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We investigate wave propagation in a superlattice consistent of dielectric material with a nonlinear 
Kerr coefficient. We find gaps in the propagating properties of the medium that depend critically on 
the injected wave power. This property can be used for transmission of information. 

Novel phenomena such as photo& band gaps and pos- 
sible light localization occur when electromagnetic (EM) 
waves propagate in dielectric superlattices.1-6 In an approxi- 
mation where only the scalar nature of the EM wave is taken 
into account, wave propagation in a periodic or disordered 
medium resembles the dynamics of an electron in a crystal 
lattice. As a result, photonic bands and gaps arise in the 
periodic lattice case whereas EM wave localization is theo- 
retically possible in the disordered case. In the latter case and 
when the dielectric medium is one dimensional, Anderson- 
type optical localization has been predicted.r3* In an ordered 
dielectric superlattice, on the other hand, photon band gaps 
have been demonstrated for various realistic configurations.5 
One issue that has not been widely addressed yet is the pos- 
sibility of using superlattices with nonlinear dielectric prop- 
erties and, in particular, the- nonlinear Kerr effect, to con- 
struct optical devices with desired transmission 
characteristics.277 This is the problem we are addressing in 
the present letter. 

We consider the propagation of plane EM waves in the 
scalar approximation in a one-dimensional continuous linear 
dielectric medium. In the medium we embed periodically 
small dielectric regions that have non-negligible third order 
nonlinear susceptibility xC3’ (Fig. 1). We will assume for sim- 
plicity that the width of the nonlinear dielectric regions is 
much smaller than the distance between two adjacent ones. 
We are thus led to a model for a periodic nonlinear superlat- 
tice and the propagation of a plane wave injected on one side 
of the structure can be described through the following non- 
linear Kronig-Penney equation: 
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X(1+Xlu(z)12)u(z). (1) 

In Eq. (l), u is the complex amplitude of an incoming plane 
wave with frequency 6.1 along direction Z, CY is proportional to 

the dielectric constant of the dielectric in each superlattice 
slab and A is a nonlinear coefficient that incorporates ti3) and 
the input wave power.’ The series of equidistant delta func- 
tions represent the effect of the periodic nonlinear dielectric 
medium on the wave propagation. Straightforward manipu- 
lations similar to the ones used in the standard linear 
Kronig-Penney problem lead to the following nonlinear dif- 
ference equation for UjZU(j)‘-rl 
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where k is the wave number associated with the frequency 
o(k) =2 cos k. A local transformation to polar coordinates 
and a subsequent grouping of pairs of adjacent variables 
u,- , U, turns Eq. (2) to the following two-dimensional map 
M:lf 
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where W,=V!~ x,=2r,r,-1 cos(O,-On-,), 
z,,=<-G-r with u,=r, exp(itQ and J is the conserved cur- 
rent, i.e., J=2r,rnmI sin(&-/3,-r). 

The map M can contain bounded and diverging orbits. 
The former ones correspond to transmitting waves whereas 
the latter correspond to waves with amplitude escaping to 
infinity and hence do not contribute to wave transmission. 
The structure on the phase plane (x,,z,) is organized by a 
hierarchy of periodic orbits surrounded by quasiperiodic or- 
bits. As the value of X increases some periodic orbits become 
unstable leading to stochasticity. This corresponds to passage 
from a transmitting to a nontransmitting region. In Fig. 2 we 
show one orbit corresponding to the period-4 Poincare- 
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FIG. 1. Aperiodic dielectric superlattice with nonlinear susceptibility due to 
the Kerr effect. The dark regions denote the dielectric slabs with nonlinear 
properties. The periodic value of the nonlinear coefficient X is approximated 
by the periodic delta functions. 

Birkhoff resonance zone. In Fig. 2(a) the regular periodic 
orbit surrounding the four fixed points corresponds to wave 
transmission through the super-lattice. In Fig. 2(b) on the 
other hand, the same trajectory is shown for a larger incident 

, wave amplitude. We observe that a thin chaotic layer has 
developed that surrounds the separatrix but also some scat- 
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PIG. 2. Orbit of the map corresponding to the period-4 Poincare-Birkhoff 
chain. Parameters: k=4.7, X=1 and the incoming wave intensity IROl is in (a) 
1.6 and in (b) 1.7. In both (a) and (b) the same trajectory is plotted. We note 
the chaotic nature of the trajectory in (b) leading to nonpropagating waves. 
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PIG. 3. (a) Transmission coefficient as a function of the wave number k for A equal to (a) zero (linear case), (b) 0.2, (c) 1.0, and (d) 4.0. The value of the linear 
coefficient is o=l and the amplitude of the injected wave is taken as unity. 
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FIG. 4. Amplitude of injected wave R. as a function of the wave number k 
for X equal to (a) zero (linear case) and (b) 1.0. The value of the linear 
coefficient is o= 1. The superlattice has 4000 nonlinear slabs. Transmitting 
solutions correspond to the blank area whereas diverging solutions are indi- 
cated by the hatched area. 

tered points escaping to larger z values are visible. This tra- 
jectory corresponds to nonpassing plane waves. 

In order to investigate directly the transmission proper- 
ties of the injected plane waves in the nonlinear periodic 
superlattice, we iterate numerically the discrete nonlinear 
equation of Eq. (2). For the initial condition [ua,ur] 
=[l, exp(ik)] we compute the transmitted wave amplitude T  
for a superlattice with 10” nonlinear planes for different non- 
linearity parameter A and wave number k. In Fig. 3 we plot 
the transmission coefficient t=]a2 as a function of the input 
wave number k for various nonlinearity values X. There are 
clear transmission gaps whose width (in k space) depends on 
X. We  note that with increasing X the width of each gap 
increases while in addition more gaps in the range between 
two gaps develop. This process of gap creating starts in the 
low energy range and extends with further increased X also 
to the high energy region. Finally, above critical X values 
neighboring gaps merge leading to a cancellation of transpar- 
ency. 

In Fig. 4 we plot the injected amplitudes for the linear 
(x=oj and nonlinear (X#O) cases as a function of the wave 
number k. We  note that the typical linear band gaps [dark 
areas in Fig. 4(a)] become exceedingly complicated when 
nonlinearity becomes nonzero [hatched region in Fig. 4(b)]. 
A region was considered transmitting whenever the transmis- 
sion coefficient was different from zero. In particular, we 
observe the occurrence of new gaps in previously perfectly 
transmitting regions. Furthermore, the width of the passing 
regions (white regions) shrinks with increasing injected wave 
energy. The diagram was obtained by taking a grid of 500 
values of k and 250 values ]Ro] and iterating Eq. (2) on each 
individual point of the grid over the N=104 sites. 

The “band structure” shown in Fig. 4 can be obtained 
directly from the tight-binding-like Eq. (2). In the linear 
case, i.e., for X=0, the allowed propagating band states are 
obtained from the well-known Kronig-Penney condition 

1 SW) sl 
cost k) + z a- k . 

In the nonlinear Kronig-Penney case, on the other hand, this 
condition for propagation gets modified leading to 

sin(k) 
cos(k)+; a(l++]“)- Gl. 

The explicit occurrence of the wave intensity in the inequal- 
ity (6) causes a broadening of the instability regions and also 
produces new instability tongues in the region of former al- 
lowed bands for h values above a critical one. Furthermore, 
merging of neighboring instability regions is possible leading 
to an enhanced parameter instability. 

The results we presented for the least transmitting case 
of c+O are also sustained qualitatively in the more transmit- 
ting and physically relevant for dielectrics case of a<O. In 
general, the presence of nonlinearity in the dielectric super- ’ 
lattice planes alters substantially the transmission properties 
of the waves. In particular, when the nonlinear coefficient h 
is increased new nontransmitting regions appear adjacent to 
the regular instability regions. Consequently, for a given 
wave number k, an appropriate change of the input power of 
the wave (corresponding to a change in X) can switch the 
wave from a transmitting to a nontransmitting region. Is is 
then possible by a simple amplitude modulation of the in- 
coming wave to transmit binary information to the other side 
of the transmission line in the forms of zeros (non transmit- 
ting region) and ones (transmitting region). Since this trans- 
mitting capability depends critically on the properties of the 
nontransmitting regions, further study of these regions under 
the nonscalar wave approximation is currently under way. 
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