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ABSTRACT

WAVE PROPAGATION IN METAMATERIAL
STRUCTURES AND RETRIEVAL OF
HOMOGENIZATION PARAMETERS

Erdingc Irc
M.S. in Electrical and Electronics Engineering
Supervisor: Assist. Prof. Dr. Vakur B. Ertiirk
August 2007

Electromagnetic wave propagation in metamaterial structures (metamaterial
slabs, metamaterial cylinders, metamaterial coated conducting cylinders etc.)
are investigated. Scattered and transmitted electromagnetic fields by these struc-
tures due to electric line sources or plane wave illuminations are found. A generic
formulation of these wave propagation problems is done, enabling any kind of
metamaterial or conventional material to be used, having any sign combination

of constitutive parameters and having any electric and/or magnetic losses.

For one of these propagation problems i.e., metamaterial coated conducting
cylinders illuminated normally with plane waves, achieving transparency and
maximizing scattering are investigated thoroughly. It is found out that, rigorous
derivation of transparency and resonance (scattering maximization) conditions
for PEC core cylinder case under the sub-wavelength limitations yields the same
conditions of two electrically small concentric layers of conjugately paired cylin-
ders, given in the literature (when the inner core layer is also taken to the PEC

limit). These transparency and resonance conditions are found to be heavily
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dependent on the permittivity of the metamaterial coating (for TE polariza-
tion) and the ratio of core-shell radii. The relations between the permittivity
of the coating and the ratio of core-shell radii are investigated for achieving
transparency and scattering maximization. Numerical results show that these
analytical relations are quite successful and work better when the cylindrical

scatter is electrically very small.

A novel homogenization method for the retrieval of effective constitutive pa-
rameters of metamaterials is proposed and implemented. The method is based
on the simple idea that the total reflection coefficient from a finite metamate-
rial structure has to resemble the reflection from an homogeneous equivalent.
While implementing the method, 1, 2, ..., 20 unit cells of the same metama-
terial structure are stacked and their reflection coefficients are collected. The
homogenization quality of the metamaterial is evaluated in terms of various fac-
tors, which showed that the method is very successful to retrieve the effective

constitutive parameters of the metamaterial.

Finally, another method has been proposed for the retrieval of surface wave
propagation constants on any periodic or non-periodic grounded slab medium. As
a preliminary, the method is applied to grounded dielectric slabs. The numerical

results generally show good agreement with their theoretical counterparts.

Keywords:  Metamaterials, Wave propagation, Scattering, Transmission,
Metamaterial cylinders, Metamaterial coated conducting cylinders, Transparency,
Resonance, Radar cross section, Homogenization, Parameter retrieval,

Surface waves, Grounded Slabs.
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OZET

METAMALZEME YAPILARDA DALGA YAYINIMI VE
HOMOJENLESTIRME PARAMETRELERININ ELDE
EDILMESI

Erdingc Irc
Elektrik ve Elektronik Miihendisligi Boliimii Yiiksek Lisans
Tez Yoneticisi: Yar. Do¢. Dr. Vakur B. Ertiirk
Agustos 2007

Metamalzeme yapilarda (metamalzeme tabakalar, metamalzeme silindirler,
metamalzeme kapli iletken silindirler vb.) elektromanyetik dalga yaymimi ince-
lendi. Cizgisel elektrik kaynaklarindan ya da diizlem dalga aydinlatmalarindan
dolay1 bu yapilardan sacilan ve bunlara iletilen elektromanyetik alanlar bulundu.
Bu dalga yayinim problemlerinin genel formiilasyonu, ortam parametrelerinin
isaretlerinin herhangi kombinasyonu igin, herhangi elektrik/manyetik kayba da

sahip olabilecek sekilde metamalzemeler ya da siradan malzemeler i¢in yapildi.

Bu yaymim problemlerinden biri olan diizlem dalga ile dik aydinlatilmig
metamalzeme kapl iletken silindirler, saydamlik ve sagilimin azamilesgtirilmesi
agisindan detayhica incelendi. Saydamlik ve rezonans (sagilim azamilegtirmesi)
durumlarinin dalgaboyu-alti sinirinda tiiretilmesi, literatiirdeki ayni eksenli, elek-
triksel olarak kiiclik, ters isaretli olarak eglestirilmig silindirlerle aynm1 durumu

verdi (ig silindir iletken simirma gotiiriildiigiinde).

Bu saydamlik ve rezonans durumlarinin daha ¢ok metamalzeme kaplamanin

elektriksel gecirgenligine (TE polarizasyonu igin) ve gekirdek-kaplama yarigap



oranina bagli oldugu bulundu. Saydamlik ve sagilim azamilestirmesi i¢in, kapla-
manin elektrik gecirgenligi ile ¢ekirdek-kaplama yaricap orani arasindaki iligkiler
incelendi. Sayisal sonuclar bu analitik iligkilerin oldukg¢a basarili oldugunu ve

silindirik sacic1 elektriksel olarak ¢ok kii¢liikken daha iyi caligtigini gosterdi.

Metamalzemelerin etkin ortam parametrelerinin elde edilmesi i¢in yeni bir ho-
mojenlegtirme metodu ileri siirtildii ve uygulandi. Metod, sonlu bir metamalzeme
yapinin toplam yansima katsayisinin homojen denginin yansimasina benzeyecegi
fikrine dayandirildi. Metod uygulanirken metamalzemenin 1, 2, ..., 20 iinite
hiicresi art arda siralandi ve yansima katsayilari kaydedildi. Metamalzemenin
homojenlestirme kalitesi degisik etkenler cinsinden incelendi ve metodun meta-
malzemenin etkin ortam parametrelerinin elde edilmesi icin ¢ok basarili oldugu

gbziiktil.

Son olarak, bir bagka metod da periyodik olan ya da olmayan herhangi bir
topraklanmig tabaka iizerindeki yilizey dalga yayimim katsayilarinin elde edilmesi
icin ileri siirildii. Baglangic olarak metod topraklanmig dielektrik tabakalara

uygulandi. Sayisal sonuclar genel olarak teorik karsiliklariyla iyi uyum sergiledi.

Anahtar Kelimeler:  Metamalzemeler, Dalga yaymimi, Sacihm, Iletim,
Metamalzeme silindirler, Metamalzeme kapli iletken silindirler, Saydamlik,
Rezonans, Radar kesit alani, Homojenlestirme, Parametre elde edimi,

Yizey dalgalari, Topraklanmig tabakalar.
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Chapter 1

INTRODUCTION

Metamaterials are artificially engineered materials which can have negative effec-
tive electric permittivity and/or negative effective magnetic permeability. Differ-
ent from conventional materials, which have both positive electric permittivity
and positive magnetic permeability [i.e., double positive (DPS)], metamaterials
show different electromagnetic and optical properties. For instance, when elec-
tric permittivity and magnetic permeability of the material are both negative
i.e., double negative (DNG)], negative refraction happens and direction of phase
velocity is reversed. DNG metamaterials are also called Left Handed Materials
(LHM) because electric field, magnetic field and the direction of phase velocity
form a left handed coordinate system for these materials. On the other hand,
when only one of the constitutive parameters of the metamaterial is negative

[i.e., single negative (SNG)] evanescent waves appear.

In Chapter 2, electromagnetic scattering and transmission due to line sources
or plane waves from different metamaterial structures is investigated. The meta-
material structures are chosen from simple canonical geometries, such as metama-
terial slabs, metamaterial cylinders and metamaterial coated conducting cylin-

ders, which have exact eigenfunction solutions.



After a complex analysis, the correct complex branches for the wave number
and wave impedance of a metamaterial medium are selected. This choice of
complex branches is found to be valid for all kinds of materials, which can have
any combination of signs of constitutive parameters, or can have any electric

and/or magnetic losses.

Due to their aforementioned exceptional properties, metamaterials are being
investigated for many possible utilizations in different scientific and engineering
applications, which otherwise cannot be easily accomplished with conventional
materials. Recently, reducing scattering from various structures, and in the limit
achieving transparency and building cloaking structures, have been investigated
by many researchers [1-7]. On the other hand, resonant structures aimed at
increasing the electromagnetic intensities, stored or radiated power levels have
also been studied extensively [7—14]. Similarly, metamaterial layers have been

proposed to enhance the power radiated by electrically small antennas [15-17].

While some of these studies are based on utilization of non-linear metamater-
ial structures, some of them rely on pairing slabs, spheres or cylinders with their
electromagnetic conjugates (e.g., pairing/coating DPS materials with DNG meta-
materials or mu-negative (MNG) metamaterials with epsilon-negative (ENG)

metamaterials).

In Chapter 3, the transparency and resonance conditions for cylindrical struc-
tures are extended to the case where the core cylinder is particularly PEC.
For achieving transparency or maximizing scattering, simple (i.e., homogeneous,
isotropic and linear) metamaterial coatings are used. For both transparency and
scattering maximization scenarios, the analytical relations between the ratio of
core-coating radii and the constitutive parameters of the metamaterial coating
are derived. These analytical relations are based on sub-wavelength approxi-
mations and they are valid especially when the cylindrical scatterers (i.e., PEC

cylinders together with their metamaterial coatings) are electrically small. The



numerical simulations have showed the existence of transparency and resonance

conditions in good agreement with the analytical expectations.

Although Chapter 3 is based on the assumptions that the metamaterial coat-
ing is homogeneous and isotropic, metamaterials currently produced are inho-
mogeneous, anisotropic and highly dispersive. However, there are many research

efforts to obtain homogeneous and isotropic metamaterials.

Meanwhile, another branch of these research efforts is now focused on retrieval
of the effective constitutive parameters of metamaterials, or in other words, ob-
taining homogeneous equivalents for essentially inhomogeneous metamaterials.
The process of obtaining this homogeneous equivalent, with its all intermediate
steps, is called homogenization. The homogenization processes present in the
literature [18-22] are mainly based on utilization of transmission and reflection
characteristics of the metamaterial structures, or field averaging. However, dur-
ing these attempts for homogenization of metamaterials, usually transmission
and reflection properties of only one unit cell of the metamaterial is taken into
account. These methods are intrinsically unreliable since the unit cells, which
form the metamaterial, are made up of metallic inclusions, which cause very
strong electric and magnetic resonances. While using only one or two unit cells
of the metamaterial, one loses the valuable information of periodicity of unit cells
and their mutual interactions, therefore cannot represent the whole metamaterial

structure correctly.

As a remedy to these inadequate methods, in Chapter 4 we present a novel
method for the homogenization and parameter retrieval of metamaterials. If a
metamaterial slab can be successfully homogenized, its reflection characteristics
would mimic those of a homogeneous slab. Since total reflection from a homo-
geneous slab is the sum of a direct reflection term and other multiple reflection

terms due to the waves bouncing inside the slab, with added phase delays, the



total reflection from the metamaterial slab can be written as a sum of expo-
nentials. Also since the phase delays of the multiple reflections inside the slab
are dependent on the thickness of the slab, utilization of different number of
unit cells will yield different reflection results. Therefore, it becomes possible to
obtain the constitutive parameters of a homogeneous medium using the reflec-
tion coefficients of the metamaterial medium, made up of different number of
unit cells. In our method, we have used 1 to 20 unit cells. After the constitu-
tive parameters are retrieved, the electromagnetic behavior of the metamaterial
slab (e.g., its reflection and transmission properties, field distributions inside and
outside the metamaterial) is compared with that of the homogeneous equivalent.

Our numerical results show very good agreement between these two.

Again in Chapter 4, we aim to present another method for the retrieval of
surface wave propagation constants on any periodic or non-periodic grounded
slab medium. The method is basically based on the difference in spread factors
of space and surface waves propagating on the surface of the slab. Since space
wave contribution of the total electric field on the surface of the slab decays faster,
multiplying the field data with the proper power of the lateral distance mainly
leaves the surface wave contribution, for large lateral distances. The electric
field data, then, can be approximated as a summation of complex exponentials,
from which one can deduce how many surface wave modes are present and what
their propagation constants are. At the present, the method is applied to a
dielectric slab, for which the theoretical surface wave propagation constants are

well known, and numerical results have shown good agreement to the theory.

In Chapter 5, conclusions of the thesis are drawn. Appendix A contains some
properties of Bessel functions. In Appendix B, ¢ components of the magnetic and
electric fields of Section 2.9 are derived from their z components. Derivations of

the transparency and resonance conditions of Chapter 3 are given in Appendix C



and Appendix D, respectively. Throughout this thesis, an ¢/“! time dependence

is assumed and suppressed.



Chapter 2

Wave Propagation in

Metamaterial Structures

In this chapter, electromagnetic wave propagation in different metamaterial
structures is investigated. The metamaterial geometries are chosen from sim-
ple canonical geometries, such that an exact analytical eigenfunction solution

can be obtained.

Metamaterials are artificial materials which can have negative effective elec-
tric permittivity (e.sf) and/or negative effective magnetic permeability (pcry).
The signs of the aforementioned effective complex constitutive parameters are
based on the signs of their real parts, whereas their imaginary parts indicate the
presence of electric or magnetic losses, respectively. Therefore, metamaterials

form four groups, depending on their constitutive parameters:
e Double Positive (DPS):  Re{e} >0, Re{u} >0
e Double Negative (DNG): Re{e} <0, Re{u} <0
e Mu Negative (MNG): Re{e} > 0, Re{u} <0

e Epsilon Negative (ENG): Re{c} <0, Re{u} >0



DNG metamaterials are also called Left Handed Materials (LHM) due to
their unique electromagnetic/optical properties like negative refraction, negative
phase velocity and negative Doppler shift, which follow a left hand rule system.
MNG and ENG metamaterials are also called Single Negative (SNG) materials,
because of the obvious fact that they have either negative effective magnetic

permeability or negative effective electric permittivity, respectively.

2.1 Wave Number, Index of Refraction and

Wave Impedance of Metamaterial Structures

Without loss of generality, the wave number, index of refraction and wave im-

pedance of a medium are given as

k = w\/ue, (2.1)
n = \/IEr, (2.2)

1=yt (23)

respectively, where w = 27 f is the angular frequency, u, = p/po and €, = €/eq

are the relative constitutive parameters.

The square roots which appear in (2.1)-(2.3) create controversy, especially
when DNG materials are considered. Since both constitutive parameters are
complex quantities with their real parts being negative, the wave number, index
of refraction and wave impedance of the medium heavily depend on which branch
of the complex roots is selected. This controversy appeared in the scientific
community after the idea of perfect lens [23] and discussions focused on validity

of negative refraction and negative phase velocity [24].



The complex electric permittivity and the complex magnetic permeability of

a metamaterial medium can be expressed in polar form, respectively, as
e = |e|e??s, (2.4)

= lulei. (2.5)

Similarly, the wave number and the wave impedance of the metamaterial coating
can be written as

k = w\/ue = |kleI®, (2.6)

n=/u/e=|nle, (2.7)
respectively, where

k] = w/ullel, (2.8)
nl = v/lul/lel; (2.9)

with
b5 = 560+ 62, (210
1
On = 5(Pu = &2). (2.11)

The choice of branches for the square roots in (2.10)-(2.11) is based on causal-
ity in a linear dispersive medium, the wave directions associated with reflection
and transmission from the interfaces and the direction of electromagnetic power
flow. This choice is given and examined in details in [25] for DNG metamateri-
als, first introducing infinitesimal electric and magnetic losses (as in the case of
metamaterials approximated by Drude and Lorentz medium models [23,25, 26])
and then deciding on which complex branch gives the physically correct solution.
A similar analysis for DPS, MNG and ENG metamaterials [11] show that, the
choice of branches for the square roots given in (2.10)-(2.11) still remains valid
for these metamaterials. With the assumed e/** time dependence in this thesis,
and considering only passive media, the arguments of u, €, k£ and 7 for different

types of metamaterials are tabulated in Table 2.1.



Table 2.1: Arguments of u, €, k and n for Different Types of Metamaterials

ops | (=5.0) | (<30 | (5.0 | (5.9
DNG | [-r.—§) | [-m.=8) | [-m.=5) | (-%.9

MNG || [-m—5) | (=5.0] | (=% -%) | [-5.0)

NG | (=5.0] | [=m—5) | (=% —0) | (03]

Examination of Table 2.1 shows that for lossless DPS medium, wave number is
real and positive. For lossless DNG medium, wave number is real and negative.
For lossless DPS and DNG media, wave impedance is real and positive. For
lossless MNG and ENG media, the wave number is negative and imaginary,

which shows the presence of evanescent waves.

Remark: It is worthwhile to mention that when any of the constitutive
parameters of a metamaterial medium is a negative real number, —m should
be selected as its argument instead of 7, as shown in Table 2.1. This becomes
important when intrinsic functions in a programming environment are directly

used (e.g., ANGLE, ATAN2).

2.2 Normal Incidence of Plane Waves on a

Metamaterial Slab

2.2.1 Introduction

Let us assume that a TEM? plane wave is traveling in the +z direction. An
infinite length metamaterial slab of thickness d is placed between the z = 0 and
z = d planes in free space, without loss of generality. Here we will investigate

the reflection and transmission properties of the metamaterial slab as well as



the waves traveling inside the metamaterial slab. The incident electric field is
assumed to be in the 4z direction and the incident magnetic field is in +y

direction. The problem geometry is depicted in Fig. 2.1.

2.2.2 Problem Geometry

x
Medium 1 A Medium 2 Medium 3
Ef B+ _
1 2 EY
= A1+ — Aot a
H+ + k2 — A3+
1 H,; Hf
E E5
(g~ _ Apg- -
H, Hy
€1 = €0, H1 = Mo €2 =€, s = [ €3 =¢Co, M3 = Ho
yv : z
z =10 s=d
Figure 2.1: Uniform plane wave normally incident on a metamaterial slab.
2.2.3 Electric and Magnetic Fields
The total electric and magnetic fields in Medium 1 are
E, =G, (Efe 7% + B *o%) | (2.12)
EF . E; .
H; = a, (_1€—Jkoz — _16J’€02) , (2.13)
"o Mo

respectively, where kg = w/togo and 19 = +/ pto/€o-

10



The total electric and magnetic fields in Medium 2 are
E; =@, (B e 7" + Ey /™)

+ —
b, (B B
n n

respectively, where k = w,/pe and n = y/p/e.

The electric and magnetic fields in Medium 3 are

_ + —jkoz

ET .
o~ 3 _—jkoz
H; = a,—e 77,
Mo

respectively, where kg and 79 are the same as in Medium 1.

2.2.4 Solution of Boundary Conditions

Boundary Conditions at z = 0:

Ef +Ef = Ef + E;,
Ef Ef Ef E;
T Mo 7 n

Boundary Conditions at z = d:
Efe % 1 By ettt = pfeitod

N N "o
Rearranging equations (2.18) - (2.21) we get:

—-E[ +Ef + E; = Ef",

- To Mo -
By ‘{‘FEQJF_?EQ :Ef_v
e MBS 4 ekp; — emIMIEF =0
o —Jkd eikd e—Jkod

+_ g Ef =0,
n o 7 n 0

Y
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
(2.24)

(2.25)



which can also be written in matrix form as follows:

1 1 1 0 o Ef
1 ® -m g Ef Ef
- | - . (2.26)
0 efjk?d ejk‘d _efjkod E2— 0
o—ikd edkd e—dkod
0 == =5 S || B 0

Using Symbolic Math Toolbox of MATLAB, the solution to this system of

equations can be found as:

- J(n* — ng) sinkd +

E; = E 2.27

Y 2nmocoskd 4+ j(n2 4 n2)sinkd (2.27)
n(n + 10) e’

Ef = Ef 2.28
> 2qnocoskd + j(n? +nd)sinkd (2:28)
_ 7](770 - n)e_jkd +

By = E 2.29
2 2mmocoskd + j(n? +n2)sinkd '’ (2.29)

2 jkod
Ef = Moc Ef (2.30)

2o coskd + j(n? +n3)sinkd '

¢ = % - \/’;: (2.31)

and using relation (2.31), equations (2.27)-(2.30) can be reduced to:

Defining

§(¢% = 1) sinkd

;= Ef 2.32
b 2Ccoskd 4+ j(C2+1)sinkd '’ (2.32)
;= € +e)e !’ (2.33)
> 2Ccoskd+j(¢2+1)sinkd "’ '
_ (€= P)e /M

E, = Ef 2.34
> 2Ccoskd+j(¢2+1)sinkd '’ (2:34)

Jkod
Ef 2¢ Ef (2.35)

- 2C coskd + j(C2 4 1)sinkd

Note that, the solutions (2.27)-(2.30) or (2.32)-(2.35) are valid for all four
types of metamaterials (i.e., DPS, DNG, MNG and ENG) provided that k£ and

7 are calculated as in Section 2.1.
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2.3 Infinite Length Metamaterial Cylinder
Near an Infinite Length Electric Line

Source: T'M~* Polarization

2.3.1 Introduction

An infinite line of constant electric current is placed in the vicinity of a circular
metamaterial cylinder of infinite length. The scattering and transmission by the
metamaterial cylinder is examined for T'M? polarization. The problem geometry

is given in Fig. 2.2.

2.3.2 Problem Geometry

(a) (b}

Figure 2.2: Metamaterial cylinder near an electric line source. (a) Side view, (b)
Top view.

13



2.3.3 Electric Line Source and Incident Electric Field

For the line source of constant electric current, I., in Fig. 2.2, the electric field
generated everywhere by the source in the absence of the cylinder is given as [27]

BRI,

El = —
z 4w50

5 (kolp — P')), (2.36)

which we will refer as the incident electric field. Using the addition theorem

for Hankel functions [28], (2.36) can be written in the series expansion form as

follows [27]:
k2 —+o0
z' _ 2 n(¢—¢') /
4w50 E T (kop) HP (kop')e™ p<p, (2.37)
k2 —+o00
i_ (k (2) k Jn(¢—¢') > 9.
Tlweg E In(kop') H,,? (kop)e p=p (2.38)

2.3.4 Scattered and Transmitted Electric Fields

Similar to the incident field expressions in (2.37) and (2.38), we will define the

scattered and transmitted electric fields in series expansion form, respectively as

K21, <2 ,
s _ ) n(¢—¢') / /
B = e nE cn HYP (kop)e? a<p<p,p>p, (2.39)
k2[ —+o00
Ft = — dpJ, (kp)e™@=*) 0 < p<a. 2.40
© T T hen § (kp)e <p<a (2.40)

n=—

For the scattered field, our definition should include H}? (kop) term which
represents +p wave propagation. For the transmitted field, our definition should
include J,,(kp) term which represents a standing wave and also avoids a blow up
at p =0 (due to Y},). The fields are 27 periodic in ¢, so /¢~ term is inserted
to show this and to be in accordance with the incident field expressions and also

K21, : . . . :
= terms are just for convenience in calculations, which

for convenience. The — 1
WEQ

in fact could be included in ¢, and/or d,,.

14



2.3.5 Boundary Conditions for Electric Fields

The tangential components of the electric fields are continuous at the surface of

the cylinder, due to the boundary conditions. Therefore,

El(p=a)+ E(p=a) = E(p = a),

K21, <X -

_4:*)150 n_E_: [Jn(k0a>H7(12)(koﬂl) + anff)(kroa)] eI (¢—¢')
kZI +oo /

- dpJp(ka)e™ (9—9¢')

4w50 Z Jn(ka)e )

Jn(koa)HP (kop') + ¢, H? (koa) = d,J,(ka),

Jn(koa) HS? (kop') + cnH? (Koa)

d =
" Jn(ka)

(2.41)

(2.42)

(2.43)

(2.44)

2.3.6 Incident, Scattered and Transmitted Magnetic

Fields

The radial and tangential components of the magnetic fields are derived from

the electric fields using the Maxwell’s equation:

H= —,LV x E,
Jwp
E :azEm
- 1 (A 10E, 8Ez)
=——1a,— a ,
jup \ "p dp " dp
1 10E,
H,y=——-
Jwpp O
1 OF,
Hy=—
jwp Op

(2.45)

(2.46)

(2.47)
(2.48)

(2.49)

Since Hy is the only component of the magnetic fields we will utilize in bound-

ary conditions, we are only interested in equation (2.49).

15



One important point where attention must be paid is the partial derivative of
E., with respect to p. Since in our F, definitions we have the Bessel and Hankel
functions, their derivatives should be taken with respect to the entire argument

of the corresponding Bessel and Hankel functions.

Let F(Gp) be a function representing the Bessel and Hankel functions. Then,

OF (Bp) _ 9(Bp) OF (Bp)
dp dp  9(Bp)

OF(Bp)

50 (2.50)

=

Utilizing (2.49) and (2.50), and also keeping in mind that the derivatives
are all with respect to the entire arguments, the tangential components of the

magnetic fields are obtained as follows:

. K21, 1 ‘ ,

H = -0 ko J! (kop) H'? (kop)el™ =) </ 2.51
b= " e Jorm ZOO (kop) H? (kop')e p<p, (2.51)
‘ k21, 1

H = ——0¢ ko T (k kop)ed™M@=9") > 2.52
¢ &g ot Z (kop) ( op)e’™ pP=p, ( )

kK21, 1
Hj=—-= ko Z cnHY (kop)e™ =) a<p<p,p>/p, (2.53)

_40050]0)#0 e
K2I, 1
H! = — —k dpJ! (kp)e’™=¢) 0 < p<a. 2.54
I <p<a (25)

n=—oo

2.3.7 Boundary Conditions for Magnetic Fields

The tangential components of the magnetic fields are continuous at the surface

of the cylinder due to the boundary conditions. Therefore,

Hi(p=a)+ Hy(p=a) = Hi(p=a), (2.55)

K3, 1
 dweg jwi

ko Z [J’ (koa) H2 (kop') + en H? (ko a)} pin(é—4')

n=—oo

_ kgl 1, Z d,J! (ka)e™ =) (2.56)
" dweg jwp ’ '

n=—oo
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k ,
u—o [J,g(koa)H,?)(kop’) + ¢, H® (k:oa)] = SdnJ;L(k;a). (2.57)
0
Expressing
k_kyvime _k J& Rl (2.58)
B oo fhe po\ pr po €

where ( = +/p./e, as previously defined in (2.31), and substituting (2.58) in
(2.57), we get:

¢ koa) HP (hop!) + e ) (ko) | = duiT, (ka), (2.59)

¢ [J;L(koa)Hg)(kop’) + anS”(koa)}
d, = TR . (2.60)

2.3.8 Simultaneous Solution of the Boundary Conditions

for Electric and Magnetic Fields

Now we have two equations for d,,: (2.44) and (2.60), which are derived from the
boundary conditions for the electric and magnetic fields, respectively. Our next

step will be to equate these equations:

(ko) HR (kop!) + e HP (koa) € [Jlb(koa)Hff)(kop’) + e, YY) (koa)]

n = T (ka) - J! (ka) ’
(2.61)
Tl (ka) [T, (koa) H (kop') + e H? (koa)]
= ¢J,(ka) [J;(koamf)(kop/) + an;fV(koa)} , (2.62)
J! (ka) J,(koa) H® (kop') + ¢ J! (ka) H'? (koa)
= (Jn(ka)J! (koa) H'® (kop') + cnCJn(ka) H (koa), (2.63)

cnd" (ka)H'® (koa) — cnCJn(ka)H® (koa)

= Cu(ka)J;, (koa) H? (kop') = J,,(ka) Ju(Koa) HP (kop'),  (2.64)

17



Cn [J,ﬁb(ka)Hq(l2)(koa) — CJp(ka)HD (ko)

= (Ju(ka)J;, (koa) H? (kop') — J;,(ka) Ju(Koa) HP (kop'),

CJu(ka) Ty (koa) H? (Kop!) — Jp(ka).Ju(Koa) Hi (op')
J! (ka)HP (koa) — ¢ Jn(ka)H (koa)

Cp = )

CJn(ka)J) (koa) — J) (ka)J,(koa)

n — 7 Hy(LQ) K pl ;
T (ka)HY (koa) — ¢ (ka) HY (koa) kot )

where d,, can be found from (2.44)

Jn(koa)H,?)(kop’) + an,QQ)(koa)

dn = ’
Jn(ka)

or from (2.60)
C T (koa) HP (kop') + cn HY (Koa)

dn = T (ka)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

Now, the incident, scattered and transmitted electric and magnetic fields can

be calculated using (2.37)-(2.40) and (2.51)-(2.54), respectively.

Remark: Note that, since the electric line source is placed outside the meta-

material cylinder, when applying the boundary conditions for electric and mag-

netic fields at p = a, (2.37) and (2.51) are used, respectively. If the line source

is placed inside the cylinder, boundary conditions should be written using (2.38)

and (2.52).

2.3.9 Calculation of the Radiation Patterns

To calculate the radiation patterns, the following large argument approximation

for Hankel functions of the second kind is used:

[ 2 .
lim H® (ko) = + | —— ¢ ilkop—m/d=n(m/2)]
Ko p—r00 n ( 0:0) Wk?op

18

(2.70)



The total electric field for p > p’ can be written as:

k_QIe +o0 | /
— 0% N [ (kop!) + ea] HE (kop)e" ).

El(p,¢) = EL(p.¢) + E:(p,¢) =

4wey .
(2.71)

Using (2.70),

k21, <X 5 o
lim E7(p, ¢) = ——0¢ T (kop) + el 1/ ~jlkop=r/4=n(r/2)] gin(é—¢')
i B2 (p,6) = = = an_OO[ (kop') + cal | e e ,

(2.72)
lim Er(p ¢) _ _ k%]e Lefj(kopfrr/@ f [J (kop/) +e ]ejn(¢>f¢/+7r/2).
kop—oo dweg \| Tkop S~ " "
(2.73)
The radiation density is:
2
B (p,9) kol? — / in(6—¢/
Wra - 1 z\M _ e Jn k . Jn(p—¢'+m/2)
) = e Tomuregng | 2 eliurl) e
(2.74)
The radiation intensity is:
RIZ | gt ri|
U(@) = pWraalp, ¢) = ———— Tn(kop | €T 2.75

2.3.10 Numerical Results

Fig. 2.3 shows the magnitude of electric field for different choices of constitutive

parameters when f = 30GHz, A\g = 0.01lm, a = Ay, p' = 1.5\, ¢' = 0°.

For DNG cases, focusing towards the line source and inside the metamaterial
cylinder is noticed. In Fig. 2.3 (a), this focusing occurs on the surface of the
cylinder. These unique focusing properties of DNG metamaterials are mainly

results of negative refraction.
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Figure 2.3: Magnitude of the electric field inside and outside the cylinder.
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2.4 Normally Incident Plane Wave Scattering
by an Infinite Length Metamaterial Cylinder:

T M* Polarization

2.4.1 Introduction

A uniform plane wave is normally incident on a metamaterial cylinder of infinite
length. The plane wave travels in the —z direction. We will examine here the
scattering and transmission by the cylinder in the case the polarization of the
plane wave is T'M?*. For the —x propagation direction and T'M?* polarization,
electric field is directed along the 4z axis and magnetic field is directed along

the +y axis. The problem geometry is given in Fig. 2.4.

2.4.2 Problem Geometry

Figure 2.4: Uniform plane wave incident on a metamaterial cylinder: T'M* Po-
larization.
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2.4.3 Uniform Plane Wave and Incident Electric Field

Let us assume that a T'M?* polarized uniform plane wave is traveling in the —x
direction. This means electric field is directed along the +z axis and magnetic
field is directed along the +y axis. Therefore the electric field can be written as
[27]

EL = Eye™" = Egeltores?, (2.76)

By wave transformations and utilizing orthogonality condition [27,28], (2.76) can
be written in the series expansion form as follows [27]:

“+o00

E! = F, Z 3" T (kop)e’™ p>a. (2.77)

n=—oo

2.4.4 Scattered and Transmitted Electric Fields

Similar to the incident field expression in (2.77), we will define the scattered and
transmitted electric fields in series expansion form, respectively, as

400
E? = E, Z ey H (kop)el™® p>a, (2.78)

E' = F, +Z 3 dpJ (kp)ed™® 0<p<a. (2.79)

For the scattered field, our definition should include H,(f)(kop) term which
represents +p wave propagation. For the transmitted field, our definition should
include J,,(kp) term which represents a standing wave and also avoids a blow up
at p = 0 (due to Y,,). The fields are 27 periodic in ¢, so e/ term is inserted
to show this and to be in accordance with the incident field expressions and also
for convenience. The 5™ terms are just for convenience in calculations, which in

fact could be included in ¢, and/or d,,.
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2.4.5 Boundary Conditions for Electric Fields

The tangential components of the electric fields are continuous at the surface of

the cylinder due to the boundary conditions. Therefore,

El(p=a)+ E(p=a) = El(p = a), (2.80)

+o0o ‘ +oo ‘
Ey Z g [Jn(koa) + an7(L2)(k0a)] eI = E, Z §"dnJ,(ka)e’™,  (2.81)
Jn(koa) + CnHr(Lz)(kOa) = dan<kCl), (2'82)

o ulkoa) + e HP (Koa)
" Jn(ka)

(2.83)

2.4.6 Incident, Scattered and Transmitted Magnetic

Fields

Utilizing (2.49) and (2.50), the tangential components of the magnetic fields are

obtained as
1 o=

H: = F, k I (kop)e™® > 2.84
é ij,uo on:Z:OO] n(kop)e pZa, ( )
1 o
HS = E, k e, H® (kop)ed™® > 2.85
& ijuo onzzoo] cn )7 (kop)e p=Za, ( )
1 = A
H = Eomk; >t (kp)e™® 0<p<a (2.86)

The derivatives in (2.197)-(2.199) are again with respect to the entire argu-

ments.
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2.4.7 Boundary Conditions for Magnetic Fields

The tangential components of the magnetic fields are continuous at the surface

of the cylinder due to the boundary conditions. Therefore,

Hi(p = a) + Hi(p = a) = Hi(p = a), (2.87)
1 +oo +oo
/ ing __ - n ! ]n¢
leu ko nz_:ooj [J (koa) + cnH (kga)] e E[)] k:nz_:oo] d,J) (ka)e

(2.88)

ko T4 (2 koo
[J (koa) + cn HY (k‘oa)} = "4, (ka). (2.89)

Ho K

Using (2.58) in (2.231),
¢ [J’ (koa) + e, H (koa)] — d,J" (ka), (2.90)

¢ [J’ (koa) + cn HE (kga)]

dn = T (ka)

(2.91)

2.4.8 Simultaneous Solution of the Boundary Conditions

for Electric and Magnetic Fields

Now we have two equations for d,,: (2.83) and (2.91), which are derived from the
boundary conditions for the electric and magnetic fields, respectively. Our next

step will be to equate these equations:

1 Julkoa) + e Hi (koa) _ ¢ [J,,L(/Coa) +CnH7(l2),<k0a)} o
t Jo(ka) - 77 (ka) : (2.92)

T (ka) [Jn(koa) + cn H (koa)] = CJp(ka) [J' (koa) + cn H® (k:oa)] o (2.93)

J! (ka)J, (koa) + cpJ' (ka)HP (koa) = T (ka)J! (koa) + culJn(ka)HP (koa),
(2.94)
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end" (ka) H'? (koa) — cnCJn(ka)HD (koa) = CJp(ka)J' (koa) — J',(ka)J, (koa),

(2.95)
Ch J;Z(k:a)HT(f)(koa) — CJn(k:a)HT(f)l(koa)] = (Jn(ka)J) (koa) — J) (ka)J,(koa),
(2.96)
o - (Jn(ka)J! (koa) — J;L(ka)(]n(k,:oa) 7 (2.97)
J!(ka)HP (koa) — ¢ Jn(ka)HS (koa)
where o
 Ju(koa) + ., Hy (Koa)
d, = T o) : (2.98)
or ,
¢ [J;(/foa> + e, HY (koa)]
d, = (2.99)

J! (ka)

2.4.9 Numerical Results

Fig. 2.5 shows the numerical results for f = 30GHz, Ay = 0.01lm, a = \y. In Fig.
2.5 (a), there are three foci close to the interface and inside the metamaterial
cylinder. In Fig. 2.5 (b), there is one dominant focus inside the cylinder, while
the other two diminish. Finally in Fig. 2.5 (c) there is one focus inside the
cylinder and another outside. Both foci are at the other side of the cylinder

(w.r.t plane wave illumination) as predicted for a DPS dielectric lens.

25
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Figure 2.5: Magnitude of the electric field inside and outside the cylinder.
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2.5 Normally Incident Plane Wave Scattering
by an Infinite Length Metamaterial Cylinder:

T E* Polarization

2.5.1 Introduction

A uniform plane wave is normally incident on a metamaterial cylinder of infinite
length, traveling in the —x direction, as in Section 2.4. We will examine here
the scattering and transmission by the cylinder in the case the polarization of
the plane wave is T'E*. For the —z propagation direction and T'E* polarization,
magnetic field is directed along the 4z axis and electric field is directed along

the —y axis. The problem geometry is depicted in Fig. 2.6.

2.5.2 Problem Geometry

Figure 2.6: Uniform plane wave incident on a metamaterial cylinder: T'E* Po-
larization.
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2.5.3 Uniform Plane Wave and Incident Magnetic Field

Let us assume that a T'E* polarized uniform plane wave is traveling in the —x
direction, which means the magnetic field is directed along the +z axis and the
electric field is directed along the —y axis. Therefore, the magnetic field can be
written as [27]

H! = Hyel*o® = Hyelkorcosd, (2.100)

By wave transformations and utilizing orthogonality condition [27,28], (2.100)
can be written in series expansion form as [27]

—+00
Hi=Hy Y  j"Ju(kop)e’™®  p>a. (2.101)

n=—oo

2.5.4 Scattered and Transmitted Magnetic Fields

Similar to the incident field expression in (2.101), we will define the scattered

and transmitted magnetic fields in series expansion form respectively as follows:

+0o0
H:=Hy Y _ jeaHY (kop)e™  p>a, (2.102)

n=—oo

+o0o
H'=Hy > j"dyJu(kp)e™ 0<p<a. (2.103)

n=—0oo

2.5.5 Boundary Conditions for Magnetic Fields

The tangential components of the magnetic fields are continuous at the surface

of the cylinder due to the boundary conditions. Hence,

Hi(p=a)+ H() = Hip = a), (2.104)
+o0 A +o0 -
Hy > §" [Ja(koa) + ca HP (Koa)] € = Hy >~ j"d, Jo(ka)e™,  (2.105)
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Jn(koa) + ey H? (koa) = dy, J,(ka), (2.106)

g - I (koa) + ang)(koa)
" Jn(ka)

(2.107)

2.5.6 Incident, Scattered and Transmitted Electric Fields

The radial and tangential components of the electric fields are derived from the

magnetic fields using the Maxwell’s equation:

1
E=—VxH, (2.108)
Jwe
H=3a,H, (2.109)
1 (. 10H, _ 0OH,
E = — a’p__ — a¢) y (2110)
Jwe \ "p 09 dp
1 10H,
= ——— 2.111
P ]wgp a¢ ’ ( )
1 0H,
E, = __ L of. (2.112)
Jjwe Op

Since Ey is the only component of the electric fields we will utilize in boundary

conditions, we are only interested in equation (2.112).

Utilizing (2.112), tangential components of the electric fields are obtained as

. 1 iy .
E! = H, k " (kop)e’™® > 2.113
o= Ho—— on:ZOOJ " (kop)e’™ p > a, (2.113)
B = H, k e, H® (kop)el™® > 2.114
5= Ho— on:ZOOJ e HY (kop)e’™  p > a, (2.114)

1 &=

t_ o Tt g i

B, = Hongkzn;ooj d,J, (kp)e’ 0<p<a. (2.115)
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2.5.7 Boundary Conditions for Electric Fields

The tangential components of the electric fields are continuous at the surface of

the cylinder due to the boundary conditions. For this reason,

Ei(p=a) + Ej(p = a) = Ej(p = a), (2.116)
1 +00 +oo

Hojws ko Z [J (koa) + c, H'? (koa)} e = Hoﬁk Z i"d,J! (ka)el™,
- ) (2.117)

k k
o [J’ (koa) + cn H' (koa)} = Y4, (ka). (2.118)

o g

Expressing,
k_Koviner ko i _ ko (2.119)
£ o E&p o Er €0

and substituting (2.119) in (2.118),

J! (koa) + e, HY (koa) = dnCJ! (ka), (2.120)

J! (koa) + ¢, H, (k:oa)
CJJL(/’W)

d, = (2.121)

2.5.8 Simultaneous Solution of the Boundary Conditions

for Magnetic and Electric Fields

Now we have two equations for d,: (2.107) and (2.121), which are derived from
the boundary conditions for the magnetic and electric fields, respectively. Our

next step will be to equate these equations:

Tu(koa) + cn HY (koa)  J!(Koa) + e HY (koa)
Jn(ka) B ¢J! (ka) ’

d, = (2.122)

I (ka) [Jn(koa) + co HE (koa)] = J,(ka) [J’(koa)+an ‘(koa)|,  (2.123)

CJ! (ka) T, (koa) + e (ka)HP (koa) = J,(ka)J! (koa) + cpJp(ka)HY (koa),
(2.124)
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eI (ka)HD (koa) — coJn(ka)HD (koa) = J,(ka)J! (koa) —

cn [CT (ka) H® (koa) — J, (ka)H®) (koa)] = J,(ka)J. (koa) —

In(ka) T}, (Koa) — ¢J;, (ka)Jn (koa)

T T (k) H (koa) — Ju(ka) HY (ko)

where
Jn(koa) + cn H (Koa)
Jn(ka) ’

d, =

or
J! (koa) + e HY (koa)
¢Jy(ka)

dy =

2.5.9 Numerical Results

Using duality, interchanging g, and e,, the same results in Fig. 2.5 can be

obtained (for magnitude of the magnetic field).
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¢Jn(ka)Ju(koa),
(2.125
(Jn(ka)Ju(Koa),
(2.126)
(2.127)

(2.128)

(2.129)



2.6 Infinite Length Metamaterial Coated Con-
ducting Cylinder Near an Infinite Length

Electric Line Source: T'M~* Polarization

2.6.1 Introduction

An infinite line of constant electric current is placed in the vicinity of an infi-
nite length metamaterial coated conducting cylinder. The scattering and trans-
mission by the metamaterial coated conducting cylinder is examined for T M~

polarization. The problem geometry is shown in Fig. 2.7.

2.6.2 Problem Geometry

A)

Figure 2.7: Metamaterial coated conducting cylinder near an electric line source
(Cross section view).
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2.6.3 Electric Line Source and Incident Electric Field

For the line source of constant electric current, I, in Fig. 2.7, the electric field
generated everywhere by the source in the absence of the cylinder is given as [27]

BRI,

El = —
z 4w50

5 (kolp — P')), (2.130)

which is our incident electric field. By the addition theorem for Hankel functions

28], (2.130) can be written in the series expansion form as [27]

' ]{Z2[ +o00
E = — T Z Jn(kop) H (kop )™ =) p < g, (2.131)
E, = 4w€0 Z Tn(kop! YH (kop)e™ =) p > pf. (2.132)

2.6.4 Scattered and Transmitted Electric Fields

Similar to the incident field expressions in (2.131) and (2.132), we will define the

scattered and transmitted electric fields in series expansion form, respectively, as

Y
b = _40_; > e HP (kop)e™ @), (2.133)
w 0 n=—oo
L RL K jn(é—oo)
0 n=-—00

For the scattered field, our definition should include H,(f)(kop) term which
represents +p wave propagation. For the transmitted field, our definition should
include J,,(kp) and Y,,(kp) terms which represent standing waves. The fields are
27 periodic in ¢, so e/™?~%0) term is inserted to show this and to be in accordance

with the incident field expressions and also for convenience. The — 4266 terms are

just for convenience in calculations, which in fact could be included in a,, and/or

b, and/or c,.
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2.6.5 Boundary Conditions for Electric Fields

The tangential components of the electric fields are continuous on the outer
surface of the metamaterial coating, due to the boundary conditions. Also, on
the inner surface of the metamaterial coating (i.e., on the conducting cylinder

surface) tangential electric field should vanish. Therefore,

E'(p=a)=0, (2.135)
]{?21 +oo
_ 20%e Y, ge=eo)| = 2.136
o 2 lanTa(kp) +biYa(kp)] e 0, (2.136)
n=—oo p=a
anJn(ka) +0,Y,(ka) =0, (2.137)
Elp=10)+Ep=0) = E.(p=10), (2.138)
“+o0o
. kgle Z [Jn(/fob)H(Q)(ko,O/) + an(Q)(kob)} eIn(é—¢o)
4&)50 S n "
_ Rl f [ T (kD) + b, Yy, (Kb)] 7@ =%0) (2.139)
4(4)50 . nJYn ntn )
T (kob)HP (kop') + e H'? (kob) = apJ, (kb) + b, Y, (kD). (2.140)

2.6.6 Incident, Scattered and Transmitted Magnetic
Fields

Utilizing (2.49) and (2.50), the tangential components of the magnetic fields are

obtained as

. k2[ 1 +oo A

H! = — 0-e k J/ k H(Q) k / ]n(¢_¢0)7 9141

¢ 40}80 ]wluO On_z_:oo n( OP) n ( 0P )6 ( )
gL 1L &

s — e k nH(Q) L in(é—d¢o) 9 149

P70 2 I (o) (2.142)
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kI, 1 X .
R " (k b, Y!(kp)] e?™¢—%0) 2.14
4(4)80 jwﬂ Z [aan< 10) + n n( p)] € ( 3)

n=—oo

T _
H(z)—_

2.6.7 Boundary Conditions for Magnetic Fields

Tangential components of the magnetic fields are continuous on the outer surface

of the metamaterial coating, due to the boundary conditions. Therefore,

Hy(p="0b)+Hi(p=1b) = Hi(p="0), (2.144)
K21, 1 <3
- —k T (kob)H® (kop') + cnHP (kob) | e7m(6—90)
Lo T 2 [ ) + eI ()]
K2l 1 <X
=Lk T (k) + b, Y (kb)] ™99 (2,145
dweg ]W,U Z [(Z n( ) + n( )] € ) ( )

n=—0oo

k , k
2T (kob) HP (kop') + cn HP (k;ob)} =~ JanJ, (kb) + b, Y (kb)].  (2.146)
Ho K

Substituting (2.58) in (2.146),

CJ (kD) H® (kop') + cnCHP (kob) = anJ!,(kb) + b, Y, (kb). (2.147)
2.6.8 Simultaneous Solution of the Boundary Conditions
for Electric and Magnetic Fields

Now we have three unknowns and three equations. Rearranging equations

(2.137), (2.140) and (2.147) we get:

Jn(ka)a, + Y, (ka)b, =0, (2.148)
Jn(kb)ay, + Y, (kb)b, — H® (kob)c,, = J(kob)H'? (kop'), (2.149)
J! (kb)ay + Y (kb)b, — CH® (kob)cn = CJ! (ko) H® (kop'), (2.150)
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which can also be written in matrix form as:

Jn(ka) Y,(ka) 0 a, 0
Jo(kb)  Yu(kb)  —H (kob) bo | = | Ju(kob)HP (Kop')
Th(kb) Yi(kb) —CH (kob) | | cn ¢ (kob) HA? (kop)

. (2.151)

Using Symbolic Math Toolbox of MATLAB, the solution to this system of

equations can be found as:

(Yolka) [HP (kob) T, (kob) = HY (kob).Ju(Kkob) |

H® (kop'
Qp, D n ( Op)a
Cn () [ (ob) S (kob) — T, (kob) (b

bn = HT(L2) (kopl)a
D
N
Cp = 5H722)<k’0p,)7
where

N = J,(kob) [ (ka)Y! (kb) — J'. (kb)Y (ka)]

_CJq,z(kOb) [Jn(ka)yn(kb> - Jn(kb)Yn(ka)] )

D = CHD (kob) [Jn(ka) Y, (kb) — J, (kb)Y (ka)]

—H® (kob) [J,(ka)Y, (kb) — J (kb)Y (ka)] .

Using the following Wronskian will further simplify a,, and b,:

_ 2
oqx

Jo(@)HY () = J, (2) HP (2)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

2.6.9 Electric Line Source Inside the Metamaterial

Coating

When the electric line source is placed inside the metamaterial coating, the for-

mulation given up to here has to be modified. This is mainly due to the electric
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field definition of the electric line source. Utilizing the previous procedure, it can

be seen that (2.137), (2.140) and (2.147) have to be modified as
Ju(ka)H? (kp') + anJn(ka) + b, Y, (ka) = 0,

Jo(kp YH® (kb) + apnJ, (kb) + b, Yo (kb) = ¢, H'? (kob),
Jo(kp'YHP' (kb) + aynJ',(kb) + b,Y! (kb) = ¢, CH'® (kob),

respectively. The system of equations can be written in matrix form as

Jo(ka) Y, (ka) 0 n — Jp(ka)HS? (kp')
Jo(kb) Yu(kb)  —HP (kob) bo | = | —Julkp)HP (kD)
JL(kb) Y (kb) —CHE (kob) cn — J(kp" HY (kb)

(2.158)

(2.159)

(2.160)

. (2.161)

Using Symbolic Math Toolbox of MATLAB, the solution to this system of

equations can be found as
A+ A
D )

Ap =

B, + By

bn: )
D

L _G+ Gt G
n - D )

where

A = [H (kob) Y,/ (kb) — CHI' (kob) Yo (kD) | Ju(ka) HZ (k).

Ay = |CHP (kO H (kob) — HP (kb)HP) (kob)| Yo (ka) Ju k).
By = [CIa (k0 B (kob) = T (kD) H (kab) | T, (ka) B (k).

By = [H® (kob) HE (kb) — CHP' (kob) B (kb) | T (ka) Ju (),
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(2.163)

(2.164)

(2.165)

(2.166)

(2.167)

(2.168)



Cy = [Jn (kb)Y (kb) — J' (kb)Y (kb)] J,(ka)H® (kp'), (2.169)

Cy = Yo (ka)J' (kb) — Y (kb)J,(ka)] J,(kp')H'® (kb), (2.170)
Cy = [Jn(ka)Y, (kb) — J,(kb)Y,(ka)] J,(kp')H® (kb), (2.171)

D = CHD (kob) [Jn(ka) Y, (kb) — J, (kb)Y (ka)]

—H® (kob) [J,(ka)Y, (kb) — J (kb)Y (ka)] . (2.172)

2.6.10 Numerical Results

Some of the numerical results are shown in Fig. 2.8 for f = 30GHz, \y = 0.01m,
a = 0.5X, b = Ao, p = 15X\, ¢ = 0°. In Fig. 2.8 (a) there is a strong focus
on the outer surface of the metamaterial. In Fig. 2.8 (b), focus point moves
inside the cylinder. Finally in Fig. 2.8 (c) for the DPS case no focusing can be

observed.
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Magnitude of the Electric Field Inside and Outside the Cylinder
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Figure 2.8: Magnitude of the electric field inside and outside the cylinder.

(a)-(b) & = —1, 11, =

-1, (¢)-(d) &, = =2, p, =

-2, (e)-(f) e, =2, ptp =2
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2.7 Normally Incident Plane Wave Scattering
by an Infinite Length Metamaterial Coated

Conducting Cylinder: T'M~* Polarization

2.7.1 Introduction

A uniform plane wave is normally incident on a metamaterial coated conducting
cylinder of infinite length. The plane wave travels in the direction which makes an
angle ¢y with the +x axis. We will examine here the scattering and transmission
by the metamaterial coated conducting cylinder in the case the polarization of
the plane wave is T'M?*. In the numerical results of this section, the angle of
incidence ¢ is selected as 7w. This corresponds to a plane wave traveling in the
—x direction, which is the case we have investigated in Section 2.4. The problem

geometry is depicted in Fig. 2.9.

2.7.2 Problem Geometry

yu

Plane Wave

Figure 2.9: Plane wave normally incident on a metamaterial coated conducting
cylinder.
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2.7.3 Uniform Plane Wave and Incident Electric Field

Let us assume that a T'M? polarized uniform plane wave is traveling in the
direction which makes an angle ¢y with the +x axis. Electric field is directed

along the +2z axis. Referring to Figure 2.9 the electric field can be written as
E: = Ege ikol@cosdotysindo) (2.173)

where

T =pcoso ,y = psina@. (2.174)

Therefore,

Ei — Eoefjko(p cos ¢ cos ¢p—+p sin ¢ sin ¢g)
z

Y

_ —jkop(cos ¢ cos ¢po+sin ¢ sin ¢o
= Fye ( )7

= EyeIkopcos(9—¢o) (2.175)

The plane wave can be represented by an infinite sum of cylindrical wave

functions:

+oo
B! = Eyehopcosto=co) — [ Z anJy (kop)e?™® (2.176)

since it must be 27 periodic in ¢ and finite at p = 0. Our next step is to find the
coefficients a,,. Multiplying both sides of (2.176) by e/™?, where m is an integer,

and integrating from 0 to 27,

+oo

2 21
Eo/ e—j(kop008(¢—¢o)+m¢)d¢ — Eo/ [ Z aan(kgp)ej(”_m)¢] do. (2.177)
0 0

n=—oo

Dropping ‘Ey’s and interchanging the integration and summation, we have

—+00

2 27
/ ¢~ (kopcos(é—do)tms) 74 Z aan(kop)/ eI =m)d g, (2.178)
0 0

n=—oo

Utilizing the orthogonality condition of

e 2r, nm=m
/ dmmdp = : (2.179)
0
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the right hand side of (2.178) reduces to

+oo

2
Z aan(kJOp)/ M Ap = 2a, Jp (kop). (2.180)

0

Using the integral of
2
/ e otndgy = o ], (2), (2.181)
0

and by a simple transformation ¢ = ¢ — ¢y, the left side of (2.178) can be written

as
2w
/ e—j(k’opCOS(¢—¢0)+m¢)d¢ — e_jm¢02ﬁj_mj_m(—kop). (2.182)
0
Since
T () = (=1 T (), (2.183)
and
Tn(=2) = (=1)™ (), (2.184)

(2.182) can be written as

2m
/ efj(kop608(¢f¢o)+mq5)d¢ — e*jm¢027rj*mj,m(—k0p),
0

= e 7m0 7™ ] (kop). (2.185)

Using (2.180) and (2.185) reduces (2.178) to

eI i ] (op) = 27 T (Kop).- (2.186)

Thus

Ay = eI, (2.187)

Therefore (2.176) can be written as

B = Eye-ihopcos(o—on)
z Y

—+00

= F Z anJn(kop)e?™,

n=—oo

—+00

=Ey > " Tulkop)e™=%), (2.188)

n=—0oo
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2.7.4 Scattered and Transmitted Electric Fields

Similar to the incident field expression in (2.188), we will define the scattered

and transmitted electric fields in series expansion form, respectively as follows:

+oo
E:=Ey Y  j e HP (kop)el™ =), (2.189)
+oo .
E!=FEy Y 7" [andu(kep) + b Yo (kep)] €070, (2.190)

2.7.5 Boundary Conditions for Electric Fields

The tangential components of the electric fields are continuous on the outer
surface of the metamaterial coating, due to the boundary conditions. Also, on
the inner surface of the metamaterial coating (i.e., on the conducting cylinder

surface) tangential electric field should vanish. Therefore,

E(p=a)=0, (2.191)

+o00 ‘
Ey Y 57" [andn(kep) + bpYa(kep)] "7 =0, (2.192)

n=—0oo p=a

anJp(kea) + b, Yo (kea) =0, (2.193)
Elp=0b)+E(p=1b) = E.(p=0), (2.194)

+oc0 )

Ey > 7" [Ju(kob) + coH (kob)] em(#=%0)
+o00 '

=Eo Y j7" [anJu(keb) + b Yo (keb)] "¢ (2.195)
Tn(kiob) + cn H) (ob) = anJn(keb) + by Yy (keb). (2.196)
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2.7.6 Incident, Scattered and Transmitted Magnetic

Fields

Utilizing (2.49) and (2.50), the tangential components of the magnetic fields are

obtained as

H} = By—ky Z G (kop)ed™ @), (2.197)
]CUM n=-—oo
+o0 A
H; = EOJW ko Y e HE (op)el™ o), (2.198)
ot Z 5" Jan ) (kep) + b Yy, (ep)] €070, (2.199)

2.7.7 Boundary Conditions for Magnetic Fields

Tangential components of the magnetic fields are continuous on the outer surface

of the metamaterial coating, due to the boundary conditions. Therefore,

Hy(p="b)+ Hy(p=1b) = Hy(p=1), (2.200)

1 o2

[ g in(6—o)
Eyhy n_zoo j [Jn(kob) +oe HC (kob)] e
= Eo—k Z G JanJ" (kb) + b Y (keb)] €™9=%)  (2.201)
ke
. [T (ob) + ea B (ko) | = Lo () b, () (2.202)
0
Using (2.58) in (2.231),

CJ! (kob) + cnCH (kob) = apJ' (kb) + b,Y,! (keb). (2.203)
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2.7.8 Simultaneous Solution of the Boundary Conditions

for Electric and Magnetic Fields

Now we have three unknowns and three equations. Rearranging equations

(2.228), (2.222) and (2.232) we get

Jo(kea)an + Yy, (kea)b, = 0, (2.204)
T (keb)an + Yo (keb)by, — H'P (kob)en = Jn(kob), (2.205)
J! (kb)an + Y! (k)b — CH® (kob)e, = CJ' (kob), (2.206)
or in matrix form
[ T (k) Y (kea) o |lal] [ o |
Jn(ked)  Yi(keb)  —HY (Kob) by | = | Ju(kod) | . (2.207)
Ti(keb) Yi(keb) —CHP (kob) | | e ¢ (ko)

Using Symbolic Math Toolbox of MATLAB, the solution to this system of

equations can be found as:

(Vo) [ (ob) Ty (o) — HE (kob) Jn b))

Ay = 5 : (2.208)

CJ(kea) [Jn(kob)Hff)’(kob) - J,g(kob)m?’(kob)}
b, = : (2.209)

D
Cp = %, (2.210)
where

N = Jy(kob) [Jn(kea) Yy (kcb) — J (keb) Ya (Kea))

— (T (kob) [T (Kea) Yy (keb) — T, (kb)Y (Kea)] (2.211)
D = CHD (kob) [Jn (ko) Yy (keb) — Ty (kb)Y (kea)]

— H? (kob) [Jn(kea) Yy (keb) = Jy,(keb) Yo (Kea)] (2:212)
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Using the following Wronskian will further simplify a,, and b,:

To()H® () = J' () HO(2) = ;—? (2.213)

2.7.9 Numerical Results

Fig. 2.10 shows some of the numerical results when f = 30GHz, Ay = 0.01m,
a = 0.5)g, b = A\o. In Fig. 2.10 (a) there are two foci: one of them is inside the
metamaterial and the other one is outside. In Fig. 2.10 (b) there are three foci
inside the metamaterial close to the conducting cylinder. In Fig. 2.10 (c) the

foci are distributed inside the cylinder. Though, one of them is stronger.
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2.8 Normally Incident Plane Wave Scattering
by an Infinite Length Metamaterial Coated

Conducting Cylinder: T'E* Polarization

2.8.1 Introduction

A uniform plane wave is normally incident on a metamaterial coated conducting
cylinder of infinite length. The plane wave travels in the direction which makes an
angle ¢y with the +x axis. We will examine here the scattering and transmission
by the metamaterial coated conducting cylinder in the case the polarization of

the plane wave is T E*. The problem geometry is depicted in Fig. 2.11.

2.8.2 Problem Geometry

ya

Plane Wave

Figure 2.11: Plane wave normally incident on a metamaterial coated conducting
cylinder.
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2.8.3 Uniform Plane Wave and Incident Magnetic Field

Let us assume that a T'E* polarized uniform plane wave is traveling in the direc-
tion which makes an angle ¢, with the +x axis. Magnetic field is directed along

the +z axis. Referring to Figure 2.11 the magnetic field can be written as
H! = Hye dko(wcosgotysingo) (2.214)

where

T =pcoso ,y = psin¢. (2.215)

Therefore,

i __ —jko(p cos ¢ cos po+psin ¢ sin ¢g
H! = Hye kol ).

_ —jkop(cos ¢ cos po+sin ¢ sin ¢g
= Hye ( )7

= Hye Tkopcos(é9=¢o), (2.216)

Following the same procedure in Section 2.7, incident magnetic field can be
written as
H — Hoefjkopcos(qum)
z )

+oo

=Hy Y j7"Ju(kop)e™ @40, (2.217)

n=—oo

2.8.4 Scattered and Transmitted Magnetic Fields

Similar to the incident field expression in (2.217), we will define the scattered

and transmitted magnetic fields in series expansion form respectively as follows:

+oo
H? = Hy Z Jren HP) (Kop)e?™ =), (2:218)
+o00 '
H!=Hy > 7" [anTu(kep) + bnYa(kep)] €070, (2.219)
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2.8.5 Boundary Conditions for Magnetic Fields

The tangential components of the magnetic fields are continuous on the outer

surface of the metamaterial coating, due to the boundary conditions. Therefore,

Hi(p="b)+ H(p="0)=H/p=0), (2.220)
“+oo
Hy Y §7" [Ju(kob) + cnHL (Kob)] em=0)
+o0 '
= Ho Y " landn(keb) + b Yy (keb)] (@790 (2.221)
T (kob) + e H® (kob) = apJn(keb) + b, Y, (keb). (2.222)

2.8.6 Incident, Scattered and Transmitted Electric Fields

Utilizing (2.112) and (2.50), the tangential components of the electric fields are

obtained as

. -1 = ,
E' = H, k =T (kop)e™ (@ %0) 2.223
o= Hooro! onz_ooj n(kop)e : (2.223)
] oo ,
Ey=Hy—ko Y j "caHP (kop)e™®=%), (2.224)
JWeo n=—oo
k: Z 7 [an ) (kep) + b, Y, (kep)] e™(@7%0), (2.225)

2.8.7 Boundary Conditions for Electric Fields

The tangential components of the electric fields are continuous on the outer
surface of the metamaterial coating, due to the boundary conditions. Also, on
the inner surface of the metamaterial coating (i.e., on the conducting cylinder

surface) tangential electric field should vanish. Therefore,

Ej(p=a)=0, (2.226)
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-1 ,
Hy—k, " [an ! (kep) + b Y (kep)] €m@—90) | =0 2.227
ijg n_z J [a n( p)+ n( p)]@ ) ( )

=—00 p=a
anJ) (kea) + b,Y, (k.a) = 0, (2.228)
Ei(p="b)+ Ej(p=0) = Eg(p =), (2.229)
-1 oo
Ho——F | T kob) + e HE (kob) | 7760
OjCU&To On:ZOOj n( 0 )+C n ( 0 ) €

_1 —+00 A
- H—— o T ' n(é—po)
= Hongkc E_OOJ [an ) (keb) + b, Y (keb)] ™ P~%0)  (2.230)

n—=

]{7 ! kc ! !/
=2 [ tkob) + 0 HP (kob) | = = an Ty (eb) + b Y, (Fcb) (2.231)
0
Using (2.119) in (2.231),
J! (kob) + cn H'P (kob) = anCJ.,(keb) 4 baCY, (kcb). (2.232)

2.8.8 Simultaneous Solution of the Boundary Conditions

for Electric and Magnetic Fields

Now we have three unknowns and three equations. Rearranging equations

(2.228), (2.222) and (2.232) we get

J! (k.a)a, + Y (kea)b, = 0, (2.233)
T (keb)an + Yo (kb)by, — HP (kgb)en, = Jn(kob), (2.234)
CI! (keb)an + CY (kb)b, — HP' (kob)cy = J (kob), (2.235)
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or in matrix form

J (kea)  Y!(k.a) 0 an 0
Jn(kd)  Yo(kb) —HY (kob) by | = | Ju(kob)
CI(keb) CYolkeb) —HZ (kob) | | e T (kob)

(2.236)

Using Symbolic Math Toolbox of MATLAB, the solution to this system of

equations can be found as:

i (kea) [ (kob) T, (kob) — H (kob) Ju (o)

Ay —

D Y
Ta(ca) [ (kob) L (kob) — J (o) H (kob)|
bn = ’
D
_N
CTL - D’

where

N = T (kob) [T, (ko) Y, (keb) — T, (k)Y (k)]

_J;z(kOb) [J;z(kCOJ)YH(kcb) - Jn(kcbn/;;(kca)] )

’

D = HP (kob) [, (kea) Yy (keb) — Jn (kb)Y (kea)]

—CHP (kob) [, (kea) Yy (keb) — T, (kb)Y (Kea)]

Using the following Wronskian will further simplify a,, and b,:

T B (@) = T () B (2) = —L

o2

(2.237)

(2.238)

(2.239)

(2.240)

(2.241)

(2.242)



2.9 Obliquely Incident Plane Wave Scattering
by an Infinite Length Metamaterial Cylinder:

T M* Polarization

2.9.1 Introduction

A uniform plane wave is obliquely incident on a metamaterial cylinder of infinite
length. The plane wave travels in the direction which makes an angle ¢y with
the +x axis and 0, with the —z axis. We will examine here the scattering and
transmission by the metamaterial cylinder in the case the polarization of the

plane wave is T'M*. The problem geometry is depicted in Fig. 2.12.

Figure 2.12: Uniform plane wave obliquely incident on a metamaterial cylinder:
T M? Polarization.
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2.9.2 Incident, Scattered and Transmitted Electric Fields

(z components)

Referring to Fig. 2.12, the incident electric field can be written as

E' = (@, E cos 0y cos ¢o + a, Ey cos 0 sin ¢y + a, Ey sin )

‘e—jkoxsin 6o cos qﬁoe—jkoysin 0o sin ¢oejkoz COSG()’ (2243)
also since x = pcos ¢ and y = psin ¢, the z component of the electric field can
be expressed as

E; _ EO sin eoefjkopsmeo(cosq&cos ¢o-+sin ¢ sin ¢0)€jkgz cos Oy

_ EO sin eoefjkopsin 0o cos(qﬁf(ﬁo)ejkoz cos Og ) (2244)

In Section 2.7 Eqn. (2.188), we have previously derived that

E e—]kopcobqﬁ ®0) EO Z ] —nJ k’ p 6]”((15 <75O) (2245)

n=—oo

Utilizing (2.245), (2.244) can be written as

E! = Ejsin etz cosbo Z G T (kopsin ) el @=%0), (2.246)

n=—oo

Since the cylinder is of infinite length, the fields are periodic in the z direction
and vary according to the factor e/¥0<2% [29]. The z components of the scattered
and transmitted electric fields are expressed similar to (2.246) as

—+00

E$ = Ejsin fedkozcosbo Z G, H' (kgpsin f)elm(@=90) (2.247)
. +m .
E! = Eysin fyetozcosto Z G T, (kpsin 0y)ed(@= %), (2.248)

The obliquely incident wave travels both in longitudinal and transverse direc-

tions, as shown in Fig. 2.13. Due to phase matching, the propagation constant in
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ZA

k=-kcosg] & Kk
¢ Ho E, 1

Figure 2.13: Longitudinal and transverse components of the incident and trans-
mitted fields.
the longitudinal direction, k., should be the same for free space and metamaterial

media. Therefore,

ko cos Oy = k cos by, (2.249)

k
cosf) = ?0 cos by, (2.250)

\/1— (%)2005290 \%C0890| <1,
sinf = (2.251)

—j\/(%’)QCOSQHO—l |52 cos G| > 1,

and

ky = ksin 6, (2.252)

is the transverse propagation constant in metamaterial medium. The arguments
of the Bessel and Hankel functions in (2.246)-(2.248) basically include the trans-

verse propagation constants.

Remark: Note that, since the metamaterial medium we consider here is not

limited to only DPS metamaterials, (2.252) should not be further simplified to:

VK2 — kEcos?by % cosbp| < 1,
ky = (2.253)

—jv/k3cos? 0y — k* % cosby| > 1.
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As an example, consider a DNG medium with £ = —ky at normal incidence
(fp = m/2). Since the propagation is only in the transverse direction, (2.252)
gives k; = —kgy, which is the correct solution. However, the aforementioned

simplification in (2.253) would yield k; = ko, which is wrong.

2.9.3 Incident, Scattered and Transmitted Magnetic

Fields (z components)

Smooth perfectly conducting infinite cylinders do not depolarize obliquely inci-
dent waves. However, for scattering by dielectric or dielectric coated conducting
cylinders, depolarization is inevitable in order to satisfy the Maxwell’s equations
[27,29]. Therefore, there exist longitudinal magnetic field components for the

scattered and transmitted waves:

H! =0, (2.254)
H; = Eqsinfpe/0=c% 3" 57e, HP) (kopsin )™ (0% (2.255)
H! = FEjsin fyeikozcosto Z G Ty (kpsin 0y )™ 8=%0), (2.256)

2.9.4 ¢ Components of the Incident, Scattered and Trans-

mitted Electric and Magnetic Fields

The ¢ components of the incident, scattered and transmitted electric and mag-
netic fields are derived from their z components, utilizing Maxwell’s Equations,

in Appendix B. They are found to be:

i Eocos0y jiscosn = _p : in(¢—¢o)
By = o e 3 0 hopsin ), (2257
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EO COS 90 ]koz cos g

E;=— W H 2 k» in 6, )elH(@—o)
= ot s §5 e s
- +m -
+j Egnel*oz s o Z G H® (kopsin Oy )e™@=%0), (2.258)

E()/{Zg sin 90 COS 90 . in(p—
Et _ jkozcoseo n an n k smH ejn(¢ ¢0)
¢ ka sin 91 n_z_oo j P 1)
sin 6 <=
+]E0C770 0 ,ikoz cosfo Z G ! (kpsin ;) e’ (¢=¢o) (2.259)
1 =—00
' E +oo
Héﬁ o 0 ]kgzcosﬁ() Z j n kO,O sin 90)(3] (p— ¢0) (2260)
s EO cos 90 ]k zcos 0 2 Jn(¢—ao)
—edtozcosto Z 57" en HEY (kopsin fg)e?™ @~ (2.261)
Eykq sin 0y cos 6y . (b
Ht _ jkozcoseo " n k sin @ Jjn(¢—do)
N b
EO sin 90 ]ko o
z cos n k 9 Jn(e— ¢0) 2.962
T s, nz_oo] anJ; (kpsin ;e ( )

2.9.5 Boundary Conditions and Their Solution

Tangential components of the electric and magnetic fields should be continuous

on the surface of the metamaterial cylinder. Therefore,

El(p=a)+Ei(p=a) = Ep = a), (2.263)
Hi(p=a)+ H:(p=a) = H(p=a), (2.264)
Ei(p=a)+ E(p=a)=E,(p=a), (2.265)
H(p=a)+ Hj(p=a)=Hp=a), (2.266)
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which leads to

Jn(koasin Oy) + anT(LQ)(koa sinfy) = anJy,(kasinb,), (2.267)
an (koa sinfy) = anJy,(kasinb,), (2.268)
E, cos by ) Ey cos 6y
————nJ,(k 00) — ———nc, HP (k 0 Eonoc, H?' (K 6
kQCLSil’IQOan( oasinby) — Foa i o ( oasinby) + jEgnocy (koa sin 0y)
Eokgsin 6 0 0o -
- Osm' 02cos % nayJ, (kasin 6, ) —|—]E0C770S1n Can ! (kasin6,), (2.269)
k2a sin” 0, 0
E E Oy E
—i—=2J" (koasin ) — wncn[{ (koasinby) — j—c, H? (koa sin 6;)
Mo koa sin 6, Mo
Egkg sin 90 cosfy Ey sin 6,

anJ) (kasin6y). (2.270)

nayJ,(kasin0y) — j—

k2asin® 6, (no sin 0,

As we have done in previous sections, the equations are converted into matrix
form and solved. The unknown coefficients are found to be:
1
a, = —Cazkgkf sin? , sin® 6, (2.271)
[J (koasin 0) H'? (kgasin 6y) — J', (koasin 6o) H'? (koa sin 90)}

. [sin 01, (kasin 0;) H'® (kgasin 6y) — ¢ sin 0y J" (ka sin 61) H? (kya sin 00)] :

11
= JE—CCm/fok’ sin 6 sin® 6, cos 6y (2.272)
7o
. (ko sin® 0, — k? sin® 91) Jn(kasiné,)H; (kga sin 6y)

[J (koasin o) H'® (koasin 6y) — J', (koa sin ) H )(k0a51n90)],

anJp(kasin ;) — J,(koa sin 6y)

Cn , 2.273
HY (koa sin 0y) ( )
- w(kasin®;) _
= {2)( asinfy) .- (2.274)
Hy” (koasin 6y)

where
= — (Ju(kasin b))’ (HT(f) (koa sin 00))2 cos” Bgn”¢ (kg sin® 0y — k* sin” 91)2
+ [sin 01, (kasin 91)H7§2)/(k0a sinfy) — ¢ sin ByJ) (ka sin 91)H(2 (koa sin 90)}
[Q sin 6y .J, (ka sin 6;) H® (kya sin 6y) — sin 0", (ka sin 6;) H? (koa sin 90)]

a’kgky sin? 6y sin® 0. (2.275)
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2.9.6 Calculation of the Radar Cross Section

2D echo width can be found from either

. |Es|2
o= ph_)rgo 27rp|Ei|2 , (2.276)
or
Hs 2

Let us use the definition in (2.277). The magnitude of the scattered magnetic
field is

[B0°| = /32 + [HJ? + | H2 ]2 (2.278)

and the magnitude of the incident magnetic field is

, E
|H| = [Eo] (2.279)
o
From Appendix B,
Eysin6 =
HS — — 0 0 jkozcosfg .—n nH(Q) k iné Jjn(¢p—go) 2.980)
P g C 2 i e (Ropsin e (2.280)
ko cos by Eo costy ix- cos g, = : in(é—
_ z e, HP (k RGN
Wto kopsin906 nzz_oon] enHly” (Kopsin fo)e

“+o0o
_ ]{30 COS 90 EOkO ejkoz cos g Z jfnvanHT(LQ)’(kOp sin eo)ejn@’*(bo).
WHo  JWeg

n=—oo

Note that, large argument forms of the Hankel functions and their deriva-

2

tives have the spread factor of p~'/2. Therefore, the first and second terms in

(2.280) decay with p=3/2, whereas the third term decays with p~'/2 and becomes
dominant in the far zone. Therefore, when p — oo

—+00
Z G H' (kop sin By )e?m(@=90)
. +w .
— — E cos fyeitoz cosbo Z j_”_lganf)/(kopsin@o)e]”(¢_¢°). (2.281)

n=—oo

_Frocosfo Eoky i costy

s ~o
Hp ~o .
Wty Jweg
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Since when p — oo

/ 29 ) )
H,(f) (kopsinby) ~ — —J. jntlg=ikopsinbo
ko p sin 6y
(2.281) becomes
27 Ry

HS ~ EO COS eoejko(zcos%—psinﬁo)
p

Therefore,

2

]H;\z ~ | Ep|? cos® fg——————
wkop sin 0 =

We will follow similar steps for Hj:

HS = EO COS 90 ]k:oz cos g
¢ kop sin 90

n=—oo

“+oo

Z ’Cvnejn(¢*¢0)

= ~ Lin(é—¢o)
ko p sin 6y n:z_:oo Cn€ )

2

Z nj "¢, H 2 k0p81n90)6]”(¢ %o)

E
+ =9 pikozcos o Z i~ an (k‘opsm@o)e] n(¢—¢o)

JMo

When p — o0,

H¢) e]kgzcos@g § ] —n— lcn

n=—oo

~ EO jko(zCOSGO psinfp)

Mo mkop sin 00

21 2
2

[H3J* ~

“+o00

ng mkopsin by =

2j

“+o00

> e

—00

2 (kopsin 0 )e™@=%0)

—+00

2
nejn(¢—¢o)

H: = Eysinéb, eikozcos b Z j- an2 (kopsin f)e’™ (¢=go),

n=—oo
Using the large argument approximation

H (kopsinfy) ~

60

2j
wkop sin Oy

»nefjkopsm@oj

Z ch G ¢0)

(2.282)

(2.283)

(2.284)

(2.285)

(2.286)

(2.287)

(2.288)

(2.289)



when p — o0,

+o0

. i 2j G, '
H?® ~ E,sin 6 jko(zcosto—psintp) [ 2 n om0 2290
i 0 sin Gpe mkopsin O n:Z o 7 ( |

+00 2

Z Enejn(¢—¢o)

=—00

2

H?|? ~ |Ey|?sin? p——————
L | Eol Owkopsin% B

(2.291)

[ = [Hp|* + [H|* + [ HZ],
2 <= i

~ |Fyl|? cos? §p—————— ¢, ™M@= %)
|Eol Owkopsméo nz_:oo "

+oo 2

’EOP 2 Jn(p—go)
5 , g Cpe
ng  mkopsin by S

+00 2

2 3 et

mkopsin O =

Z C€Jn¢ #0)

n=—0o0

+|E0|2Sirl2 00

= |Eo|?

Z Cn e]”(d’ #0)

n=—0oo

.(2.292)

7r/<:0 psin 6 n

From (2.277),

+ 7

Jn(¢—¢o) Jn(¢—¢o)
Zce Zce

n=—oo

“+00
3 G oo

n=—oo

ko sin 6,

2
2o

eIn(é—¢o)
7 sin 6,

+n

(2.293)

The normalized (with respect to A\g) echo width is

2
+

+oo 2

Z Cnejn(¢—¢0)

n=—oo

“+oo

Z ’Cvnejn(¢—¢o)

n=—oo

2 1

7 sin 6y

o /X = (2.294)

which at normal incidence special case becomes

+oo 2

Z Cnejn(¢—¢0)

n=—oo

o/Xo == (2.295)
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2.10 Obliquely Incident Plane Wave Scattering
by an Infinite Length Metamaterial Cylinder:

TE? Polarization

2.10.1 Introduction

The solution for the T'E* polarization case can be obtained from the T'M?* case
utilizing duality. The field expressions and RCS calculations are similar to the
T M? case. Hence, in this section only key equations will be given for complete-

ness of the problem.

2.10.2 Incident, Scattered and Transmitted Magnetic

Fields (z components)

+o00
H! = Hysinfe’*> % N~ 57", (kopsin )@=, (2.296)
. +Oo .
H; = Hysinfpe’*> =% N = j7"c, H) (kopsin ) e?"(*~%), (2.297)
H! = Hysin feikozcosfo Z G T (kpsin 0y )ed™@=%0) (2.298)

n=—oo

2.10.3 Incident, Scattered and Transmitted Electric

Fields (z components)

E! =0, (2.299)
E: = Hysin Ope?™7 % N 577, H® (kopsin ) el =%, (2.300)
E! = Hysin fyeikozcost Z Gt Ty (kp sin 0y )™ 8~%0), (2.301)
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2.10.4 ¢ Components of the Incident, Scattered and

Transmitted Magnetic and Electric Fields

. Hycosty 0
Hi — eJkoz cosbo T (K On) (¢ ¢o) 2.302
o= “Topsmd’ Z nj " Ju(kopsin o )e (2.302)

n=—oo

HU COS 90 ]koz cos g

s Z 2 in(¢—do)
Mo =~ fopsinty nf_oony "enH2 (kopsin )=
JH =
_ ;270 gkoz cos O E G H (kop sin 0y )elm(@=90) (2.303)

Hykg sin 0y cos 6
H(Z: __tdoro 0 0 ]kozcoseo Z nj an kp81n91)ej"¢ o)

k2psin® 0, —
Hosind N ‘
C 0 sin 00 jk0200890 Z j_nanJ;LUf,OSin 91)6‘7”(¢_¢0)’ (2304)
Mo sin 1 n——o0
“+o00
E(Zb _ ]HOU e]kozcoseo Z g -nJ (k0p31n60)63"(¢ ¢O) (2305)

HO COS 00 ]koz cos g

s __ 2 in(¢—¢o)
By =~ k’opsmﬁo n_Z:Oonj cH kopsméo)ej 0
—+00
+j Hynge ko= costo Z i an (k0p81n¢90)e]"(¢ %o), (2.306)
Hykq sin 0y cos 6, ,
t _ _ ~10™0 0 0 jkoz cos 6, . n(d—do)
sin ¢ =
+JH0C770 00 eIhoz coslo Z G "anJ! (kpsin 6))e™@=%)  (2.307)
1 =—0C

2.10.5 Boundary Conditions and Their Solution

Tangential components of the electric and magnetic fields should be continuous

on the surface of the metamaterial cylinder. Therefore,

Hi(p=a)+ H:(p=a)=H.p=a), (2-308)
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Hi(p=a)+ H:(p=a)=H.(p = a), (2.309)

Hy(p=a)+ Hy(p=a) = Hy(p = a), (2.310)
Hy(p=a)+ Hy(p=a) = Hy(p = a), (2.311)
which leads to
Jn(koasin 0y) + anff)(k:oa sinfy) = a,J,(kasinfy), (2.312)
CnH'? (kgasinOy) = @y, J,(kasin6;), (2.313)
Hy cos b . Hy cos 6y HON
—ann(kOa sinfy) — mncn (k:oa sinfy) — j%cn (koa sin )
Hykysin 8y cos 6, Hj sin QON ,
= — k 0,) — k 0 2.314
e nayJ, (kasin 0;) jc% - 91 nd) (kasin ), (2.314)
) , . Hycosbty
jHonoJ! (koasin 6y) — —————=né, H (koasin 6y) + jHonoc, H? (k:oa sin 6)
koa sin 6,
Hokysinfgcosty sin 6y

= — . nanJn(kasin0;) +]H0C770

k2a sin? 0, and, (kasindy).  (2.315)

n 6,

As we have done in previous sections, the equations are converted into matrix

form and solved. The unknown coefficients are found to be:

1
a, = 5a2k§kf sin® 6 sin® 6, (2.316)
[J (koasinby)H,; (koasm90) J! (koasin6y)H\ (koasm%)}

. [C sin 0y J, (kasin 6;)H (kya sin 6y) — sin 6", (ka sin 6;) H? (koa sm@o)] :

1
a, = —jﬁgnoankok‘% sin 6 sin? 0, cos 6y (2.317)
. (kg sin® 0y — k? sin’ 91) Jp(kasin ;) H' (kga sin 6,)

[J (koasin 0o) H'® (koasin 6y) — J', (koa sin ) HS (kgasmﬁo)],

anJp(kasin0y) — J,(koa sin 6y)

e , 2.318
aqPY (koasin6y) ( )
kasin 6
g, = {’;)( asinty) o (2.319)
Hn (koasin90)
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where

D = — (J,(kasin6;))’ (HT(L2)(k0a sin 00))2 cos® Bgn”( (kg sin® 0y — k* sin” 91)2
+ [sin 01, (kasin «91)H7§2)/(k0a sin6y) — ¢ sin 0yJ] (ka sin 91)H7§2)(k'0a sin 90)}
. [Q sin 0y.J, (ka sin 6;) H® (kya sin 6y) — sin 0", (ka sin 6;) H? (koa sin 90)}

. a’kgky sin® Oy sin” 6; . (2.320)

2.10.6 Calculation of the Radar Cross Section

Normalized echo width can be found using (2.276) as:

2 2

—+o0 “+o0
2 1 . 1 .
=z E Jn(é—¢o) = E ~ jn(¢—do)
/%0 = msinty | | £~ o ot m [,5 oocne 0 ’ (2:321)
which at normal incidence case becomes
+o0 2
afho==] D cpelmtom) (2.322)
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2.11

2.11.1

Obliquely Incident Plane Wave Scatter-
ing by an Infinite Length Metamaterial
Coated Conducting Cylinder: T'M* Polar-

ization

Introduction

A uniform plane wave is obliquely incident on a metamaterial coated conducting

cylinder of infinite length. The plane wave illumination and polarization is the

same with Section 2.9. The problem geometry is depicted in Fig. 2.14.

Za
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Figure 2.14: Uniform plane wave obliquely incident on a metamaterial coated
conducting cylinder: T'M~* Polarization.

Due to the conducting cylinder centered at the origin, the fields inside the

metamaterial coating are written not only in terms of Bessel functions of the first

kind (i.e.

, Jn(.)) but also in terms of Bessel functions of the second kind (i.e.,
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Y,(.)), and their derivatives. This is the only difference in formulation, from

Section 2.9. Therefore, in this section only key equations are given.

2.11.2 Incident, Scattered and Transmitted Electric

Fields (z components)

E! = Ejsin etz cosbo Z G T (kopsin B)e’™ (¢=¢o) (2.323)
—+o00
E$ = Ejsin fyeitozcost Z j- an2 (kzopsmeo)eﬂw5 %0) (2.324)
+oo
E! = Eysin fyetoz st Z G [anJn(kepsinby) + b, Y, (kpsin 6;)] e™(@=90),
B (2.325)

2.11.3 Incident, Scattered and Transmitted Magnetic

Fields (z components)

H. =0, (2.326)
H; = Eysinfoe’™=% > " j7"¢, H (kopsin )@=, (2.327)

H! = Fsin fel*ozcosto Z g [%Jn(k‘cp sinfy) + b, Y, (k.psiné )] eIU$—¢0)
) (2.328)

2.11.4 ¢ Components of the Incident, Scattered and

Transmitted Electric and Magnetic Fields

7 EO COS 90 jkoz cos 6 = -—n : in(¢—do)
Fo= Thapsing, T 2 s, (2520)
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EO COS 90 ]koz cos Oy

Ly = JHO (E 0.\ eIn(d—0)
© " kopsin 0" n_z_:oo nj e (kopsinbo)e
+o0
+jE0n0€]kozcos90 Z jannHT(ZQ)/(kOp sin eo)ejn(¢>7¢>0)7
Bt o_ _Eok:o sin by cos 0y ko> cos b,
¢ k2,0 sin? 0,
Z nj- CLn n psin@l) _'_bnYn(k psnl 01)] n(é—do)
SIHGO Jkoz cos by
+J 0(770 0o,
+o00 N
DT G @ (kepsin ) + b (upsin )] €70,
i EO jkoz cos 6 -n g n(¢p—o )
Hy =~ e’ 0 Z G (kopsin ) e™ O~ %
n=-—00
Eycosty p 2
Hj = —————¢/fo#cost HO (k 0,) eI (@—0)
© " kopsin 0" n_zoo UVENC (kopsinby)e
0 eJkoz cos bo Z § ", H ko[)Slneo)@] n(é— ¢0)
H - _ Eokq sin 0y cos g b0z contl
¢ k2psin® 6,
+o00 N
: Z nj—" [5an(kasin01) + b, Y, (kepsin 6 )] pin(@—o)
EO sin 90 jkozcose()
C770 sin6,

Z J " land) (kepsinby) + bnYTi(l{; psin6)] eIn(é—do)

n=—oo

2.11.5 Boundary Conditions and Their Solution

(2.330)

(2.331)

(2.332)

(2.333)

(2.334)

Tangential components of the electric and magnetic fields are continuous on

the outer surface of the metamaterial coating. Also, on the inner surface of
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the metamaterial coating (i.e., on the conducting cylinder surface) tangential

components of the electric field should vanish. Therefore,

Ei(p=b)+ E(p=b) = E(p=b), (2.335)
Hi(p="0)+H(p="0)=Hp=b), (2.336)
Ei(p=b)+Ej(p=b) = Ei(p=1), (2.337)
Hi(p="b)+ H3(p = b) = H\(p = b), (2.338)
El(p=a) =0, (2.339)
El(p=a) =0, (2.340)

which leads to

I (kobsin Oy) + an (k:ob sinfy) = anJy(kbsindy) + b, Y, (kbsinby), (2.341)

G H® (kobsin 6g) = @y (kb sin ) + b, Yy, (kebsin 6y), (2.342)

FEycos ) Eycos b

_mnjn(k‘ob sin 6y) — m 2 (kobsin g) + j Eonocy H?' (kobsin ;)
Eykosin 6y cos 0, . Eykosin 6y cos 8, _
= — ndn(kebsinfy) — - b, Y, (k.bsin 0
k2bsin® 6, nan Ty (kb sin b1) k2bsin? 6, " (b sin61)
0 0
+j 0<n081n00~ T (kebsin 61) + j EoCro’. ngob Y/ (kbsin6;), (2.343)
E . FEycosly E,
—jn—oojfl(k:ob sinfy) — mncn[{ (kobsin Oy) — jn—;)an "(kobsin 6;)

Eok() sin 80 COS ‘90 ~ E()]{?O sin 80 COS 00

— tnp (kebsin 6 b, Y, (kbsin 6
k2bsin? 6, (kebsin 1) — k2bsin? 6, " (kebsin6)
E() sin 90 y E() sin 80 / .
o (kebsin 6y) — b, Y (kobsin 6y), 2.344
I o sing, Jn(kcbsin 67) jCﬁo o, o (kcbsin6r) (2.344)
anJy(keasiny) + b,Y, (k.asinby) =0, (2.345)
Eok() sin 90 COS 90 . Eok?o sin 80 COS 90 .
_ asin®, nayJ,(k.asin ;) — KZasin? 0, nb, Y, (k.asin 6;)
Oo - 0
+BoCo= Sin 90 wTh(keasin6) + j EoCro= Sin 9% Y/ (keasing) =0.  (2.346)
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As we have done in previous sections, the equations are converted into matrix

form and solved. The unknown coefficients are found to be:

ay = —%Yn(kca sin 0)Ckak1b* sin? 6 sin® 6, (2.347)
[Jn(kobsmeg)H (kobsin ) — J' (kob sin o) H (kobsmeo)]
<sm91H "(kobsin 6p)

NJn(kebsind)Y, (keasin€y) — J) (keasin6y)Y,, (k.bsin 0;)]
—(sinfyH (/{:Obsm o)

I (kebsin0)Y, (keasinby) — J), (keasin6,)Y, (k.bsin 01)}>

~ 1
= j E—Cbnkolﬁ sin 0 sin® 0; cos 6, (2.348)
Mo

. (k3 sin® 0y — k2 sin? 01) Y. (k.asin 0;) HP (kobsin 6,)
N (keasin0)Y, (kbsindy) — J,(kebsin6,)Y,, (k.asin 0;)]

[J (kobsin 8o) H® (kobsin ) — J' (kobsin 6o) H2 (kobsmeo)],

I (keasin 6y)
= 2.34
On Yn(kcasinﬁl)am (2.349)

~ J! (keasin 91)
=0+ 2.
b Y/ (keasin 91) (2:350)

a Jn(k?chiIl 01) + bnYn(k’cb sin ‘91) - Jn(k?()b sin ‘90)

Cp = — , 2.351
Hr(LQ)Ufob sin 60) ( )

— Gndn(kebsinby) + b, Y, (kebsin 6;)
Cp = o & (2.352)

Hy” (kobsin 6)
where

D = Dy + Ds, (2.353)
Dy = ¢ cos gn® (H® (kobsin ) (k2 sin? 6y — k2 sin® 6 ) (2.354)

N (kebsin0y) Y, (keasin 0y) — J, (keasin0y)Y,, (k.bsin 0;)]

NJn(kebsin0)Y,) (keasin€y) — J) (keasin6,)Y,, (k.bsin6;)],

n
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Dy = —b*k3 ki sin? 6y sin? 0, (2.355)
) (J;L(k‘ca sin 6,) [sin 0,Y,, (k.bsin 01)H7(12),(k0bsin 6)
~Csin oY, (kobsin 6;) H (kobsin eo)]
—Y,! (k.asinf;) [Sin 01.J, (kbsin 0;) H'® (kobsin 6,)

—(sinyJ), (kebsin 61) HP (kobsin )] )

) (Jn(kca sin 6;) [C sin 01Y,,(k.bsin 91)H,s2)/ (kobsin 0p)
—sin0oY/ (kobsin 61) H (kobsin 90)]
=Y, (k.asin6;) [C sin 0y J,, (kb sin 91)H,s2)/ (kobsin 0p)

— sin0J) (kebsin 01) H® (kobsin 6)] )

2.11.6 Calculation of the Radar Cross Section

Calculation of the Radar Cross Section is the same as in Section 2.9. The nor-

malized echo width is given in (2.294).
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2.12 Obliquely Incident Plane Wave Scatter-
ing by an Infinite Length Metamaterial
Coated Conducting Cylinder: T E* Polar-

ization

2.12.1 Introduction

A uniform plane wave is obliquely incident on a metamaterial coated conducting
cylinder of infinite length. The plane wave illumination and polarization is the
same with Section 2.10. The problem geometry is as depicted in Fig. 2.14. As
in Section 2.11, due to the conducting cylinder centered at the origin, the fields
inside the metamaterial coating are written not only in terms of Bessel functions
of the first kind (i.e., J,(.)) but also in terms of Bessel functions of the second
kind (i.e., ¥,,(.)), and their derivatives. This is the only difference in formulation,

from Section 2.10. Therefore, in this section only key equations are given.

2.12.2 Incident, Scattered and Transmitted Magnetic

Fields (z components)

+oo
H! = Hysinfoe’®> % N~ 57", (kopsin )™ (@ =%), (2.356)
. +OO .
H? = Hysin fgedtozcosto Z j_”anf)(kopsin 00)63”(¢_¢°), (2.357)
+oo
H. = Hosin o™= =% 3" 7" [, (kepsin 1) + b Yy, (kepsin 6,)] €790
B (2.358)
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2.12.3 Incident, Scattered and Transmitted Electric

Fields (z components)

EL =0, (2.359)
+oo
E$ = Hysin fyetozcosto Z G H? (kopsin f)elm(@=%0), (2.360)
EL = Hysin pe’"0? % Z " [aan(ch sin ) + b, Yy, (kepsin 91)] eIn(@=¢0)
) (2.361)

2.12.4 ¢ Components of the Incident, Scattered and

Transmitted Magnetic and Electric Fields

“+o00
Hocoseoejkozcos% Z ’rLj_an(kaSineo)ejn((b_(%)v (2362)

n=—oo

H =—
¢ kop sin 6,

HU COS 90 ]kgz cos g

Hqi = Z nj "c,H 2 k0p51n90)61 n(¢p—¢o)

n=—oo

ko psin 90

e]kgzcos% Z I Cn k}opSlH¢90>€Jn(¢ ¢0) (2363)

n=—oo

Hykgsinfgcosby .
Ht - _ Jkoz cos o 2.364
¢ k2psin? 6, ¢ ( )
+oo
) Z nj " [anJn(kepsinOy) + b, Y, (kepsin ;)] eI (@=5o)
HO sin 90 ejk0Z00590
Q]o sin 6
+o0

: Z J " [&'nJ;L(kasin 01) + b,Y! (kpsin 91)] eIn(@=do)

n=—oo

+oo
Ej, = jHonoe™0*°% > " j7"J) (kopsin )e?" =%, (2.365)

n=—oo
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H, 7
E;: 0 COS Up ]kozcosﬁo Z TZ] Cn 2 kopSlH@o) Jjn(¢—¢o)
+o<>_
+j Hynge?Fozcosfo Z e HD (kopsin 0y )™ @), (2.366)

n=—0oo

kop sin 90

Hykg sin 6, cos 6 pikoz cos o

El=— (2.367)

k2psin? 6,
+o00 N
: Z nj" [?ian(k:cpsinel) + b, Y, (kpsin 6 )] pIn(é—o0)

n=—oo

sin 90 ]koz cos g

+JHoCno

Z J- an Cp sin 81) + bnYTi(kcp sin 81)] ejn(¢—¢0)‘

n=—oo

2.12.5 Boundary Conditions and Their Solution

Tangential components of the magnetic and electric fields are continuous on
the outer surface of the metamaterial coating. Also, on the inner surface of
the metamaterial coating (i.e., on the conducting cylinder surface) tangential

components of the electric field should vanish. Therefore,

H(p=0) + H:(p=0b) = H.(p =), (2.368)
Elp=0b)+E(p=1b) = E.p=0), (2.369)
Hi(p="b)+ H(p="b) = Hj(p=0), (2.370)
Ei(p="b)+ E3(p=0b) = Ej(p=0), (2.371)
El(p=a)=0, (2.372)
Eli(p=a)=0, (2.373)

which leads to
Jn(kobsin 6g) + c, H (kobsin 6y) = apJ, (kbsin6y) + b,Y, (kbsin6y), (2.374)
e H® (kobsin 6g) = @y (kb sin ) + b, Yy, (kebsin 6), (2.375)
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Hycosf . Hycosb Hy
—mn%(k‘ob sinfy) — mnan (kobsinby) — jn—()oan (kob sin )
Hykysin 0y cos 6, . Hykgsin 0y cos 6, .
= — ndn(kebsind;) — ' b,Y, (k.bsin 0
KZosimlg,  an/nlkebsiny) KZbsin?g, "Cnin(kebsindy)
HO sin 90~ , Hy sin 0y~
0,) — WY (kb 2.
070 s1n91 nd,, (kcbsin ;) ]CUO o Glb (kcbsinby), (2.376)
H, COSQO ~ @y
JHonoJ! (kobsinfy) — ———— H (kobsm 0o) + jHonocn H,” (kobsin 6y)
k0b81n90

Hykg sin 0y cos (90 ~ Hykg sin 0y cos 0,

_ G, (kebsin @ b, Y, (k.bsin 0
i2bsin? 0, (hebsin6y) — == o g, "onYnlkebsindy)
0 0
—{—]H0§7708m eoanJ’ (k.bsin 6y) +jH0Cnosmeob Y, (k.bsin6,), (2.377)
Gy (keasin0y) + b, Y, (keasin6y) = 0, (2.378)

B Hykysin 0y cos 8, nin o (koasin ) — Hykgsin 0y cos 6,

k2a sin? 0,

ngnYn(kca sin ;)

k2a sin? 0,
sin 6,

n 6,

sin 6,

n 6,

+jH0C170 anJ) (keasin6y) +]H0C770 b, Y, (kcasin€) =0. (2.379)

As we have done in previous sections, the equations are converted into matrix

form and solved. The unknown coefficients are found to be:

1
BYA(I{: asin 0,)k2kib? sin? 0 sin® 0, (2.380)

[Jn kobsin 90)H<2> (kobsin o) — J', (kobsin 6o) H® (kob sin (90)]

Ap =

(C sin 01 H kob sin fy)
NI (kebsin0y) Y, (keasin 0y) — J, (keasin0y)Y, (kb sin 0;)]
— sin g H® (kobsin 6,)

I (kebsin0) Y, (keasinby) — J, (keasin6,)Y, (k.bsin 01)}>

- 1
ay, = j—(nobnkokf sin 6 sin® 6, cos 6y (2.381)
(k:o sin? 0y — k7 sin 91) w(kecasinéy)H; (kobsm 6)
I (keasin0)Y,, (kbsinby) — J,(kbsin6,)Y, (keasin 6;)]

[J (kobsin 0o) H®' (kobsin ) — J', (kobsin 6y) H (k;obsmeo)],
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where

_ Jy(keasin6,)

bn — .y ns
Y!(k.asin6) “

gn _ I (kea s%n 61)5n,
Y, (keasin6y)

apJn(kebsiny) + b, Y, (kbsin6y) — J,(kobsin 6p)
H? (kobsin 0,)

Cp = )

~ _ GnJu(kcbsin 0)) + b, Y, (kebsin 6;)
" H7(12) (k’ob sin 90)

Y

D:D1+D27

Dy = —( cos? Gyn? (H,(f)(kob sin 90))2 (k‘g sin? 0y — k2 sin® 91)2
NI (kebsin04)Y,, (keasin0y) — J,(keasin 6,)Y,, (kbsin 0y)]

N Jn(kebsin0)Y, (keasinby) — J! (keasin6y)Y, (k.bsin 6;)],

Dy = b?k2k} sin? 0, sin? 6,
) (Jfl(kca sin 6;) [sin 0,Y,,(k.bsin 61)HT(L2)/ (kobsin 6p)
~Csin oY, (kobsin 6;) H (kobsin 90)]
—Y!(k.asinf;) [sin 01J, (k:bsin 61)HT(L2)/ (kobsin 6p)
—(sinfyJ), (kebsin 61) HP (kobsin 6)] >
. <Jn(k;ca sin ) [g sin 0, Y, (kebsin 0,) H® (kobsin o)
—sin0oY! (kobsin 6,) H (kobsin 90)]
Y, (keasind,) [g sin 0y J, (kobsin 61) H' (kob sin 6)

—sin 0 J, (kebsin 01) HP (kobsin 6)] )
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(2.383)
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(2.385)

(2.386)

(2.387)
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2.12.6 Calculation of the Radar Cross Section

Calculation of the Radar Cross Section is the same as in Section 2.10. The

normalized echo width is given in (2.321).
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Chapter 3

Achieving Transparency and
Maximizing Scattering with
Metamaterial Coated

Conducting Cylinders

3.1 Introduction

In this chapter, the electromagnetic interaction of plane waves with infinitely long
metamaterial coated conducting cylinders is considered. Different from “conju-
gate” pairing of double-positive (DPS) and double-negative (DNG) or epsilon-
negative (ENG) and mu-negative (MNG) concentric cylinders [5,7-12], achieving
transparency and maximizing scattering are separately achieved by covering per-
fect electric conductor (PEC) cylinders with simple (i.e., homogeneous, isotropic
and linear) metamaterial coatings. As in the case of “conjugate” pairing, trans-
parency and resonance are found to be heavily dependent on the ratio of core-

coating radii, instead of the total size of the cylindrical structure.
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In our work we show that, for TE polarization, the metamaterial coating
should have 0 < e, < ¢¢ as its permittivity to achieve transparency, whereas the
coating permittivity has to be in the —¢y < €, < 0 interval for resonance so that
scattering maximization can be achieved. For both transparency and resonance
conditions, we derive the analytical relation between the ratio of core-coating
radii and the permittivity of the metamaterial coating in the TE polarization
case. The numerical results show the validity of these analytical relations, es-
pecially when the cylindrical scatterers (i.e., PEC cylinders together with their

metamaterial coatings) are electrically small.

Besides, notice that because the core cylinder is PEC, unlike the aforemen-
tioned “conjugate” pairing cases, the analytical relations we have derived for TE
polarization cannot be used for T'M polarization by interchanging ¢ with p (and
vice versa), unless the core cylinder is replaced with perfect magnetic conductor
(PMC). Yet, both transparency and resonant peaks can be achieved for T'M po-
larization. Here, we show numerically that for electrically small PEC cylinders
transparency can be obtained by covering them with metamaterial covers having

large ||, whereas resonant peaks are observed when p. < 0.

The theory and formulation for 7'M and T'E polarizations have been previ-

ously given in Sections 2.7 and 2.8, respectively.

3.2 Transparency Condition

The transparency condition for T'E* polarization is derived in Appendix C by
setting the numerator of the scattering coefficient ¢Z# given in (2.240) to zero. In
the sub-wavelength limit, assuming |k.|a < |k.]b < 1, kb < 1 and utilizing the

small argument forms of Bessel and Hankel functions, the following transparency
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condition is obtained:

2n 80 _gc
= f; 0. 3.1
=4 5L, forn# (3.1)

where v = a/b is the ratio of core-shell radii, n is the index of series summation.

Alternatively, one can use the transparency condition for an electrically small
cylindrical scatterer, which is composed of two concentric layers of different

isotropic materials, given in [5] for the T'E* polarization as

2| (Ec — €0)(ec + €)
= f 0 3.2
Y \/(80_8)(€c+€0) or n% ) ( )
v = /jj __'l:? for n =0, (3.3)

where (e, ) are constitutive parameters of the core cylinder and (e, u.) are

constitutive parameters of the coating (shell) layer.

When the core cylinder is PEC, ¢ — —joo and pu = po. In this case (3.3)

becomes
v = HeZHO _ 1 for e £ o, n =0, (3.4)
He — Ho

which means there would be no coating. However, (3.2) can still be used in the

limiting case, yielding the same transparency condition in (3.1) as

SV X (ec — €0)(ec — joo) B e L . n # 0 (3.5)
(et ool te)  Vente | |

The root in (3.1) is of even degree of n (i.e., 2n), which implies that the
argument of the root must be positive. On the other hand, when there is a

coating 7 should vary between 0 and 1. Therefore,

0< <1, (3.6)
50 + €C
which leads to
o — ¢
0< = —gg < €. < €, 3.7
o+ Ec c0 c €o ( )
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and
€0 — &c
o+ Ec

<l=e.<—g or 0<e,. (3.8)

From (3.7) and (3.8), the proper choice for ¢, lies in

0 <e. < ep. (3.9)

As it can be seen from (3.1)-(3.9), for the TE* case, the transparency condi-
tion for the PEC cylinder is independent of the permeability of its metamaterial
coating. As a matter of fact, this is true when the cylindrical scatterer is elec-
trically small and the scattering problem is consequently “quasielectrostatic”.

Simply we will choose . = po in the numerical experiments for convenience.

For a specific coating permittivity ., utilizing (3.1), one can analytically find
the core-coating ratio v at which transparency can be obtained. Similarly, one

can rewrite (3.1) as
B 1— ,YQn
14

€0, (310)

€c

to find the coating permittivity for a desired v, again analytically. In the nu-
merical experiments, the following procedure is applied to test the accuracy of
the transparency condition: for a desired v value, we analytically find what the
coating permittivity, ., should be. Then, using this coating permittivity, we

numerically find at which + value transparency is actually obtained.

In Table 3.1, for certain outer shell radii some v values are selected where
transparency is desired to be observed. The permittivities of the metamaterial
coating corresponding to these «y values after (3.10) [by setting n = 1in (3.10)] are
tabulated in Table 3.1. Based on numerical results, transparency is obtained at
different ~ values (reasonably below desired values), which are also tabulated in
Table 3.1. One way to explain this deviation (i.e., the difference between desired
and obtained ~y values where transparency occurs) is when the sub-wavelength
limit assumptions are performed, expressions leading to e, given in (3.10) [or

(3.1)] are overly simplified, particularly in terms of a and b. Interestingly, when
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the core cylinder is replaced with a core-dielectric, e, given in (3.2) yields accurate
results as mentioned in [5] for electrically small cylinders. It is also observed
that as the electrical size of the cylindrical scatterer increases, deviation of the
obtained v values from the the desired v values increases. This is an expected
result since the accuracy of (3.10) decreases as the electrical size of the scatterer

increases.

Table 3.1: Desired and Obtained v for Achieving Transparency Using (3.10)

b=20/100 | b=2/10 || b= /5
Desired ~ ec/€0 Obtained v || Obtained 7 || Obtained ~y
0.2 0.923 0.165 0.15 0.105
0.5 0.6 0.41 0.39 0.31
0.7 0.342 0.595 0.575 0.51
0.9 0.105 0.81 0.805 0.78

Based on Table 3.1 and noticing that the deviation between desired and
obtained ~ values usually increases as the value of ~ increases, we heuristically
modify (3.10) as

1 — =)

= mgo, (311)

Ec
to find e, for a desired ~ value, analytically. In (3.11), the dependence of ¢, to
a and b is more strongly pronounced. Similar to Table 3.1, desired ~ values, the
corresponding e, values and obtained  values where transparency occurs after
(3.11) [again by setting n = 1 in (3.11)] are tabulated in Table 3.2. As it can be

seen from Table 3.2, our heuristic formula decreases the deviation successfully,

especially when b < X\¢/10.

The transparency condition for the initial cylindrical structure for the T'M*

polarization can be found from (3.2) and (3.3) utilizing duality:

for n #0, (3.12)

= (e = 1) (e + 1)
(pte = 1) (e + o)
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Table 3.2: Desired and Obtained «y for Achieving Transparency Using (3.11)

b= Xo/100 || b= Ao/10 b= X\o/5
Desired ~y ec/€0 Obtained ~ || Obtained ~ || Obtained
0.2 0.895 0.19 0.175 0.125
0.5 0.478 0.49 0.47 0.395
0.7 0.228 0.68 0.67 0.625
0.9 0.0579 0.875 0.875 0.86
v = 8;__580 for n=0. (3.13)

After replacing the core cylinder with a PEC one, (3.12)-(3.13) become

o T/Euc—uo)(uﬁuo) gy M7 Mo L n#£0, (3.14)
,UC_MO)<MC+IMO) He 7é —Ho
S N O ) (3.15)
Ec— € Ec + JO0

It can be deduced from (3.14)-(3.15) that the transparency condition for the
T M? polarization does not lead to any reasonable outcome due to the core being
PEC. It is obvious that in DPS-DNG or ENG-MNG pairing no such difficulty
arises since duality can be simply applied. To be able to achieve transparency
for the T'M* polarization utilizing similar transparency conditions we have de-
rived for T'E* polarization, the core should be PMC instead of PEC. Theoretical
analysis or simply duality shows that in such a case one can use the dual of
transparency condition for T'E* polarization by interchanging any permittivity
with the corresponding permeability. Yet, even if the core cylinder is PEC, our
numerical investigations show that polarization can be obtained for electrically
small cylinders with metamaterial coatings having large |u.|. Examples of this

situation are illustrated in Section 3.4 (Numerical Results and Discussion).
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3.3 Resonance (Scattering Maximization) Con-

dition

The resonance condition, which increases the scattering drastically for an elec-
trically small cylindrical scatterer, is derived in Appendix D by setting the de-
nominator of the scattering coefficient ¢I'® in (2.241) to zero, again in the sub-

wavelength limit. This yields the following resonance condition:

for n # 0. (3.16)

Alternatively, one can use the resonance condition given in [8] for the TE?

polarization

(50 - 50)(50 - 5)

When the core cylinder is PEC, (3.17) becomes
Yo et e joo) e tee p g (3.18)
(ec —€0)(ec + joo) €0 — Ec

Since the root in (3.16) is of even degree of n (i.e., 2n) and 0<y<1 should

v= QV(& T e)lee+e) for n > 0. (3.17)

be, then
0<0Fee (3.19)
€0 — &c
which leads to
€0 + €c
0< 2 = —gy < €. < o, (3.20)
Eo — E¢
and
S0t e <1l=e.<0 or e. > ¢. (3.21)
o — ¢

From (3.20) and (3.21), the proper choice for e, lies in
—gp < e.<0. (3.22)

Then, the ratio of core-shell radii v, to maximize scattering from a metamaterial

coated PEC cylinder, can be found analytically from the permittivity of the
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coating . utilizing (3.16), and vice versa:

’YQn—l

— . 3.23
7277, + 180 ( )

Ec =

In our numerical experiments with scattering maximization, we follow the
same procedure as in the transparency condition (i.e., we find the coating per-
mittivity for a desired v value analytically and then use it in the numerical
experiment). Our numerical experiments show that, for electrically small cylin-
drical scatterers, (3.23) works quite well (by setting n = 1). Therefore, we do

not modify it as we have modified the analytical transparency relation.

Interestingly, comparison of (3.10) with (3.23) for a desired  value shows
that, the permittivity of the coating to maximize scattering should be the neg-
ative of the coating permittivity which makes the cylinder transparent. For the
T E? case, since the scattering maximization condition is independent of the per-
meability of its coating and for electrically small cylindrical scatterers we are
dealing with the “quasielectrostatic” problem, we can safely choose p. = pyp.
Therefore, coatings we use here for scattering maximization are ENG metama-

terials (or plasmonic materials).

To understand how this resonance condition occurs, consider a PEC cylinder
which is illuminated by a T'E* polarized plane wave. If the cylinder is electrically
small, the n = 0 term becomes dominant. However, the n = +1 terms cannot
be neglected since they radiate more efficiently [28]. It has been shown in [28§]
that the n = 0 term is equivalent to a z-directed magnetic line source, while
the n = £1 terms, which are referred as dipolar terms in [11], correspond to a
y-directed electric dipole. Due to its electrically small size, this electric dipole
behaves like a capacitive element. If there is also an ENG coating present,
the coating will act like an inductive element. Therefore, the whole cylindrical
scatterer will form an inductor-capacitor (LC) resonator. A similar scenario

is investigated in [17] for electrically small antennas enclosed by metamaterial
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shells. As the size of the scatterer increases, quadrupolar (i.e., n = 2), octopolar

(i.e., n = 3) and any higher order terms also emerge as resonant terms [11].

The resonance condition for the same cylindrical structure for the T'M?# po-

larization, which can be derived from (3.17) utilizing duality, is given in [8] as

_ et po)lpetp)
' \/(uc S B (324

After replacing the core cylinder with a PEC one, (3.24) becomes

Mc+u0
He — Ho

for . # po, n>0. (3.25)

Although (3.25) states a resonance relation between a desired v value and
1o for the TM?* polarization, our numerical investigations show that u. values
obtained via (3.25) (i.e., from the desired  values) yield resonance (i.e., maxi-
mum scattering) at v values different from the desired ones. On the other hand,
similar to the transparency condition, if PEC core is replaced by a PMC core,
then dual of (3.22) (i.e, —uo < pe < 0) yields a resonance at the desired « value

for the T'M?* polarization.

Note that, all the formulations used for transparency and scattering maxi-
mization conditions are independent of the electrical size of the cylindrical scat-
terer (i.e., a and b). However, the formulations are expected to work well for
electrically very small cylinders (i.e., |k.|b < 1, kob < 1), such that only a few
modes of the infinite series summation is enough to represent the whole radar
cross section. Although the aforementioned theoretical analysis is based on elec-
trically small cylinders and a few modes of the infinite series is assumed to be
dominant, in the computation of the normalized echo widths we use sufficiently
many modes to be accurate. In other words, our numerical results do not include

any assumption in this sense.
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3.4 Numerical Results and Discussion

To assess the accuracy of our numerical routines, we have duplicated one of the
numerical results (normalized monostatic echo width of a metamaterial coated
PEC cylinder at 1GHz with PEC radius ¢ = 50mm and coating radius b = 70mm)
in [1], which is shown in Fig. 3.1. In addition to the DPS and DNG coatings
investigated in [1], we also included ENG and MNG coatings. As seen in Fig.
3.1, we have excellent agreement with the results of [1]. Moreover, a perfect
continuation in the monostatic echo width values is observed (as expected) when
the coating medium becomes single-negative (SNG) from a DPS or DNG coat-

ing. In the previous sections, expanding the transparency condition given in

4.5 T !
— ™
—TM
4t TE '
+ TM(LD) ¢ TMLD
351 TE (Li) || TE (Li)
3l
o 25
<
[} ol
1.5¢
1l ]
0.5 RS 40000ttan YTV
. } . J
-10 -5 0 5 10 5 10
€ /e
c 0
(a) pe = po
7 T T T 7 T
—TM™ —T™
ol TE i ol TE
* M (L) o TM (L)
TE (Li TE (Li
o (L | o (L)
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< ]
WWAWﬂ Mw
P — ‘ ‘ 0 ‘ ‘ ‘
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Figure 3.1: Normalized monostatic echo width of a metamaterial coated PEC
cylinder (¢ = 50mm, b = 70mm, f = 1GHz). Diamond marks show the DPS
and DNG coating cases in [1].

[5], we have found that it is possible to make PEC cylinders transparent for
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the T'E* polarization by covering them with metamaterial covers which exhibit
the material property given by (3.9). By transparency we mean the significant
reduction and minimization of scattering in the backscattering direction. As it
has been explained previously, the transparency condition is expected to work
well for electrically very small cylinders. Therefore, we start with an electrically
very small PEC cylinder (in the cross-sectional sense) covered with our proposed
metamaterial coating such that the outer radius of the coating is b = X/100.
Then, for some v values, where transparency is desired to be observed, the corre-
sponding permittivities are analytically found using (3.11) as tabulated in Table
3.2. Finally, the normalized monostatic echo widths are calculated and depicted
in Figs. 3.2(a)-3.2(d) for these permittivities. One can see that transparency is
indeed obtained for PEC cylinders almost at the desired v values. The normal-
ized monostatic echo widths for un-coated PEC cylinders (i.e., with radius a) are
shown with dashed lines to visualize the reduction in scattering when proposed
metamaterial coatings are used. Note that for the un-coated case small v values
mean extremely small PEC cylinders. Naturally, as a goes to zero, no scattering
is supposed to take place. As the next step, we investigate what happens to the
transparency as the electrical size of the scatterer increases. For this purpose, we
gradually increase the outer radius of the cylindrical scatterer. The normalized
monostatic echo widths are calculated and depicted in Figs. 3.2(e)-3.2(h), when
the outer radius of the scatterer is increased to b = \g/10. From Figs. 3.2(e)-
3.2(h) we see that increasing the electrical size of the cylindrical scatterer from
b = XAo/100 to b = A\og/10 increases the RCS considerably (e.g., the largest nor-
malized monostatic echo width increases roughly from -40dB to -5dB). Despite
this huge increase in RCS, as it can be seen from Figs. 3.2(e)-3.2(h) and Table
3.2, transparency can be achieved at the desired ~ values. Similarly, we can still
achieve transparency close to desired 7 values (as tabulated in Table 3.2) when

the outer radius of the scatterer is increased to b = /5.
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Fig. 3.2 and Table 3.2 show that as the permittivity of the coating is de-
creased from €. = g to €, = 0, the core-coating ratio where transparency occurs
moves from v = 0 to v = 1. To explain this phenomenon, we can treat the
metamaterial coating as a cover which cancels out the electromagnetic response
of the PEC core. When the permittivity of the metamaterial coating is close
to eo, this cancellation is quite weak (i.e., metamaterial cover behaves like free
space). In this case, the PEC core should be considerably small with respect to
the coating such that a full cancellation can occur. However, when the permit-
tivity of the coating is decreased towards 0, the cancellation of the coating will
become stronger, which means that with even thinner coatings it becomes possi-
ble to make larger PEC cores transparent. Note that a similar discussion is made
in [5] to explain the cancellation phenomenon for metamaterial coated dielectric
spheres. For both the dielectric core and the metamaterial cover, their polar-
ization vectors are defined, respectively as P = (¢ — g9)E and P, = (e, — &9)E.
The transparency condition is attributed to the cancellation of these antiparallel
polarization vectors, which happens when ¢, < ¢y. In our scenario, since the
core cylinder is PEC, the problem has a less degree of freedom and the analytical

solution shows that to achieve transparency 0 < €. < ¢y should be.
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Figure 3.2: Normalized monostatic echo width of a metamaterial coated PEC
cylinder for the T'E? polarization case, versus the core-coating ratio for coatings
with different constitutive parameters. The outer radius of the coating is selected

as (a)-(d) b= X\g/100, (e)-(h) b = A\g/10. Dashed line shows the un-coated PEC
case, with radius a.
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To see the limitations on the electrical size of the cylindrical scatterers for
achieving transparency, we will consider relatively larger scatterers. Since these
scatterers are electrically large, available analytical relations between v and e,
do not hold any longer. Therefore, for these large scatterers we choose €. in
a trial & error process. Figs. 3.3(a)-3.3(c) show the results when the outer
radius of the scatterer is increased to b = X\g/2. In Figs. 3.3(d)-3.3(f) this outer
radius is further increased to b = Ag. As it is seen in Fig. 3.3(a) and Fig.
3.3(d), the normalized monostatic echo width makes two dips at some 7. As
the permittivity of the coating is decreased towards 0, the dips move towards
~v = 1, destructively interfering with each other. Finally, the minimum value of
the normalized echo width (67% /)y drops from 4dB to -25dB) is achieved when
the permittivity is very close to zero but positive, and ~ being between 0.9 and
1. Therefore, larger cylinders require coatings having permittivities much closer
to zero. Since monostatic echo width is minimized in the 0.9 < v < 1 region, the

PEC core can be quite large.

Next, we turn our attention to investigate the validity of scattering maxi-
mization condition. Hence, we follow a procedure similar to the one we have
done for the transparency condition. We again start with electrically very small
cylindrical scatterers and gradually increase their outer radii. We use the same
v in Table 3.1 as our desired 7y values, but this time to maximize scattering.
Hence, the coating permittivities are the negatives of coating permittivities tab-
ulated in Table 3.1, as a result of (3.23). Figs. 3.4(a)-3.4(d) show the normalized
monostatic echo widths for ENG coated PEC cylinders when the outer radius of
the scatterer is b = A\g/100. As it can be seen from the figures, RCS increases
drastically at the desired v values, making peaks, depending on the permittivity
of the coating. This is mainly due to the resonance of dipolar terms which we
have explained previously. When the outer radius is b = \¢/50, the RCS peaks
can still be clearly seen in Figs. 3.4(e)-3.4(h). But, this time the peaks are wider

and the peak centers deviate a little from their desired locations. Also note a
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Figure 3.3: Normalized monostatic echo width of a metamaterial coated PEC
cylinder for the T'E* polarization case, versus the core-coating ratio for coatings
with different constitutive parameters. The outer radius of the coating is selected
as (a)-(c) b= X\g/2, (d)-(f) b = A\p. Dashed line shows the un-coated PEC case,
with radius a.
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Figure 3.4: Normalized monostatic echo width of an ENG coated PEC cylinder
for the T E* polarization case, versus the core-coating ratio for coatings with
different constitutive parameters. The outer radius of the coating is selected as
(a)-(d) b = X\g/100, (e)-(h) b = A¢/50. Dashed line shows the un-coated PEC

case, with radius a.
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second small peak which just emerges in Fig. 3.4(e) due to the quadrupolar
terms. These quadrupolar terms become more observable in Figs. 3.5(a)-3.5(d)
where b = )\g/20. When the outer radius is increased to b = \y/10, effects of
other higher order terms can be observed from Figs. 3.5(¢)-3.5(h). In summary,
Figs. 3.4-3.5 suggest that as the electrical size of the scatterer increases the peak
due to the dipolar term becomes wider and moves towards v = 1. Also, due to
the increased size, quadrupolar and higher order modes emerge. However, the
peak due to the dipolar term is much more dominant and can be safely used to

maximize RCS of objects.

To see whether any transparency or scattering maximization condition can
be obtained for the T'M?* polarization, we consider an electrically very small
cylindrical scatterer with outer radius b = \/100. For various v values, we
calculate the monostatic echo widths when g/ is in the [—20 20] interval,
as shown in Fig. 3.6. For this “quasimagnetostatic” problem, we have chosen
€. = gg for convenience. Fig. 3.6 shows the existence of resonant modes which
maximize the RCS considerably, when p. < 0. Transparency can be obtained
with coatings having large permeabilities in the absolute sense as seen in Figs.
3.6(a)-3.6(c). For v = 0.9, transparency is possible if p. is positive and very

large.

As we have mentioned previously, the huge increase in the RCS of an ENG
coated PEC cylinder is due to high resonance. However, transparency we have
achieved using DPS coatings is not a result of such resonance, but simple can-
cellation. This can be best observed from the changes in RCS with respect to -,
when Figs. 3.2-3.3 are plotted in linear scale. In this case, it can be seen that
RCS is not very sensitive to v near the transparency point. On the contrary, in
Fig. 3.4 we see high ~ sensitivity. Since transparency condition is not a result
of resonation, we also expect it not to be very sensitive to ohmic losses. For the

ENG coated cases, however, there would be high sensitivity to ohmic losses near
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Figure 3.5: Normalized monostatic echo width of an ENG coated PEC cylinder
for the T E* polarization case, versus the core-coating ratio for coatings with
different constitutive parameters. The outer radius of the coating is selected as
(a)-(d) b = Xg/20, (e)-(h) b = \p/10. Dashed line shows the un-coated PEC case,

with radius a.
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Figure 3.6: Normalized monostatic echo width of a metamaterial coated PEC
cylinder for the T'M?* polarization case, versus the coating permeability u. for
different core-coating ratios. The outer radius of the coating is b = A\g/100 and
the coating permittivity is €. = .

the resonant modes. The effects of small ohmic losses, as in the Drude or Lorentz
medium models, are shown in Fig. 3.7. As predicted, there is very little ohmic
sensitivity for transparency condition in Fig. 3.7(a). On the other hand, the high
sensitivity to ohmic losses can be seen clearly at the resonance location in Fig.
3.7(b). Again in Fig. 3.7(b), despite the decrease in the monostatic echo width
due to the ohmic losses, metamaterial coating provides at least approximately
65dB increase in the echo width at the resonance location, when compared with
the un-coated case. In the numerical results we have shown up to here, we have
considered the normalized monostatic echo widths (i.e., back scattering). To vi-
sualize the far-zone field distribution in the zy-plane, bistatic echo widths can be

calculated. Fig. 3.8 illustrates the bistatic scattering scenarios for transparency
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Figure 3.7: Effects of ohmic losses on normalized monostatic echo width for (a)
DPS [transparency] (b) ENG [Scattering maximization| cases. The outer radius
of the coating is selected as b = Xy/100.

and scattering maximization for the T'E polarization considering a metamaterial
coated PEC cylinder with b = X\y/100. The angle of incidence is set to ¢g = 0°.
In Fig. 3.8(a), for the values of €. = 0.6g¢, j. = o and v = 0.41, it is seen that
RCS increases gradually from backscattering direction (¢ = 180°) towards direc-
tion of incidence (¢ = 0°). Therefore, while little portion of the incident wave is
reflected back, the much larger portion will continue traveling in the direction of
incidence. Indeed, this is the expected situation for transparency. In Fig. 3.8(b),
for e, = —0.6¢q, pe = po and v = 0.505, RCS is maximized in the backscattering
and incidence directions, however it reduces towards ¢ = 90°, finally becoming
effectively zero in this direction. In other words, RCS is not only maximized in
the backscattering direction, but also in the direction of incidence. Fig. 3.9(a)
shows the contour plot of the axial component of the total magnetic field (i.e.,
H! + H?) in the presence of single PEC cylinder, with radius a = \¢/200. In
Fig. 3.9(b), the PEC cylinder is coated with a DPS metamaterial coating having
b= X\o/100, e, = 0.6e¢ and . = pp. Comparison of Fig. 3.9(a) and Fig. 3.9(b)
shows the decrease in RCS with the proposed metamaterial coating, especially
in the backscattering direction. The case for the resonant ENG coating, for

b= X\o/100, e. = —0.6e¢ and p. = po, which increases the RCS dramatically, is
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Figure 3.8: Normalized bistatic echo widths for (a) DPS coated (b) ENG coated
PEC cylinder for the T'E* polarization case. The outer radius of the coating is
selected as b = \¢/100. The angle of incidence is ¢y = 0°.

shown in Fig. 3.9(c). The field distribution confirms the strong resonance in the

radiation of a y-directed electric dipole.
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Fig. 3.10 shows the preliminary results for the oblique incidence case. It
can be observed that, the angle of oblique incidence changes the transparency

condition, however, resonance condition is affected very slightly.
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Figure 3.10: Normalized monostatic echo widths for (a) DPS coated (b) ENG
coated PEC cylinder for the T'E* polarization, oblique incidence case. The outer
radius of the coating is selected as b = X\y/100.
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Chapter 4

Retrieval of Homogenization

Parameters

4.1 Homogenization of Metamaterial Struc-
tures and Retrieval of Effective Constitu-

tive Parameters

4.1.1 Introduction

The physical properties of matter together with the underlying mathematics (e.g.,
Bloch’s Theorem, Lyapunov-Floquet Theorem) lead to extraordinary phenomena
when structures are aligned periodically. Photonic and electromagnetic band gap
materials, frequency selective surfaces and yet metamaterials are some artificial
structures which make use of the periodicity. With their unnatural behavior,
these structures are highly exploited for engineering purposes. In engineering,

the use of periodic alignment can also be seen in antennas, cMUTSs, optical
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gratings etc., to increase the overall performance of a system or to establish a

predefined task.

For the analysis and design of periodic materials and structures, to be able
to practically incorporate them in larger systems, their overall equivalents have
to be calculated. As an example, for an array of antennas an array factor can
be defined. The overall response of the antenna array can be calculated by
multiplying this array factor with the response of a single antenna. However,
most of the time the contribution of the interactions between these antennas
cannot be easily neglected. To obtain accurate results, full wave analysis of the
system is necessary. Similarly, for periodic materials an equivalent homogeneous
material can be defined which exhibits the same properties with the material
of interest. The process of obtaining this homogeneous equivalent, with its all
intermediate steps, is called homogenization. For periodic materials, obtaining
the homogeneous equivalent from the basic building block of the material is
obviously simpler and more towards the design of actual material of interest.
Most of the time, the building block of the periodic material is not canonical
and a full wave analysis may be required to obtain the behavior of a building
block itself. Once the response of a single building block is obtained, the overall
structure can be modeled analytically from the results of the building block. The
homogenization processes present in the literature [18-22] are usually examples

of such processes.

However, the interactions between the many building blocks, which form
the periodic structure, must not be simply neglected. Especially for periodic
structures, the periodicity of the structure and therefore the presence of periodic
building blocks are of utmost importance. Hence, for accurate homogenization of
periodic structures, a rigorous method has to be formed to successfully represent
the whole periodic structure. The method we introduce in this work is intended

to accomplish this idea.
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4.1.2 Homogenization of Metamaterials

In this section, we will focus on the homogenization of metamaterials. However,
the method we present here is not only restricted to metamaterials, therefore
it can be applied to any finite or semi-infinite periodic structure. Although
the method is quite versatile and applicable to oblique incidence scenarios, in
this work we will consider the normal incidence case for a three dimensional

metamaterial structure.

In general, metamaterials are inhomogeneous, anisotropic and highly disper-
sive materials. With the homogenization process we obviously remove the inho-
mogeneity, however the material maintains its anisotropic and dispersive state.
Therefore the homogenization process for metamaterials is inherently anisotropic
and dispersive. For this reason, the homogenization process can be applied at a

single direction (6y, ¢g) and at a single frequency, a time.
Metamaterial Geometry:

The building blocks for metamaterials are usually cubic cells, which are also
called unit cells. The unit cell is basically composed of a Split Ring Resonator
(SRR), a wire and a substrate on which the SRR and wire are mounted. The
SRR is formed by two circular or rectangular loops, one within another, with
gaps located at the opposite locations on these loops. A typical unit cell for a

metamaterial is shown in Fig. 4.1.

For metamaterials, the SRRs provide negative effective magnetic permeabil-
ity and the wires provide negative effective electric permittivity. However, this
extraordinary behavior can be observed with the proper polarization of electric
and magnetic fields with respect to the SRR structure, such that the magnetic
field should be perpendicular to the SRRs and the electric field should reside in

the plane parallel to the SRRs. A typical case is shown in Fig. 4.2.
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Figure 4.1: Metamaterial unit cell.

Figure 4.2: Direction of E and H fields for a unit cell.
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In a right handed medium, for the TEM mode, the directions of E and H
fields in Fig. 4.2 suggest the direction of propagation to be in the +z direction.
However, in a left handed medium the phase velocity will be in the —z direction,
whereas the energy flow will be again in the +z direction. The direction of
propagation, to avoid ambiguity, should refer to the direction of energy flow (i.e.,

direction of the Poynting vector) for both right handed and left handed media.
Implementation of Boundary Conditions and Excitation:

Consider Fig. 4.3 where a metamaterial of thickness d is placed in air and a
plane wave is normally incident. The metamaterial medium (i.e., Medium 2) is
composed of metamaterial unit cells depicted in Fig. 4.2. Let N, N,, and N,
denote the number of unit cells stratified in the z, y and z directions, respectively.
The metamaterial medium is assumed to be of infinite extent in the transverse

direction (i.e., N, — oo, N, — 00,). Practically this is the case for N, > N,

and N, > N,.
Medium | Medium 2 Medium 3
(a1r) (Mectamaterial) (a1r)
(80 > HMy ) (8%{?' 4 l:f_{ﬁ" ) (6{1 - My )
L,
H & if
//X//
X g

Figure 4.3: Direction of E and H fields for a unit cell.

Let Zimaz, Tmins Ymaz and Ymin denote the four surfaces of a unit cell, referring

to Fig. 4.1 and Fig. 4.2. If the four neighboring cells around a unit cell in the
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transverse direction are considered, for their touching surfaces, Tmaz, Tmin, Ymaz
and Y, surfaces of the unit cell at the center are identical to Zyin, Tmazs Ymin
and yYq. surfaces of the corresponding neighboring cells, respectively. This is
due to the fact that unit cells are indistinguishable in the transverse direction.
Therefore x,,,, and x,,;, surfaces of a unit cell are identical to each other, as ¥,q
and Yy, surfaces of the unit cell are identical to each other. Hence, a periodic
boundary condition for the x,,,, and x,,;, surfaces with zero phase and another
periodic boundary condition for the 9,4, and ¥, surfaces with zero phase can

be used to simulate the periodicity in the transverse direction.

* Tﬁ ‘ PMC Boundary
y
Top View PMC Boundary
Side View PEC Boundary
&
y é—’ z PEC Boundary

Figure 4.4: Alignment of unit cells inside the PEC-PMC waveguide.

Another, and computationally more efficient, method has been suggested in
[30] for the simulation of SRR+wire metamaterial structures. Unit cells of the
metamaterial structure are placed in a PEC-PMC waveguide and stratified in the
z direction as seen in Fig. 4.4. The PMC walls are parallel to the SRR structure
and force the magnetic field to be perpendicular to themselves and also to the

SRR structure. The PEC walls are perpendicular to the SRR structure such
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that the electric field becomes parallel to the SRR structure. The electric and
magnetic fields forced by the PEC-PMC waveguide are in full accordance with

the plane wave polarization seen in Fig. 4.3.

In our computer simulations, we used High Frequency Structure Simula-
tor (HEFSS) of Ansoft Inc., which is a Finite Element Method (FEM) based
electromagnetic simulator, and we implemented the aforementioned PEC-PMC

waveguide method. The problem geometry is depicted in Fig. 4.5.

Medium 1 . Medium?2 Medium 3
(air) - (Metamaterial) (air)
(.8{1 - My ) (‘Sq{f ? lilql{:l" ) (80 » My )
AE : E
. The line along which
g&— k E ﬁejld is measured
:;_.,; | ' ﬁ (| — / a

L =3cm d=N._.a L =3cm

Figure 4.5: Problem geometry (cross-section view, for N, = 3).

The metamaterial unit cell we use is the same with the symmetric unit cell
given in [21] except only that the SRR and wire structures are assumed to have
zero thicknesses and are applied Perfect Electric boundary condition (i.e., treated

as PEC) to reduce the required memory and the computation cost.

The thickness of the metamaterial structure d depends on the number of unit
cells stratified in the z direction N,, such that d = N,a, where a = 2.5mm is the

unit cell size.

With the coordinate system given in Fig. 4.5, the z = a/2 and x = —a/2
surfaces of Medium 1, Medium 2 and Medium 3 are applied the PEC boundary

condition, whereas their y = a/2 and y = —a/2 surfaces are applied the PMC
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boundary condition, in accordance with the PEC-PMC waveguide method ex-
plained previously. The two ends of the geometry (i.e., z = 0 and z = 2L + d
surfaces) are applied the Radiation Boundary Condition, where L = 3cm is the

length of Medium 1 and Medium 3.

The structure is illuminated with a plane wave which originates at z = 0
surface, with its polarization and propagation direction as shown in Fig. 4.5.
The plane wave has magnitude 1 and phase 0 at the z = 0 surface, where it

originates.
Homogeneous Equivalent :

If the metamaterial medium (Medium 2) can be successfully represented with
its homogeneous equivalent, we can define a Generalized Reflection Coefficient

(GRC) at the interface between Medium 1 and Medium 2 as given in [31],

Din(z = L) = 1o + TioToToge 7220 4 Ty Ty Dy Thie 7420 oo (4.1)
Ty Ty Tpge 224
oy, 4 Jednlme?
1 — T3y emd2h=2d

where k.o is the wave number in z direction in Medium 2, I';; and T;; are the
direct reflection and transmission coefficients at the interface between layers ¢ and
Jj, respectively. Note that, (4.1) is valid for the more general oblique incidence

case. For the normal incidence case, k.o = ko.
Extraction of Electric Field Data:

After the simulation, z component of the electric field (i.e., E,) is measured
on the line passing through the centers of the unit cells. The begin and end points
of this line are (0,0,0) and (0,0,2L + d) respectively. A typical magnitude plot
of the x component of the electric field is shown in Fig. 4.5. It should be noted
that the electric field plotted in Fig. 4.5 is the scattered electric field (i.e., [total

electric field — incident electric field] in Medium 1, 2 and 3). Since we use the
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PEC-PMC waveguide method, the y and z components of the electric field are

nearly zero.
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Figure 4.6: |E,| vs. z (f =10GHz, N, =1).

The scattered field in Medium 1 is basically a plane wave traveling in the
—z direction. In Medium 3, the transmitted field travels in the +z direction.
However, as seen in Fig. 4.5, there are transition regions near the boundaries
of metamaterial medium (i.e., Medium 2). This is mainly due to discontinuities
inside the PEC-PMC waveguide and mode conversions. However these non-TEM
modes decay fast. Therefore the scattered and transmitted fields away from the

metamaterial medium, in Medium 1 and Medium 3 respectively, are TEM waves.
Obtaining the Reflection Coefficients:

GPOF Method [32] is one of the many methods used in approximating a
complex function in terms of complex exponentials. Other methods used for this
purpose are various forms of the Prony’s Method such as Least Square Prony’s

Method, Total Least Square Prony’s Method and Singular Value Decomposition
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Prony’s Method. Another method is the Pencil of Function Method which forms
the basis of the Generalized Pencil of Function Method. In GPOF Method,
basically, a generalized eigenvalue problem is solved and subspace decomposition
is employed. GPOF Method is superior to aforementioned methods in its less

noise sensitivity and computational efficiency [33].

The reflection coefficient T';,(z = 0) in Medium 1 is found by applying the
Generalized Pencil of Function (GPOF) method to the E, field component data
in z = [0,2L/3] interval and fitting it by 1 exponential. The propagation constant
of the scattered wave in Medium 1, obtained via GPOF method, is verified to be
—k1, where k; is the free space propagation constant in Medium 1 (propagating in
the +z direction). The z = [0, 2L/3] interval is selected by inspection because, for
all frequencies of interest, the electric field data in this interval does not overlap
with the aforementioned transition region. Due to the non-uniform meshing of
the geometry and numerical noise, applying the GPOF method in this interval
is more reliable than simply dividing the scattered field at z = 0 to the incident
field at the same point (which is 1 4 j0). GPOF method basically removes the

numerical noise in the data.

To find I'y,(z = L) given in (4.1), which is the Sj; of the metamaterial

structure, we use the following relation:
Sll = Fln(Z = L) = an(z = O)@jZkIL. (42)

To find the s-parameters of the metamaterial structure, we could only use
Medium 2 with two wave ports attached to its input and output surfaces to
set up the excitations. In this setup, we have run simulations with different
number of modes for the waveguide (1,2, ...). However, Si; results of these sim-
ulations vary noticeably from our setup, maybe because of the aforementioned
fast decaying non-TEM modes are still existent. Our simulation setup seems
more reasonable and it is closer to a real life scenario. However, in the wave

ports setup, the voltages or powers are calculated over the entire surfaces. In
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our setup, instead of measuring the electric field in only one line, which passes
through the midpoints of unit cells, we could take different parallel lines to this
line and average the results. As we will present with the results, another line
which passes through the edge of the unit cells gives the same electric field dis-
tribution in Mediums 1 and 3, while differing from Medium 2 because it does

not go through the dielectric in the unit cell, but air.
Fresnel Reflection:

I'yo, the first term in (4.1), is called the Fresnel reflection term. Fresnel re-
flection occurs when electromagnetic wave passes from one medium to a different
medium. Therefore, Fresnel reflection term is obviously expected at the inter-
face of two homogeneous and different media. The nice thing about the Fresnel
reflection is its time causality. In other words, Fresnel reflection term is just a
result of discontinuity of the medium in which the wave travels, independent of
whatever the wave will experience in the future. If we consider Fig. 4.7, the
Fresnel reflections for (a) and (b) are the same. Therefore, to find the Fresnel
reflection term at the interface of two media, the medium in which the wave is
transmitted can be taken as semi-infinite and all layers beyond this medium can
be neglected. All contributions of these layers will be present in the GRC, as

other terms except the Fresnel reflection term.

The Fresnel coefficient can be easily calculated for Fig. 4.7 (b). However the

Fresnel reflection term will take two different forms for the decoupled TE and

TM modes [31]:
ko — pakeo
rrp - et — e 4.3
2 /J“2kz1 + :UJlkz2 ( )
k. — ek,
prM S St (4.4)

gok.y +e1kao

For the TEM wave in Fig. 4.7, at normal incidence (k.; = k1 and k.o = ko),
either (4.3) for E, or (4.4) for H, can be used. In our work we have checked

both methods and they gave the same result as expected.
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Figure 4.7: Fresnel reflection at (a) three layered media, (b) two layered media.
Expressing S7; as Summation of Complex Exponentials:
Let us rewrite the GRC equation in (4.1):
Si1 = Tig + TyoTy Doge 9224 4 T12T21F21F33€_j4k22d +ee (4.5)

As seen in (4.5), Sy is actually a function of d = N,a. In our method we vary
N, and record the Si;s correspondingly. In other words, we have the Si; vs.
N, response of the metamaterial medium and we express it as a summation of

complex exponentials:
M
Su(N.) ~ Y e e, N,=Ny,No+1,...,Ng+ N —1 (4.6)
i=1

where b;’s are the complex residues, s;’s are the complex exponents, M is the
number of exponentials to represent the GRC with truncating the infinite series,
Ny is the initial number of unit cells stratified in the z direction and N is total

number of unit cells used. Fitting the GRC with M exponentials is done using

the GPOF Method.
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We have obtained the reflection coefficients, S71, for metamaterial stacks made
up of N, = 1,2,...,20 unit cells. For each stack, and each frequency from
5GHz to 15GHz (with 200MHz steps) Si; are calculated as explained previously.
Referring to (4.6):

S]_]_(NO) ~ blejs1N0a + b2€j52N0a + -4 bMejSMNoa, (47)

Sll(NO + 1) ~ b16j81(N0+1)a + b2€j52(N0+1)a N bMejSM(N°+1)a,

Sll(NO + N — 1) ~ blejsl(NoJrN*l)a + b2€j82(N0+N*1)a 4o+ bMeJ'SM(No+N*1)a7

where Ny > 1 but not necessarily No = 1 and Ny + N — 1 = 20. (4.7) can also

be written as

S11(No) = by e?*10 4 pleisa0e 4o 4 ph eIh0a (4.8)

Si(No+1) = b'lejsllla + bgejséla 4+t b’]\/[eJSQ\/Ila,

Si(No+ N — 1) m be?s1V=Da g pl gissN=Da .. 4 pf eish(N=Da,

When we apply the GPOF method to a vector such as:

[S11(No) S11(No+1)... S11(Nog+ N —1)], and fit it with M exponentials, we
actually obtain b, and s}.a, the complex residues and exponentials in (4.8), re-
spectively. This is because GPOF method treats the index of the first entry in a
vector as zero, in our case as Ny = 0. However, our aim is to find b; and s;.a in
(4.7) where Ny # 0 is the number of unit cells used as bias. Therefore we should
relate these complex residues and exponentials to each other. Comparison of

(4.7) with (4.8) shows that

by = bleisitNoa g — (4.9)

Now we have found b; and s; correctly, to approximate Sy; given in (4.5) as

a summation of complex exponentials expressed in (4.6). Comparison of two
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equations term by term shows that:

bl = Flg, S1 = O, (410)
by = T1215, 123, So = —j2k.a,

by = T1oTo U Ty, 83 = —jdk.o,

which means b; is the Fresnel reflection term, s; is the complex exponential
corresponding to the Fresnel reflection term and should be zero, s, = —j2k.o,

s3 = —j4dk,o, ... can be used to calculate k5.

The propagation constant k.o, found from each of the complex exponential
terms s;, ¢ > 2, should be the same, such that the k,5.a product calculated using
each exponent is the same and remains in the reduced Brillouin zone [—n, 7]. The
following derivations explain the reduction of the complex propagation constant,

k.2, to the reduced Brillouin zone.
Reduction to the Reduced Brillouin Zone:

Consider the second and third complex exponentials of the GPOF approxi-

mation in (4.10), assuming M > 2.
eijsza — 632a€7j27rm — 652a7j27rm’ (411)

—jdkz2a

e — 633aef]27m — 653a7327rn’ (412>

where m, n are integers. Then,

—j2k.0a = sea — j2mwm, (4.13)
—jdk.oa = sza — j2mn. (4.14)
—j2(Re{k.2} + jIm{k.0})a = (Re{s2} + jIm{sa})a — j27m, (4.15)
—j4(Re{k.o} + jIm{k.o})a = (Re{ss} + jIm{ss})a — j2mn. (4.16)
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2Im{k.2}a — j2Re{k.2}a = Re{sa}a + jIm{ss }a — j2mm, (4.17)

Alm{k,o}a — j4Re{k.o}a = Re{ss}a + jlm{ss}a — j2mn. (4.18)

Therefore,
1
—2Re{k.ota = Im{sy}a — 2rm — Re{k,o}a = —§Im{32}a +7mm, (4.19)

1
—4Re{k.ota = Im{ss}a — 2mrn — Re{k,x}a = —ZIm{53}a + gn (4.20)

1
2Im{k,o}a = Re{sata — Im{k.o}a = §Re{32}a, (4.21)

Alm{k,o}a = Re{ss}a — Im{k.,s}a = iRe{sg}a. (4.22)

The integers m, n in (4.19)-(4.20) are selected such that the Re{k.s}a product
calculated using each exponential s;, © = 2,3 is the same and remains in the
reduced Brillouin zone [—m,7|. The procedure is similar for exponentials s;,

1> 3.
Finding the Effective Constitutive Parameters:

After I'15 and k.5 have been found out, for TEM polarization at normal inci-
dence, either (4.3) for TE polarized E, or (4.4) for TM polarized H, can be used
to find the effective relative p, or €, of the homogeneous medium respectively. In

our method we used E, component of the electric field, therefore utilizing (4.3):

(14 Ta)k.o

= ——V 4.2
:u’l” (1 o F12)k217 ( 3)

where k,; = k1 = w,/lo€o is the wave number in Medium 1 (air).

Since

2w
ko = wy/logs = 270 f\/1hrErr/I0EQ = Tf\/,urer, (4.24)

2
(55) (¥ +12)
Er = . , (4.25)

115



where k5 = k; = kysin0; is the wave number in transverse direction in Medium
2, sinf; being the angle of oblique incidence. 6; = 0°, k.o = ko for normal

incidence.
Replacing the Metamaterial with its Homogeneous Equivalent:

Once p, and ¢, of the homogeneous equivalent for the metamaterial structure
have been obtained, we can replace the metamaterial structure with its homoge-
neous equivalent. Since the metamaterial structure is dispersive, its homogeneous
equivalent is also dispersive. Therefore, the obtained pu, and e, values are fre-
quency dependent and can be better written as p,(w) and e,(w). It is worthwhile

to mention that u,(w) and ,(w) are complex quantities.

In HF'SS, electric permittivity and magnetic permeability of a material can-
not be directly assigned complex numbers. However, relative permittivity (e!)
and dielectric loss tangent (tand,) together with relative permeability () and

magnetic loss tangent (tand,,) can be used alternatively.

er(w) = &(w) — je/ (W) (4.26)

tan 64(w) = Z/E:; (4.27)

() = 1) — G () (4.28)
_ (W)

tan d,,(w) = () (4.29)

Both positive and negative real numbers can be assigned to relative permit-
tivity, dielectric loss tangent, relative permeability and magnetic loss tangent.

Other properties of the material are left at their defaults:
Bulk Conductivity = 0 S/m, Magnetic Saturation = 0 T
Lande G factor = 2, Delta H = 0 A/m.

Speeding up the process: Although the homogeneous equivalent is much

simpler than the metamaterial structure, due to the size of problem, it takes
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considerable amount of time to run the geometry in HFSS and to obtain the
electric field data and reflection coefficient (in the order of several hours). To
solve this problem, we used the slab problem of Section 2.2. Since the PEC-PMC
waveguide method enforces TEM wave propagation in the normal direction, using
a slab with constitutive parameters u, and ¢,, the reflection coefficient of the
slab as well as electric fields in Medium 1, 2 and 3 are obtained, in very good
agreement with the HFSS results and in seconds. This allowed us to build an

efficient optimization algorithm.
Optimization Algorithm:

Since metamaterials are highly dispersive, their homogeneous equivalents are
also expected to be highly dispersive. Hence, the effective constitutive parame-
ters of the homogeneous equivalent change with frequency, sometimes rapidly. If
a homogeneous slab is considered at a single frequency, the effective constitutive
parameters of the slab play an important role on the number of exponentials to be
used, to approximate the generalized reflection coefficient successfully, as in Dis-
crete Complex Image Method (DCIM). Therefore, the number of exponentials to
successfully represent the generalized reflection coefficient is expected to change
from one frequency to another, based on the effective constitutive parameters of

the homogeneous equivalent at that frequency.

On the other hand, suppose the following vector is used in the GPOF method,
at a single frequency: [S11(No) S11(No +1)... S11(Nyg + N —1)]. The variation
of physical length along this vector corresponds to (N —1)a. The electrical length
variation for the same vector should be sufficiently large, such that the samples
of the vector do not reside very close to each other and hence cause singularity.
Usually, the electrical path length variation along the vector, k,o(N — 1)a, is
expected to be larger than 7 for successful approximation with complex expo-

nentials.
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Another aspect of the homogenization problem in metamaterials is the highly
resonant properties of the unit cells which build the metamaterial structure.
The wire and split ring resonators inside the unit cell of a metamaterial cause
electric and magnetic resonances, which are very dominant near their resonant
frequencies. When the unit cells are stacked, the mutual interactions between
these unit cells are very high. Now, consider only one unit cell. If another unit
cell is added, the electromagnetic response of the metamaterial slab will change
abruptly. When a third unit cell is also added, the response is also expected
to change, but less abruptly. As unit cells are added, after some point, the
interaction of the newly added unit cell with the very first unit cells (at the
other end of the stack) will be quite weak. Therefore, in the homogeneous state,
the interaction of a newly added unit cell is expected to be dominant only with
the unit cells in its neighborhood. Also, when another unit cell is added, the
interaction of the new unit cell with its neighbors should be at the same amount as
in the case of previously added unit cell. In summary, the metamaterial slab can
be said to be homogeneous when it has sufficiently large number of unit cells. This
also means that if the metamaterial structure is not acting homogeneous, using
generalized reflection coefficients for this structure will contaminate the retrieved
constitutive parameters. Therefore, the generalized reflection coefficients used in
the GPOF vector should begin from a sufficiently large number of unit cells,

which we have defined previously as Ny: number of unit cells used as bias.
To sum up, the two important parameters in the homogenization process are:
1. Number of unit cells used as bias: Ny,
2. Number of complex exponentials: M.

Therefore, we have developed an optimization algorithm which finds the op-
timum (No, M) combinations using the Sj; data obtained from stacks made up

of N, =1,2,...,20 unit cells. In our optimization code we follow these steps:
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ii.

iii.

1v.

V1.

vil.

Vviil.

1X.

xl.

Xii.

Select Ny (from 1 to 17). This means that the length of the vector used in
the GPOF method is N = 20 — Ny + 1.

Select M (from 2 to | ).

Apply GPOF method to the vector and fit with M exponentials. Obtain
(b, s).

1) 21

Obtain (b;, s;) from (b, s}) using (4.9).

) 21

Sort |s;| in an increasing manner. Re-index s; and b; vectors in the same

sequence with the sorted |s;].

Obtain the Fresnel term from b;. (s; should be very close to zero, if ho-

mogenization is successful.)
Drop b; and s; from b; and s; vectors, respectively.

Sort new |b;| vector in a decreasing manner. Re-index b; and s; vectors in
the same sequence with the sorted |b;|. The entries of the s; vector now

correspond to sg, S3, ...

Obtain ko from (4.19) and (4.21), selecting m such that the Re{k.2}a

product remains the in the reduced Brillouin zone [—m, 7.

. From Fresnel reflection coefficient I';5 and wave number k.5, obtain the

effective constitutive parameters u, and ¢, using (4.23) and (4.25).

Using (&, ) obtain the reflection coefficients of the homogeneous equiv-
alents (i.e., homogeneous slabs with thicknesses Noa, (Ny + 1)a, ... ,

(No+ N —1)a): [S11(No) S1i(No+1)... S1,(No+ N —1)].

Obtain the mean square error (MSE) for the last 4 stacks, which is a

heuristic choice for obtaining the error in homogenization:
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MSE = |57,(No + N —4) — S11(No + N — 4)[? (4.30)
+[S1(No + N = 3) = Su(No + N = 3)?
+55 (No + N — 2) — Siy(No + N — 2)?

+]81,(Ng + N — 1) — S11(Ng + N — 1))?

xiii. Find the optimum (Ny, M) pair in the least mean square (LMS) sense,

following the steps i-xii for different possible choices of Ny and M.

After the optimization algorithm, the final constitutive parameters of the ho-
mogeneous equivalent are obtained. In the frequency band, at some frequencies,
both constitutive parameters are positive (i.e., DPS); at some frequencies, both
constitutive parameters are negative (i.e., DNG); and for the rest of the frequen-
cies they have alternative signs (i.e., SNG). For the frequencies at which the
homogeneous equivalent is SNG, it is observed that two terms in the GPOF ap-
proximation are dominant: 1) the first term which gives the Fresnel term 2) the
second term which gives the propagation constant. The higher order terms of the
GPOF approximation are negligible. The propagation constant has a large and
negative imaginary part, and the wave inside the metamaterial structure decays

rapidly, which is related to the evanescent wave behavior of SNG metamaterials.

If more than 2 exponentials are used at these frequencies, the Fresnel term
more or less stays the same, but the second exponential term is affected. In-
terestingly, the optimization algorithm may erroneously select the number of
exponentials M to be more than 2, which may yield a better Fresnel coefficient

for minimizing the MSE.

Here it should be noted that the optimization scheme and the LMS algorithm
are dependent only on the reflection data, and they are much more dependent

on Fresnel reflection than they are on the propagation constant. This is because
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the Fresnel coefficient is the most dominant factor in the generalized reflection
coeflicient, and therefore optimization, since the metamaterial unit cell and total

thickness of the metamaterial are very small.

For the SNG cases, because of the aforementioned reasons, we overrule the
findings of the optimization algorithm. For SNG cases, the number of bias unit
cells are selected as Ny = 1, for the rapidly decaying wave to be able to bounce
back, and the number of exponentials is selected as M = 2, because there should

be 2 dominant terms in the GPOF approximation.

4.1.3 Numerical Results

Following the optimization procedure, and correction of the frequencies at which
the metamaterial is SNG, the effective constitutive parameters of the homoge-

neous equivalent are obtained as in Fig. 4.8.

After the homogeneous equivalent is obtained, its scattering parameters, Sy,
are compared with those of the metamaterial structure, in Fig. 4.9. There is a

very good agreement between the scattering parameters over the frequency band.

The exponential approximations are tabulated in Table 4.1 as examples
of three different situations: the SNG case at f = 5GHz, the DNG case at
f = 10.8GHz and the DPS case at f = 15GHz.
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Figure 4.8: Effective homogenization parameters of the metamaterial over the
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Table 4.1: Parameters of the GPOF approximation

f =5GHz
il b sia Re{ks}a
1] —0.90 + 7043 | ~ 0.0 + 0.0
—1.10+ j1.87 | =3.73 — j1.46 | 0.7294
f =10.8GHz
i|b sia Re{kz}a
1] —-0.35—-70.09 ~ 0.0+ 70.0
210.34 4 50.04 —0.11 + 70.87 | —0.389
313.5x107% —30.1 —0.334+51.69 | —0.423
4]24%x102-j13%x10° | —022—j1.59 | —0.782
5 —-14x10"2+4451.1 x 1072 | —=0.10 — 52.63 | —0.456
f = 15GHz
i b Si@ Re{ks}a
1| —0.27+459.8x 1073 ~ 0.0+ 50.0
210.25—-70.015 —0.041 — 51.35 | 0.673
310.029 —51.9 x 1074 —0.148 — 52.72 | 0.679
4143x1073 — 554 %1073 —0.206 4 72.27 |  0.669
5| —1.1x1073 4+ 1.8 x 1073 | —0.025 — j2.09 | 1.047
6| —6.5x107% —4j1.7 x 1073 | —0.053 + 51.28 | 0.500

measure of quality of homogenization.
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since their corresponding coefficients are relatively very small.

As expected, s; ~ 0+ jO for all of the frequencies given in Table 4.1. For
f = 10.8GHz, the Re{ks}a product obtained from exponents s, and s3, by re-
ducing them to the reduced Brillouin zone, are close to each other. The products

obtained from the higher order exponents, however, may not yield close results,

f = 15GHz the Re{ks}a product obtained from exponents sy, s3 and s, are very
close to each other, while higher order exponents may give different results, be-
cause of the explained reason. In summary, comparison of the Re{ks}a products

obtained from the first exponents of the GPOF approximation can be used as a

Similarly, for



Note that the Re{ks}a product is in the [—m,0] reduced Brillouin zone for
the DNG case at f = 10.8GHz, whereas Re{ks}a product is in the [0, 7] reduced
Brillouin zone for the DPS case at f = 15GHz.

To better assess the quality of homogenization, the field distribution along
the actual structure (i.e., metamaterial medium together with the air media
surrounding it) is compared with the case where metamaterial medium is replaced
with its homogeneous equivalent. The results for the frequencies of Table 4.1 are

given in Figs. 4.10-4.11 (when N, = 20 i.e., d = 5cm).

2 T T T
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18 — Metamaterial (Edge) |
- - —~Homogeneous equivalent
16 |
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W12 |
S
g 1 i
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]
=
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Figure 4.10: Magnitude of E-field inside and outside the metamaterial medium
and its homogeneous equivalent at f = 5GHz.
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and its homogeneous equivalent at (a) f = 10.8GHz, (b) f = 15.0GHz.
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The field distributions show very good agreement between the metamaterial
and its homogeneous equivalent in Medium 1 and Medium 3. Especially there
is perfect agreement in Medium 1, since our method is based on reflection data
and our optimization process strongly forces homogeneous equivalent to mimic
the reflection properties of the metamaterial. The agreement in the transmitted
field in Medium 3 is a sign of the success in homogenization. The field inside
the metamaterial structure, passing through the centers of unit cells are close to
zero and they are seen like noise. This is mainly because they are in the vicinity
of metallic scatterers (i.e., the SRRs and the wire). For this reason, the field
distributions are also recorded on another line, which passes from the edges of
the unit cells (through one of the PMC walls). Although the exact mechanism
inside the metamaterial region is not known, based on the unit cell geometry, a
major portion of the medium is air. Hence, if the line is taken from the edge, we
are at the furthest point from the SRR+wire combination, hence their coupling
effects are minimized. Therefore, homogeneous equivalent is expected to resemble

to the fields sampled at the edge.

4.1.4 Conclusion

In this section, a simple and versatile method for retrieval of the homogenization
parameters of periodic structures is proposed. The method is tested with a
typical 3D metamaterial structure, present in the literature. The homogenization
quality of the metamaterial, compared with its homogeneous equivalent, is tested
in terms of agreement in s-parameters, reduction of Re{ks}a products into the
reduced Brillouin zone and agreement in field distributions. Numerical results
show that the method is very successful to retrieve the effective constitutive
parameters of the metamaterial. As the future work, the method can be modified
to incorporate also the transmission data, so that the homogeneous equivalent

mimics the metamaterial more successfully in the transmission region.
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4.2 Retrieval of Surface Wave Propagation

Constants on a Grounded Dielectric Slab

4.2.1 Introduction

In this work our aim is to build an efficient and robust method to retrieve the
surface wave propagation constants corresponding to each TM and TE mode
that can propagate on the surface of a grounded dielectric slab, Fig. 4.12. The
two-step method we propose in this work consists of modeling and simulating
the problem geometry in a Finite Element Method (FEM) based electromagnetic
simulator and then processing the electric field results obtained from the simula-
tor to determine the surface wave propagation constants. The numerical results
determined using our method are compared with their theoretical counterparts.
Numerical results of the method are in good agreement with the theory, generally
achieving less than 2% error. However, there are some geometries and special

cases that the method requires improvement.

z

Dielectric

<Ground Plane

Figure 4.12: Geometry of a grounded dielectric slab.

The importance of our proposed method lies in its ability to be further gener-
alized and applied to complex geometries. These complex geometries may include
multi layered structures or periodically aligned metamaterial structures to cre-
ate an artificial medium which may have negative effective electric permittivity

and /or negative effective magnetic permeability. Surface waves, leaky waves and
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evanescent waves related to metamaterials, electronic band gap (EBG) and pho-
tonic band gap (PBG) structures have created a flurry of interest among many
researchers [34-77]. To the best of our knowledge, an efficient method to de-
termine the propagation constants related to these waves has not been reported
yet. Expansion of our method to include these geometries and structures will

therefore meet an important need.

4.2.2 The Two-Step Method

High Frequency Structure Simulator (HFSS) Simulations

The first step of our method is modeling and simulating the problem geometry
in a FEM based electromagnetic simulator. For this purpose we use the High

Frequency Structure Simulator of Ansoft Corporation.

In theory, the ground plane and the dielectric slab is assumed to be of infinite
extent in the x and y directions. In our simulator, due to memory and com-
putational restrictions, the infinite geometry of the theory has to be truncated.
However, HFSS provides a very useful tool to take into account the truncated
parts of the geometry. HFSS allows the user to select radiation surfaces and im-
pose Radiation Boundary Conditions (RBCs) on these surfaces/boundries, which
in turn allows the waves to radiate infinitely far into space. For the accuracy
of simulations, HFSS recommends the radiation boundary to be located at least

one-quarter of a wavelength away from a radiating structure.

To create surface waves on the dielectric slab, we use a rectangular narrow
patch at the surface of the slab and excite 1A constant current along the patch.
The length of the patch is L = 0.295\q and the width of the patch is W = L/10 =
0.0295)\y, where A\ = lem at f = 30GHz. The geometry of the rectangular

narrow patch and constant current excitation is depicted in Fig. 4.13.
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W = L/10
= 0.0295)

Figure 4.13: Geometry of the rectangular narrow patch and excitation.

To simulate the infinite ground plane, we use a PEC plate just beneath the
dielectric substrate. We impose the Perfect Electric (PE) boundary condition on

this plate together with the Infinite Ground Plane option being enabled.

As the dielectric substrate, we use a lossless dielectric material with dielectric
constant £, = 2.55. The space above the dielectric slab is filled with ideal free
space (vacuum). The outer boundaries of the vacuum and the dielectric substrate
(excluding the infinite ground plane) are the radiation surfaces where Radiation
Boundary Conditions are enforced. The outline of the entire problem geometry

in HFSS is as given in Fig. 4.14.

Definitions: At this point it is useful to make some definitions, to which we

will refer in the next sections.

E-plane: zz plane (i.e., y = 0 plane).

H-plane: yz plane (i.e., x = 0 plane).

E-line: The line segment (—z_width/2 < x < x_width/2,y =0,z = th).

H-line: The line segment (z = 0, —y_width/2 <y < y_width/2,z = th).
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Figure 4.14: Entire problem geometry in HF'SS.

Dielectric

Infinite Ground Plane

As their names imply, E-line and H-line reside in the E-plane and H-plane,
respectively. The E-plane and H-plane are defined with respect to the orientation
of the narrow patch. Note that both E-line and H-line lie on the surface of the

dielectric slab (z = th plane).

Generalized Pencil of Function (GPOF) Method

Preliminaries:

The asymptotic expansion (for large lateral distances, p) of the Green’s func-
tion of electric field for z-directed filamentary microstrip dipoles, where the

source is taken to be the origin, is formed as [78]:

Zy [tan?(kod\/e, — 1) . e~dkor  Zie. —1.
Gfx(p)Nﬁ [ o 1 : sin” ¢ + cos® 4 2 2—]{?0 6 JResw (Bra)
2 sin?
- {%M cos? ¢ [ (Brasp) — HS (Brasp) | — Brus ¢H£2’<5TMp>} ,
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(4.31)

where Zy = \/,uo—/eo is the intrinsic impedance of free space, d = th is the
thickness of the dielectric slab, (), is the propagation constant of the single
proper TM pole and Resy (Bry) is the residue corresponding to the TM pole
(where the function W is as given in [78]). The direction of propagation makes
an angle ¢ with respect to the positive z-axis measured towards the positive

Y-axis.

The first term in (4.31) gives the space wave term:

Z [tan (kod\/r)

27T

e_jkop

sin? ¢ + cos? gb} i (4.32)

The second term in (4.31) shows the contribution from the TM surface wave:

Z() Er — 1
2k50 Er

2
" {ﬁTM cos’ ¢ [H{? (Braep) = B (Braip)| — Bra

jResw (Brum) (4.33)

sin? (;5

1 Gre) .

In the E-plane GZ, becomes:

7 e—Jikop
Grlpo=0)~ 32— > (4.34)
Zoer— 1. 32
“op o Resw (Bran) =5 [y (Brage) = Hy? (Brasp)|

In the H-plane GE becomes:

70 tan2(/{0d\/€r — 1) e~ dkor

E 7-‘-
Zo € — Brm
£0 R DIt gy 2
+ ST J esw (Bram) p (ﬁTMP)

Hence for large p, G¥, given in (4.35) and (4.36) have the following charac-

teristics in the E- and H-planes, given in Table 4.2.

In our HFSS simulations we use an -directed narrow patch with constant

current excitation to simulate the filamentary microstrip dipole mentioned in
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Table 4.2: Space Wave and Surface Wave Characteristics in the E- and H-planes.

Space Wave Surface Wave
Plane Decay Prop. Const. Decay Prop. Const.
E ~ p*Q ]{70 ~ pfl/Q 5TM
H ~p? ko ~ p 2 Bru

[78]. In accordance with GE

Tx?

we evaluate the E, component of the electric field
on the surface of the dielectric substrate (along E- and H-lines). The electric field
data we have obtained in HFSS is then used in the GPOF method to determine

the surface wave propagation constants.

On the Generalized Pencil of Function Method for Surface Wave

Constant Determination:

Let y be a complex function, and y[0],y[1],...,y[N — 1] be the N uniform
samples of a real variable ¢, as shown in Fig. 4.15. These samples can be

represented by M complex exponentials as

Zbes‘”k sz . k=0,1,.... N—1 (4.36)

s;0t

where z; = €%° and 0t is the sampling interval. Uniform sampling relates the

samples k to the real variable ¢ such that ¢t = §tk. In (4.36), b;’s are called the

residues, s;’s are called the exponents.

Now consider the case shown in Fig. 4.16, where y(t) is shifted right by
to = kodt. The shifted function y(t — o) is sampled with N samples, again dt

being the sampling interval, to form y[k — ko).

The shifted discrete complex signal sequence y[k — ko] can be can be repre-

sented by M complex exponentials as in (4.36).
ylk — ko] = Zbew’f ko) — sz 2R ke =0,1,...,N—1 (4.37)
or equivalently,

M
ylk—ko] = Zbesl‘””@ S 0 k= ko ko1 kot N—1 (4.38)
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0 (N —1)6t

012 - |

Figure 4.15: Magnitudes of complex function y(¢) and its N uniform samples
ylk].
Next sections will concentrate on the connection between the preliminaries

and the formal definition of the GPOF Method.
Application of the GPOF Method on the E-Line:

As it is presented in the preliminaries section, for sufficiently large lateral
distances p on the E-line, we expect the space wave term of the E, component
of the electric field to decay with p=2 whereas the surface wave term is expected

~1/2 Now let us assume that there are M total propagating TM

to decay with p
and TE modes and they all decay with p~'/2. Therefore the E, component of
the electric field on the E-line can be written as a function of lateral distance p
as follows
E.(p) = Ao i + i Ai e (4.39)
2 (p 2 e 2 \/ﬁe , .

where 3, is the space wave propagation constant, 3%, are the surface wave

propagation constants, Ag and A; are the complex amplitudes of the space and
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[y(t —to)|

/
0 to o + (N — 1)5t
|y[k — kol
A k
0 Wl o L k+N-1
ko + 1
ko +2 —

Figure 4.16: Magnitudes of complex function y(t —t,) and its N uniform samples
ylk — kol.

surface wave terms excluding decay dependence. Multiplying (4.39) with /p
gives

Ay . -l .
VPEs(p) = ——e 7100 £y " Aje I Fswe, (4.40)
PP Py

Now let us rewrite (4.40) as

M
VPE(p) = Aie WP £ N, (p), (4.41)
i=1
where
AO _ ﬁ
Ny(p) = —=e™7" (4.42)

= [ s
PP

which comes from the space wave term contribution in (4.40).

For large lateral distances p, assuming |Ay| < |A4;|, with proper choices of
sampling interval p and number of samples NV, N, (p) can be assumed as a noise

term which can be discarded by the GPOF Method. In such a case, (4.41) can
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be approximated as
M
VPEs(p) = Y Ajemi%swe, (4.43)
i=1

and can be represented with M complex exponentials utilizing the GPOF

Method.

As it has been explained previously, for (4.39) to be valid and for (4.43) to
be a correct approximation, the lateral distance p should be sufficiently large.
Let us assume that the equations and approximations in (4.39)-(4.43) are correct

when p > po, where pg is the starting value of the lateral distance to be used in

the GPOF Method.

Fig. 4.17 shows the resemblance between /pE,(p) in (4.43) for p > py and
y(t — to) of Fig. 4.16. Intuitively this suggests (4.38) to be used in representing

(4.43) with M complex exponentials.

[VPE(p)]

P
0 Po P0+(N—1)5p
Y[k — Kol
A k
0 ka1l o L k+N—1
ko+1
ko +2—

Figure 4.17: Magnitudes of \/pE,(p) and its N uniform samples y[k — ko).
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Therefore,

M
E.(p) ~ Z Aze IPswep

= ylk — ko) = Zbesép(kkw, k=koko+1,...,

(4.44)

ko + N — 1.

where p = dpk. It is obvious that py = dpky in Fig. 4.17. The left hand side of

equivalence (4.44) is a continuous signal, whereas the right hand side is a discrete

signal. Expressing the RHS also as a continuous signal, we get

M M
—jpi si(p—
E :Aie iBswr — § :bie ilp=po)
i=1 i=1
L — }.pSilp—po
AjeBswp = p,esilp—ro)
—jpe —S; EP
Aze IBswep — bye SiPoeSiP

which gives

Ai=bie " | Boy =—Im{s;} , Re{s;} =0

Some Theoretical Examples (E-line):

Example 1: Consider the following case along E-line.

E,(p) = Ag e JBop L 7L Ay e~ IBswP
” NG

Ay 81
VrEL(p) = = emIBor 1 Ao IBswe
PP

Y

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

Assume Ay =0, A; = —0.7+50.3, By = 6.2832 , By, = 1.15, = 6.9115.

When /pE,(p) is used in the GPOF Method (in the [5Ag — 8] interval with

N = 51 samples) the following results are obtained.
by =0.7—70.3

s1=0— j6.9115
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Ay = bie 5170 = —0.7+ 50.3
Bl = —Im{s;} = 6.9115

Since Ay = 0, the noise term N, (p) becomes zero. Re{s;} is zero as expected.

Ay and 3L, are retrieved exactly.
Example 2:
Consider Example 1 again, with the following assumptions
Ap=(—-0.5—-404) x 107", Ay = —0.7+ 0.3
Bo = 6.2832 , By, = 1.15, = 6.9115.

When /pE,(p) is used in the GPOF Method (in the [5Ag — 8] interval with

N = 51 samples) the following results are obtained.

S
I
o

by = 0.6628 — j0.3464

s1 = 0.0223 — j6.8886

Ay = bie 1P = —(.5537 + j0.3756

Al = e Im{silro — _0.6189 + j0.4198

By = —Im{s;} = 6.8886

by = 0.6963 — 70.3047
s1 = 0.0024 — j6.9093

Ay = be=s1P0 = —(0.6847 + j0.3087
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;1/1 — e~ Imisitoo — 0 6928 + 50.3124

Bl = —Im{s;} = 6.9093

by = 0.6996 — 50.3005

s = 0.0002 — 56.9113

Ay = bie=s1P0 = —0.6985 + j0.3009

Al = e m{silro = —0.6993 + j0.3012

By = —Im{s;} = 6.9113

by =0.7— 0.3
s1=0—j6.9115

Ay = bre 170 = —0.6998 + j0.3001

Al = be~iImisleo = —0.6999 + 50.3001

Bl = —Im{s;} = 6.9115

S
Il
W

by =0.7—j0.3

sy =0—j6.9115

Ay = bie=1r0 = —0.7 + j0.3

Af = bemitmisio = 0.7 4 50.3

Bl = —Im{s;} = 6.9115
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In this particular example we see that when |Ag| is comparable to |A;|, the
contribution of the space wave term shows a noise effect which cannot be easily
discarded. In such a case Re{s;} # 0, which makes the theoretical 1211 = bye51P0
complex amplitude retrieval formula wrong. When Re{s;} # 0, the modified

fl’l = ble_jlm{sl}”ﬂ formula yields better results for this purpose.
As n increases |Ag| < |Ay|, which leads A; ~ A" ~ A; and (L ~ By
Application of the GPOF Method on the H-Line:

The procedure for the H-line is very similar to the E-line case we have inves-
tigated in the previous section. For sufficiently large lateral distances p on the
H-line, we again expect the space wave term of the E, component of the electric
field to decay with p=2 whereas in this case the surface wave terms are expected

to decay with p=3/2.

Let us again assume that there are M total propagating
TM and TE modes and they all decay with p~3/2. Therefore the E, component
of the electric field on the H-line can be written as a function of lateral distance

p as follows
M

AO : Al - 20
Ey(p) = “2eihor 4 N L omifswe, (4.51)
p? 2 P\/P

Multiplying (4.51) with p,/p gives

Ay . al .
pV/PE:(p) = ﬁe]ﬂop + 3 A iPswe, (4.52)

i=1

Now let us rewrite (4.52) as

M
PVPE:(p) =) Ae WP £ N, (p), (4.53)
=1
where
Ay g
Ny (p) = —=e 777, (4.54)

VP

which comes from the space wave term contribution in (4.52).
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Under the conditions presented in the previous section, N, (p) can be assumed
as a noise term which can be discarded by the GPOF Method. In such a case,

(4.53) can be approximated as

M
PVBE(p) = 3 Ao s, (4.55)
=1

and can be represented with M complex exponentials utilizing the GPOF
Method. Again with the assumption that the equations and approximations
in (4.51)-(4.55) are correct when p > pg, one can apply the same procedure in

(4.44)-(4.48) and find out that
A; =bie 5 Bl =—Im{s;} , Re{s;}=0. (4.56)
The only difference for the H-line case appears in (4.44) where \/pE,(p) has

to be replaced with p\/pE.(p).

On the other hand, N, (p) given in (4.42) decays with p=3/2 whereas N,,(p)
in (4.54) decays with p~'/2, which means application of GPOF Method on the

E-line is less noise sensitive compared to the H-line case.
Some Theoretical Examples (H-line):

Example 3:

Consider the following case along H-line:

Ao _; A _p
E, = Db L 7L, Jﬁswﬂ7 4.57
(p) 2 o/ (4.57)

Ay 41
oV PEL(p) = \/—Eeﬂﬁop + Ay IPswe, (4.58)
2

Assume Ay =0, A; = —0.7+ 0.3 , Bo = 6.2832 , L, = 118, = 6.9115.

When p,/pE;(p) is used in the GPOF Method (in the [5Ag — 8¢} interval

with N = 51 samples) the following results are obtained.
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by = 0.7 — j0.3
s1=0—j6.9115

Ay = bemm = 0.7 4 0.3
Bly = —Im{s;} = 6.9115

Since Ay = 0, the noise term N, (p) becomes zero. Re{s;} is zero as expected.
Ay and Bé‘w are retrieved exactly. Note that the same results with Example 1

are obtained.
Example 4:
Consider Example 3 again, with the following assumptions
Ap=(—-0.5—404) x 107" ; Ay = —0.7+ 0.3
Bo = 6.2832 , By = 1.15, = 6.9115.

When p,/pE,(p) is used in the GPOF Method (in the [5Ag — 8¢} interval

with N = 51 samples) the following results are obtained.

N
I
o

by = 0.4925 — 50.5432
s = 0.1149 — 56.7860

Ay = be=s1/0 = —(0.0449 + j0.4104

Al = e Im{siiro — _0.0798 + j0.7289

By = —Im{s,} = 6.7860

by = 0.6783 — 70.3249
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sy = 0.0160 — 56.9008
Ay = be 5170 = —0.6091 + j0.3328
Al = be-iImisleo = —0.6600 + j0.3606

Bl = —Im{s;} = 6.9008

S
I
N

by = 0.6978 — 50.3025

s = 0.0017 — 56.9105

Ay = bre=*1r0 = —(.6905 + j0.3036

Al = e~ m{sitr = —0.6962 + j0.3061

Bl = —Im{s;} = 6.9105

by = 0.6998 — j0.3002

s; = 0.0002 — j6.9114

Ay = be=s170 = —(0.6990 + j0.3004

Al = e Im{siiro = —0.6996 + j0.3006

By = —Im{s;} = 6.9114

by = 0.7 — 50.3
s1=0— j6.9115

Ay = bie 5170 = —0.6999 + 0.3
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A/l _ ble_jlm{sl}m = —0.7+0.3001
Bé*w = —Im{s;} =6.9115

In this particular example we see that when |Ag| is comparable to |A;|, the
contribution of the space wave term shows a noise effect which cannot be easily
discarded. In such a case Re{s;} # 0, which makes the theoretical 1211 = bye 510
complex amplitude retrieval formula wrong. When Re{s;} # 0, the modified

121’1 = bl(fﬂm{sl}p0 formula yields better results for this purpose.
As n increases |Ao| < |A;|, which leads A; ~ A} ~ A, and Sy, ~ Bl

Also note that Example 2 for the E-line case works better than the H-line

case examined here, as expected.

4.2.3 Implementation:

To determine the surface wave propagation constants accurately, the lateral dis-
tance p should be sufficiently large such that the space wave contribution to the
electric field can be neglected compared with the surface wave contributions. On
the other hand, the size of the problem geometry cannot exceed a threshold size
which is predefined by the HFSS as a restriction. We want to investigate the
cases where 0 < p < 10\, which means the size of the dielectric substrate must
be 20\g x 20\y x th. However this size is impossible to implement due to the
aforementioned size restriction of HF'SS. To solve this problem, we use different
geometries for E-line and H-line cases. For the E-line case, dimensions of the sub-
strate are x_width x y_width x th, where z_width < 20\g and y_width = 20),.
For the H-line case, dimensions of the substrate are z_width x y_width x th,
where z_width = 20\ and y_width < 20)\y. The problem geometries for the E-

and H-line cases are shown in Fig. 4.18 and Fig. 4.19, respectively.
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i th

ywidth = 20X

x r_width .

Figure 4.18: Problem geometry for the E-line case.

When the simulation is complete, the electric field data along the E-line or H-
line are exported to afile (i.e., {Re(E,), Im(E,), Re(E,), Im(E,), Re(E,),Im(E,)}).
This file is processed and the necessary FE, component of the electric field is
formed. For the E-line case E, is multiplied with ,/p, whereas for the H-line case
E, is multiplied with p,/p.

Theoretically for both E-line and H-line cases we might use the
[po < p < 10)¢] interval in the GPOF Method, where py can be taken 2\g — 3\g
intuitively. However on the E-line or H-line p = 10\ corresponds to two of the
surfaces where Radiation Boundary Conditions are set. In the simulation there
will be small reflections from these surfaces, which will contaminate the results
in their neighborhood. Therefore the logical interval to be used in the GPOF
Method will be [2Ag — 3¢ < p < 8X\g — 9A¢].
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o

y_width

w_width = 20\

Figure 4.19: Problem geometry for the H-line case.

4.2.4 Numerical Results

Surface wave propagation constants retrieved from the E- and H-line data are
compared with their analytical counterparts, which are calculated by solving
the transcendental surface wave equations [79]. In the simulations, frequency is
selected as f = 30GHz, therefore \y = lecm. The slab has a dielectric constant
of e, = 2.55. The retrieval process is repeated for various thicknesses of the

dielectric slab.

In the GPOF Method, HFSS results in the [psart — pena) interval with N
number of samples are used. In Table 4.3, for different intervals and using differ-
ent number of samples, the surface wave propagation constant, 8y, is retrieved

from the E- and H-line data, when the thickness of the slab is th = 0.1).

The percentage error of the numerical results for TMy mode is calculated as

Y%Error = —ﬁé w — By

x 100, (4.59)
B,

where (rp, = 680.87 = 1.08403, is the analytically found surface wave propaga-

tion constant for the TMy mode when th = 0.1).

For some of the cases given in Table 4.3, percentage errors are calculated:
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{E-line ; N =51, pstart = DX 5 Penda = 8N} — %Error = 1.32
{E-line ;, N =51, pstart = 5X0 5 Pena = N} — %Error = 1.41
{H-line , N =51, pstart = 5Xo , Pena = 8N} — %Error = 0.02
{H-line , N =51, psiart = 5X0 , Pena = 9N} — %Error = 0.53

As it is observed from Table 4.3 and percentage errors, both E-line and H-
line cases give good results for most of the intervals and number of samples.
Especially H-line case gives better results for this particular thickness of the

dielectric substrate.

For th = 0.15X, Bram, = 749.32 = 1.1933, and the results are tabulated in
Table 4.4. For two of the intervals and number of samples the percentage errors

can be found to be:
{E-line ;, N =51, psiart = DAo s Penda = 8Xo} — %Error = 0.04
{E-line ;, N =51, psiart = 50 5 Pena = N0} — %Error = 0.22

Examination of Table 4.4 shows that, E-line case gives very successful results.

But for the H-line case the results are unsatisfactory.

When the thickness of the slab is increased to th = 0.19)\g, the theoretical
surface wave propagation constant increases to Ory, = 805.81 = 1.282(,. The
retrieved propagation constants are given in Table 4.5. The errors for two cases

can be found as:
{E-line ;, N =51, pstart = DAo s Pend = 8N} — %Error = 0.63
{E-line ;, N =51, pstart = DX0 s Pena = 9N} — %Error = 0.67

As it is seen from Table 4.5, E-line case gives acceptable results. But for the

H-line case the results are again unsatisfactory.
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For th = 0.25)\, except from the TM, mode, another mode emerges, which
is TE;. The analytically found surface wave propagation of these modes for
th = 0.25)\g are fry, = 868.94 = 1.3830 and frg, = 669.06 = 1.0650,, and the
retrieved ones are tabulated in Table 4.6. For the TE; mode, percentage error is

calculated as in (4.59).
{E-line , N =51, psart =4X0 ; Pena = 8N} — %Error(TM,) = 0.60
%Error(TE,) = 0.13
{E-line , N =51, psart =4X0 , Pena = 9N} — %Error(TM,) = 0.89
%Error(TE,) = 0.15
{E-line , N =21, psare = 4X0 , Pena = 9N} — %Error(TM,) = 0.69
Y%Error(TE,) = 4.20

From Table 4.6 it is observed that E-line case gives acceptable results for
the TMy mode. The results for this mode for the given intervals and number of
samples yield approximately the same results. Along the E-line there are some
problems for the TE; mode. For this mode, the best results are obtained in the
[4Xo — 8X¢] and [4Ag — 9)¢] intervals with N = 51 samples. For the worst case,
among the given intervals and number of samples, the percentage error is 4.20

for this mode. Along the H-line case the results are again unsatisfactory.

We have also simulated a case, where the dielectric substrate is very thin,
th = 0.05). In this example, the surface propagation constant, 87, = 640.63 =
1.020,, is very close to the space wave propagation constant. The results tabu-
lated in Table 4.7 are far away from being successful for both E- and H-line cases.

One thing to note is that, the surface wave propagation constants determined
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using the GPOF Method are even smaller than the space wave propagation con-
stant. The possible reason of failure for this particular thin case is propagation

constants of space and surface wave terms being very close to each other.

Finally, the complex coefficients and exponentials found in the GPOF approx-
imation are used for generating the electric field distribution along the E-line. In
Figs. 4.20-4.23, the first two subplots of the figures show the field distribution
inside the interval used for GPOF approximation. The last two subplots of the
figures show the extrapolation of electric field distribution using the previously
found complex coefficients and exponentials. HFSS data and GPOF approxima-
tion are in very good agreement. Also notice that GPOF method removes the

noise in the HFSS data very well.

149



’ N ‘ Pstart ‘ Pend ‘ 5A%’W ‘ ﬁéW/ﬁO ‘
101 | 4\ 8\ | 670.72 | 1.067
101 | b5 8\ | 671.84 | 1.069
51 | 4Xg 8\ | 671.16 | 1.068
51 | B 8o | 671.89 | 1.069
26 | 4Xo 8o | 669.33 | 1.065
26 | 5\o 8\ | 674.08 | 1.073
21 | 4Xo 8o | 668.92 | 1.065
21 | B5Xo 8\ | 671.92 | 1.069

101 | 4) 9\ | 671.08 | 1.068
101 | 5 9\ | 670.08 | 1.066
51 | 4N 9\ | 670.58 | 1.067
51 | B 9\ | 671.30 | 1.068
26 | 4Xo 9Xo | 669.00 | 1.065
26 | SN 9N | 673.39 | 1.072
21 | 4)o 9\ | 671.68 | 1.069
21 | 5o 9N | 673.32 | 1.072

(a)

’ N ‘ Pstart ‘ Pend ‘ 6;‘W ‘ 6%’W/60 ‘
101 | 4Xo 8o | 669.37 | 1.065
101 | 5A¢ 8o | 681.69 | 1.085
51 | 4\, | S\, | 668.81 | 1.064
51 | 5o 8\o | 680.98 | 1.084
26 | 4\ 8\o | 666.77 | 1.061
26 | 5\g 8\ | 677.92 | 1.079
21 | 4Xo 8\ | 667.77 | 1.063
21 | 5Xo 8\ | 678.47 | 1.080

101 | 4) 9\ | 670.70 | 1.067
101 | B 9\ | 677.51 | 1.078
ol | 4Xo 9\o | 671.06 | 1.068
51 | B 9N | 677.25| 1.078
26 | 4o 9\ | 668.35 | 1.064
26 | 5o 9\ | 674.21 | 1.073
21 | 4Xo 9\ | 668.66 | 1.064
21 | B5Ao 9N | 672.99 | 1.071

(b)

Table 4.3: Surface wave propagation constants retrieved from (a) E-line,

(b) H-line. (f = 30GHz, A\g = lcm, th = 0.1\, &, = 2.55)
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’ N ‘ Pstart ‘ Pend ‘ 5A%’W ‘ ﬁéW/ﬁO ‘
101 | 4\ 8\ | 750.59 | 1.195
101 | b5 8o | 749.60 | 1.193
51 | 4Xg 8\ | 750.92 | 1.195
51 | 5Ao 8\ | 749.61 | 1.193
26 | 4)o 8o | 7HL.75 | 1.196
26 | 5hg | 8o | 749.92 | 1.194
21 | 4\ 8Xo | 751.25 | 1.196
21 | B5Xo 8o | 750.15 | 1.194

101 | 4\ | 9\ | 750.46 | 1.194
101 | 5ho | 9o | 750.47 | 1.194
51 | 4ho | 9\ | 750.03 | 1.194
51 | 5ho | 9\ | 750.97 | 1.195
26 | 4\ | 9\ | 750.94 | 1.195
26 | 5Ao | 9\o | 750.15 | 1.194
21 | 4Xo | 9o | 752.29 | 1.197
21 | 5Xo | 9\ | 750.63 | 1.195

(a)

’ N ‘ Pstart ‘ Pend ‘ 6;‘W ‘ 6%’W/60 ‘
101 | 4Xo 8\ | 678.15| 1.079
101 | 5A¢ 8o | 55177 | 0.878
51 | 4Xo 8\ | 692.83 | 1.103
51 | B 8o | 552.05 | 0.879
26 | 4\ 8\o | 714.73 | 1.138
26 | 5\g 8o | 554.49 | 0.882
21 | 4Xo 8\ | 703.84 | 1.120
21 | 5Xo 8o | 547.86 | 0.872
101 | 4Xo 9o | 505.62 | 0.805
101 | 5A¢ 9o | 494.96 | 0.788
51 | 4Xo 9\ | 515.59 | 0.821
51 | B 9o | 495.13 | 0.788
26 | 4\ 9\ | H28.81 | 0.842
26 | 5\g 9N\ | 495.33 | 0.788
21 | 4\ 9\ | 541.64 | 0.862
21 | 5Xo 9o |494.29 | 0.787

(b)

Table 4.4: Surface wave propagation constants retrieved from (a) E-line,

(b) H-line. (f = 30GHz, A\g = lcm, th = 0.15)\g, &, = 2.55)
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’ N ‘ Pstart ‘ Pend ‘ 5A%’W ‘ ﬁéW/ﬁO ‘
101 | 4Xg 8o | 812.92 | 1.294
101 | b5 8o | 814.56 | 1.296
51 | 4Xg 8o | 812.40 | 1.293
51 | B 8o | 815.77 | 1.298
26 | 4Xo 8\ | 81091 | 1.291
26 | 5\o 8\ | 815.51 | 1.298
21 | 4Xo 8\ | 813.97 | 1.295
21 | B5Xo 8o | 815.93 | 1.299

101 | 4\ 9\ | 811.20 | 1.291
101 | b5 9\ |809.44 | 1.288
51 | 4Xo 9\ | 811.55 | 1.292
51 | B 9\ |811.24 | 1.291
26 | 4Xo 9\ |811.14 | 1.291
26 | Ao 9\ | 81097 | 1.291
21 | 4)o 9\ | 811.81 | 1.292
21 | 5Xo 9\ | 808.01 | 1.286

(a)

’ N ‘ Pstart ‘ Pend ‘ 6;‘W ‘ 6%’W/60 ‘
101 | 4Xo 8\ | 573.13 | 0.912
101 | 5A¢ 8o | 602.71 | 0.959
51 | 4 8\o | H73.08 | 0.912
51 | B 8o | 602.31 | 0.959
26 | 4\ 8\o | H74.13 | 0.914
26 | 5\g 8o | 600.82 | 0.956
21 | 4Xo 8\ | 573.48 | 0.913
21 | 5Xo 8\ | 603.75 | 0.961

101 | 4) 9o | 604.62 | 0.962
101 | B 9\ | 627.22 | 0.998
ol | 4Xo 9\ | 604.91 | 0.963
51 | B 9o | 625.78 | 0.996
26 | 4o 9o | 602.64 | 0.959
26 | 5o 9\ | 624.15 | 0.993
21 | 4Xo 9\ | 603.83 | 0.961
21 | B5Ao 9N | 625.02 | 0.995

(b)

Table 4.5: Surface wave propagation constants retrieved from (a) E-line,

(b) H-line. (f = 30GHz, Ao = lcm, th = 0.19)g, €, = 2.55)
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’ N ‘ Pstart ‘ Pend ‘ ﬁéw ‘ ﬁéW/ﬁO ‘ 5§W ‘ ﬂg’W/ﬁO ‘
101 | 4Xg 8o | 874.37 | 1.392 | 661.72 | 1.053
101 | 5X¢ 8\ | 874.33 | 1.392 | 642.69 | 1.023
51 | 4Xg 8\ | 874.17 | 1.391 | 668.20 | 1.063
51 | 5Ag 8\o | 874.59 | 1.392 |641.47 | 1.021
26 | 4)o 8\ | 87281 | 1.389 | 660.68 | 1.052
26 | D)o 8\o | 877.74 | 1.397 | 651.17 | 1.036
21 | 4\ 8Xo | 875.05 | 1.393 | 664.86 | 1.058
21 | 5Xg 8o | 878.32 | 1.398 | 592.63 | 0.943

101 | 4) 9N | 876.05 | 1.394 | 666.87 | 1.061
101 | B 9\ | 878.67 | 1.398 | 659.38 | 1.049
51 | 4N 9\ | 876.68 | 1.395 | 668.06 | 1.063
51 | B 9o | 878.97 | 1.399 | 656.69 | 1.045
26 | 4Xo 9o | 876.14 | 1.394 | 664.88 | 1.058
26 | SN 9\ | 881.39 | 1.403 |649.90 | 1.034
21 | 4)o 9\ | 87490 | 1.392 | 640.98 | 1.020
21 | 5o 9N | 877.24 | 1.396 | 662.16 | 1.054

(a)

’ N ‘ Pstart ‘ Pend ‘ 6%‘{/[/ ‘ ﬁ%’W/ﬁO ‘ 62‘{/{/ ‘ @%W/ﬁo ‘
101 | 4Xo 8\o | 669.71 | 1.066 | 531.31 0.846
101 | B 8o | 677.75 | 1.079 | 450.48 | 0.717
51 | 4 8\g | 666.46 | 1.061 508.42 0.809
51 | B 8Ag | 679.28 | 1.081 501.52 0.798
26 | 4\ 8Ag | 668.97 | 1.065 528.33 | 0.841
26 | 5\o 8\o | 680.98 | 1.084 | 587.81 0.936
21 | 4)o 8\o | 663.85 | 1.057 | 516.06 | 0.821
21 | 5Xo 8\ | 673.33 | 1.072 |-422.74 | -0.673

101 | 4) 9\ | 638.59 | 1.016 | 652.13 | 1.038
101 | B 9\ | 693.72 | 1.104 | 683.90 | 1.088
51 | 4Xo 9o | 632.50 | 1.007 | 619.51 | 0.986
51 | B5Ao 9\ |695.36 | 1.107 | 677.21 1.078
26 | 4X\o 9\ | 631.59 | 1.005 | 628.70 | 1.001
26 | 5o 9\ | 691.11 | 1.100 | 656.84 | 1.045
21 | 4Xo 9o | 630.60 | 1.004 | 652.51 1.038
21 | B5Xo 9o | 686.37 | 1.092 | 678.40 | 1.080

(b)

Table 4.6: Surface wave propagation constants retrieved from (a) E-line,

(b) H-line. (f = 30GHz, A\g = lcm, th = 0.25)\, €, = 2.55)
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’ N ‘ Pstart ‘ Pend ‘ 5A%’W ‘ ﬁéW/ﬁO ‘
101 | 4\ 8o | 606.04 | 0.965
101 | b5 8o | 605.96 | 0.964
51 | 4Xg 8o | 600.33 | 0.955
51 | B 8o | 605.39 | 0.964
26 | 4Xo 8o | 600.82 | 0.956
26 | 5\o 8o | 603.34 | 0.960
21 | 4\ 8o | 608.13 | 0.968
21 | B5Xo 8\ | 604.81 | 0.963

101 | 4) 9N |609.92 | 0.971
101 | 5 9\ | 604.67 | 0.962
51 | 4N 9\ | 604.11 | 0.961
51 | B 99X | 603.40 | 0.960
26 | 4Xo 9\ | 608.04 | 0.968
26 | SN 9\ | 602.33 | 0.959
21 | 4)o 9\ | 602.19 | 0.958
21 | 5o 9\ | 607.50 | 0.967

(a)

’ N ‘ Pstart ‘ Pend ‘ 6;‘W ‘ 6%’W/60 ‘
101 | 4Xo 8\ | 610.13 | 0.971
101 | 5A¢ 8o | 598.61 | 0.953
51 | 4 8o | 609.25 | 0.970
51 | 5o 8o | 599.69 | 0.954
26 | 4\ 8Xo | 604.90 | 0.963
26 | 5\g 8o | 600.32 | 0.955
21 | 4Xo 8o | 606.37 | 0.965
21 | 5Xo 8o | H97.78 | 0.951

101 | 4) 9\ | 614.84 | 0.979
101 | B 9Ao | 598.74 | 0.953
ol | 4Xo 9\ | 616.50 | 0.981
51 | B 9N | 9599.72 | 0.954
26 | 4o 9N | 606.43 | 0.965
26 | 5o 9\ | 601.48 | 0.957
21 | 4Xo 9\ | 614.57 | 0.978
21 | B5Ao 9\ | 600.26 | 0.955

(b)

Table 4.7: Surface wave propagation constants retrieved from (a) E-line,

(b) H-line. (f = 30GHz, A\g = lcm, th = 0.05)\g, €, = 2.55)
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Figure 4.21: Comparison of GPOF approximation with HFSS data and its Ex-
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4.2.5 Conclusions

Numerical results and comparisons with theoretical calculations show that our
method works quite successfully along the E-line. The only exception occurs in
the th = 0.05)\ case. But along the H-line, successful results are obtained only

in the th = 0.1\ case.

In the implementation of the GPOF Method, the [4\g — 8A¢], [5Ao — 8o,
[4X0 — 9o and [5Ag — 9] intervals give good results. The reasons are: p should
be sufficiently large and reflections from the radiation boundaries should decay

not to contaminate the solutions.

The number of samples (N) is also important in the GPOF Method. Taking
too many samples makes the system of equations solved in the method more
linearly dependent, on the other hand taking not enough number of samples give
inaccurate results because the behavior of the complex function to be approxi-

mated cannot be tracked correctly. In our method, we use N = 51 or N = 101

in the GPOF Method.

Another factor that affects the accuracy of the results is the ratio of the
surface wave propagation constant to space wave propagation constant. When
this ratio is very close to 1, the differentiation of the space wave and surface wave
terms becomes difficult. This phenomena can be observed at the th = 0.05)\ case
where surface wave propagation constant is very close to space wave propagation
constant. As the thickness of the dielectric slab increases 87, increases too. This
increases the accuracy of results to determine (ry;,. However when thickness is
sufficiently large and TE; mode emerges, Srp, cannot be determined as accurate
as Bra, 1s determined. For each mode that emerges recently, as the thickness
increases, the results will not be very satisfactory at first. But as the thickness

continues to increase the results will be more successful for this mode.
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Chapter 5

CONCLUSIONS

In this thesis, electromagnetic scattering and transmission from metamaterial
structures, such as metamaterial slabs, metamaterial cylinders and metamaterial
coated conducting cylinders, are investigated. These structures are illuminated
by electric line sources or plane waves. The formulation of these wave propagation
problems is done in such a way that it remains valid for any kind of material
used, having any sign combination of constitutive parameters and having any

electric and/or magnetic losses.

For one of these propagation problems i.e., metamaterial coated conducting
cylinders illuminated normally with plane waves, achieving transparency and
maximizing scattering are investigated thoroughly. It is found out that, rig-
orous derivation of transparency and resonance conditions for PEC core cylin-
der case under the sub-wavelength limitations yields the same conditions of two
electrically small concentric layers of conjugately paired cylinders, given in the
literature (when the inner core layer is also taken to the PEC limit). These
transparency and resonance conditions heavily depend on the permittivity of
the metamaterial coating (for TE polarization) and the ratio of core-shell radii.

The relations between the permittivity of the coating and the ratio of core-shell
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radii are investigated for achieving transparency and scattering maximization.
Numerical results show that these analytical relations are quite successful and
work better when the cylindrical scatter is electrically very small. As the future
work, similar analytical transparency and resonance conditions can be derived
and tested for obliquely incident plane waves. Our preliminary numerical re-
sults for oblique incidence scenarios show the existence of such transparency and
resonance conditions. As another future work, the infinite length metamaterial
coated conducting cylinder can be truncated, while keeping other geometry and
material parameters the same, and can be simulated in full wave simulators to see

whether such transparency or resonance conditions exist for real-life geometries.

A novel homogenization method for the retrieval of effective constitutive pa-
rameters of metamaterials is proposed and implemented. The method is based
on the simple idea that the total reflection coefficient from a finite metamate-
rial structure has to resemble the reflection from an homogeneous equivalent.
While implementing the method, 1, 2, ..., 20 unit cells of the same metamaterial
structure are stacked and their reflection coefficients are collected. The homog-
enization quality of the metamaterial is evaluated in terms of various factors,
which showed that the method is very successful to retrieve the effective consti-
tutive parameters of the metamaterial. Since the method is merely dependent
on reflection, the homogeneous equivalent characterizes the reflection property of
the metamaterial best. As the future work, the method can be modified to incor-
porate also the transmission data, so that the homogeneous equivalent mimics
the metamaterial more successfully in the transmission region. Another future
work can be homogenization in the oblique incidence case, since the method is
already capable for this, if an efficient oblique incidence implementation scheme

can be formed for the simulation of metamaterial.

Finally, another method has been proposed for the retrieval of surface wave

propagation constants on any periodic or non-periodic grounded slab medium. As
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a preliminary, the method is applied to grounded dielectric slabs. The numerical

results generally show good agreement with their theoretical counterparts.
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APPENDIX A

Bessel Functions

In cylindrical coordinate system, while solving the wave equation, Bessel’s dif-

ferential equation arises, which can be written as
d2
x2—+x—x—i— (2 —p*)y =0. (A1)
Since Bessel’s equation in (A.1) is a second order differential equation, it has
two linearly independent solutions:
y(x) = A1 Jy(z) + B1J_,(x) p# 0 or integer, (A.2)

y(x) = AsJ,(2) + BoYy(x)  p=mn =0 or integer, (A.3)

where J,(x) is referred to as the Bessel function of the first kind of order p and
Y,(x) as the Bessel function of the second kind of order p (or sometimes as the

Neumann function).
When p =n = integer,
Jon(x) = (=1)"Jn(2), (A.4)

In(—2) = (=1)" (). (A.5)
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Small Argument Forms:

When the argument of the Bessel functions is small (i.e., x — 0),

for p = 0:
' Jo(x) ~ 1, (A.6)
Volr) = 2 (1), (A7)
v =1.781, (A.8)

for p > 0:
W)= (5)" (A9)
Y, (z) ~ <p;1>! (%)p (A.10)

Large Argument Forms:

When the argument of the Bessel functions is large (i.e., z — 00),

Jp(x) ~ \/gcos (:c — % — %) : (A.11)
»(x) >~/ —sin (m - == —> . (A.12)

From electromagnetic point of view, these cosine and sine functions in Bessel
functions of the first and second kinds represent standing waves. For wave prop-

agation, it becomes more convenient to define Hankel functions:

HV(z) = Jy(x) + jY,(x), (A.13)
HP (z) = Jy(x) = jYp(), (A.14)

where H]gl)(x) is the Hankel function of the first kind of order p and H}” (x) is

the Hankel function of the second kind of order p.
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For large arguments (i.e., z — 00):

2 .
ngl)(:c) ~ /ﬁej[zfp(ﬂﬂ)*ﬂ/‘ﬂ, (A.15)

2 ile—pln/2)—n/4] (A.16)
T

With the assumed e/“! time dependence, Hankel functions of the first kind
represent inward propagating waves, whereas Hankel functions of the second kind

represent outward propagating waves.

For the derivatives of Bessel and Hankel functions, the following recurrence

relation can be used:

dF,(z) 1
dr 2 |

Fpa(z) = Fpa(@)], (A.17)

where F'(x) represents any kind of Bessel or Hankel function. Other alternative
forms of the recurrence relations and many other properties of Bessel and Hankel

functions of integer and non-integer orders can be found in [80].
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APPENDIX B

Derivation of the ¢ Components
of Electric and Magnetic Fields:

T M* Polarization

To find the ¢ components of the electric and magnetic fields, we will use Maxwell’s

Equations:
VXE=—jwuuH — H:—,LVXE, (B.1)
jwp
| (10E. OE,
H,=— - — B.2
8 jwu(p(% 32)’ (B:2)
1 o)) oF
Hy=— o 97 B.
o= (%) )
1 1]0 oF
H=—|—(pE ——p} . B.4
| o - (B.4)
1
VxH=jwuecE — E=—VxH, (B.5)
Jwe
| (10H. OH,
E, = - — B.6
P jwe (p op 0z ) ’ (B6)
1 [(0H OH
B, = o _ L B,
¢ jws(@z 8,0)’ (B.7)

11
E,=——
Jjwe p
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In the following derivations, all derivatives of Bessel and Hankel functions are

taken with respective to their entire arguments.

Hé):
o 4 1 (O0E. OE!
Hjy = —- o _ 9E; (B.9)
Jwiy \ 0z p
i 1 OF; 9 : ikoz cos 0 — —n : in(¢—o
H = o 8; ~ 9 (EO sin fpe’™ Onzzooj T (kop sin ) e?"(@=%0)
(B.10)
, 1 [OE! _ , = , o
Hj = o ( 8zp — Bk sin? yedkoz costo N_Z_OO]”J;(kOp sin @ )e?™(@ ¢°)>
(B.11)
.1 (1oH! 0H]
El = - 1oH, o8y (B.12)
P jweg \ p 0 0z
Since H' = 0,
, 1 OHj
E =— B.13
r Jjweg 0z ( )

We also know that all field variations in the z direction are in the form of

ekozcosbo - Therefore,

; kocosby .,
By === (B.14)
Substituting (B.14) in (B.11),
; 1 ko cos B OH.
Hi=—- — ¢ (B.15)
Jwito weg 0z

+oo
— Eykq sin? ko= cosbo Z 3" J! (kopsin go)ejn(¢—¢o)>

n=—oo

1 gkEcos? by .
(— 0 H), (B.16)

WEeq

+oo
_EOkO Sin2 eoejkoz cos g Z j_nJ:l(kOP sin Qo)ejn(dn—(bo))

n=—oo

» k2cos?0y .  Fokosin?6, . o= ,

H) = | = H} + ————=¢hozesl N " 7 ] (kg psin ) e (¢~ 0)

¢ 2 ¢ . n\Kop 0
( W oo JW o S

(B17)
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Since kg = wy/l0€0,

.  EokosinZ6, . &= .
(1—cos? Oo) Hj = sin? OoH,, = %eﬂkozmeo Z 37" (kopsin 6, eI (¢=¢0)
B (B.18)
% EOkO jkoz cos Op = O : in(¢—a¢o)
Hy = me Z J " T (kopsinOy)e’ 0
~E0 jkoz cos O = —n 7/ . in(¢—¢o)
:_Jﬁ_e Z J ") (kopsiny)e’ 0 (B.19)
O =—00
E_;:
, 1 (0H, OH
E: = L_ z B.20
? jweo ( 0z Op ) (520
Since H! = 0 and 2 = jkq cos fy,
. kocosby ..
E = H B.21
¢ weg ’ ( )
. 1 (10E! OE!
Ht — — _ Z 4 B.22
P jwpe (p o9 0z ) (B.22)
i 1 1 a . jkoz cos 0, = c—n . in(¢p— aE(;
H, = o [;8_@5 (EO sin fye’"™ On;mj Ty (kop sin fp)e?(@=%0) | — 5
(B.23)
Hi o 1 1 i F si jkoz cos Og = -—n : Jjn(p—eo) aE}?
b, = —jwm) ; jEqsin fye nzz_oonj Jn(kopsinby)e ~ 5,

(B.24)

Substituting (B.21) in (B.24)

. 1 |1 . = .

H) = ~Son E (jEO sin fe’ko cosbo E ng " Jp(kopsin 90)61”(¢_¢0))
0 =—0
gkt cos? by .

. Eysinfy ., o= ~ k2 cos® 0y
H = — e’ 0z cos Bp E n —an k in 6 jn(¢p—ao) 0 H

P Whtop n=——oo ’ (Fopsinbo)e * wligeg ”

(B.26)
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- . Epsinb, | = .
(1—cos® Bp)H}, = sin® O H), = _ 0PI oz cosbo Z 1"y (kop sin f) el (@~ %0)

Witop =
(B.27)
H' = —Lejkozcoseo in 1" Iy (kopsin 6 )e?(@=%0) (B.28)
wtop sin by S~ " '

Substituting (B.28) in (B.21) gives

; EokocosOy . eos <= n . in(f—
By = g e S g (kapsin o)) (B.29)
; FEy cos 6y ko2 cos B 3 n . Jn(é—do)
By = _k‘op sin 906 Z nj~ " Jn(kopsino)e (B-30)
@:
1 OHS OH?®
ES = p_ Z B.31
¢ jweg ( 0z dp ) ( )
= cos .
¢ ju}go j 0 0 P
—Eoko sin2 Hoejk:oz cos b Z jfngnHT(LQ)’ (kop sin eo)ejn(¢¢0))
ko cos 0 Eokosin® 6y e g2y ‘
E; = O:Zi OHZ _ %GMOZCOSOO Z j_nanr(L2) (kopsin 90)€JH(¢—¢>0)
- (B.33)
) 1 (10 OEj
Jwpo \p 0 z

1 (1 | o0 |
HY = —- —j By sin fedko=cosbo nj "o H® (kop sin 0y )™ (@~ %)
P Jwio <p 0o Z J (Kop sin o)

—jko cos 0o E3) (B.35)
Eysinby . 0 = . in(6— ko cos by
HS = — 29770 jjkozcosbo n nH(Q) k 0 jn(p—oo) ES
s WHtoP ‘ n:zoo et opsinfo)e " WHo ¢
(B.36)
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Substituting (B.36) in (B.33) gives

E(;:ko C0890 ( EO Slneo jkozcoseo Z n] cn 2 (kOpSIHQO)e] n(¢p— ¢0)

WEo Whop n=—oo
ko cos 8
4o OE;)
WHo
_ Egkgsin 20, pikozcos Oy <=
z nH() k 0 Jn(é—do) B.37
Jweg n_g_:ooj ‘ fopsinfo)e ( )
Eykgsinfycosby . P = (2)
ES—=— ghoz cosbo HO (k f) el @=%0) B.38
¢ w? HoEop n_zoonj ‘ ( opsin 0)6 ( )
k2 cos® 0,

Eok 20
: E¢ oko sin” 6y pikoz cos o Z I CnH (kopsm%)e] (¢p—¢0)
W oo Jweo

n=—oo

s EO cos 90 jkoz cos 0 2 n(¢—ao)
Ej=— m elho Onz_:oonj cnH kgpsmﬁo)e] 0
E()k’o jkozcoseo

o HD' (k f)elm(@=%0) B.39
e n;}oj C ( opsinfy)e ( )

s Ey cos 90 jkoz cos 0 2 in(¢—go)

Ej=— m e?"o On_zoonj cnH kopsmé’o)ej 0

+oo
+j Eqnge?tozcost Z j- an (k0p81n(90)e]”¢ do) (B.40)
H
- 1 3E/‘j B oL? (B.A1)
¢ Jwpo \ 0z dp
1
H = —- jko cos Oy B B.42
¢ jwpo ( 0 0~p ( )
— Egkq sin? fe?Fozcosto Z j_”anq(f),(kopsin 00)63”(¢_¢0)>
n=-—00
+oo
H; _ _ko cos GOES I Eykqy sin 90 Jkozcoseo Z I CnH( (k0p81n90)6]n(¢ ®0)
who Jjwito e

(B.43)
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E’ =
P jweo

1 (10H: OH}

1 <
( — j Eq sin fe? ko= cosbo Z nj- an2 (kopsin fy)e’™ ng—¢o)
p

Ei=
P jw€0 S~
—jko cos 6y H) (B.45)
S EO sin 90 ikoz cos 6 R 2 in(p— k(] Ccos 90
(B.46)

Substituting (B.46) in (B.43) gives

ko cos b ( Egsind =
0 COos b ( o sin By pdkoz cos b Z nj- CnH2 (k0p81n60)63”(¢ $0)

Hy=~
WHo wepp n=—00

k )

kg cos OH;)
WEp

Eokosin? 6 =

n ojoj;n 0 ko= cos fo Z j an (k0p81n9 )ejn(¢> bo) (B.47)
0 =—00

Eokgsin 6 0
_ Epkq sin 0 cos by (ko2 cos o Z nj e, H® (kop sin 0y)el™(@=%0) (B.48)

Hi=

w?pogop =
k2 cos? 6 Eokosin? 6 —
n O;ZOS OH;+ ok sin” by pikoz cos fo Z I'n an )(krop51n90)e]”(¢ o)
W= oo Jwhto oo
Eycosty 0 iy (2) ( )
S__ ikoz cos c—n 2 : in(¢—e
Eoko pikoz cosbo Z e H®' (Kop sin 6y )edm(@=0) (B.49)
Eqcos by
s eIkoz cos b 2 n(¢—¢o)
Hj=— —k‘op = 0 On;w nj "¢, HP (kopsin 0y)e’ 0
0 pdkoz cos b Z i e H kopsmeo)ej n(p—eo) (B.50)
E_;:
1 (OH! QoH!
Et — p_ Z B5].
¢ jwe ( 0z op > ( )



1
Eés = (]ko cos HoHt Eyk sin 0 sin 0, e7*ozcos o Z G J! (kpsin 0y )™~ ¢0))

-]w n=-—o0o
(B.52)
+oo
Eé, _ ko cosHOHP Eyk sin 0y sin 0, oikoz cos o Z T (kpsmel)e]n(qﬁ )
we ju)€ n=—00
(B.53)
g L (10B: 9, (B.54)
P Gwp \p 06 0z '
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+oo
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Substituting (B.56) in (B.53) gives

E,= - " e Z nj "anJ,(kpsinb;)e

k 0
N 0 COS OE(‘;)
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n=-—oo

Eyk sin 0 sin 6, <
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2 2
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Eok sin fy sin 01 pikozcos b o , . (e
zcos a,J (k 0, )eim(é—¢0) B.58
e 3 S hpsinone (B:5%)
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k2 2 ) ]{22 2 2]
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jw&?sin91e n:_ooj T (kpsinbr)e ( )

172



pt —— Eobosinbo cosb jy: cosy f nj " anJ, (kpsin 6y )el™@=%0)
¢ k2psin? 0, = e !
sin 6 <=3
. 0 jkozcos —n : in(¢—
+‘7E0nsin01 gJkozcosfo n;wj U J" (kpsin 6;)elm(@=%0) (B.61)
t.
ﬂ.
1 (OE, OFE!
HY = —- » _ OF; (B.62)
Jjwp \ 0z ap
1
Hi=——— (jk 0o F" B.63
*= jon (] 0CosboLy, ( )
— Eok sin 6 sin 0 e?kozcosfo Z j”anJ;L(kpsin&)e]"(‘ﬁd’O))
ko cos @ Eok sinfysin 0 R _ .
HZ; _ Owu DEZ + 0 jw: 16]k0zc0500 Z j_nanJ;L(kP $in 01)6]n(¢—¢0)
(B.64)
t
g L (1ot 0H, (B.65)
P jwe \p 09 0z
t 1 L. : jkoz cos 6o ~— —n~ : Jn(¢—ao) ; i
E! = e ;jEO sin Ope Z nj "a,J,(kpsinb)e — jkocosOoH,
- (B.66)
Eysinfy . Ry , ko cos 0
t _ 0 0 jkozcos6, -~ . n(¢p—o 0 0 rrt
B = w—apej 0 Onz_:oo nj "l Jn (kpsin 6y )l o) _ TH¢ (B.67)
Substituting (B.67) in (B.64) gives
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APPENDIX C

Derivation of the Transparency

Condition

For achieving transparency with metamaterial coated conducting cylinders at
normal incidence and T'E* polarization, numerator of the scattering coefficients,

Cn, given in (2.240) should be zero:

mumn{e,} = CJn(kob) [T (kea) Y, (keb) — J. (kb)Y (kea)] (1)
_JrlL(kOb) [Jr/z(kjca)yn(kcb) - Jn(kcb)yr;(kca)]

=0.
Let T} and 715 be the the two terms of the numerator of ¢,:
Ty = (Ju(kob) [}, (kea)Y, (k) — J;, (kb)Y (kea)], (C.2)

Ty = _J;z(kOb) [‘];z(kca)yn(kcb) - Jn(kcb)yé(kca)] ) (03)

such that T7 + 15 = 0.

Using the small argument approximations and the recurrence relation,

a\"n—1 1 kea 1
(kb (e () - (%)
h=0 ( 2 ) [( 2 (C-4)
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2
. ( ) (%)n_ T ) ( )
2
_( ) <%> 1 + n?' (kcla>7L+1
9 ;
n—1 . 1 kob n+1
. (( ()"~ g () ) )
kea n—1 1 kca
n+1)! 2

=t (%) 1 (C6)
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Since k.a < 1 and k.b < 1, we can keep only the dominant terms in 77 and

Ty (i.e., the terms where k.a and k.b are in the denominator):

1= C% (%)n ﬁ [” (%)n_l (/%)2 - <§>n_1 (k;la)2] - (C8)

Writing

wa(d) a9 e

n+1 n
WYL YLy
2 n\ 2 ) (n+1)\ 2

T5 becomes

1 (kob\" 1 ayn-1 4 b\" 4
Ty=—("2) —|n(= 7y = 1
? n'(Z) 47?{ (b) Kok b <a> kokcab}’ (C.13)
1 (kob\" 1
Ti4+T=—(—) — :
1412 n!(2> 47 (C.14)
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Therefore,
ayn-1 1 p\"" 1 ayn-1 1 p\" 1
A oyt (° _0 (C.15
<(3) K202 <a> k§a2+(b> kokcb2+<a> Fokoab (C.15)

Note that,

(=T _ V= _ [HEO (C.16)
Mo Ho HoEe

k. = w\/[hcEec, (C.17)
ko = W~/ Ho€o- (ClS)

Hence,

n—1 1. 11 N\"" . 11
0— 2) fico I He0 - (C.19)
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a\n—1 1 1 b\" 1 1
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or dividing each term by w?(,

a1 1 1 "t 11
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ayn-1 1 1 "t 11 a1 1 1 MN\" 1 1
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b [eEe b a WeEe @ b [e€o b a) g ab
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Denoting v = a/b,
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1 1 1
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1
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APPENDIX D

Derivation of the Resonance

Condition

For scattering maximization (i.e., resonance) with metamaterial coated conduct-
ing cylinders at normal incidence and T'E* polarization, denominator of the

scattering coefficients, ¢,, given in (2.241) should be zero:

den{c,} = —CH® (kob) [, (kea) Yy (keb) — J; (kb)Y (kea)] (D.1)
+H [T} (kea) Yo (keb) — T (keb) Yy (kea)]

= 0.
Let Ry and Rs be the the two terms of the denominator of c,:
Ry = —CHP [T (kea) Yy (keb) — Ty (kb)Y (kea)] (D.2)

Ry = HY' [J (kea) Yy, (keb) — Jo (kb)Y (kea)] (D.3)

such that Ry + Ry = 0.

Using the small argument approximations and the recurrence relation,
1 (k"  (n—=1! [/ 2\"
R == (22 il
! C(n‘ ( 2 ) T T kob
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Since k.a < 1 and k.b < 1, we can keep only the dominant terms in R; and

Ry (i.e., the terms where k.a and k.b are in the denominator):

(Y L e ()

,(D.8)

Writing

) (G gty (5). e
2@ o (E) ow

(o2 ()

12
—~
S
3|
=
7 N\
|
S
3
S
/N
Z |
j=
N———
o
-y
Nt

Ry becomes
e B2 () (@) 7)) ()] o

1 n/2\"
R, + Ry = _]_n_ (_> (D.14)
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Therefore,
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