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Wave propagation in carbon nanotubes via nonlocal continuum mechanics

Q. Wang?

Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando,

Florida 32816-2450

(Received 22 April 2005; accepted 4 November 2005; published online 16 December 2005)

Wave propagation in carbon nanotubes (CNTs) is studied with two nonlocal continuum mechanics
models: elastic Euler-Bernoulli and Timoshenko beam models [Philos. Mag. 41, 744 (1921)]. The
small-scale effect on CNTs wave propagation dispersion relation is explicitly revealed for different
CNTs wave numbers and diameters by theoretical analyses and numerical simulations. The
asymptotic phase velocities and frequency are also derived from nonlocal continuum mechanics.
The scale coefficient in nonlocal continuum mechanics is roughly estimated for CNTs from the
obtained asymptotic frequency. In addition, the applicability and comparison of the two nonlocal
elastic beam models to CNTs wave propagation are explored through numerical simulations. The
research findings are proved effective in predicting small-scale effect on CNTs wave propagation
with a qualitative validation study based on the published experimental reports in this field. © 2005
American Institute of Physics. [DOI: 10.1063/1.2141648]

I. INTRODUCTION

Carbon nanotube (CNT) has become one of the most
promising materials for nanotechnologyl_5 due to its distinct
electronic and mechanical properties. CNTs have been ap-
plied in many devices, such as atomic-force microscope,
field emitters, nanofillers for composite materials, nanoscale
electronic devices, and frictionless nanoactuators, nanomo-
tors, nanobearings, and nanosprings.6 In addition to experi-
mental works, much theoretical analysis on CNTs mechani-
cal behavior has been conducted. The modeling for
theoretical analysis is classified into two main categories.
One category is atomic modeling, which includes techniques
such as classical molecular dynamics (MD), tight binding
molecular dynamics, and density functional model.”"” These
atomic methods are only applicable to systems with a small
number of molecules and atoms and therefore restrained only
to small-scale modeling. The other category is classical con-
tinuum modeling which, unlike classical molecular dynam-
ics, is practical and useful in analyzing CNTs for large-scale
systems. Yakobson, Brabec, and Bernholc!! studied the
unique features of fullernes and developed a continuum shell
model for studying different instability patterns of a CNT
under different compressive loads. Ru'*"? proposed CNTs
buckling analysis with elastic shell models. Parnes and
Chiskis"* investigated elastic buckling of nano/fiber-
reinforced composites with elastic beam models. Krishnan et
al.”® estimated Young’s modulus of singled-walled CNTs by
observing their freestanding room-temperature vibrations in
a transmission electron microscope. The nanotube dimen-
sions and vibration amplitudes were measured from electron
micrographs. It was assumed that the vibration modes were
driven stochastically and were those of a clamped cantilever.
Wang16 provided effective in-plane stiffness and bending ri-
gidity of armchair and zigzag CNTs through an analysis of a
representative volume element of graphene layer with con-
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tinuous elastic models. Wang et al.'” studied bending insta-
bility characteristics of double-walled carbon nanotubes
(DWNTs) of various configurations using a hybrid approach.
Their simulations showed that bending instability could take
place through the formation of a single kink at the midpoint
of a DWNT or two kinks, placed symmetrically about the
midpoint, depending upon both the tube length and diam-
eters.

Nanotechnology’s small scale makes the applicability of
classical or local continuum models, such as beam and shell
models, questionable. Classical continuum models do not ad-
mit intrinsic size dependence in the elastic solutions of in-
clusions and inhomogeneities. At nanometer scales, however,
size effects often become prominent, the cause of which
needs to be explicitly addressed due to an increasing interest
in the general area of nanotechnology.18 Sun and Zhang19
indicated the importance of a semicontinuum model in ana-
lyzing nanomaterials after pointing out the limitations of the
applicability of classical continuum models to nanotechnol-
ogy. In their semicontinuum model for nanostructured mate-
rials with platelike geometry, material properties were found
completely dependent on the thickness of the plate structure
contrary to classical continuum models. The modeling of
such a size-dependent phenomenon has become an interest-
ing research subject in this field.*>** It is thus concluded that
the applicability of classical continuum models at very small
scales is questionable, since the material microstructure, such
as lattice spacing between individual atoms, becomes in-
creasingly important at small size and the discrete structure
of the material can no longer be homogenenized into a con-
tinuum. Therefore, continuum models need to be extended to
consider the scale effect in nanomaterial studies. This can be
accomplished through proposing nonlocal continuum me-
chanics models.

Nonlocal elasticity theory23’ was proposed to account
for the scale effect in elasticity by assuming the stress at a
reference point to be a function of strain field at every point
in the body. This way, the internal size scale could be simply
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considered in constitutive equations as a material parameter.
Only recently has the nonlocal elasticity theory been intro-
duced to nanomaterial applications. Peddieson, Buchanan,
and McNitt® applied nonlocal elasticity to formulate a non-
local version of the Euler-Bernoulli beam model and con-
cluded that nonlocal continuum mechanics could potentially
play a useful role in nanotechnology applications. Inspired
by the above conclusion on the applicability of nonlocal elas-
ticity to nanotechnology, nonlocal Euler-Bernoulli beam and
shell models have been employed to study CNTs mechanical
behaviors. Sudak™ studied the infinitesimal column buckling
of multiwalled nanotubes (MWNTS), incorporating not only
van der Waals forces but also the effects of small length
scales. His results showed that as the small length scale in-
creased in magnitude, the critical axial strain decreased.
Zhang, Liu, and Wang27 applied a nonlocal multishell model
to buckling analysis of MWNTs under axial compression.
Their results showed that the small scale’s effect on the axial
buckling strain was related to buckling mode and the length
of tubes. Zhang, Liu, and Xie?® also studied a nonlocal
double-elastic beam model for free transverse vibrations of
double-walled CNTs. It was demonstrated that natural fre-
quencies and the associated amplitude ratios of the inner to
outer tubes were dependent upon the small length scale.
Recently, growing interest in terahertz physics of nanos-
cale materials and devices® ' has drawn more attention to
CNTs phonon dispersion relation, especially in the terahertz
frequency range. Yoon, Ru, and Mioduchowski**** studied
MWNTs wave propagation with a multiple-beam model. In
the analysis of one-dimensional beamlike structures, two
models are usually employed, namely, the Euler-Bernoulli
and Timoshenko beam models. Both models assume that
plane sections remain plane. However, in the Euler-Bernoulli
beam model, the sections are assumed to remain perpendicu-
lar to the neutral axis, whereas this assumption is removed in
the Timoshenko beam model™ to account for shear and ro-
tary effects. The Euler-Bernoulli beam model normally pro-
vides over-estimated wave phase velocity at higher wave
number, while the Timoshenko beam model provides more
accurate wave solution even at higher frequency range,
though it is more complicated than the Euler-Bernoulli beam
model. Wang and Varadan® studied CNTs wave characteris-
tics via classical (local) beam models. Numerical simulations
for wave solution in a CNT by a local Euler-Bernoulli beam
model and a local Timoshenko beam model showed that the
Euler-Bernoulli beam model was inappropriate on the fre-
quency range of terahertz. It was concluded that the Timosh-
enko beam model should be employed in the analysis of
CNTs wave motion, especially for the frequency range of
terahertz. All the above investigations analyzed the feasibil-
ity of the two local beam models in the analysis of CNTs
wave propagation on terahertz frequency range. However,
the small-scale effect was never considered in published re-
sults. Since terahertz physics of nanoscale materials and de-
vices are major concerns for CNTs wave characteristics, the
small-scale effect must be considered as the wavelength if
the frequency domain is of the order of nanometer. This
research tries to apply nonlocal continuum modeling to study
CNTs wave characteristics. Nonlocal Euler-Bernoulli and Ti-
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moshenko elastic beam models are proposed. Explicit disper-
sive solutions are derived in the research, from which small-
scale effects can be clearly observed. Such observations are
vital for applying continuum models to obtain CNTs wave
characteristics.

Il. NONLOCAL CONTINUUM MODELS OF CNTS

In nonlocal elasticity,24 the stress at a reference point x is
considered to be a function of the strain field at every point
in the body. This theory is in accordance with the atomic
model of lattice dynamics and experimental observations on
phonon dispersion. When the effect of strain at points other
than x is neglected, one obtains the local model of elasticity.

The basic equations for linear, homogeneous, isotropic,
nonlocal elastic solid with zero body force are given as™

a-lj,j:O (la)

(r,»j(x)=f a(jx - x'|, ) Cijyey(x")dV(x'), VxeV,

(1b)

€ .=

ij (ui,j+uj,i)’ (IC)

N | =

where C;j, is the elastic modulus tensor of classical isotropic
elasticity, gy and €; are stress and strain tensors, respec-
tively, and u; is the displacement vector. a(|x—x'|,7) is the
nonlocal modulus or attenuation function which incorporates
into the constitutive equations the nonlocal effects at the ref-
erence point x produced by local strain at the source x’.
lx—x'| is Euclidean distance. In r=eqa/l,> ¢, is a constant
appropriate to each material, a is an internal characteristic
length (e.g., length of C—C bond, lattice parameter, granular
distance), and [ is an external characteristic length (e.g.,
crack length, wavelength). The value of ¢, needs to be de-
termined from experiments or by matching dispersion curves
of plane waves with those of atomic lattice dynamics.

Integral-partial differential equations of the above linear
nonlocal elasticity are reduced to singular partial differential
equations of a special class of physically admissible kernel.?
In addition, Hook’s law for uniaxial stress state is determined
by

d2
) )

o(x) - (ega)®

where E is the Young’s modulus of the material. The param-
eter ega is the scale coefficient revealing a small-scale effect
on the response of structures in nanosize.

To investigate the small-scale effect on CNTs wave so-
lutions, nonlocal Euler-Bernoulli and Timoshenko beam
models for vibration analysis will be used.

A. Nonlocal Euler-Bernoulli beam model

The equilibrium of forces in the vertical direction and
the moment on a free body diagram of an infinitesimal ele-
ment of a beam structure is given as
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ax Phar T a
oM
V—-——=0, (3b)
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where V(x,r) and M(x,t) are the resultant shear force and
bending moment respectively, p is the mass density of the
material, A is the area of the cross section, and u(x,?) is the
flexural deflection of the beam.

Considering definitions of the resultant bending moment
and the kinematics relation in a beam structure, we have

M:f yodA, (4a)
A

a
__ o 4b
€ yé,xz (4b)

where y is the coordinate measured from the midplane along
the direction of the beam’s height.

Substituting Egs. (4a) and (4b) into the nonlocal consti-
tutive relation Eq. (2) leads to

Pu

M ( )2072_M_ El—
cod axr ax?’

(5)
where EI is the bending rigidity of the beam structure.
Further consideration of Egs. (3a) and (3b), Eq. (5) gives

F & P
Elﬁ—;+pA?(u— (eoa)zﬁ—;> =0. (6)

From Eq. (6), it is easily seen that the local Euler-
Bernoulli beam model is recovered when the parameter e is
set to zero.

B. Nonlocal Timoshenko beam model

In the Timoshenko beam model, a new variable ¢ is
introduced to measure the slope of the cross section due to
bending. The slope of the centroidal axis du/dx is constituted
by ¢, due to the bending effect, and 7,, due to the shear
effect. The essence of Timoshenko’s argument is that the
shear force at the cross section is expressed in terms of the
shear strain vy as

szf YdA, (7)
A

where G=E/[2(1+v)] is the shear modulus of CNTs. If vy, is
the shear strain at the centroidal axis, Gy,A gives a shear
force. However, it will not be equal to the value given in Eq.
(7). To bring the value into balance, the adjustment coeffi-
cient « is introduced such that

du
V= Gf vdA = kK(GyA) =AGK<_ - ¢> ) (8)
A ox

The recommended value of «, the adjustment coefficient,
is 10/9 for a circular shape of the cross area.>
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From a similar analysis of the free body diagram, the
equation of motion of CNTs based on the nonlocal Timosh-
enko beam model is given as

awv_ P o

ax P2 a
oM P

v M (9b)
ox ot

where the term on the right-hand side of Eq. (9b) is the

rotary effect considered in the Timoshenko beam model.
Substitution of Egs. (5) and (8) into Egs. (9a) and (9b)

leads to the following nonlocal Timoshenko beam model:

GA (‘9—"’ @) A% o (10a)
Nox a2) TP a
& \( ou (92<p
GA“(“(EO“V@)(J*")*E%
P P
—plﬁ(qo—(eoa)za—xf>=0. (10b)

Again, it is seen that the local Timoshenko beam model
is recovered”® when the parameter e is identically zero.

lll. WAVE PROPAGATION IN CNTS BY NONLOCAL
CONTINUUM MECHANICS

The solution for wave propagation in CNTs will be de-
rived via nonlocal Euler-Bernoulli and Timoshenko beam
models hereinafter.

A. Nonlocal Euler-Bernoulli beam model

The wave propagation solution for Eq. (6) can be ex-
pressed as

u(x,1) = Ue'k=en, (11)

where U is the amplitude of the wave motion, k is the wave
number, and w is the frequency of the wave motion.

Substitution of Eq. (11) into Eq. (6) yields the solution
for phase velocity via nonlocal the Euler-Bernoulli beam
model

VhE 1

=" b
Ve 1+ (eqa)’k?

(12)

where v;z=kVEI/pA is the wave phase velocity based on the
local Euler-Bernoulli beam model.

B. Nonlocal Timoshenko beam model

Since an additional variable ¢ is introduced in the Ti-
moshenko beam model, the wave solution for this variable is
given as

¢(x,1) = Pe' =, (13)
where @ is the amplitude of the wave motion.

Substitution of Egs. (11) and (13) into Egs. (10a) and
(10b) leads to the following two equations:
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(- pAw® + GAK*K)U + iGAkk® = 0, (14a)
iGAKK[1 + (eqa)*k*|U + (- EIK* — GAK[1 + (ega)*k*]

+ plo[1 + (ega)*k*))P =0. (14b)

From Egs. (14a) and (14b), the solution for the wave
propagation in CNTs via the nonlocal Timoshenko beam
model can be derived from an eigen-value problem searching
for nontrivial solution of the variables of U and ®. The wave
solution based on the nonlocal Timoshenko beam model, ig-
noring rotary effect, is thus obtained as

Vnr 1

vir 1+ (ea)’ka
where a=(1+d?k*/8)/[1+d’k*/8+(1+v)d*k*/4k], d is the
diameter of the midsurface of the CNT, v is the Poisson’s
ratio, and vy=\/(EI/ pA)/(EI/ GAk+1/k*+pl/pA) is CNTs
phase velocity based on the local Timoshenko beam model.

IV. SIMULATIONS AND DISCUSSIONS

The asymptotic phase velocity at k—< based on the
nonlocal Euler-Bernoulli beam model is studied first. From
Eq. (12), the asymptotic velocity is obtained as

1 |EI
1711E = . ( 1 6)
epa Y pA

The bar on the symbol in Eq. (16) stands for the
asymptotic velocity. By considering the expressions for
CNTs material par.’ameters,35 the asymptotic velocity based
on the local Timoshenko beam model can be obtained as

. ! \/E ! \E

= VEIIGAK + pllpA N pA J /l+1j’ pA’
8 4k

(

17)

From comparison of Egs. (16) and (17), it is concluded
that the nonlocal Euler-Bernoulli beam model is identical to
the local Timoshenko beam model if the scale coefficient eya
is chosen as

/s LY (18)
COTZENGT 4

Natural logarithmic calculations of the phase velocity
versus natural logarithmic calculations of the wave number
of a CNT with d=5 nm, based on local and nonlocal Euler-
Bernoulli beam models, respectively, are shown in Fig. 1 at
different values of the scale coefficients, namely, eya=0.5, 1,
and 1.5 nm. It is seen that at lower wave numbers k <e?’
~4x10%/m, or at the corresponding higher wavelength \
=1/k>2.5 nm, both beam models provide almost the same
solution for the given domain of scale coefficient eya
=< 1.5 nm. The local Euler-Bernoulli beam model shows the
linear relation between the two variables, whereas the non-
local Euler-Bernoulli beam model displays virtually nondis-
persive wave characteristic, i.e., constant phase wave veloc-

J. Appl. Phys. 98, 124301 (2005)

21{ ™ Local model
-2~ e0a=0.50m
-o-ela=Inm

<+ ela=1.5nm

Velocity Ln v(m/s)
~

Wave mumber Ln k(1/m)

FIG. 1. Wave velocity versus wave number by Euler-Bernoulli model.

ity at higher frequency range or higher wave numbers, i.e.,
k>4 X 108/m or A <2.5 nm. The nondispersive phase veloc-
ity decreases at higher scale coefficient.

Figure 2(a) gives a comparison of the CNTs phase ve-
locities based on local and nonlocal Timoshenko beam mod-
els and the nonlocal Euler-Bernoulli beam model at ega
=3.35 nm. The phase velocity from nonlocal beam model
shows a decreasing variation with higher scale coefficient

14
— Local model (a)
- e0a=0.5nm
7 4 -o- cle=1mm

%‘ - e0a=1.5nm
X o E-B e0#-3.35
3 9 , ,
? L 18 24 k ]
2

7

-14

Wavenmber La k(1/m)
80
-+ 80a=0.50m (b)

Wavenumber Lo k (1/m)

FIG. 2. Wave characteristics by Timoshenko model (a) wave velocity versus
wave number and (b) wave frequency vs wave number.



124301-5 Q. Wang

ega similar to Fig. 1. In addition, the same solution is ob-
tained at lower wave numbers k<4 X 108/m or higher wave-
length A>2.5nm for the small-scale coefficient ega
< 1.5 nm. A comparison of Figs. 1 and 2(a) reveals an inter-
esting observation that below the critical wave numbers k
~4X10%/m, or above the corresponding wavelength X\
~2.5 nm, all local and nonlocal Euler-Bernoulli and Ti-
moshenko beam models provide similar wave characteristic
solutions for the CNT with d=5 nm on the given scale co-
efficient domain ega < 1.5 nm. From Eq. (18), it is found that
at epa=3.35 nm, for the CNT with d=5 nm, the nonlocal
Euler-Bernoulli beam model provides the same solution for
the phase velocity with the local Timoshenko beam model
does. This is clearly observed in Fig. 2(a) from the concur-
rence of the curves from the local Timoshenko model and the
nonlocal Euler-Bernoulli model at eya=3.35 nm. Since the
Timoshenko model accounts for shear effect in modeling, it
is recommended in the deriving wave solution, especially for
a solution at a higher wave number or a smaller wavelength.

Figure 2(b) shows frequency comparison between local
and nonlocal Timoshenko beam models. A linear variation of
natural logarithmic frequency value versus natural logarith-
mic wave number is found for the local Timoshenko model.
Further, a constant value of the frequency at higher wave
number is observed for the nonlocal Timoshenko model.
This constant value decreases with high scale coefficient eya.
The asymptotic value of frequency can be derived from
Eq. (15) as

_ 1 Er 1 C
wnT = - = - E) ( 19)
ega ¥V pt epa N pt

where in-plane stiffness Et=C=360 J/m2" s virtually a
constant parameter. The asymptotic frequency can thus be
written as @,;y=21456/¢pa, if the mass density p
=23 g/cm® and the thickness of CNT ¢=0.34 nm are
chosen.”

Parameter a describes internal characteristic length. The
length of a C—C bond, which is 0.142 nm, is chosen for the
analysis of CNTs.>?® On the other hand, parameter e, was
given as 0.39 by Eringen.24 This value needs to be further
verified through experiments or through matching dispersion
curves of plane waves with those of atomic lattice dynamics
for CNTs. It was speculated26 to be in the order of hundreds.
Based on Eq. (19), a rough estimate of the scale coefficient
epa becomes possible as long as the highest frequency of a
single-walled CNT can be available since vibration of a limit
medium can be seen as a standing wave phenomenon in the
medium. An available experimental work on the vibration of
CNTs in Ref. 15 gives the fundamental frequency as around
0.1 THz. If this value is substituted in Eq. (19), ey
<210 nm can be derived. As stated in Refs. 5 and 33, the
frequency in CNTs is in the terahertz range. A conservative
evaluation on the scale coefficient can be obtained as ega
<2.1 nm for a SWNT if the measured frequency value for
the SWNT is assessed to be greater than 10 THz. In addition,
this value is radius dependent since frequency is a radius
dependent parameter.

Figures 3 and 4 further demonstrate the conclusion that
phase velocity decreases as scale coefficient and wave num-
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1.2
14
0.8 -
&
o 8- Wavelength=0.5nm
b 0.6 T
2 -4 Wavelength=lam
E 0.4 1
-6- Wavelength=5nm
0.2
-%- Wavelength=20nm
0 ¥ 1 T T
0 0.3 0.6 0.9 1.2 15

Small scale parameter e0a (nm)

FIG. 3. Small effect on wave velocity by Euler-Bernoulli model.

ber increase. In the two figures, the vertical axis represents
the ratio of the phase velocity from the nonlocal beam model
to that from the local beam model. The variations of phase
velocity versus the scale coefficient epa (0—1.5 nm) by
Euler-Bernoulli and Timoshenko beam models are shown in
the two figures, respectively. It can be observed that the ve-
locity the ratio reaches unit at eqa=0, from all the models. At
higher wavelength, e.g., 1/k=20 nm, the ratio is seen to vir-
tually approach unit.

In Fig. 5, the ratio of the phase velocity from the nonlo-
cal Timoshenko beam model to that from the local Timosh-
enko beam model versus the diameter of the CNT at ega
=1.5 nm is plotted. The four curves represent the variation of
the velocity ratio at wavelength A=0.5, 1, 5, and 20 nm. It is
clearly seen that the velocity ratio is lower at smaller diam-
eters. Therefore, it can be concluded that CNTs wave solu-
tions are diameter dependent based on nonlocal continuum
mechanics. The small-scale effect on diameter becomes al-
most unnoticeable at larger diameters. This observation is
distinct and interesting since preliminary research on the
small-scale effect on buckling of CNTs**?" has identified
only length dependency. In addition, the velocity ratio is
found to be lower at smaller wavelength.

From the numerical simulations, it can be concluded that
at lower wavelength and smaller diameters, obvious small-
scale effect is observed on CNTs wave characteristic solution

1.2

~»- Wavelength=0.5nm
-s- Wavelength=1nm
--- Wavelength=5nm
- Wavelength=20nm

c T T T L}
0.0 03 0.6 0.9 1.2 15
Smali scale parameter e0a (nm)

FIG. 4. Small effect on wave velocity by Timoshenko model.
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< e e -8 Wavelength =0.50m
> 0.3 & Wavelength =1nm
-~ Wavelangth =5nm
0 ~ Wavelength =20pm
1 1 1 ¥
0 3 6 9 12 15
Diameter D (nm)

FIG. 5. Wave velocity versus diameter at eja=1.5 nm by Timoshenko
model.

via nonlocal continuum models. These observations are
qualitatively in agreement with the experimental work by
Krishnan et al.'> In their work, the stiffness of CNTs was
estimated by observing their freestanding room temperature
vibration in a transmission electron microscope. Independent
estimates of the nanotube length and tip vibration amplitude
were obtained from images of the cleanest nanotubes by a
least-squares minimization procedure. The nanotube param-
eters, including nanotube length, width, and corresponding
estimate of the Young’s modulus were (a) L=36.8 nm, W
=1.50 nm, E=1.33+0.2 TPa; (b) L=24.3 nm, W=1.52 nm,
E=120+0.2 TPa; (¢) L=234nm, W=1.12nm, and E
=1.02+0.3 TPa. The estimate of Young’s modulus from their
work was based on a classical frequency equation in local
continuum mechanics from which the frequency is propor-
tional to the square root of Young’s modulus. Data in groups
(a) and (b) show the comparison of the derived Young’s
modulus, or equivalently the frequency, of two CNTs at dif-
ferent lengths but with similar diameters. Since vibration of a
finite medium can be seen as a standing wave phenomenon
in the medium, the length of the medium is proportional to
the wavelength of wave propagation in the medium. The
frequency w is related to phase velocity and wave number
via the relation Lnw=_Lnv+Lnk. Therefore, the comparison
of data in groups (a) and (b) indicates that the frequency or
the phase wave velocity at a specific diameter is wavelength
dependent. Lower frequency can be derived at smaller length
or smaller wavelength of the CNT, which is qualitatively in
agreement with the simulation results. In addition, from the
comparison of data in groups (b) and (c), in which CNTs
are with different diameters but with similar lengths, it can
be seen that the derived frequency is lower at smaller diam-
eters. This experimental result is again qualitatively in agree-
ment with the simulations derived from nonlocal continuum
models.

V. CONCLUDING REMARKS

In this research, nonlocal continuum models are applied
in the analysis of CNTs wave characteristics. Nonlocal Euler-
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Bernoulli and Timoshenko beam models enable the investi-
gation of small-scale effect on a CNT’s dispersion solutions.
Wavelength and diameter-dependent results are explicitly de-
rived from nonlocal continuum models. Extant experimental
work validates the research findings. The research provides a
rough estimation of the scale coefficient used in nonlocal
continuum models. The work in the manuscript not only re-
veals the significance of the small-scale effect on CNTs me-
chanical response, but also points out the limitation of the
applicability and feasibility of local continuum models in
analysis of CNTs mechanical behaviors. Other nonlocal con-
tinuum models, such as elastic shell models, need to be stud-
ied thoroughly in order to gain a better understanding of
CNTs mechanical behaviors.
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