Optical and Quantum Electronics 10 (1978) 301-309

Wave propagation in a single-mode fibre
with dip in the refractive index
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A theoretical study has been carried out on propagation in single-mode fibres having a dip in the refrac-
tive index at the centre of the core. The energy of the mode gradually spreads from the centre of the
core with increase of the degree of the dip. Nevertheless the near- and far-field distributions of such
single-mode fibres are very nearly Gaussian in shape. A simple method of estimating the limit of the
single-mode region for any kind of index profile is presented. For a particular class of profiles, dip widths
up to 30% have a negligible effect on the propagation characteristics.

1. Introduction

A particular virtue of the homogeneous chemical vapour deposition method is that it greatly simplifies
the fabrication of single-mode fibres [1]. However, it is difficult to produce a perfectly-stepped
refractive-index distribution because of diffusion at the core-cladding boundary, the effect of which on
the propagation of the HE,;-mode has been discussed elsewhere [2, 3]. However, a more serious prob-
lem will result from the dip in refractive index at the centre of the core which occurs due to the prefer-
ential evaporation of the more volatile component during the preform collapsing stage.

Stolen [4] has considered this problem especially in the multimode region by using the stepped ring
profile. We have also studied the tolerance of the dip on the propagation of the HE,,-mode by calculat-
ing the cut-off frequency of the second mode [5]. However, as far as we know, a theoretical study on
the propagation of the HE,;-mode in a single-mode fibre with a dip in the core centre has not been
reported so far. On the experimental side, most of the research work using single-mode fibres, for
example the determination of fibre diameter 24, normalized frequency V and fibre numerical aperture
by using the far-field pattern [6],is based on the theory of a perfect step-index fibre.

In order to assess the applicability of the theory, the propagation characteristics of the distorted
fibre have to be analysed. We study, therefore, the propagation of the HE,;-mode in a single-mode
fibre having a dip in the refractive index. The most important factor in a single-mode fibre, regardless of
the index distribution, whether step-index, graded-index and so on, is the spot size of the HE,;-mode
[7-9]. Therefore, the particular interest of this study is to determine the change of mode spot size as a
function of the degree of dip. We limit our discussion to weakly-guiding fibres defined by
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where A is the relative index difference between core and cladding, and »n, and n, are the maximum
values of the refractive index of the fibre core and of the cladding, respectively.

2. Field distribution and the characteristic equation
The dip is represented by a radial, », variation of dielectric constant in a fibre core, diameter 24, given
by:

e(R) = €, [1 —26(1 —R)"] O0<R<I
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where R = rja, e, = n? is the dielectric constant at the edge of the core, & is the relative difference in
dielectric constant between the edge and the centre of the core and denotes the dip depth, and « is a
parameter between 1 and > which defines the dip width, The resulting profile distributions are shown in
Fig. 1.

The guided modes of a weakly-guiding fibre are very nearly transverse and linearly polarized
(LP-modes). Thus the electric and magnetic fields of the HE;;-modes in terms of the cylindrical coordi-
nates (r, 8, z) are given by

E, = AF(R)
€ 1/2
H, = —nl(;l—:) AF(R)
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K {(WR) cos 6
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where €4 and y, are the dielectric permittivity and magnetic permeability of vacuum, k the wavenumber
in free space, and the time and z-variation exp [j(«w? — f2)] is understood. Ko(W) is the modified Hankel
function and the function F(R) is expressed by the scalar wave equation

d2F(R)+ 1dAR)
dR?> R 4R

+ U =9V (1 —R)]FR) = 0 C))

where parameters U and W can be defined as
U? = (knya)’ —(Ba)?
W? = (Ba)* — (knya)*.

The normalized frequency V is, therefore, given by

and

V? = U+ W? = (ka)X(n? —nd). 6)

7 in Equation 4 is the normalized depth of the dip at the centre of the core;

v = 8/A. 9
The amplitude coefficient A is given by
E 1/2
4 = 1 (ol 0)F2(R IR @®)
2l F2 + e v
2mna { JO FX(R)RAR > lK}(W) ]}

so as to normalize the total power to unity.
From the boundary condition that the electric field and its derivative are continuous at the boundary
(R = 1), the eigenvalue equation is written as

1 _dFRR)

L W) _
FR) dR

r=1 Ko(W)
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3. Eigenvalue as a function of «

The scalar equation (Equation 4) can be solved by the series expansion method. We set up a series in the
interval 0 <R <1

FRR) =Y a,R" (10)
n=0
where ag = 1. Substituting this into Equation 4 and then equating coefficients of each power of R to
zero, a series of equations for determination of the coefficients a,, in the series for the solution can be
obtained.

By solving Equation 9 numerically, U~V curves are obtained for various index profiles (Figs. 2a and
b). These show that the eigenvalue U increases considerably with increase in the degree of dip. In the
extreme case where the doped ions in the centre of the fibre completely evaporate (i.e. v = 1), differ-
ences of 29% and 18% from the U-value of the step-index fibre arise for a = 1 and 2, respectively. The
U-value approaches asymptotically that of the step-index fibre with increase of a. It is important to note
that for & 2> 20, the maximum deviation is only 0.6%. It may, therefore, be concluded that a fibre with
a dip of a 2> 20 behaves almost identically to the step-index fibre.
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2.4

Figure 2 (a) Normalized frequency V versus eigenvalue U of HE ,-mode for various index profiles « at relative depth
v = 0.8, Shaded area shows the multimode operation region. {b} U as a function of « for various y at V = 2.4.

4. Cut-off normalized frequency

To indicate the limit of single-mode operation the cut-off normalized frequency (V) of the LP,,-mode
[5] is given in Fig. 2a. The cut-off value increases as « decreases. The numerical aperature of a fibre is
normally defined in terms of the maximum refractive index in the core and is therefore the same for
both stepped-index and graded-index fibres having the same maximum value. However, the degree of
mode confinement, and thus other factors such as bend loss and microbend loss, can be quite different in
the two cases. We therefore propose a factor G defining the ‘degree of guidance’ of a fibre which may be
thought of, for example, in terms of the number of doping (i.e. guiding) ions in a doped silica core fibre.
The factor G can be used to give an approximation of the cut-off frequency of a fibre with any refractive-
index distribution.

Let
V = MQG)™? (11)

1 R —
G =[ Bepip (12)
Yo € — €,y

where

For a step-index fibre G = 1/2 and since, for this case, ¥, = 2.405 then the value for M is the same. The
cut-off value of any other profile (V,) is then calculated from

2.405
c = (2(;)1/2'

(13)

To check Equation 13, we first consider a fibre having a graded-index distribution:
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R) = ¢,(1— o <R<
&R) = ¢,(1 —2AR%; 0<R<xl (14)
=¢€(l1—-24) =¢ R>21
From Equations 12 and 13, we get
Ve = 2.405[(a + 2)/a]? (15)

which is exactly the same as the approximate value obtained from the variational method [11]. In the
case of a fibre having a dip, we obtain

Ve = 2.405[ @+t 1Xa+2) ]m. (16)

a? +3a+2(1 —7)

The comparison with the exact value is shown in Table I and II. The error becomes bigger for smaller
values of a. Nevertheless, the error is within 5%. Therefore Equation 13 can give a reasonable estimate of
the cut-off frequency in any kind of fibre.

5. Near-field and far-field patterns

The near-field intensity distribution can be easily determined once U is known for a fixed V. Fig. 3a
shows the near-field pattern for ¥ = 2.4 and v = 1, as a function of «. [t is seen that the maximum mode
energy shifts gradually from the centre towards the edge of the core with increasing degree of dip. In the
case of a = 1, it is clear that the intensity at the fibre centre is no longer a maximum and the field pene-
trates more into the cladding. The far-field radiation pattern can be calculated from the Fraunhofer
diffraction equation giving the results shown in Fig. 3b. For convenience, the intensity distributions have
been normalized. The horizontal scale (ka sin ¢) denotes the normalized radiation angle. It can be seen
from the figure that the radiation angle becomes smaller with decrease of «, since the field spreading in
the fibre is larger at smaller «. In other words, the spot size of the HE,,-mode increases with increase

of the degree of dip. We have reported a method for the determination of core diameter, normalized fre-
quency and the index difference between core and cladding using only the far-field radiation [6]. This
method assumes a stepped refractive index without any dip in the centre of the core. However, the

TABLE | Cutoff normalized frequency for graded-index fibre
lelR) =¢,(1 —2AR%) for R<1,=¢,(1 —~24) for R > 1]

@ Approximation Exact value Error (%)
1 4.17 4.38 49
2 3.40 3.52 33
4 295 3.00 1.8
8 2.69 2.71 0.8
o 241 241 0.0

TABLE |l Cutoff normalized frequency for fibre with dip {e(R) =
e,[1—2800 —R*I forR < 1,=¢,(1 —2A) for R > 1}

o Approximation Exact value Error (%)
1 2.9§ 2.80 5.1
2 2,63 2.54 34
4 2.49 2.44 2.0
8 243 241 0.8
o0 241 241 0.0
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Figure 3 (a) Near-field intensity distribution of HE | -mode for V = 2.4 and v = 1.0 as a function of «. (b} Its far-field
radiation pattern,

present results show that for o 2 20, the radiation pattern is almost the same as that of a perfect step-
index fibre and the change is small for « values as small as 5. In practice [5, 6] the perturbation is within
a 2 20 so that the theory of the step-index fibre is applicable.

We have so far considered the field distribution of the HE,,-mode in the single-mode region. However,
as is expected, the influence of the dip in the refractive index on the field distribution becomes signifi-
cant with increasing normalized frequency. Toillustrate this tendency, the near-field and far-field patterns
for a-= 2 as a function of V are shown in Figs. 4a and b, respectively, for the worst case of v = 1. It can
be seen from Fig. 4a that the field maximum shifts away from the centre of the core with increasing V.
On the other hand, the intensity at the fibre centre first increases and then decreases considerably with
increasing V. This suggests that the field patterns are not annular in the single-mode region, but are in
the multimode region. However the far-field radiation patterns in Fig. 4b do not show any dip in the
middle. The angle of radiation increases with ¥ because of a smaller mode spot size.

From these calculations we see that the field in a single-mode region or a region containing a few
modes is almost the same for o > 20 as that of the perfect step-index fibre, but with increase of the
normalized frequency the approximation only holds for larger values of .

6. Excitation efficiency and the mode spot size

The HE,;-modes of step-index single-mode fibres are very nearly Gaussian in shape [3, 8]. However, as
can be seen in Fig. 3a, the field is somewhat different from the Gaussian shape when a dip is present.
Therefore, we must examine whether the actual HE,, -modal field can be still approximated by a
Gaussian-shaped laser beam. First of all, the launching efficiency of the HE,-mode by a Gaussian laser
beam will be considered. When a TEMgq-beam is focused normaily on a fibre core by a lens, the electric
field, which is polarized in the y-direction at the focal plane (z = 0), can be represented by
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Figure 4 (a) Near-field and (b} far-field intensity distributions of HE , -mode for « = 2 and v = 1.0 as a function of V.

E, = [2(5;0) /nnlw%] exp [”%(—_——wf/a)zJ an

where wy is the spot size of the beam where the intensity falls to e™!. With this launching condition the
excitation efficiency, P, of the HE,,-mode is given by

= 4(11/0)0) 1 F(R) __R_Z_
. 2 [ LR R + I {foF(R=1)e"P[ z(wo,a)z]RdR
° FR=1) K3(w)
“KfWR) [ R 2
+], Ko(W) e""[ Awola)? RdR}. )

P has been evaluated numerically and is shown in Fig. 5 for the extreme case of a = 1.0 and for V =2.4.
It is very important to note that the optimum input spot size changes with the depth of the dip, but that
an excitation efficiency of more than 97.5% can still be achieved. This implies that the Gaussian beam is
still a reasonably good approximation of the HE,, -mode in a single-mode fibre even with a dip in the
refractive index. Therefore, the effective spot size of the HE,-mode can still be defined in terms of the
optimum value of w, of the input Gaussian beam. Fig. 6 shows the optimum value of wy/a as a function
of a for various normalized depths of the dip. It is shown that the spot size of the HE;,-mode increases
for smaller values of a and larger values of . As stated above it is almost identical with that of the step-
index fibre for a > 20 and less than 4% different fora = 5.
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As was shown in the previous section, the field distribution in the multimode region due to dip in the
refractive index is apparently different from that of a perfect step-index fibre. It is, therefore, important
to consider the excitation efficiency in this case. As a typical example, « = 2 and 7y = 1.0 have been
chosen. The maximum value of the power transmitted is plotted as a function of V in Fig. 7, together
with the optimum value of the spot size of the input Gaussian beam. At the point of interest, V' = 2.4,

(“o/a)

OPTIMUM SPOT SIZE

n.7 |

Figure 6 Normalized spot size of the HE | -mode as a
& function of « for various y.
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Figure 7 Maximum excitation effici-
085 L 1 N N ency and the optimum spot size of
20 3.0 4.0 50 input Gaussian beam for a = 2 and
v v = 1.0 as a function of V.

the excitation efficiency has a maximum value. The excitation efficiency decreases very slowly for larger
values of V, but for smaller V the decrease is more pronounced.

7. Conclusions

Using the weak-guidance approximation, the propagation characteristics of the HE,;-mode in a single-
mode fibre having a dip in the refractive index have been derived analytically. Since the dip yields a
smaller value for the ‘degree of guidance’, the energy spreads considerably from the core centre towards
the edge. However, this field distribution can still be approximated by a Gaussian beam. A simple
method of estimating the cut-off value in a single-mode fibre having any kind of index profile has been
presented. We can conclude that if the parameter of dip (a) is greater than 20 then the propagation
characteristics are almost identical with those of the step-index fibre and, in practical terms, any
departure is small for a values as low as 5 even for a dip as severe asy = 1.

Acknowledgements
Grateful acknowledgement is made to the Pirelli General Cable Company for the award of a research
fellowship and to the Science Research Council for supporting the work and for a research studentship.

References

W.A.GAMBLING, D. N. PAYNE, C. R. HAMMOND and S. R. NORMAN, Proc. I[FE 123 (1976) 570-6.
W.A.GAMBLING, D.N. PAYNE and H. MATSUMURA, Elect. Lett. 13 (1977) 139-40.
W.A.GAMBLING and H. MATSUMURA, Opt. Quant. Elect. 10 (1978) 31-40.

R.H.STOLEN, Appl. Opt. 14 (1975) 1533-7.

W.A.GAMBLING, D. N. PAYNE and H. MATSUMURA, Elect. Lett. 13 (1977) 174-5.
W.A.GAMBLING, D. N. PAYNE, H. MATSUMURA and R. B. DYOTT, Microwaves Opt. Acoust. 1 (1976)
13-7.

[« NN T - VO SR

7. K.PETERMANN, Elect. Lett. 12 (1976) 107-9.

8. D.MARCUSE, Bell Syst. Tech. J. 56 (1977) 703-18.

9. W.A.GAMBLING and H. MATSUMURA, Elect. Lett. 13 (1977) 691-3.

10. D.GLOGE,Bell Syst. Tech. J. 55 (1976) 905-15.

11. K.OKAMOTO and T. OKOSHI, IEEE Trans. Microwave Theory Tech. MTT-24 (1976) 416-21.

309



