed in 54.2, with an infinite reflection coefficient. Since such an interface alone would exhibit growth like (const.) ${ }^{n}$, it is natural to expect the same for the two-interface problem, or worse. In fact there can be nothing worsc; this follows from the bounded solvability from one time step to the next of any properly defined difference model (Ass. 3.3). It remains just to vonfirm that a steady state solution with $E \approx$ (const.) ${ }^{n}$ can indeed oceur. This raises the question, how can $A=\infty$ and $\kappa>0$ be reconciled with (6.5.3)?

The answer, whirh will reappear throughout this section, is that a steady-state solution with two interfaces will not have z equal to the value z_{0} for which $A=\infty$, but to a perturbed value z_{0}^{\prime}. Assume first $\kappa=1$. case ($N D$). Then the perturbation $z_{0} \rightarrow z_{0}^{\prime}$ must be large cnough to bring $A(z)$ down to $O(1)$, which means $z_{0}^{\prime}-z_{0} \approx$ $O(1)$. Since $\left|z_{0}\right|>1$, however, this is zot inconsistent with $\left|z_{0}^{\prime}\right|>1$. Hence an exponentially growing solution (6.4.1) may occur.

If Q_{0} is totally dissipative (case (D)). growth of the form $E \approx$ (const.)n will stiil typirally occur. but the perturbation argument may change. In case (Δj) the attenuation $\kappa^{\prime}>0$ is insignifieant compared to the reflection coefficient $A\left(x_{0}\right)=\infty$, so $z_{0}^{\prime}-z_{0}=O(1)$ again. But in case $(\Delta x), J=O(1 / h)$, and x^{\prime} is not bounded away from 0 . Assume that for $z \approx z_{0}$. A looks something like

$$
\begin{equation*}
A \approx\left|z-z_{0}\right|^{-1} \tag{6.5.5}
\end{equation*}
$$

Then to satisfy (6.5 .3) one must have

$$
\begin{equation*}
z_{0}^{\prime}-x_{0}=O\left(\kappa^{\prime}\right) . \tag{6.5.6}
\end{equation*}
$$

For any reasonable value of J this implies that z_{0}^{\prime} will be extremely close to z_{0}. In other words, the exponential instability admitted by the two-interface system will look almost exactly like the single-interface instability with $z=z_{0}$.

Of course the two interfaces might interact fortuitously so as to rule out such a solution, as mentioned already. In easc $(\Delta j), Q$ would then actualiy be stable, even

165
though composed of one or two strongly unstable interfaces. In case (Δx), it would be unatable nevertheless. The reason is that for large J (amall h), a perturbation near one interface might grow catastrophically for a time before feeling the influence of the other interface and finally decaying to $0 ; h \rightarrow 0$ the catastrophe becomes worse.

We are however concerned with worst-case growth, for which the summary of models with $A=\infty$ for $|z|>1$ is very aimple:
(*)-(4)-($)$: unstable exponential growth, $E \approx$ (const.)".
Case $1<A<\infty$ or $A=\infty$, fixed Δ;
In the first case indicated, one has two nonconserving but possibly GKS-stable interfaces separated by a fixed number of grid points. The example of 56.3. exhibiting growth $E \approx\left(\frac{129}{23}\right)^{\text {n }}$, was of this kind, namely $(\Delta j) \cdot(2) \cdot(D)$. Obviously if Q_{0} is nondissipprive (ND), or ir $A=\infty$ instead of $A<\infty$, growth like (const.)" should still be possible. There is also no distinction 1 e between the boundary and the interface siluations.

There are however qualifications for the cascs $(\Delta j)-(3)-(D)$ and $(\Delta j)-(2) \cdot(D)$. Let Q_{0} be fixed and totally dissipative, and suppose first $A=\infty$. As in the last discussion, we are once again led to the perturbation (6.5.6), which is extremely small except when J is near 0 . But this time $\left|z_{0}\right|=1$, so that (6.5.6) implies that $\left|z_{0}^{\prime}\right|$, although perhaps latger than 1, may be extremely close to it. Therefore the growith, although exponential, will be slow in this case unless $J \approx 0$. On the other hand suppose $A(z) \leq A_{\text {maz }}<\infty$ for some $A_{\text {max. }}$. Then (6.5.3) can only hold for J small enough so that $\kappa^{J} A_{\text {mex }} \geq 1$, say $J \leq J_{0}$. For practical exampics of this type, such as the interaction of GKS-stable interfares with $Q_{0}=1 W$. J_{0} usually seems to be $\mathbf{0}$ dissipation almost always produces stability. This is why the example of 56.3 had to be so contrived. Unfortunatcly, it is gencrally hard to prove that J_{0} is so small, even for particular examples.

In summary,
$(\Delta j) \cdot(3) \cdot(N D):$ unstable exponential growth, $E \approx$ (const. $)^{n}$;
$(\Delta j)-(3)-(D)$: weak exponential growth, $E \approx$ (const $)^{n}$, const. $-1<1$;
$(\Delta j) \cdot(2) \cdot(N D):$ unstable exponential growth, $E \approx$ (const. $)^{n}$;
$(\Delta j) \cdot(2) \cdot(D): \quad E \approx(\text { const. })^{n}$ rot $J \leq J_{0}$, no growth for $J \geq J_{0}$.
Case $1<A<\infty$ or $A=\infty$, fixed Δx
166

The must interesting set of cases remains: the with fixed Δx and either $1<$ $1<x$ ($6,6 \mathrm{~S}-\mathrm{xtable}$ or unstable) or $A=\infty$ but $\mid=1=1$ (GKS-unstable). Depending , th when hind of interfare is present and whether Q_{0} is dissipative, four diferent rater of growth may be expected.

The case $(\Delta r)-(2)-(D)$ has already been settled by our diseussion of the case $(\Delta j)(2)-(D)$. There we argued that for $J \geq J_{0}$, no growth will occur. In the fixed $د_{s}$ situation, we are only concerned with the limit $J \rightarrow \infty$, and so one should expect :10 growth here. B Custafson has stated a theorem to this effect in [Gu81]. Similar rewults for particular cexmples appear in [Gu72], $\$ 7$.
suppose that again $1<A<\infty$, but Q_{0} is nondissipative-case $(\Delta x)-(2)-(N D)$. Whether or not ϕ is GKS-stable, in general it will be susceptible to exponential grouth in $t(\operatorname{rot} n), E \approx(\text { cotist.) })^{t}$. There are two ways to see this. One is to think of reflectinns back and forth as ! increases. In the worst case, a signal might bounce repratedly tetwert: the twointerfaces, incteasing in magnitude by a factor $A>1$ with earh rifruit. In the linat $\lambda \mathrm{I}$ case the travel tithe will be $O(1)$ between bounces, and so one has a growith fatr (const.) Altrratively, one car argue again by perturbations $z_{0} \rightarrow z_{0}^{\prime}$ If $\left|z_{0}\right|=\kappa\left(z_{0}\right)=1$, then ypiraily if $\left|z_{0}^{\prime}\right| \approx 1+c$, we will have $\kappa\left(z_{0}^{\prime}\right) \approx 1-6$. Sines $J=O(1 / h),(6.5 .3)$ becomes the condition

$$
\begin{equation*}
(1-1)^{-1 / n} \approx A \approx 1 \tag{6.5.7}
\end{equation*}
$$

which inflies $; \approx h$. In other words, following (6.5.1), we should observe growth like

$$
E(n) \approx(t+h)^{n}=(\text { const } .)^{t} .
$$

Note that growith at this rate, although stable (take $\alpha_{0}=$ const. in (1.2.5) or (1.3.1)), does not become weaker as $h \rightarrow 0$. This contradic s he impression given by Beam, et al in [BeR1], hut supports their view that a conce t ithe P-stability may be useful.

Consider now the case of Q_{0} nondissipative ut $A=\infty$. This is the situation mentioned by Krpiss in which a linear instability may be converted to exponential. The exponential growth is however nol of type (const.)", but of the weaker form $J^{*} \approx(1 / h)^{x}$. We can see this by the usual perturbation argument. Once again, ronsider $\left|z_{0}^{\prime}\right|=1+e$ and assume that $(6.5 .5)$ holds. Then the condition (6.5.3) is

$$
\begin{equation*}
(1-r)^{-1 / A} \approx \frac{1}{e} \tag{6.5.8}
\end{equation*}
$$

For this to be satisfied, o will have magnitude $\varepsilon \approx h \log (1 / h)$. Therefore by $(6.5 .1)$ we will ubgerve growth like

$$
\left.C(r) \approx 11+h \log \frac{1}{h}\right\}^{(1 / h)} \approx(\text { const. })^{2 \operatorname{ln.x}(1 / h)} \approx(1 / h)^{t} \approx J^{c} .
$$

167

Compare |kril]. §2, or [kri3], cq. (17.10)
Finally, what will happen if $A=\infty$ but Q_{0} is totally dismpative" No mastup how large J is, it will still be possible to choose $z_{0}^{\prime}-z_{0}$ to satisfy $\{0.5 .6)$. However. $z_{0}^{\prime}-z_{0}$ will have to be exerecdingly sreall. Eq. (6.5.4) gives the rate of growth

$$
E(n) \approx\left(1+\kappa^{J}\right)^{n}
$$

(65.9)
which is exponential for fixed $/$ but with a constant that decreases rapidly with J. In practice this growth witl be completely insignificint, and \bar{Q} will exhibit nothing worse than whatever instability is caused by its individually unstable interfare for interfacesl. This conclusion applies in particular to tuo-boundary problems involving borderlne GKS-instabilities of type $|\kappa|<1$, as diseussed in §s.4. This confirms Observation 5.10.

In summary. for these situations of fixed Δ_{y} type we have
($\Delta x) \cdot(2)-(D):$ no growth

($\left.\Delta_{\mathrm{r}}\right) \cdot(3)-(D):$ sable growth. catroncly weak
$(\Delta x) \cdot(3) \cdot(N D):$ unstable growth, $E \approx(J)^{t}$

. .

Let us summarize the results of the and the previous section. The details tave been complicated. but the man itea is simple For a growing eigensolution to exist, the amplification by rellertion at the homedaries west bataliere the dissipation in the
 corfficient $A\left(z_{0}\right)=\infty$, one therefor inastigates prembations $z_{0} \rightarrow z_{0}$ to reduce $A\left(z_{0}^{\prime}\right)$ to the right size The grow hate in then givet by $\mathrm{E}(\mathrm{n})=\left\{\left.z_{0}^{\prime}\right|^{n}\right.$.

This atalysis does not depend on whether athy liks-unstable intrefaces are present, conforming Obsprations 5.4 and : 10 . In a problem of fixd Δx type, diks. instability at cither interfare will mahe itwif folt mert that interfare in the usial way, but interaction of the two interfaces will not worsen the chere unless the refoction coeflicient arguments immicate that it should.

We have not discussed borderline (iks.enstathe interfares of typer $C=0$. It turns ous that the effect of such a case is typically to introduer a abinate root on the right liand side of (6.5.5), with similiar thatges alwuhere. Thi may weatert unshable

169

Thble: 6.2

 are (iKs-stable in first two rows)
5.10 differemiates horderline rakes of typer $\mid<1<1$ from those of typer $C \geqslant 0$. (On the other hand, with $C=0$ it usually happens that A is firite also. as we saw in 55.3.)

The growth rates we have oblained in this section are summariaed in Table 6.2. Once again we emphasize that these rates listed are typical ones, and may be false for special problcins; also that our model has involved just two interfaces, a acalar equation, and constant cocfficients.

6.6 Three or more interface:

In this final section we will make some rernarks on siability fur problems with there of more interfaces. Such conligurations rome up in thr design of composite boundary or interface formula They are als, important: the enalysis of adpative mesh refinement sehemes, where one would like to be atle :., detive bounds on growth

 which we have scotedy meth:ioned in the disertation as combisting of a weries of distinct differetece formulus seppacated by inherfaces betwern rach pair of grid points.

The purpose in virwing atiy of thes problems in tertis of inter faces is to obtain results by eflection and transuinsion afguments that aght to hetin ult to oblain wherwise. A particular area where there is a great aeet for suct: results is in the

 with in totally disopative formala such as IM will be stabin liet no erteral theorems along these lines are hnown. except for the single-mberface rect ts discussed in $\$ 6.2$. As a gemeral rute, although disipativity hiphs guaratue the fart of stability, it sems to make the proof of atabilaty more diflicult. For example. establishing stability by the encegy method for a dhternate fornuta with variabier rueflicients is usually more ditiente wher bler furmula is lissipative.

Consider a model O ith which a fissts coblectist of comstant difierence formula ate joined by interfates separatid by a finct number of grid poiats by the results of Chapter 1. we knou presisedy hou to cherk for ChS-inctubility of $\vec{?}$, in principle. In asch ergion between interfars, detwrmine fur rach $=$ with $\because i \geq 1$ the ser of leftgoing

$$
\leftrightarrow|\leftarrow|: \mid \longleftrightarrow
$$

 -..ergy How wan atsetract formulation of the kind of argument that might be used. Sapmes hat butwern rach pair of points $(j-1) h, j$ h one can define a net energy

 are yresent;
$(: f) \Phi_{i} \geq \Phi_{1+1}$ if $J h$ is not an interface.
Wee an interfue at j h to "conserve energy" with respect to ϕ then means simply that 1: A taing a lliat interface as well as at non-interface points. One obtains immediately : f. following sufficient condition for stabsility:

Theorem 6.6.1. Let $\$$ satis/y conditions (i) und (is) above. If (ii) holds also at a.t Miefface points, jh. and in uddition at least one inequality in (i) or (ii) is strict, then Q w GKS stable

Proof tr there exists an unstable digematution or gearealized eigenobletion, let
 in! and the math all of all interfares, respectively. Then condition (i) implies

$\Phi_{,} \leq 0 \leq \Phi_{H_{+}}$,

while condituon (zu) implies

$$
\begin{equation*}
\Phi_{1-} \geq \Phi_{1+1} \geq \cdots \geq \Phi_{1+-1}=\Phi_{2+} \tag{6.6.1}
\end{equation*}
$$

171

 \$ that is conserved at interfaces Fot example, Int Q consist of a dire-pomin harar multistep formula Q for $u_{1}=u_{s}$ applind betwern an arbitrary fitite mamber of "ifule mesh refincment" interfaces of the kind descrited in lixample 34 of $\mathbf{5 3 . 2}$. Thic is equivalent to applying Q on a uniform mesth with a finite number of confirient changrs. with all corficients positive, Let ϕ be simply the t_{2} encray flux $\phi_{r}-\phi_{r}$, where ϕ_{r} and Φ_{1} are deffterd as in g.3.3. Then we shoned in 53.3 that enetgy is conserved for $\left.\right|_{2}=1$ when an itmilent signat is preathe of one site onts. and this result can be readily extenced lo twe-sided iticidence. From this one ran concludn :w in Thm 6.6. 1

 breaks down, for at turns out t. at rude mest refinenment interfaces tho hager conserve \$. Thus Thime fig. 1 is not applirabie even thoug one can show that Q is \mathcal{I}_{2}-stable here by standard enerse muthod arguments (Rio7).

Thes example sugests that the f_{8} hux may generaliy be an unnorkable ehoice for \$. The same comfusion is sugensted by the observation of 93.3 that in most probinms. the ℓ_{2} energy is not conserved rwen for $i z=1$.

Alternatively, in analugy to the develop:ients of $\$ 6.2$ \$6.5. we could base ϕ insteau on amplitudes. Consider again a probtrm with only one Inftgoing atal one rightgoing solution between "art: patr of intorface On, :atural choice is

$$
\phi_{3}=\left|a_{2} \kappa_{2}^{\prime}\right|-\left|a_{\ell} \kappa_{i}^{i}\right|
$$

but this turne out to be menether thati the ℓ_{2} definiting considered above. Huwever, the possibility

$$
\Phi:=\sin \left(n_{1} n_{1}^{2}|-| n_{1} x_{i}^{\prime}\right)
$$

shows pronise, for this masure of ϕ th be comersed at an interfare meano that the interface admits nu whtions in whirl: we weth sib. the satiated wave hav larget amplitade Hath the weritatat one This is a natural extermon of the asuments involving $|A| \leq 1$ of the hast $\mid w n$ sertions. and there ate irideatoms that it may make it possible to prow stabilty for watia realister probicms.

132

APPENDLX A. PROPERTIES OF STANDARD DIFFERENCE MODELS

In the following three pages the propertics of cleven common scalar difference formulas, mostly modfls of $u_{t}=a_{u_{x}}$ are listed. Each entry gives: (1) name, (2) [nomula (3) dispersion relation in κ and z ((4) dispersion relation in ξ and ω, (5) group velocity Cle, w'. 16 ; initial terms of Taylor series $\omega=\omega(\xi)$ for branch through orgin $\{=$ modified equation), $(7$; orders of dispersion $\{0)$ and dissipation $(3),(8) x$ -
 fint for the caser $a=-1 . \lambda=5$ is also shown for the each formula, following the styo of Fig 1 | Dashod lite segments in these plois indicate solutions (ξ, w) that are *al oniy at wolated funts (for formblas with some dissipation).

See the inifex for minters to where the properties listed above, and most of these differnere formulas arr diseussed in the text

174

APPENDIX B．PROOFS FOR ℓ_{2} INSTABILITIES
The purpose of this appendix is to prove Thms． 4.2 .3 and 4．24．Recall that we are concindraing a diffrence model Q for at initial boundary value problem on $x \geq 0$ ， \therefore O．atis that Q demmes the tomogencous furmula applied away from the boutidary． The symole S and $5_{\text {b，}}^{n}$ drnete the operatons

17
 Now the kry istea is this the solution $\{t, n$ ）obtatned under Q at dentical in $\}=0$ to the solution $\left\{v^{n}\right\}$ ，obtaned if \dot{Q} wappised uth mitha！data zero and boundary dota equal to the numbers $\left\{g^{n}\right\}$ produced when $\left\{x_{2}^{n}\right\}$ is mserted in the boundary conditions （1．2．9）．

In other words，we can study the initial boundary vatue problem by means of the Cauchy problem．The distribution $\left\{u^{\boldsymbol{n}}\right\}$ would be an exact solution of Q with $g \equiv 0$ ， as well as of Q ，if it happened to satisfy the hotnogenous boundary conditions．It doesn＇t，but it does satisfy Q if we take just the right inherment ：cous＂equivalent boundary data．＂Note the similarity with the atguternts of $\mathbf{3} 35$ ．atd wfig B．with Fig 3.9.

 いざ。

lemmas on propagation of a smooth wave packet

H．

MAY $82-\mathrm{M}$ TherETMEM STAN-GS-a2-90S

and Wahlbin [13r75], very prerise statements ean be made about how small the error $v^{\prime \prime}(x)-\mathrm{r}^{0}(x+C t)$ will be, and how this depends on the smoothness of the initial packet and the behavior of the dispersion relation at (ξ_{0}, w_{0}).

However, all we nead is a very special case. Therefore rather than appeal to existing theorems, which would introduce undetermined constants and obscure the essential simplicity of what is going on, we give the following argument from first principles.

Let h and k be fixed and let Q be a two-level constant-coefficient Cauchy atable difference formula that admits a solution $\boldsymbol{e}^{\left.0\left(w_{0} t-\xi_{0}\right)^{2}\right)}$ with $\xi_{0}, w_{0} \in \mathbb{R}$. By Thm. 2.3.t, there exists some group velocity $C \in \mathbb{R}$ such that the diapersion function $\omega=\omega(\xi)$ satisfiet

$$
\begin{align*}
\omega= & \omega_{0}+C\left(\xi-\xi_{0}\right)+r(\xi), \\
& |r(\xi)| \leq M\left[\xi-\xi_{0}\right)^{2}
\end{align*} \quad \forall \xi \in \mathbb{R}
$$

for some constant A. By Cauchy stability, we have Im $\omega \geq 0$ for all ξ, which implice $\operatorname{lm}+(\delta) \geq 0$ also. Since $\eta \rightarrow e^{\prime \eta}$ is a contraction map for $\ln \eta \geq 0$, this iraplies

$$
\begin{equation*}
\left|e^{\omega t}-e^{\left(\omega_{0}+C\left(\xi-\varepsilon_{0}\right)\right) t}\right| \leq t|\tau(\xi)| \leq M t\left(\xi-\varepsilon_{0}\right)^{2} \tag{B.4}
\end{equation*}
$$

for any $: \geq 0$.
In what follows the Fourier transform and its inverse are defined by*

$$
\begin{equation*}
\dot{f}(\xi)=\frac{1}{2 x} \int_{-\infty}^{\infty} e^{i(x} f(x) d x, \quad f(x)=\int_{-\infty}^{\infty} e^{-i(i} \dot{f}(\xi) d \xi . \tag{B.5}
\end{equation*}
$$

Lemme B.1. Let $P(x)$ belong to C_{0}^{2} (twice continuowaly differentiable with compect support) and satisty $p^{\prime \prime} \in L_{1}$. Let Q be applied with initial date

$$
v^{0}(x)=e^{-i \ell_{0} z} p(x)
$$

Then for any $n \geq 0$ and any $x \in \mathbb{R}, v^{*}(x)$ satiofies

$$
\begin{equation*}
\left|v^{n}(x)-e^{\left(\omega_{0} t-(a x)\right.} p(x-C t)\right| \leq M t\left\|_{p^{+}}\right\|_{s}, \tag{B.6}
\end{equation*}
$$

where $t=n k$ and M is the conefant of (B.s).
*Se the footnove on p. 13 regarding thin choice of signs in the exponenta.
170

Proof. Obviously $p \in L_{2}$, hence $v^{0} \in L_{2}$ also, and we can use Fourier transforms. We get

$$
\begin{aligned}
v^{n}(x) & =\int_{-\infty}^{\infty} e^{i(\omega t-\ell x)} v^{c} d \xi \\
& =\int_{-\infty}^{\infty} e^{i(\omega t-\ell x)} \dot{p}\left(\xi-\xi_{0}\right) d \xi \\
& =\int_{-\infty}^{\infty}\left[e^{i\left(\omega_{0}+C\left(t-\xi_{0}\right)\right) t}+e^{\omega \omega t}-e^{i\left(\omega_{0}+C\left(\ell-\epsilon_{0}\right)\right) t}\right] e^{-\bullet(x} \dot{p}\left(\xi-\xi_{0}\right) d \xi .
\end{aligned}
$$

The integral involving the first term in brackets is just

$$
e^{i\left(\omega_{0} t-\xi_{0} x\right)} \int_{-\infty}^{\infty} e^{-(t(-(0) k x-C t)} \dot{\phi}\left(\xi-\xi_{0}\right) d \xi=e^{d\left(\omega_{0} t-\xi_{0} x\right)} p(x-C t) .
$$

So we have, using (B.4),

$$
\begin{aligned}
& \leq \int_{-\infty}^{\infty} M t\left(\xi-\varepsilon_{0}\right)^{2}\left|\hat{p}\left(\xi-\xi_{0}\right)\right| d \xi \\
& =M i \int_{-\infty}^{\infty}\left|\xi^{2} \dot{p}(\xi)\right| d \xi \\
& =M t \int_{-\infty}^{\infty}\left|\bar{p}^{\prime \prime}(\xi)\right| d \xi=M t\left\|p^{*}\right\|_{t} . \quad
\end{aligned}
$$

If p is smooth, then the right hand side of (B.6) is small. To make p mooth we will broaden it, while continuing to hold h and k fixed, although the amme resulte could be oblained by leaving p fixed and reducing h and k.

Lemme B.2. Suppose $P(x)=P(E x)$ for some fixed function $P \in C_{0}^{z}$ with $\dot{P u} \in$ L_{1}. Then

$$
\begin{equation*}
\left\|P^{\prime \prime}\right\|_{1}=\epsilon^{2}\left\|\hat{P}^{+\prime}\right\|_{1} \tag{B.7}
\end{equation*}
$$

Proof. Define $y=\varepsilon x$. Then

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int e^{i \in v / e} \frac{d^{2} P(y)}{d y^{2}}\left(\frac{d y}{d x}\right)^{2} d y\left(\frac{d x}{d y}\right) \\
& =\frac{c}{2 \pi} \int e^{i\left(y / e P^{\prime \prime}(y) d y=e^{\prime \prime \prime}(\xi / c) .\right.}
\end{aligned}
$$

180

Now define $\eta=\S / e$. Then

$$
\begin{aligned}
\left\|\dot{P}^{\dot{*}}\right\|_{1} & =\int\left|P^{\dot{v}}(\xi)\right| d \xi=\epsilon \int \mid \dot{P}^{\prime \prime}(\eta) \| d \xi \\
& \left.=\iint| | P^{\prime \prime}(\eta)\left|d \eta \frac{d \xi}{d \eta}=\epsilon^{2} \int\right| \dot{P}^{\dot{\prime}}(\eta) \right\rvert\, d \eta=\epsilon^{2}\left\|\dot{P}^{\tilde{*}}\right\|_{1} .
\end{aligned}
$$

Proof of Theorem 4.2.4
Now let Q be a model of a_{D} initial boundary problem problem on $z=j h, j \geq 0$, consiating of the formula Q dencribed above for $j \geq \ell$ together with the boundary formulas (4.2.3)

$$
\begin{equation*}
\sum_{j=0}^{\text {jana }} \sum_{0=-1}^{\max } s_{j e v_{j}^{n-\infty}}=g^{n} \tag{B.8}
\end{equation*}
$$

where each S_{j}, is a vector of length C. We astume $v^{0}=0$.
Theorem 4.2.4. Suppose Q is Cauchy sable but Q admits a stricthy rightgoing generalized eigenoolution

$$
\begin{equation*}
v_{i}^{n}=z^{n} \sum_{i=1}^{\infty} a_{i} \mu_{i}^{j} \tag{B.9}
\end{equation*}
$$

with $|z|=\left|x_{i}\right|=1$. and $C_{i}>0$ for $i=1, \ldots, q$. Then
$\left\|S_{b c}^{(n)}\right\|_{2} \geq$ const. $n \quad \forall n>0$.

Proof. As described above, the idea of the proof is as follown. We solve the Cauchy problem for Q with initial data $v^{0}(x)$ whose aspport is in $x<0$, obtaining $v^{n}(x)$ for $n \geq 0$. Then the restriction of v^{n} to $z=j h, j \geq 0$ is identical to the solution that would have been obtained under Q with $v^{0} \equiv 0$ and the boundary data $\left\{\boldsymbol{o}^{n}\right.$) defined by (B.8). In particular, given N, we will pick initial date \boldsymbol{v}^{0} such that $\left\|v^{0}\right\|_{2}=0$ and

$$
\begin{equation*}
\left\|v^{N}\right\|_{2} \geq \text { const. } \sqrt{N} \tag{B.11}
\end{equation*}
$$

where $\|\cdot\|_{2}$ denotes the discrete ℓ_{2} norm (3.6.2) on $j \geq 0$, but such that g satiafies

$$
\begin{equation*}
\|_{\rho+1} \leq \frac{\text { conat. }}{\sqrt{N}} \tag{B.19}
\end{equation*}
$$

Theme two bounds will then imply (B.10).
Here are the detaila, Let $P \in C_{0}^{2}$ be a fixed function with $P(x)>0$ on $(-1,0)$, $P(z) \equiv 0$ clecwhere, and $\mathcal{P}^{\prime \prime \prime} \in L_{i}$, and write $P_{\text {mar }}=\sup \mid P^{P}(x) \|$. For example P
might be

$$
P(x)=\left\{\begin{array}{cl}
\alpha n^{4} \pi x \in(-1,0) \tag{B.13}\\
0 & x \in(-1,0) .
\end{array}\right.
$$

Let N be gives and met $\boldsymbol{T}=\mathbf{N} k$. Consider the Cauchy the problem for Q with initial data

$$
\begin{equation*}
v^{0}(z)=\sum_{i=1}^{i} a_{i} x_{1}^{j} p_{i}(x), \quad p_{i}(x)=P(z / C, T) . \tag{B.14}
\end{equation*}
$$

Let M_{1} be the constant of Lemma B. 1 for the wave a_{1}, z_{1}. For any n write $\&=m$. By Lemmas B. 1 and B.2, we have then

$$
\begin{aligned}
\left|v^{n}(x)-\sum a_{1} x_{i}^{2} x^{n} A(x-C, t)\right| & \leq t \sum\left|a_{i}\right| M_{i} \| F^{\prime} H_{2} \\
& =\frac{t\left\|\dot{P}^{-}\right\|_{1}}{T^{2}} \sum\left|a_{1}\right| M_{i} C_{6}^{*} .
\end{aligned}
$$

In partieular, for $\boldsymbol{n} \leq N$ and hence $: \leq T$, this equation logether with (B.14) impliee

$$
\begin{equation*}
\left|v_{j}^{n}-\sum a_{i} n_{i}^{j_{2}} x^{n} P\left(\frac{j h}{C_{i} T}-\frac{n k}{T}\right)\right| \leq \frac{\Lambda_{1}}{T} \tag{B.15}
\end{equation*}
$$

where $A_{1}=\left\|P^{\tilde{n}}\right\|_{1} \sum\left|a_{i}\right| M_{i} C_{1}^{-2}$.
Now we are equipped to show that $\|g\|_{2}$ is small, where g is the "equivaleat boundary data" (B.8). Given n and $t=n k$, define for all o and j

$$
\bar{i}_{j}^{n-*}=P\left(\frac{-t}{T}\right) \sum a_{1} x_{i}^{k_{i}} \cdot \cdots
$$

Then we have

$$
\begin{aligned}
& \left.+\sum\left|a_{i} x_{1}^{\prime} 2^{n--}\right| P\left(\frac{j h}{C_{0} T}-\frac{t-a k}{T}\right)-P\left(\frac{-t}{T}\right) \right\rvert\, \\
& \leq \frac{A_{1}}{T}+\sum\left|a_{1} \alpha_{1}^{\prime} 2^{n-\infty}\right| P_{n}^{\prime}=\left|\frac{j h}{C, T}-\frac{\sigma \hbar}{T}\right| .
\end{aligned}
$$

Therefore for some $A_{\mathbf{2}}<\infty$,

$$
\left|\nabla_{i}^{n-\theta}-\tilde{v}_{j}^{n-\theta}\right| \leq \frac{A_{2}}{T} \quad \text { for } 0 \leq j \leq j_{\text {mase }} \quad-1 \leq \theta \leq \theta_{\text {mas. }} \quad \text { (B.16 }
$$

Now by definition, \bar{y} in the generalized eigensolution (B.9) times the constant $P(-t / T)$, which imiplies

$$
\sum_{i=0}^{\sin } \sum_{i=-1}^{\infty} s_{j o} i_{j}^{n-\infty}=0
$$

Consequently we have from (B.8)

$$
\begin{equation*}
\left\|g^{n}\right\| \leq \sum_{j=0}^{m m a n} \sum_{0=-1}^{m m z}\left\|S_{j=}\right\|\left\|v_{j}^{n-\infty}-i_{j}^{n-r}\right\| \tag{B.17}
\end{equation*}
$$

By (B.16), each summand on the right is $O\left(T^{-1}\right)$. Therefore

$$
\begin{equation*}
\left\|g^{n}\right\| \leq \frac{A_{3}}{T} \quad(n \leq N) \tag{D.18}
\end{equation*}
$$

for some A_{3}. Hence

$$
\begin{equation*}
\|g\|_{2}^{2}=k \sum_{n=1}^{N}\left\|g^{n}\right\|^{2} \leq k N\left(\frac{A_{3}}{T}\right)^{2}=\frac{A_{3}^{2}}{k N} \tag{B.19}
\end{equation*}
$$

and taking the square root gives (B.12).
The other half of the argument is to show that $\left\|v^{N}\right\|_{2}$ is big. Now by definition of the numbers κ_{1}, we know that the generalized cigensolution (B.9) cannot be zero at more than $\ell-1$ consecutive grid points without being identically zero. It follows that one bas

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|\sum_{i=1}^{1} a_{i} x_{i}^{j} z^{n} P\left(\frac{j h}{C_{i} T}-1\right)\right|^{2}>A_{4} T \tag{B.20}
\end{equation*}
$$

for some A_{4}, so long as $T \geq T_{0}>t h / \max _{i} C_{4}$. Squarerooting and using (B.15), we get (B.11), as desired.

> Proof of Theorem 4.2.3 (two-level case)

Now we prove
Theorem 4.2.3. Suppose Q is Cauchy stable but Q edmits a atrictly rightgoing generaticed eigentoiution (B.D), et before. Then

$$
\left\|S^{n}\right\|_{2} \geq \text { const. } \sqrt{n}
$$

(B.21)
for infinitely many integers $n>0$.
Proof. The mont obviaus proof whe described in 54.2 , capecially Fig. 4.3. To adapt that argument to the present framework of conaidering the Cauchy problem modeled by Q, we could connider the process illuatrated in Fig. B.2:

It scems clear that this kind of setup should produce growth with respect to initial data proportional to \sqrt{N}. However, no matter how amooth the envelope in Fig. B. 2 is, the solution will not satisfy the boundary conditions for Q exactiy, and we are faced again with the problem of treating "equivalent boundary data" It turna out that this can be done by means of Duhamel's principie, but in the end one gaina nothing by haviag considered the process of Fig. B. 2 rather than that of Fig. B. 1 .

Therefore consider again exsctly the setup of the last proof. Let $\left\{v_{j}^{\mathrm{m}}\right\}$ again denote the solution obtained under Q on $(-\infty, \infty)$ with initial dace (B.14). Since S is the solution operator for the model \boldsymbol{Q} with homogeneous boundary data; we have in general $v^{n+1} \neq S v^{n}$. However, for each $n \geq 1$, let $\left\{i_{j}^{n+1}\right\}$ be defined by the formuls

$$
\begin{equation*}
\sum_{j=0}^{\operatorname{man}} S_{, .-} i_{j}^{n+1}=g^{n} \tag{B.22}
\end{equation*}
$$

with g^{n}, as usual, given by (B.8). By Ass. 4.1 (solvability), \hat{v}^{n+1} is a bounded function of g^{m}, and with (B.19) this impliea

$$
\begin{equation*}
\left\|\sigma^{n+1}\right\| \leq \frac{\text { const. }}{N} \tag{B.23}
\end{equation*}
$$

Now by (B.8) and (B.22), we have $5 v^{n}=v^{n+1}-\bar{v}^{n+1}$, that is,

$$
v^{n+1}=i^{n+1}+S v^{n}
$$

Iterating this equation (Duhamel's principle), one oblains

$$
\begin{equation*}
v^{N}=i^{N}+S^{i^{N-1}}+s^{2} \dot{v}^{N-2}+\cdots+s^{N-1} \dot{v}^{\prime}+s^{N} v^{0} \tag{B.24}
\end{equation*}
$$

where the last term is 0 . This implies

$$
\left\|v^{N}\right\| \leq N \max _{0 \leq \min ^{2} N-1}\left\|5^{n}\right\| \max _{1 \leq n \leq N}\left\|i^{n}\right\|
$$

hence by ($\mathbf{B} .23$) and (B.11),
$\max _{0 \leq n \leq N-1}\left\|S^{n}\right\| \geq$ contt. $\left\|v^{N}\right\| \geq$ const. \sqrt{N}.
This proves (B.21).

Extenaion to multilevel difforence modele

To prove Thms. 4.2 .3 and 4.2 .1 in full generality, we must extend the above argumenta to formulas involving vectors rather than mealars and an artitrary number of 184

levels rather than two. The extension to vectors is straightforward, given Aesumption 2.1 (diagonalisability) and the consequent developments of $\$ 2.5, \$ 3.6$, and $\$ 1.2$, we will not discuse it. What we will do is indicate how the extension to multilevel (but scalar) schemes can be treated. We will describe only Lemma B.1, as this is the heart of the probfs.

Let Q be an $a+2$-level acalar difference formula applied on ($-\infty, \infty$). We can reduce Q to a two-level model of dimension +1 in the standard way [Ri67] by introducing the vectors

$$
\begin{equation*}
w^{n}(x)=\left(v^{n}(x), v^{n+1}(x), \ldots, v^{n+s}(x)\right)^{T} \tag{B.25}
\end{equation*}
$$

If \boldsymbol{Q} has the form (2.1.3), then the equivalent two-leved seheme has the structure of a companion matrix,

$$
w^{n+1}(x)=\left(\begin{array}{ccccc}
0 & 1 & & & 0 \tag{B.26}\\
& 0 & 1 & & 0 \\
0 & \ddots & \ddots & \\
& \ddots & 0 & 1 \\
Q_{-1}^{-1} Q_{0} & \cdots & Q_{=1}^{-1} Q_{1} & Q_{=1}^{-1} Q_{0}
\end{array}\right) w^{n}(x)
$$

Taking the Fourier tranaform, we obtain

$$
\begin{equation*}
w^{\dot{n}+1}(\xi)=G(\xi) w^{m}(\xi) \tag{B.27}
\end{equation*}
$$

wherc each $w^{n}(\xi)$ is a vector of length $s+1$ and $G(\xi)$ is a square matrix of this sise called the amplificetion matris. By iterating (B.27) and Laking the inverse tranaform, we oblain the representation

$$
\begin{equation*}
w^{n}(x)=\int_{-\infty}^{\infty} G^{n}(\xi) \dot{w}^{0}(\xi) e^{-i \ell z} d \xi \tag{B.28}
\end{equation*}
$$

For any wave number ξ, the eisenvalues of $C(\xi)$ are the asociated frequencies ω. Typically there are +1 of these, but for mome valuea of ξ acveral eigenvalucs will eome logether with multiplicity greater than 1 , and $\boldsymbol{C (}(\boldsymbol{f})$ will be defeetive (ef. Thm. 2.1.1). It is this pomibility that makes ($\mathbf{B} .28$) more complicated than the correuponding sealar formula. However, if Go and $^{\omega_{0}}$ are real, then Cauchy stability implies that ω_{0} in aimple (Thm. 2.2.1), and Thm. 2.3.1 shows further that one can choose $\omega=\omega(\xi)$ with w(fol $=w_{0}$ weh that a bound (B.3) is autisfied. Theoe facte make Lemma B.i entend an fellows to muttilevel formulas.

188

Len at B.1'-multilevel case. Let $p(x)$ belong to C_{0}^{2} and setithfy $p^{\prime \prime} \in L_{1}$. Let Q be applicd with initial deta

$$
v^{n}(x)=e^{i\left(\operatorname{man}^{t} t-t_{0} s\right)} n(x-C t) \quad n=0, \ldots, 4, \quad i=\pi k .
$$

Then for any $n \geq 0$ and any $x \in \mathbb{R}, v^{n}(x)$ eatiofies

(8.29)
where $\mathrm{f}=\mathrm{m} \boldsymbol{m}$.
Proof. The initial dats have the vector form

$$
x^{0}(x)=\left(M(x), e^{i m_{0} k} p(x-C k), \ldots, e^{i \omega_{0}+h} g(x-C a k)\right)^{T} e^{-i t+e},
$$

and the Fourier transform of this is

$$
\dot{w}^{0}(\xi)=W(\xi) M\left(\xi-\xi_{0}\right)
$$

where $W(\xi)$ denotes

$$
\begin{equation*}
W(\xi)=\left(1, e^{i\left(\omega_{0}+C(\ell-(0)) \psi\right.}, \ldots, e^{i\left(-4+C\left(\ell-\epsilon_{0}\right)\right) e_{t}}\right)^{T} \tag{8.30}
\end{equation*}
$$

By the argument above, $G(\xi)$ has an eigenvalue $e^{v(C) t}$ for all ξ such that w($\left.(\}\right)$ antiafice (B.3) and $\ln \omega(\xi) \geq 0$. The correaponding eigenvector is

$$
\begin{equation*}
\bar{W}(\xi)=\left(1, e^{-(e) t} \ldots, e^{-(e)<t}\right)^{r} \tag{8,31}
\end{equation*}
$$

Hecaure \bar{W} is an eigenvector of $G,(\mathbf{B} .28)$ ean be rewritica

$$
\begin{aligned}
w^{n}(x) & =\int_{-\infty}^{\infty} G^{n}(\xi)[\dot{W}(\xi)+W(\xi)-\dot{W}(\xi)] \dot{W}\left(\xi-\xi_{0}\right) e^{-i \ell \varepsilon}\langle\xi \\
& =\int_{-\infty}^{\infty}\left[e^{\omega(\xi)} \dot{W}(\xi)+G^{n}(\xi)(W(\xi)-\bar{W}(\xi))\right] \dot{\tilde{W}}\left(\xi-\xi_{0}\right) e^{-i(\epsilon} d \xi .
\end{aligned}
$$

From this expreseion we need only the first component, which is $w^{n}(x)$. By (B.31), the first componest of the integral of the first term is simply

This is exactly the integral we estimated in the proof of Lemma B.1, and we showed that it differt from $e^{i\left(n_{0} t-t_{0} \pi\right\}} p(x-C t)$ by at most $M\left\{\left\|\dot{r}^{\prime \prime}\right\|_{1}\right.$. Therefore $(B .29)$ will 186

be catablished if we can bound the integral of the second term eorrespondingly,

$$
\begin{equation*}
\left\|\int_{-\infty}^{\infty} G^{n}(\xi)(W(\xi)-\bar{W}(\xi)) \dot{p}\left(\xi-\varepsilon_{0}\right) e^{-v \varepsilon x} d \xi\right\| \leq \text { const. } t\left\|\dot{p}^{* \prime}\right\|_{1} . \tag{B.32}
\end{equation*}
$$

Now by Cauchy stability, $\left\|G^{n}\right\|$ is uniformly bounded for all n. Moreover from (B.30), (B.31), (E.3), and the fact used before that $\eta \mapsto e^{i \boldsymbol{\eta}}$ is a contraction map for Im $\eta \geq 0$, one has

$$
\|W(\xi)-\tilde{W}(\xi)\|_{\infty} \leq \text { const. }\left(\xi-\xi_{0}\right)^{2}
$$

Eq. (B.32) follows from these facts, aince as before we can eliminatie the term $\left(\xi-\xi_{0}\right)^{*}$ by replacing \bar{p} by $\dot{p}^{\prime \prime}$. t

REFERENCES

[Ab70] S. Abarbanel and D. Gottlieb, Stebility of two-dimensional initial boundary velue probleme wing leap-foy type sehemes, Math. Comp. 33 (1979), 114555.
[Ab81] S. Abarbsnel and E. Murman, Stability of two-dimenoional hyperbolic insitial boundary velue problems for explicit and implicit sehemes, Proc. NASA. Ames Symp. on Numerical Boundary Procedures, 1981, 100-207.
[A174] R. Alfold, K. Kelley, and D. Boore, Acespacy of finute-difference modeting of the acoustic wave equetion, Geophymes 39 (1974), 834-42.
[Ape8] M. Apelkrana, On difference schemes for Ayperbolic equations with dicentinuous initial values, Math. Comp. 22 (1988), 525-39.
[Au73] B. Auld, Acoustic Fielde and Waves in Solid, Wiley-Interscience, 1975.
[Ba80] A. Bambercer, G: Chavent and P. Lailly, Etode de achómee muméricues posf les d́quations de l'élautodynamique linéaire, Rea. Rep. 11, INRIA, Prance, 1080.
[Be79] R. Beam and R. Warming, An implicit factered scheme for the compreasible Navier-Stokes equations II: The nume ical ode connection, Proc. AIAA th Comp. Fluid Dynamies Cont., Willianuburg, Va., 1979, 1-13.
[Bc81] R. Beana, R. Warming, and IX. Yec, Stability analyaia for numerical benndery conditions and implicit difference approsimations of hyperbolic equetiona, Proc. NASA Ames Symp. on Numerical Boundary Procedures, 1081, 190 207.
[Bo54] M. Born and K. Huang, Dynamicel Theory of Cryatel Laticea, Clarendon Press, Oxford, 1954.
[Br77] P. Brenner, L_{7}-estimates of diference achemes for strietly hyperbalic aystems with monsmooth deta, SLAM J. Numer. Anal. 11 (1977), 112644.
[Br70] P. Brenner and V. Thomée, Stability and convergence retes in L_{T} for certain difference sehemes, Malh. Scand. 27 (1970), 5-23.
[Br75] P. Brenner, V. Thome and L. Wahlbin, Besov Speces and Applicationa to Difference Methods for In itial Vatue Problems, Springer Lecture Notes in Mathematics 434, 1975.
[Br81] W. ISrigga, T. Saric, and A. Newell, A new mechaniom by which partied
difference cquations can destabilize, to appear
[Br33] L. Brillouin, Wave Propajation in Periodic Structurea, Dover, 1953.
[Breo] L. Brillouia, Wave Propegation and Group Velocily, Aesdemic Preas, 1880.
[Br79] D. Brown, Interface approximations for the weve equation, unpublished, 1979.
[Br73] G. Browning, H.-O. Kreien and J. Oliger, Mesh refinemont, Math. Comp. 27 (1973), 29-39.
[Bu78] A. Burns, A necessary condition for the atability of a diference apppozime tion to a hyperbolic ayotem of partial differential equatiom, Math. Comp. 32 (1978), 707-24.
[Ch75] R. Chin, Diopersion and Gibta phenomenon associated with diflerence ap. prozimations to initial boundary-value problems for hyperbolic equations, J. Comp. Phys. 18 (1975), 233-17.
[Ch78| R. Chin and G. Iledstrom, A dispersion analyai for difference achemes: tables of generalived Airy functiono, Math. Comp. 32 (1978), 1163-70.
[Ch79] R. Chin, G. liedstrom and K. Karlsson, A simplified Galerkin method for hyperbelic equetions, Math. Comp. 33 (1979), 847-658.
[Che3] R. Chin and C. Hedstrom, A surgey of reatits on modifited equetione for difference schemes, J. Comp. Phys., to appear.
[Ch79b] C. K. Chu, Computational Fluid Dynamics, in Parter (ed.), Numerical Methods for Partial Differcntial Equations, Academic I'ress, 1979, 149-75.
[Ci71] M. Ciment, Slebte difference schemes with uneven meah spacinge, Math. Comp. 25 (1971), 219-287.
[Ci7n| M. Ciment, Steble matehing of diference sehemee, SIAM J. Numer. Anal. 9 (1972), 095-701.
[C178] J. Cleerbout, Fundamentals of Geephyaical Date Proceaping, McGraw-Hill, 1078.
[C179] R. Clayton and D. Brown, The choice of weriebles for elentic weve estrapole. tion, Slanford Exploration Project Rep. No. 20, 1970, 72-96.
(Cosol W. Coughran, Jr., On the Approzin:sete Sehution of Ehperbolic Mnitiot Bowndery Value Problem, PhD dien., Dept. of Comp. Sei., STAN-CS-80-80, Stanford Universily, 10 eno.
[Cos2] R. Courant and D. Hibbert, Methode of Mathematicel Fhysies, v. II, WileyIsterscience, 1908.
[En77] B. Engquist and A. Majda, Aborbing boundery conditione for the memericel simulation of wave, Math. Comp. 31 (1977), 684-81.
[Fo73] B. Porsberg, On the instebitity of Lemp. Prop and Crank-Nicchon approsinetions of a manlinese pertial differential equation, Math. Comp. 27 (1973),

45-57.
[Go78] M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. I, Math. Comp. 32 (1978), 1097-:107.
[Go81] M. Goldberg and E. Tadmor, Scheme-independent atability criteria for dif. ference approzimetiona of hyperbolic initial-boundary wehe probleme. II, Math. Comp. 36 (1081), 603-626.
[Go78b] D. Gotelieb and E. Turkel, Boundery conditions for multiatep finite-diference methods for time-dependent equation, J. Comp. Phys. 26 (1978), 181-96.
[Gr81] W. Gropp, Numerical Solution of Tremoport Equations, PhD diss., Dept. of Comp. Sci., Stanford U., 1981
|Gu75| B. Gustafsen, The conwergence rate for difference appraximations to mixed initial boundery value problems, Math. Comp. 29 (1975), 306- 406.
[Gu81] B. Gustafson, The choice of numerical boundary conditions for hyperbolic syatems, Proc. NASA Ames Symp. on Numrrical Boundary Procedures, 1981, 209-225.
[Gu72] R. Gustafsson, H.-O. Kreien and A. Sundstrōm, Stability theory of difference approrimations for initial beundary value problems II, Math. Comp 28 (1972), 619-686.
[Gu82| B. Gustafseon and J. Oliger, Stable bewndary approzimations for omplicit time diseretizations for ges dynamies, SIAM J. Sci. Slat. Comp., to appear.
[IIc65] G. Hedatrom, The near-atebility of the Lax-Wendrof] method, Numer. Math. 7 (1965), 73-77.
[He66] G. Iledstrom, Norms of powers of absolutely convergent Fourier series, Mich Math. J. 13 (1986), 383-416.
[He68] G. Ifedstrom, The rele of convergence of some difference sehemes, SLAM J. Numer. Anal. 5 (1968), 365-406.
[He75] G. Hedstrom, Modelo of diferenee sehemes for $y_{c}+y_{z}=\mathrm{c}$ bo pertiol differentiel equetions, Math. Comp. 29 (1975), 069-77.
\{Je37] F. Jenkins and H. White, Fundamentele of Phyaical Optics, McGraw-Hill 1937.
|Kr60| II.-O Krciss, Difference approximetions for the initial-boundary wahe prot lem for hyperbotic diferential equetiont, in Numerical Solution of Nonlinear Dilierential Equationa, D. Greenapan (ed.), Proe. Adv. Sy. •p. Math. Ree Clt., U. of Wimconsin, Wiley, 1963.
[Kre8] H.O. Kreiss, Stability theory for diference appreximations of mized initial boundery wehe problems I, Math. Comp. 22 (1968), 703-714.
[Kr70] 11-O. Kreise, Initiel botndary vahte problems for hyperbolic aystems, Comm Pure Appl. Malh. 23 (1970), 277298
(Kr71; Hi.O. Kreiss, Difference approximatione for indial beundary-value problems, Proc. Ikoyal Soc. 329 (1971), 255 -61.
[Kr74] H.-O. Krciss, Initial boundary value problems for hyperbolie partial differentiel equations, Proc. International Congress of Mathematicians, Vancouver, 1974, 127-34.
[Kr74b] H.-O. Kreies, Boundery conditions for hyperbalic diferential equations, Proc. Dundee Conf, on Numer. Soln. of Difl. Eqs., Springer-Verlag Leet. Notes in Math. 363, 1974.
[Kr*sb] H.-O. Kreim and E. Lundqvist, On difference appreximetions with wrang boundery values, Math. Comp. 22 (1068), 1-12.
\{Kr72| H.-O. Kreiss and J. Oliger, Comparion of accurate methodo for the integration of hyperbolic equations, Tellus 24 (1972), 100-215.
[Kr7x] II.O. Kreim and J. Oliger, Method for the Appror -s ste Sohutions of Time Dependent Problems, Gilobal Atmospheric Rewearch Programme Publ. Ser. no. 10, Geneva, 1973.
[Li78] J. Lighthill, Waves in Fluide, Cambridge University Preas, 1978.
[1. 91] B. Lucier. Dispersive Approximation: for Hyperbalic Conservation Lawn, PhD dise., Dept. of Math., U. of Chicago, 1981.
[Ma89] A. Maradudin, et al., Lattice Dynamies, W. A. Benjamin, 1868.
[Mas1] L. Martineau-Nicoletis, Sinslations nume-sue de propapation \&'ondes anmiques dans les milieur atratifies deus at troin dimentions, FhD dimo., Univ. Pierre and Maric Curie, Paria, 1981.
[Mi80] D. Miehelwon, initial boundary-value problems for apperbolic equations and their difference approximation with eharce teritic boundi:-F, PhD disa., Dept. of Nath. Sci., Tel-Aviv U., 1980.
[Mi81] D. Miclecmon, Stabitity theory of dificrence approximetions for muloidimennional initial.boundery value problerna, to appear.
[Mo53] P. Morse and H. Feshbach, Melhods of Theoretical Phyoics, Y, I, MeGrawHill, 1953.
[Ok76] M. Okrouhtik and R. Brepta, Side eifecta of finite element method applied on atress weve propagetion in ethin elastic bar, Acla. Technics Csav. 4 (1078), 417 -438.
[O174] J. Oliger, Pourth-order difference methodo for the initial bowndery-wahe pretilem for hyperbotic equations, Math. Comp. 28 (1974), 15-25.
[O178] J. Oliger, Hybrid difer:nce methods for the initial boundery-vehe probiem for hyperbolic equatipas, Math. Comp. 30 (1978), 711-38.
[OI79] J. Oliger, Conatrecting atable difference methodo for myperbelic equetiona, in S. Parter (ed.), Numerical Micthodo Por Paztial Diferential Equationa, Aeademic Press, 1970, 255-71.
[Or72] J. Orlega, Numerical Analysis: A Second Course, Academic I'ress, 1972.
[Os69a] S. Osher, Stability of difference approximations of disaipative type for mized initial-boundary value problems. I, Math. Comp. 23 (1969), 567-72.
[Os69b] S. Osier. Systems of difference equations with general homogeneous boundary conditions, Trans. Amer. Maci. Soc. 137 (1989), 177-201.
$\left.{ }^{0 s 60 c}\right] \mathrm{S}$. Osher, On syatems of difference equitions with wions boundary conditions, Math. Comp. 23 (1069), 587-72.
[Os72] S. Osher, Stability of parabolic differen :e approzimationa to certein mized inutial boundary value problems, Math. Comp. 28 (1072), 13-39.
[Pe78] J. Peetre, New Thoughre on Besov Spaces, Duke U. Math. Series I, 1978.
[Ra72] J. Rauch, L_{2} is a contimuable initial condition for Kreisa' mired problemi, Comm. Pure Appl. Math. 25 (1972), 26 E 95.
[Ri67] R. Richtmyer and K. Morton, Difference Methods for Imilial-value Protlemb, Wiley-Interscience, 1987 :
[Se63] S. Serdjukova, A study of atobility in C of explicit difference schemes with consent real coefficients which are stable in ℓ_{4}, Z. Vychisl. Mat. Mat. Fis. 3 (108 1), 385-370.
[Se66| S. Serdjukova, On the stabuity in C of dinear difizeence schemes with constant real coefficient, Z. Vychisl. Mat. Mat. Fiz. 6 (1968), 477-486.
[Sk79] C. Sköllermo, Error anatysif of finite diference schemee applied to hyperbolic initial boundary value probiems, Math. Comp. 33 (1979), 11-35.
[So64] A. Sommerfeld, Oplics, Academic Prcss, 1964.
[St63] II. Stetter, Mazimum boundo for the solutions of intitial value problems for partial difference equations, Numer. Math. 5 (1963), 309-424.
[St62] G. Strang. Trigonometric polynomials and difference methode of maximum acceracy, J. Math. Phys. 11 (1962), 147-151.
[St64] G. Strang, Wiener-Hopf diference equations, J. Math. Mech. 13 (1961), 8596.
[St60] G. Strang, Jmplitit difference methode for initial.baundary walue probleme, J. Math. Anal. Applic. 16 (1066), 188-198.
[Su74] A. Sundström, Efficient numerical methods for solving waye propagetion equations for non-homogeneoue media, Swadish Defense Institute Report FOA 4 C 4576-A2, 1074.
[Ta78] E. Tadmor, Scheme-independent approzimations to hyperbolic mitiad boundary value syitems, PhD diss., Depl. of Math. Sci., Tel-Aviv U., 1978.
[Ta81] E. Tadmor, Unconditional inatability of inflow dependent boundary conditions in difference approzimations to hyperbolic aystems, I'roc. NASA Ames Symp. Numerical Doundary Irocedures, 1081, 323332.

198
[Th65| V. Thomée, Stability of diferene: schemes in the maximum norm, I Dim Eqs. 1 (1965), 272-292.
Th69] V. Thomée, Stability theary for partial difference operators, SIAM Review 11 (1989), 152195.
[Tr82] 1 . Trefethen, Group velocity for finite difference sehemes, SIAM Review, to sppear.
[Tr83] L. Trefethen, Group velocity interpretation of the atebility theory of Gustafooon, Kreita, and Swnctröm, J. Comp. Phys., to appear.
[Va70] 3. Varah, Mazimum norm stability of difference approximatimens to the mized initial boundary-value problem for the heat equation, Math. Comp. 24 (1970), 31-44.
[Va71] J. Varah, Stability of difference appeoximations to the mixed initial boundary palue problem for parabolic syatema, SLAM J. Numer. Anal. 8 (1971), 598-
815 . 815.
[Vi75] R. Vichnevetsky and B. Peiffer. Error wave, in finite element and finite difference methods for hyperbalic equations, in Advances in Computer Meth. ods for Partis! Diferential Equations, R. Viehrevetshy (ed.), Assoc. Int. Calcul Analogique, Ghent, İeigium, 1075, 53-58.
(Vi80] R. Vichncuetsky, Propagation characteristics of semi-diseretizations of hyperbolic equationa, Math and Computers in Simulation 22 (1980), 08-107.
[Vi81] R. Vichnevetsky, Energy and group velocity in aemi discretisations of hyper. dolice equalions, Math. and Comp. in Simulation 23 (1981), 333-43.
[Vi81b] R. Vichnevelsky, Propagation through numerical mesh refinement for hyperbolic equations, Math. and Comp. in Simulation 23 (1981), 344-53.
[Vi82] R. Vichnevelsky and J. Bowles, Fourier Anatyois of Numericel Approximations of Hyperbolic Equations, SUM, to appear, 1982.
[Wa74] R. Warming and B. Hyett, The modifies equation epproach to the atability and sccuracy analysis of finite-difference modelo, 3. Comp. Phys. 14 (1974), 159-79.

Wasol J. Watis and W. Silliman, Numericel disperaion and the oriyins of the grilorientation effect: a summery, Proc. 73rd Annual Meeting, AlChE, Chicago, 1280.
[Wh61] C. Whitham, Group welocity and enermy propegation for Unec-dimensienal waves, Comm. Pure Appl. Math. 14 (1061), 475-91.
[Wh74] G. Whithatn, L inear and Nonlineer Waves, Wiley-Intermeience, 1974.

A-sLable, 9,65,158-62
Abarbanel, S., 119
accuracy, 8
Alfold, R., 5
aliases, $14,3 \overline{7}$
anisotropy, 11
Backwards Euler (BE), 18,39,56,62,114, 151,175
Bamberger, A., 5
Btam, R., 9,12,82,155
behavioral errora, 35
Berger, M., iv
Besov space, 34
Bjorstad, P., iv
"BKO mesh refinement", 84,88
Box scheme (BX), 10,175
Brenner, P., 28,33,179
Briggs, W., 118
Brillouin, L., 19,25
Brillouin zone, 12
broadening, 27
Brown, D., iv, 7
Arowning, G., 84
Burns, A., 7
Burstein acheme, 122
Calliseh, R., iv
Cauchy stable, $9,52,55,04,88,104$
characteristic variables, 69
characteristics, iii,119
Chin, R., 5,25
Ciment, M., 7,149
coarse mexh approximation, 83,118 conmervation of energy, 87-89 consistury, $1,8,17,51$
convergence, 128
Coughran, W., 7,119
Crank-Nicolson (CN), $17,21,35,36,38,49$,
62,90,174
"crude" mesh refinement, 82,88,172 crystals, 4,14
cutofif frequency $\omega_{\text {c }}$ 88-90
determinant condition, 106,112,119
diagonalitable system, $9,87,185$ dichromatic wave packet, 25,28 dissipation, 1,54,113-115
dispersion, 2,8,25,54
dispersion relation, 13,14,61
dispersive, 16
dissipative, $18,24,53,64,113-115$
dual initial date, 92
Duhamel's principle, 110,184
Dunford integral, 7
efficicncy $E, 87$
eigensolution, 6,105
eigenvalue, 105
encrgy, 19,20,28,58
encrgy conservation, 87-89
energy flux $\$, 87-89$
explicit, 18
focusing, 119
folding trick, 03
forbidden band, 89
Fouricr mode, $13,41,48$
Fourier multiplier, 28
Fourier tranaform, 19,25,27,90,91 Fourth-arder Leap Frog (LF4), 17,21,30, 40,174
requency $\omega, 8,13$
generalized cigensolution, 6,:06
generatized eigenvalue, 106 geometrical optics, 28
eophysics, 1,41
"GKS", iii, 2,07
GKS-atable, 110
GKS theorem, 111,112
Godunav, 2,6
Godunav-Ryabenkii theorem, 105-6
Coodman, J., iv
Coldberg, M., 7,143,149
Golub, G., iv
Gottieb, D., 119
Gramish, C., iv
Grapp, W., iv,25
Grosec. E., iv
group velocily $C, 2,8,13,10,55,170$
Gustarsson, B., iii,iv, 2,6,7,97,167
Hamilton, W.;. 18
Hedstrom, G.. ji,iv,5,25,28,178
hybridization, 71
hyperbolie system, 66
itmplicit, 48
inflow-outflow theorems, 143-141
integral equation, 92
interfaces, 71 -96,112,147-172
interference, it
Keller, J., iv
Kelvin, Lord, 19
Knuth, D., iv
Krciss, II. O., iii,iv, $1,2,6,7,8,18,51,81,97$, 111,119,130
l_{2} norm, 3,20
ℓ_{2}-stable, 104
$L_{\text {p }}$ norms, 8,17,28-35,119
L_{p}-stable, 29
Lax-Friedrichs (LxF), 56,114,151,176
Lax-Wendroff (LW), 18,34,39,49
Leap Frog (LFF), $14,21,39,49,62,61,174$
Leap Frog with dissipation (LFd), 18,39,
53,56,114,151,176
leffgoinge $9,59,61,64,88$
LeVeque, R., iv
Lucier, B., 35
Lundquist, E., 8
MacCormack's scheme, 122 MACSYMA, iv
Martineau-Nicoletis, L., 5
mesh ratio $\lambda, 14$
mesh refinement, 71,82-85,118,170 Method of tises (MOL), 19,178
Michelson, D., 7,119
model equation, 16
modified equation, 8,17
Murman, 15., 119
multilevel formulas, $19,53,184-187$ multiple dimensiona, 41-45,119-122
nondissipative, 53
nonlinearity, 45,117-8
Oliger, 3. , $\mathbf{i i}, \mathrm{iv}, 12,84,118,148$
optical modes, 14
order of accuracy, 17,63,173-76
order of dispersion, $8,17,63,173-76$
order of dissipation, 17,63
Osher, S., $8,7,03,07,114,118$

P-riable, $12,146,156$
parasitic waves, 2,35-41
Parseval's formula, 20,54
phasc velocity $c, 8,18,37$
perturbation kest, $9,13,58,112$
primitive variables, 69 pseudodillerential operators, 34

Rayleigh, Lord, 18

ray tracing, 44
reflection coefficient, 3,73-86,95,100,124
131
reflection matrix, $95,108,125$
resolvent equation, 51
evertsing ($x-, t-1$), $9,39,54,63,115122$ rightgoing. $0,59-61,64,68$
root condition, 9,52
Ryabenkií, 2
Schreiber, R., it
separable, 49,63
Serdjukova, S., 25,28
shift operators, 1 ?
Snell's Law, 45,98
solvability, 04,101,184
Sommerfeld, A., 18,25
Sommerfeld radiation condition, 10,72 space extrapolation, 85,97
space-time extranolation, 86,102
spike, 30,111
Stanford Linear Accelcralor Center, iv
stationary, 59-00,68
stationary phase, 8,20
steady-state solution, $10,71,155$
thepest desernt, 25
Stetter, H., 28
stop bandi, 89
stratified medium, 15
Strang, C., 6,93
strictly leflgoing, 59-80,88
strictly nondissipative, 53,111
strictly rightgoing, 59-60,68
strictly rightgoing cigensolution, 105,123 strictly rightgoing gencralized eigensolution, 107,123
Strikwerds, J., iv, 7
strongly A-stable, 9,65-66
Sundstrōm, A., iii,2,6,7,97
t-dissipative, $9,12,53,66,119,150,173-76$ t-reversing, $9,39,40.51,115 \quad 122,17376$ Tadmor, E., 7,143,149
Tix, iv
Thomec. V., 29.33,178
three-point linear multistep formula, 9 ,
62. 66,73 85, 15882

Toeplita Tactorization, 8
totally dissipative, $\mathbf{0 . 5 3 , 1 1 3 . 1 4 9}$
translation speed $\delta, 9,57$
translatory boundary conditions, 149
transmission cocflicient, 3386
transparent interface anomaly, 12,14011
transport equation, 25
uneretainty principle, 25,100 undifferentiated term, 104 uniform boundedness principle, 33 unilary, 53
Upwind formula (UW), 175
vath der Munde matrix, 79,151

Varah, J., 7
variable coefficients, 34,73,104
Vichnevetsky, R., 5,90
von Neumann condition, $0,9,52,56,68$
Wahlbin, L., 28,33,179
wave equation, $5,13,42$
wave front, 23,24
wave number $\xi, 8,13$
wave packet, $22,23,35,44$
Warming, R., iv,9,12,62,155
well-posedness, 119
Wiener-Hopf method, 6,93
x-dissipative, $9,53,150,173-76$
x-reversing, $9,39,40,54,115-122,173-76$
Yee, H., iv, 9,12,62,155

E

[^0]: schernes, see Appendix B.

