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Wave Propagation in Auxetic
Tetrachiral Honeycombs
This paper describes a numerical and experimental investigation on the flexural wave
propagation properties of a novel class of negative Poisson’s ratio honeycombs with
tetrachiral topology. Tetrachiral honeycombs are structures defined by cylinders con-
nected by four tangent ligaments, leading to a negative Poisson’s ratio (auxetic) behavior
in the plane due to combined cylinder rotation and bending of the ribs. A Bloch wave
approach is applied to the representative unit cell of the honeycomb to calculate the
dispersion characteristics and phase constant surfaces varying the geometric parameters
of the unit cell. The modal density of the tetrachiral lattice and of a sandwich panel
having the tetrachiral as core is extracted from the integration of the phase constant
surfaces, and compared with the experimental ones obtained from measurements using
scanning laser vibrometers. �DOI: 10.1115/1.4000785�

1 Introduction

Since the end of the 1940s, honeycomb and sandwich structures
have seen a widespread use in aerospace and maritime construc-
tions, due to their high stiffness to weight ratio and energy absorp-
tion characteristics under static and dynamic impact loading �1�.
Cellular lattices are also extensively used in space and satellite
antennas, and a consistent amount of research has been devolved
to the investigation of modal density behavior of sandwich panels
linked to its wave propagation properties in aerospace launchers
and components, to enhance the vibroacoustic signature and struc-
tural integrity of the structures under significant dynamic loading
�2�. Incidentally, the phononics community has also started to
evaluate grid-like artificial periodic arrangements of inclusions
and cellular structures �3–6� to develop novel sound management
materials, where pass-stop bands characteristics of elastic waves
can be used to selective noise filtering capabilities �4�. The work
on cellular topologies for 2D in-plane and flexural wave propaga-
tion has been undertaken as a specific subset of the general wave
propagation investigation on periodic structures, where regular
tessellation of beams, trusses, and plates were analyzed for civil
constructions and aerospace applications �6,7�.

The concept of a chiral topology was first proposed at molecu-
lar level by Wojciechowski �8�, and then as structural lattice com-
ponent with a Poisson’s ratio −1 by Prall and Lakes �9�. Chiral
honeycombs are a subset of cellular solids featuring in-plane
negative Poisson’s ratio �or auxetic� behavior. The auxetic behav-
ior is used to describe a material that expands laterally when
stretched, or conversely contracts laterally when compressed. The
unusual negative Poisson’s ratio in cellular materials, in the form
of honeycombs, foams, and microporous polymers �10�, can be
attributed to three aspects: the presence of rotational degrees of
freedom, nonaffine deformation kinematics, or anisotropy �11�. A
typical chiral configuration would have unit cells composed by a
central cylinder, with tangent ligaments connecting cylinders from
neighboring cells. When subjected to in-plane loading, the cylin-

ders would rotate, leading to winding/unwinding of the ligaments,
and therefore providing the negative Poisson’s ratio effect. Most
of the chiral configurations currently considered in open literature
are the hexachiral ones—each cylinder being connected by six
tangent ligaments �8,9�. Hexachiral cellular structures compressed
under flatwise loading have demonstrated enhanced buckling
strength, also compared with regular hexagonal honeycombs
�12,13�. Hexachiral lattices have also shown rotational-type direc-
tionality of in-plane and flexural waves, to be used for acoustic
filtering �14� and boundary layer control of cellular wingbox un-
der dynamic loading �15�. Wave directionality and band-gap prop-
erties in phonic hexagonal chiral lattices have been also investi-
gated with the use of the Bloch wave theorem �16�.

Recently, different chiral tessellations have been proposed, al-
most all leading to the in-plane negative Poisson’s ratio �17�. The
tetrachiral lattice is one of these specific chiral topologies, where
the cylinder is connected by four tangent ligaments �Fig. 1�. The
tetrachiral topology can also be tessellated to provide a cen-
tersymmetric configuration �antitetrachiral�—the whole honey-
comb would be constructed simply by translation of the unit cell
in the various directions, rather than combined rotations and trans-
lations along the tangent directions only �17�. Similarly, to
hexachiral configurations, tetrachiral lattice topologies are auxetic
in the plane, with a Poisson’s ratio of −1 given by the bending
deformation of the connected ligaments.

The current work describes for the first time the flexural wave
propagation characteristics of tetrachiral honeycombs from a nu-
merical and experimental point of view. The pass-stop band char-
acteristics are determined through the calculations of phase con-
stant surfaces determined using a Bloch wave approach �18�
implemented in a finite element �FE� framework �19�, while
modal properties and modal densities of these cellular lattices are
also identified experimentally and compared with the numerical
simulations. A tetrachiral honeycomb panel, and a sandwich plate
made of quasi-isotropic face skins and the tetrachiral lattice as
core constitute the test cases. The sandwich lattice structure is
simulated and tested to evaluate the possible use of these cellular
phononics as cores for sandwich panels to be used in harsh vi-
broacoustic environments. From a design point of view, the pass-
stop band characteristics of the tetrachiral lattice can easily be
tuned, due to the sensitivity of the phase constant surfaces to the
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geometric parameters of the unit cells, which is investigated via a
parametric analysis using the Bloch wave FE models.

2 Modeling and Testing

2.1 Geometry and the Bloch Wave Method. The structural
layout of a tetrachiral honeycomb, shown in Fig. 1, consists of
cylinders of radius R, acting as nodes, connected by ribs or liga-
ments, of length L tangent to the nodes themselves. The thickness
of the node and rib walls is described by the parameter t, while the
gauge thickness �height� of the honeycomb structure in the
z-direction is defined as b. The following geometric relationships
hold:

� =
L

R
, � =

t

R
, � =

b

R
�1�

Tetrachiral configurations can have two separate tessellations—
the conventional one shown in Fig. 1, and the antitetrachiral �17�,
where circular nodes are connected back to back, generating a
centersymmetric structure. In this work, only the classical tetra-
chiral tessellation is considered.

The propagation of flexural waves in the tetrachiral honeycomb
structures is investigated using a Bloch wave approach for har-
monic propagating waves �18,19�. The governing equations for a
homogeneous anisotropic body with linear elastic properties are

�ij,j = �
�

2ui

�t2 , �ij,j = Cijkl�kl, �kl =
1

2
�uk,l + ul,k� �2�

The solution for generalized displacements can be assumed as the
following:

um�xn,t� = Um�xn�e−i�t �3�

Using Eq. �3�, the stress and strain tensors of the body become
complex functions of the type

�ij�xn,t� = �ij�xn�e−i�t, �ij�xn,t� = Eij�xn�e−i�t �4�

Substituting Eqs. �3� and �4� in Eq. �2�, the new governing equa-
tions of motion become

�ij,j + ��2Ui = 0, �ij = CijklEkl, Ekl = 1
2 �Uk,l + Ul,k� �5�

Using Bloch’s theorem, the complex generalized displacements on
a periodic unit cell �Fig. 2� can be expressed as

Um�xn,t� = Um�xn + ln�e−ikn jlj �6�

The degrees of freedom �DOFs� of a centersymmetric unit cell can
be decomposed into left �L�, right �R�, top �T�, and bottom �B�

�Fig. 2�. The Floquet conditions for wave propagation in a Carte-
sian xy coordinates frame are the following:

UB = UTe−ikyy, UL = URe−ikxx �7�

Because of the complex terms, Eq. �6� can be decomposed as

Um�xn� = Um
Re�xn� + iUm

Im�xn� �8�

Imposing Eq. �8� in the second of Eq. �2�, the new equations of
motion become

�ij,j
Re + ��2Ui

Re = 0 �9a�

�ij,j
Im + ��2Ui

Im = 0 �9b�

The implementation of Eq. �8� in a finite element implicit method
leads to the creation of two superimposed meshes, one corre-
sponding to the real part and the other to the imaginary part. The
connection between the boundary DOFs of the two meshes is
performed using the following periodic boundary conditions:

U1
Re = U2

Re cos�kn jl j� + U2
Im sin�kn jl j� �10a�

U1
Im = U2

Im cos�kn jl j� − U2
Re sin�kn jl j� �10b�

where kn jl j are the propagation constants of the wave vector. Con-
sidering the first Brillouin zone −	
kx ,ky 
	, the Eq. �10� can
be rewritten in terms of the x and y components of the wave
vector

Ubottom
Re = Utop

Re cos�ky� + Utop
Im sin�ky� �11�

Uleft
Im = Uright

Im cos�kx� − Uright
Re sin�kx� �12�

Uleft
Re = Uright

Re cos�kx� + Uright
Im sin�kx� �13�

Ubottom
Im = Utop

Im cos�ky� − Utop
Re sin�ky� �14�

The finite element models can therefore be coupled using the Eqs.
�11�–�14�. For a given set of kx and ky, the eigenvalues of Eq. �9�
can be calculated using a BLOCK LANCZOS algorithm. The solu-
tions of the eigenvalue problem constitute the phase constant sur-
faces of the periodic structure, providing information on the stop-
pass bands of the honeycomb. The total number of modes N less
than a specified frequency �0 for a structural lattice panel made of
N1, N2 cells in the x and y directions can be derived from the
following �20�:

Fig. 1 Tetrachiral unit cell with representative geometric
parameters

Fig. 2 Representative finite element unit cell for Bloch wave
conditions
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N =
N1N2

	2 � �
f�kx,ky���0

dkxdky �15�

where f�kx ,ky� is a phase constant surface. The modal density for
a single phase constant surface can be estimated numerically as

n =
�N

��0
�16�

The modal density for the whole honeycomb structure can be
evaluated by summing Eq. �16� over each phase constant surface,
which is present at this frequency.

2.2 Manufacturing and Testing. Tetrachiral honeycomb
structures were manufactured using a rapid prototyping �RP� se-
lective laser sintering �SLS� technique based on polyamide sin-
tered powders. The aspect ratio � of the cells was 6, with a rela-
tive thickness � equal to 0.4. The length of the straight side L was
2.54 cm, with a gauge thickness b of 2.5 cm. The total honeycomb
panel room was 19.5�19.5�2.5 cm3 �7�7 unit cells�. The
Young’s modulus of the core material measured on a BSI standard
sample under tensile loading was 1.6 GPa. A sandwich panel with
the tetrachiral structural lattice was build using a similar core �7
�5 unit cells� with 2 face quasi-isotropic composite skins made
by a 8552 prepreg with a 0 /−45 /+45 /90 /90 /+45 /−45 /0 stacking
layer sequence. The face skins and the core were attached with an
epoxy-resin based adhesive and cured in autoclave at 120 deg.

The wave propagation behavior of the tetrachiral honeycomb
and sandwich panels �Figs. 3�a� and 3�b�� was measured using a
scanning laser vibrometer �Polytec PSV-300 F�. An electrody-
namic shaker �Ling Dynamic Systems V406� was used to provide
white noise broadband base excitation. A DSpace-based signal
generator provided input to the shaker through a power amplifier
�model LDS PA100E�. Input force was detected using a PCB

208C03 force transducer. The resolution, force range, sensitivity,
and frequency range of the force transducer are 0.005 lb �0.022 N�
rms, 500 lb �2224 N�, 2.37 mV/N, and 36 kHz, respectively.
The tetrachiral lattice panel was connected to the shaker using a
stinger and two thin aluminum square base plates attached to the
center. For the tetrachiral sandwich panel, the force transducer
was connected to the panel using thin aluminum round base plate
fixed on the center �Fig. 3�b��. The velocity range for the SLV was
1 mm/s, corresponding to a vibrometer output voltage of 1 V. A
FFT acquisition was performed within a selected bandwidth be-
tween 0 kHz and 5 kHz. The SLV was used to perform a modal
analysis of the tetrachiral honeycomb and sandwich panel, as well
as the measurements of the modal densities of the cellular struc-
tures. For the modal analysis, the input was a random excitation,
whereas 252 points on the surface of the tetrachiral honeycomb
core panel were used as measurement locations, each scanning
point and FFT averaged 20 times. For the tetrachiral sandwich
panel, 143 points were scanned. FRFs for each data point and
average FRF were obtained, and stored in a universal file for
postprocessing using the LMS modal analysis software. The ex-
perimental modal densities have been derived using a modal count
method �21�, and from the averaged point mobility Y through �2�

n�f� = 4m�Re�Y�� �17�

where m is the mass of the panel and �Re�Y�� is the spatial aver-
age of the real part of the driving point admittance, which can be
extracted directly from the H1 indicator of the average spectrum
�22�. Driving point admittance, Y is the ratio of the Fourier trans-
form of the velocity of the excitation point to the Fourier trans-
form of the excitation force, being equivalent to a FRF, which can
be obtained directly from the scanning laser vibrometer. Nine dif-
ferent excitation point locations were used for the modal density
of the tetrachiral honeycomb core panel, with the real part of the
driving point admittances averaged spatially using the two-
channel technique �22�. For the tetrachiral sandwich panel, one
center excitation point was used instead.

3 Results and Discussions

The first phase constant surface from the eigensolution of Eq.
�9� for a tetrachiral sandwich unit cell is shown in Fig. 4, for the
case where only degrees of freedom along the z-direction are con-
sidered �SH waves�. The phase constant surfaces are generally
symmetric with respect both to the kx and ky axes �23�. This prop-
erty can be utilized to limit the analysis of the surfaces to the first
quadrant of the kx, ky plane, with both kx and ky varying in the
range 0–	. The results have been normalized against the funda-
mental frequency �0= �̄	2

/ �2N1N2� �23�, where � corresponds
to the first nonzero mode at �kx=0, ky =0�, and N1 and N2 are the

Fig. 3 „a… RP tetrachiral lattice panel mounted on electrody-
namic shaker and „b… flat sandwich tetrachiral lattice mounted
on the same rig

Fig. 4 First constant phase surface for tetrachiral lattice „�

=6, �=0.4, �=1…
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number of cells along the x and y directions. The computed nor-
malized frequency �0 for the 7�7 cells lattice panel for 253 Hz.
The tessellation of the sandwich panel was composed by 5�7
unit cells, and the normalized frequency �0 was equal to 1724 Hz.
The first six phase constant surfaces for both the tetrachiral lattice
core and sandwich unit cells are shown in Figs. 5�a� and 5�b�,
respectively corresponding to different pass-stop bands. The phase
constant surfaces are plotted with both kx and ky varying in the
range from 0 to 	 for symmetry reasons. It is interesting to notice
how the presence of the face skin on the honeycomb unit cells
provide lower values for the last four normalized phase constant
surfaces, as shown in Fig. 5�b�. An important aspect when con-
sidering the wave propagation behavior in lattice cores is also the
SH-type acoustic wave of shear modes. These frequencies are
significantly damped due to the high constraining shearing effect
given by the core and bending of the face skins. Wave modes
assumed by the unit cell depend on the Poynting vector, i.e., the
wavenumber components. The first four modes associated to �0,0�,
�	 ,0� and �	 /4,	 /4� for both tetrachiral core and sandwich unit
cell are depicted in Figs. 6 and 7, respectively. The wave propa-
gation analysis is further simplified by considering irreducible
Brillouin zones �24�, which are used to limit the variation in the
wave vector and can be defined as the smallest area allowing full
representation of the phase constant surface variation. The disper-
sion curves for the lowest ten modes calculated along the perim-
eter of the irreducible zone for the tetrachiral and sandwich lattice
structures are shown in Figs. 8�a� and 8�b�, respectively. For both
plots, it can be noticed that one dispersion curve starts from the
zero position, i.e., the system is characterized by one degree of
freedom only. For the tetrachiral lattice, a stop band related to the
whole irreducible zones can be identified for 7�� /�0�8 �Fig.
8�a��. The presence of the face plates on the tetrachiral lattice
contributes to the shift of the stop bands to higher frequency ra-
tios, with the presence of three bands for 11.5�� /�0�12.5,

12.8�� /�0�13.7, and 14.2�� /�0�14.5 �Fig. 8�b��. Fre-
quency veering �i.e., convergence and divergence of the eigenval-
ues without crossing �25�� for both the tetrachiral lattice and sand-
wich panel is also evident, with the distribution of band gaps and
veering close to the one of centersymmetric cellular configura-
tions �24�. When considering a general wave propagation for the

Fig. 5 Phase constant surfaces cascade for „a… tetrachiral lat-
tice and „b… sandwich unit cells „�=6, �=0.4, �=1…

Fig. 6 First four eigenmodes of „6… for the tetrachiral lattice for
different wave vector combinations

Fig. 7 First four eigenmodes of „6… for the tetrachiral sandwich
for different wave vector combinations
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cellular system �i.e., with all the degrees of freedom of the nu-
merical model unconstrained�, the pass-stop band behavior is less
evident �Fig. 9�. As expected, three branches of the dispersion
curves start from the origin of the irreducible zone, corresponding
to the rigid body modes associated to the degrees of freedom.
Strong mode veering is recorded for the for modes 2, 3, and 4
around the �	�2 /2,0� irreducible zone, and also for higher modes
in position �−	 ,	� in the frequency ratio � /�0	22. No evident
pass-stop band gap across the zones is recorded.

The lattice panel subjected to base excitation �Fig. 3�a�� showed
global modes at 308 Hz, 570 Hz, 1020 Hz, and 1470 Hz. All the
modes were flexural, apart from the third, which was a torsional
one. The lattice sandwich panel �Fig. 3�b�� showed global modes
at 1272 Hz, 1522 Hz, 2089 Hz, and 2597 Hz. The first mode was
related to global torsion, while all the other mode shapes were
flexural. As showed by the dispersion curves in the irreducible
Brillouin space, the effect of adding face skins to the tetrachiral
lattice is to move pass-stop bands at higher frequency ratio. This
is further reinforced by observing the plot of the experimental
average spectrum modal density �Eq. �17�� for the lattice and
sandwich panel shown in Figs. 10�a� and 10�b�, where the masses
of the lattice and sandwich panel are 0.234 kg and 0.373 kg,
respectively. The normalizing frequencies �0 are the first experi-
mental natural frequencies �bending modes� for the lattice panel
and sandwich structure �308 Hz and 1272 Hz, respectively�. The
�0 value simulated with the Bloch wave method for the lattice
panel is 18% lower than the natural frequency associated to the
first bending mode. For the sandwich panel, the Bloch wave over-
estimates the first experimental flexural mode by 13.2%. From
Fig. 10�a�, one can observe that the presence of the face skins
tends to shift the regular distributions of the peaks related to the
tetrachiral lattice average spectrum of the mobility ẇ /F �real
part�, where w is the displacement of the structure along the
z-direction and F the magnitude of the harmonic point force. The
amplitude of the mobility is decreased with increasing frequency
bandwidth, albeit the regularity of the pass-stop bands character-
istics are maintained. The face skins act as high-pass filter for
phase constant surfaces higher than the third of the honeycomb
panel, and only highly coupled shearing-bending modes give pro-
vide contributions to significant resonant behavior. It is also worth

Fig. 8 Dispersion curves in the wave number vector space for
„a… tetrachiral lattice and „b… sandwich unit cell. Only the dis-
placement along the z-direction is allowed.

Fig. 9 Dispersion curves in the wave number vector space for the tetrachiral lattice unit cell. All
degrees of freedom unconstrained.
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noticing closer frequency spacing for the mobility peaks for the
case of the sandwich panel, while in the nondimensional fre-
quency range the lattice panel without skins tends to have wider
spacing between peaks with broader spectrum �Fig. 10�b��.

A comparison between experimental and numerical modal den-
sities obtained from the phase constant surfaces �Eq. �16�� is il-
lustrated in Figs. 11�a� and 11�b� versus the excitation frequency.
Besides the two-channel technique, mode count is also used for
the comparison with the Bloch wave FE model. As confirmed by
other experimental tests �22�, the two-channel technique underes-
timates the modal density of the cellular panel compared with the
mode-count approach. For the tetrachiral lattice case �Fig. 11�a��,
there is a satisfying agreement between the experimental mode
count and the numerical modal densities estimated using Eq. �16�,
with the concurrence between the two methods improving for in-
creasing frequencies. For the flat sandwich panel �Fig. 11�b�� it is
also possible to use an analytical expression for the modal density,
when an isotropic core with face bending stiffness neglected and
anisotropic skin is considered �26�

1

�	/4��a/b�

dN

d��/�0�

 �1 +

�

r
��r

�

�0
�

+
1 + �1/2��1 − ��/r��2�r��/�0��2

�1 + �1/4��1 − ��/r��2�r��/�0��2

�18�

where a and b are axial length and circumferential width of the

panel, respectively, r is the shear flexibility, � is the rotary inertia,
and the frequencies are normalized with fundamental frequency
�0. As in the case of the tetrachiral lattice, the results obtained
from the two-channel technique are substantially lower when
compared with the analytical �Eq. �18��, Bloch wave, and mode-
count values. For the particular test rig used, the physical size of
the mounting stud would affect the results �27�, and a larger stud
would provide a lower modal density. However, the modal densi-
ties from the Bloch wave FE model provide a very good compari-
son with the analytical modal densities estimated using Eq. �18�,
and follow the trend of the experimental mode-count results. For
both cases, the comparison confirms the choice of modeling SH
wave-type of motion in the Bloch wave models �i.e., only motion
along the z-axis permitted�. The scanning laser vibrometer can
detect only structural velocities normal to the vibrating surface;
therefore, only displacements and velocities normal to the plane of
the unit cell should be considered.

From a parametric aspect point of view, it is interesting to un-
derstand the dependency of the eigenmodes solutions versus the
geometric cell parameters of the tetrachiral configuration. In gen-
eral, the compressive elastic and transverse shear modulus scale
linearly with the relative density � for cellular configurations �28�.
On the other end, the increase in the gauge thickness � tends not
only to increase the mass of the cell, but also to decrease the shear
modulus toward the lower Reuss bound �27�, providing a decrease
in the magnitude of eigensolutions associated to shear mode be-
havior. Figures 12�a�–12�c� and 13�a�–13�c� show the sensitivity
of the eigenmodes for the phase constant surfaces versus the cell

Fig. 10 Experimental spectrum of the average mobility for „a…
tetrachiral lattice and „b… sandwich panel

Fig. 11 Comparison between analytical, numerical, and ex-
perimental modal densities. „a… tetrachiral lattice and „b… sand-
wich panel.
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aspect ratio �=L /R for different wavenumber combinations, for
the tetrachiral lattice and sandwich panel, respectively. For the
�0,0� wavenumbers combination �Fig. 12�a��, only modes higher
than 2 seem affected by an increase in the cell wall aspect ratio.
These modes are associated to flexural behavior of the ligaments
and pure axial deformation along the z-direction �Fig. 6�. Mode
veering also seems to occur for four mode branches at �=6. The
modes with strong axial deformations �modes 4, 6, and 8� show a
higher sensitivity versus those for the �	 ,0� case �Fig. 12�b��,

although all the modes seem to be affected by the increase in cell
wall aspect ratio, apart for the first three. A different situation
seems to occur for the case �	 /4,	 /4� in Fig. 12�c�, where the
modes are combinations of flexural-shear deformations �Fig. 6�,

Fig. 12 Sensitivity of eigensolutions versus the cell wall as-
pect ratio L /R for the tetrachiral core „a… kx=0, ky=0; „b… kx=�,
ky=0; and „c… kx=� /4, ky=� /4. Only the z-displacement is
allowed.

Fig. 13 Sensitivity of eigensolutions versus the cell wall as-
pect ratio L /R for the sandwich panel: „a… kx=0, ky=0; „b… kx

=�, ky=0; and „c… kx=� /4, ky=� /4. Only the z-displacement is
allowed.
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for which the eigenvalues tend to decrease for increasing cell wall
aspect ratio. For increasing � values and a given gauge thickness,
the value of the transverse shear modulus for tetrachiral structural
lattices tend to decrease �29�; therefore, it is likely that modes
associated with strong shear coupling will provide decreasing
resonances for the unit cell for increasing L /R values. This fact is
also confirmed for the sensitivities of the eigensolutions for the
sandwich unit cells �Fig. 13�. In sandwich structures subjected to
flexural waves, the face skins provide the bending stiffness as
Kirschoff plates, while the contribution of the core to the bending
flexibility is through the shear stiffness �26�. For increasing �
values, and therefore decreasing shear stiffness of the tetrachiral
lattice, the overall bending and shear flexibility of the sandwich
unit is decreased, and not balanced by the decrease in the relative
density of the cellular material for a fixed configuration of skin
properties �12�. This appears to be valid for all wavenumber pairs
considered in Figs. 13�a�–13�c�, with a general trend of constant
decrease for the eigensolutions of the sandwich unit element.

4 Conclusions

The tetrachiral honeycomb configuration provides a new inter-
esting platform for novel sandwich structures with negative Pois-
son’s ratio, where dome-shaped and sinclastic curvatures are re-
quired to manufacture complex geometries, from air ducts,
fuselage components, nacelle engines, and satellite antennas.
Compared with hexachiral configurations, the reduced number of
ligaments �four� allow both centersymmetric and noncentersym-
metric honeycomb configurations, with reduced density and easier
manufacturing process to be used �RP or RTM�. The overall
modal density and wave propagation behavior, and therefore the
acoustic signature, is strongly dependent on the geometric param-
eters of the unit cell �relative density and cell wall aspect ratio�.
This significant sensitivity versus the topology of the unit cell
suggests potential use also in tuning band-gap structures, both in
terms of passive design and active vibration control �30�.
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