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Wave propagation in periodic shells with
tapered wall thickness and changing material
properties

M. Toso and A. Baz*
Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA

Abstract. A theoretical method based on the Transfer Matrix Formulation and Wavelet Transforms is developed in order to effec-
tively investigate the influence of periodicity, variable geometry and material properties on the wave propagation characteristics
of axis-symmetric shells. Several experiments have been conducted to verify the numerical predictions and to demonstrate that
the Wavelet Transform is a very powerful tool to uniquely identify and compare the energy distribution both in the time and
frequency domain.

Thin shells are modeled as two-dimensional wave-guides, where the propagation of the longitudinal waves is coupled with
the flexural (radial) waves. Variations of the wall thickness, medium radius and element length of the shell can effectively
filter out/stop undesirable bands of frequencies from the longitudinal and/or the transverse wave characteristics. The principal
parameter that influences the width and location of the stop bands is the ratio between the cross sections at the two ends of the
shell element. Sophisticated exponential profiles and simpler linear taper are implemented and compared.

Functionally graded materials (FGM) are also investigated as an alternative way to influence the parameters of the stop bands.
Combinations of the FGM and geometric taper give the flexibility needed for some very demanding applications.

Different types of periodic taper configurations have complementary effects on the wave characteristics. Combinations of
these complex geometries (bi-periodic tapered cells) are presented and shown to produce the most effectual energy redistribution.
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1. Introduction

Shells of revolution play an important role in many structural applications. Traditionally most studies have
attempted to adapt the membrane model (very thin shells) for practical calculations. Generally, thick shells [3,7]
present a more interlaced behavior that is not described by extended 2D models. However, the availability of faster
computers has shown that analyses of solid bodies based on 3D structural models [4] yield accurate predictions
of static displacements, free vibration frequencies and modes, buckling loads and mode shapes. However, many
practical applications require the use of axis-symmetric shells, such as in space vehicles, aircrafts and submarine
vessels. Furthermore, many of these applications rely in their operation on the use of periodic shells [13] which have
unique filtering capabilities.

Several researchers have studied three-dimensional vibration of hollow circular cylinders. Early investigations
were focused in applying 2D shell theory on circular cylindrical shells having continuously variable wall thickness.
In 1973, Stoneking [16] formulated a set of equations to solve vibrations of clamped-clamped tapered cylinders
with the partition method. In 1991, Sivadas and Ganesan presented a semi-analytical finite-element analysis for
determining the natural frequencies of thin circular isotropic cylindrical shells with linear and quadratic varying
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section. In their study, Love’s first approximation shell theory was considered to solve the problem and investigated
different boundary conditions. In 1993, Sivadas and Ganesan improved their model by including the normal strain
as well as the transverse shear effects and compared the solutions to two other approximations: the thick shell theory
without normal stress and Love’s model without shear and rotary inertia. Suzuki et al. [17,18] presented an analytical
solution of the free vibration of a clamped-clamped circular cylindrical shell with quadratic thickness variation along
the axial direction.

Basically, only three groups of researchers studied conical shells with variable thickness using 2D-based shell
theory. In 1977 Penzes and Padovan [12] characterized a tapered cone with an approximate closed-form solution.
Then, Irie et al. [5] used the transfer matrix approach to treat the case of free vibration of a truncated conical
shell having a meridian thickness expressed by an arbitrary function. Natural frequencies and mode-shapes were
numerically calculated for linear, parabolic and exponential variable thickness. Takahashi et al [19,20] wrote a
series of papers on this subject. 2D models have been developed for moderately thick conical shells of variable
thickness where the normal displacement component is assumed to be constant along the thickness. The tangential
displacements and bending rotations is supposed to be linearly varying, as in the well-known Mindlin plate theory.
In 1995, Leissa and So presented extensive studies on a 3D-based procedure to determine free vibration frequencies
and modes for truncated hollow cones with arbitrary thickness by applying Ritz method. These results were refined
in 1999 by Kang and Leissa.

The present paper is organized as follows: a literature survey has been presented in Section 1. In Section 2,
the equations of motion are derived from the energy conservation principles using the transfer matrix approach.
This approach allows further investigations of the effect of varying the geometry and/or stiffness, which are the
main goals of Sections 3. Subsection 3.1 presents numerical solution of exponential and polynomial tapered shells.
The propagation constants for the longitudinal and transverse waves are discussed and the time-frequency plots
are generated by the Wavelet Transform for a linear profile. Subsection 3.2 investigates the possibility of using
Functionally Graded Materials (FGM): the material Young’s modulus is allowed to vary according to exponential or
polynomial laws. Numerical solution of various examples is presented in terms of propagation constants in order to
quantify the effect of geometry changes. Moreover, the combined effect of varying the geometrical profiles with the
elastic properties is also investigated.

Section 4 describes the experiments conducted on a linearly tapered shell. The time response and the corresponding
Wavelet Transform analysis are compared to the numerical predictions of Section 3. Section 5 extends the results
of Subsection 3.1 to the case of periodic shell elements. Section 6 summarizes conclusions. Best results can be
obtained when combining tapered geometry and either functionally graded materials or with periodicity. Bi-periodic
tapered elements offer the most interesting behavior.

2. Equation of motion for shells of variable material properties and geometry

Under hypothesis of small deformation, the elastic strains (e, ) for the generic three-dimensional shell shown
Fig. 1 are given by [2]:

oU (x,9,71)
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1 oV (z,9,r)
‘W T Ry 59 T W dr)),
oW (xz,9,r
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R+r

Fig. 1. Three-dimensional cylindrical shell.

where: U, V, W are the displacement in the three spatial directions (x, 1, r) and R is the medium radius.
Introducing Kirchhoff hypotheses, such that U and V linearly vary through the thickness and W is constant
through the thickness, then:

Uz, 9,r) =u(z,9) — TM

Y

Vi tr) = vl 0) + 3 |ofa ) - 2550, @
W(z,9,r) =w(z,V).

Substituting Eq. (2) into Eq. (1), a simpler expression is obtained:
E(z) = U,z — TW, g,

i
E(9) = ( TN W [V — 7 W99,
1 ) R R(l + )
R R
E(T) ZO7 (3)
1 r r 1
V(z9) Uy — 1+ - V2 — 45 1+ W 29,
e R 4
V(ar) = —Wo + Wy = 0,

1 1
V(o) = E(U — w,g) + E(w,g — U) = 0.

If we assume the axial symmetric shell to be thin (r/R << 1), and torsion and bending to be uncoupled
(Donnell-Mushtari) (v ; = 0;v,9 = 0 ), then Eq. (3) reduce to [9]:
E(z) = U,z — TW,gq,
1

E(9) = Ew,

ey =0, “4)
Vo) =0,
Y@rys V(o) = 0-

In order to obtain the equations of motion for the axis-symmetric shell, the energy method approach is employed
along with the Hamilton’s principle, such that:
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t2
/6(T—U+W)dt:0 )
tl

where T is the Kinetic Energy of the structure, U denotes its Potential Energy and W defines the Virtual Work done
by the external forces.
The general expressions of these quantities for a three-dimensional structure are:

1
U=3 / / / 7)) + @)@ + TNEE) F T@o) Vo) + Tra) Vo) + Tar) Ver)ldV,
Vol

T:%///[uQJri)QerQ]dV, (6)

Vol
oW 0.

The constitutive relations for a linear elastic solid are

B
O@) = T2 E@ T vew);

E
o) = 1—2(5(19) +ve(ay), @)
—v

O(r) =0.

Hence, the kinetic and potential energies reduce to:
L h(z)/2
1 E 9
U = 5 2T 1_—1)2[5(93) + 21)5(;8)5(19) + G(ﬁ)]R(l')dT'dl’,

0 —h(x)/2
L (®)

T= %p/ 21 R(z)h(x)[0? + @?]d,

or

(€))

Eh(x)

(1 -2
Eh(x)3

Y1201 — )

is the longitudinal rigidity of the shell,

is the bending rigidity of the shell,

E/p
(1-v?)
Applying Hamilton’s principle yields the following equations of motion for the tapered shell:

and c = is the characteristic wave propagation phase speed.

. g
C%u = QUgg + g 2Ug+ 0 (g/R)’x W+ VZW

R
g . g g (10)
C_QU + qw,zzzz + 2q,a:w,a:9393 + q,a:a:w,a:a: + T_Qw + UEU,I = 0
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The Separation Principle defines the displacements u and w in terms of:
u(z,t) = u(z)e’" and w(z,t) = w(zx)e™? (11)

From Egs (10) and (11), the dynamics of the shell subjected to harmonic excitation are given by:

W e (9/R) .« 1
Ugg = ——5U— Uy — V"W — VS W,
c g g R
2 (12)
w;c;cacx:g W__i w_q’mmwx;c_2q’_mw:c:cx_viu:c
) q 2 R2 q ) q qR )
It is convenient, for the further analysis, to have a state-space representation of the shell system as follows:
0
—U(z) =A(x)U 13
—U(x) = A@U () (13
[0 0 0 1 0 0 ]
0 0 1 0 0 0
0 0 0 0 0 1
2
z 1 z .

where A(z) = —W—Q —v(g/ R). vy _de 0 represents the state-space matrix

c ) g

g (v 1 BN R
g\ R? q a q
| O 0 0 0 1 0 |

and U(x) = {u w Wy Uy Wap Wape )’ is the state-space vector.
Solutions to Eq. (13) are calculated by the integration over the shell length L to give:

J [A(x)]dx]

UL)=e [0 U(0) (14)

The last three components of the state vector U (z) can be transformed into generalized forces (traction N, shear
@, bending moment M) through the coordinate transformation matrix [G ] and a new state vector Y is obtained:

Y(z) = G,U(x) (15)
where

Y(z) ={u w w, NQM}T = transfer vector at x

and
M1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
G, = 0 v K(z) 0 Ky(z) 0 0 £ — transformation matrix
R(z)
0 0 0 0 —Diy=z) O
0 0 0 0 0 Dyfz)]

The vector Y in Eq. transforms Eq. (14) into the Transfer Matrix representation as follows:
L
Yy = |Greds A0 a1 vy = Ty, (16)

where (x = 0) = Yy = [Go]U(0) and (z = L) = Y, = [GL]U(L).
The eigenvalues \; of the transfer matrix T" give all the information about the propagation characteristics:

N\ = et = e%ipdBi (17



416 M. Toso and A. Baz / Wave propagation in periodic shells

Table 1

PVC Shell Properties
Parameter Value
Young Modulus [Pa] 3.6 10°
Density [Kg/m?] 1700
Length [mm] 315 (12 3/8")
External Diameter [mm] 48 (1.9”)
Internal Diameter [mm] 40 (1 .58”)
Geometric Taper Ratio 4
FGM Ratio 10

where p; are the propagation parameter, and «; and (3; are called attenuation factor and phase angle and represent
the real and imaginary portion of the propagation constant.
By recalling equations (16) and (17), each wave component can be written in indicial notation as:

(Y1) = % (Yo)sePi (18)

Equation (18) shows that the disturbance measured at location L is shifted in phase by the factor 3 (phase angle)
with respect to the signal measured at location 0 and it is magnified or attenuated by factor « (attenuation factor)
depending on the taper ratio. When the phase (3 shifts to 180 °, destructive interference occurs between the traveling
wave and the reflected wave so that no remaining disturbance propagates along the shell.

Itis important here to note that Young’s modulus E of the shell is replaced by the complex modulus E = E ' (1+3jn)
with E’ and 1 denoting the storage modulus and loss factor of the material. Also, the computation of the exponential
[ (A@))da]

0

matrix e [ , in Eqs (14) and (16) is carried out using the scaling and squaring algorithm of MATLAB with
a Pade approximation to ensure efficient convergence.

3. Numerical examples

A plastic composite shell is considered in this study. The basic properties of this shell are listed in Table (1).
Changes in the material properties and/or geometry can affect considerably the propagation characteristics of the
structure.

3.1. Geometrically tapered profiles

It is of great interest to study the influence of thickness variation along the length of a straight cylindrical shell. In
the present study, only the internal diameter will be profiled, while the outer diameter is maintained constant.

Hence, the medium radius R(x) at any cross-section x is represented as function of the fixed outer diameter D
and the variable thickness h(x) as follows:

_ DO — h(.]?)
2

In order to compare results with the characteristics of a typical uniform shell, the mass is also kept constant, which
adds a constraint on the initial thickness hg, such as

R(x) (19)

/ R(z)h(z)dV = m(Dy — hy)ho L (20)
Vol

Two different profiles are presented in comparison with the uniform shell, namely the exponential profile and the
polynomial profile.
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L

Fig. 2. Cross-section of exponential-tapered shell.

3.1.1. Exponential profile
The thickness h(z) is modeled as follows, according to Fig. 2:

h(x) = hoeT (21
Parameter a is quickly identified when the thickness ratio is decided:
hr,
=ln— 22
o= (22)

The eigenvalues problem defined by Eqs (16) and (17) is numerically solved with Matlab.
The expression for the state-space matrix A and the transformation matrix G , reduce to:

[0 0 0 1 0 b |
0 0 1 0 X |
0 0 0 0 ! ;
A = w? ) 2 s -
A= | () () w0 H) 0 SN
a h(x a h(z
0 (h2’1(2:c) (% - R21(:c)) 0 _'U(R(w)lf%?(:c)) 2 (f) (8- 2R((2) )_(f) (9_72}%((2))
L 0 0 0 0 ! ! )
and
M1 0 0 0 0 0]
0 1 0 0 0 0
0 0 1 0 0 0
_ vEh(z) Eh(zx)
[Gx] 0 (1—v?)R(z) 0 (1—v2) 0 3 0 -
Eh(z)’R(x)
0 0 0 0 _ﬁ i ?’33( )
0 0 0 0 0 RECEDN

The propagation constants are plotted in the frequency domain (Fig. 3), where one can recognize the longitudinal
and the bending characteristics and compare them to the corresponding characteristics of a uniformly shaped cylinder:

3.1.2. Polynomial profile
The thickness h(x) according to Fig. 4, is given by:

h(z) = ho (1+ a%)m (25)

where the parameter a is function of the thickness ratio:

w/ L
a= ,/ho—l (26)
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propagation constants
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Fig. 3. Propagation constants of uniform (dash) and exponential-tapered (solid) shell: (a) longitudinal direction, (b) radial direction.

ho I $ hLL
L
Fig. 4. Cross-section of a linear-tapered shell.
Hence, the state-space matrix A and the transformation matrix G , become:
[A(z)] =
r o 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
w? a 1 2 a Do—2h(x)
- ”(Z)(Q@»uhfh@») _U(Dofwzﬂ (f)(h@ﬁDwﬁiﬂ)) 0 0
0 (h?l(Qx))(“cj_z - Do—h(x))Z) 0 —v hzl(Qx)) —2(%) —6(%)2
( 2 ) ( 3Do—4h(z) ) ( Do—2h(x)
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and

)

27
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propagation constants
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Fig. 5. Propagation constants of uniform (dash) and linear-tapered (solid) shell: (a) longitudinal direction, (b) radial direction.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 10 0 0
_ 20Eh(z) Eh(z)
[Gal = |0 =5y 0 0 0 (28)
Eh Do—h(x
R R
Eh(z)?(Do—h(x
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Emphasis is placed here on linearly tapered shells (m = 1) because of the ease of their machining. Figure 5
shows the propagation constants in the frequency domain. Such characteristics can be compared to that of shells
with exponential taper (Fig. 3). The interesting point is that there is no significant difference in the performance
between the two profiles. Indeed, for the actual choice of dimensions and material, the longitudinal attenuation is
more effective at low frequencies than the case of exponential profile. The radial propagation characteristics are
comparable in the two cases.

In order to gain a better understanding of the energy distribution of the shell in the time and frequency domains,
the Wavelet transform technique is applied when the shell is subjected to an impulsive load exerted at location 0.
Figure 6 emphasizes that the transmitted energy shifts to higher modes and the peak below 1 kHz vanishes.

3.2. Functionally graded materials (FGM)

The other point of interest is tuning Young’s modulus of the material in order to improve the vibration properties.

First, comparisons are made with plain shell, and then the benefit of combining the effect of geometrical changes
with FGM will be considered. Young’s Modulus is modeled as either a polynomial function or an exponential
function, following the same line as the previous chapter.

3.2.1. FGM effect: Exponential grading
The exponential model of Young’s modulus writes as:
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Fig. 6. Numerical frequency response and Wavelet Transform. (a) uniform thickness, (b) tapered profile.

E(l‘) = E()(ie% (29)
where the coefficient e is more conveniently calculated from the modulus ratio between the two ends of the shell:

Er
e =1n— (30)
Ey
Recalling the general solution for the equations of motion obtained in Section 2, Equations (12) to (17), the following

expression for the state-space matrix A are obtained:

0 0 0 1 0 0
0 0 1 0 0 0
A 0 0 0 0 0 1 31
= 2
ADIZ S e 5 - 0 0 G
0 BBE-A) 0 R 2 (5
0 0 0 1 0

Also, the transformation matrix G, has the following form:
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propagation parameter
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Fig. 7. Propagation constants of uniform (dash) and exponential FGM (solid) shells: (a) longitudinal direction, (b) radial direction.
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The propagation constants of the FGM shell (solid lines) are compared to the uniform shell (dashed lines) in Fig. 7
in the case when the Young modulus ratio is 10. These characteristics show a principal cut-off frequency at about
2000 Hz for the longitudinal and radial wave characteristics. Other interesting regions of interference (Stop Band)
occur around 4 kHz and 5.2 kHz.

3.2.2. FGM effect: Linear grading
For a linear Young’s modulus we have:

E(z) = Eq (1 n e%) 33)
The parameter e is depends on the modulus ratio:

£y,
e=/2L 1 34
o (34)

Hence, the general expression for the state-space matrix A is:
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propagation parameter
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(35)

where we notice the main difference with Eq. (31) is that the term A[5,6] = 0 because the second derivative of the

linear profile vanishes.

The propagation constants for the shell of Table (1) can be plotted in the frequency domain, as shown in Fig. 8.
The characteristics are very similar to those obtained for the exponentially graded shell (Fig. 7). More precisely, the
cut-off frequency at about 2000 Hz in the radial direction is still present (solid line) as well as the other stop bands

at 4 kHz and 5 kHz.

3.3. Combined effect

Lastly, one can combine the effect of geometric taper with the functionally graded Young’s modulus in order to

have more control over the propagation characteristic of the shell. The resulting system matrix [A] is:

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1
[A(Z” - —“C)—; —’UA42 —’UA43 —A44 0 0

0 As2a ‘Zzz Asap 0 —vAss  —2As55 —Ase

0 0 0 0 1 0

(36)
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Fig. 9. Frequency response of linearly tapered FGM shells: (dash) uniform thickness, (dot) same slope, (solid) opposite slope.
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423

(37

A numerical comparison between the three different possibilities has been carried out and obtained results are
displayed in Fig. 9. In all the characteristics, the Young’s modulus is assumed to be linearly decreasing. The dashed
line denotes the response of a shell with uniform thickness, where as the dotted line defines the performance of a shell
with linearly decreasing thickness and the solid line is corresponding to shells with linearly increasing thickness.

As expected, the combined effect of decreasing Young’s modulus and decreasing thickness gives the largest stop
band. As a result of this analysis we can conclude that it is possible to effectively control the spectral location and
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(b)

Fig. 10. Experiment: (a) uniform PVC shell, (b) tapered PVC shell.

width of the stop bands over a wider range of frequency spectrum, with proper selection of geometrical and material
parameters.

4. Experimental characteristics of shells with varying geometry

A series of experiments are carried out in order to validate the numerical results presented in Section 3. Man-
ufacturing considerations suggested keeping the internal diameter constant and letting the outer profile be linearly
varying. Dimensions and material properties of the shell used in the experiments have been summarized in Table (1).
One of the two Polyvinyl Chloride (PVC) shells has uniform profile while the other is tapered with a geometric ratio
Ay /Ao = 4. Figure 10 shows photographs of the shells used.

An impact hammer (PCB Model 086C02) is used to exert a longitudinal impulsive excitation on one end of the
shell. The longitudinal acceleration at the shell end opposite to the force location is captured by a piezoelectric
accelerometer (PCB Model 303A03). The spectrum analyzer (ONO SOKKI Model CF910) is triggered by the input
force. The analyzer is used to record the signal coming from the accelerometer for 30 milliseconds. The stored
transient response is analyzed through the Wavelet Transform (WT) in order to capture the energy content associated
with the propagation spectrum. The WT allows for displaying the energy distribution simultaneously in the time
and frequency domain and hence allows for fully describing the filtering characteristics of the considered classes of
shells. Results are displayed in Fig. 11.

Figure 11(a) shows that the uniform profile propagates sinusoidal waves with no dispersion. The energy looks
equally distributed about the two most significant peaks at approximately 900 Hz and 2500 Hz. On the other hand,
the tapered profile, pictured in Fig. 11(b), deforms the impulsive wave as time progresses. This reflects the shift
in frequency of the energy content represented by the WT plot. Also, most of the energy is concentrated about the
2500 Hz peak and the peak at 900 Hz has been significantly cut off. These results confirm the prediction obtained
by the numerical model displayed in Fig. 6.
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Table 2
Periodic Tapered Elements
Single sub-element ~ Two sub-elements Bi-periodic
Type(A) Type(B) Type(C)

BERENPS

y()

L L L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
time [s]

(a)

08 . . . . .
0 0.005 0.01 0.015 0.02 0.025 0.03 5 1Bl ]
time [s] r

(b)

Fig. 11. Experimental Time Response and Wavelet Transform: (a) uniform thickness, (b) tapered profile.

5. Periodic shells with tapered elements

Further improvements in the wave propagation characteristics can be obtained by connecting a series of tapered
shell elements. It is proved that elements which length is comparable to the diameter perform better than very long
elements. Therefore, being the medium radius 0.87 in. (Table 1), the length of the tapered element is limited to
about 2 inches.

Three different configurations are investigated and each of them brings different improvements. Table 2 shows
the different configurations.



426 M. Toso and A. Baz / Wave propagation in periodic shells

attenuation
1 T T T T T T T T
0.8
0.6
0 Y I— P - - J— J—| 1
500 1000 1500 2000 2500 3000 3500 4000 4500
phase shift
3.14 T T T T
S {/\\
1.56 - / \-
0 1 1 1 1 1 1 \. 1
500 1000 1500 2000 2500 3000 3500 4000 4500

Frequency [Hz]

Fig. 12. Propagation characteristics of a periodic tapered shell type (A).

The characteristics of configuration (A) have already been discussed in details in Section 3.1. The shorter length of
the element amplifies the width of the stop bands while periodicity amplifies the amount of the energy redistribution.
Figure 12 represents the characteristics of the tapered element with solid lines and the uniform characteristics in
dashed. The principal cut-off frequency has increased to about 1.5 kHz. Another stop band is located at about
3.6 kHz. Figure 13 displays the overall effect on the frequency response of a periodic shell with 4 consecutive cells.

Configuration (B) consists of two tapered sub-elements of opposite taper ratio. Although it appears to be less
effective than type (A) at lower frequencies, the characteristics portrayed in Fig. 14 show the principal stop band
around 2.5 kHz in the range of frequencies where the type (A) has a pass band (Fig. 12).

Figure 15 displays the overall effect on the frequency response of a periodic shell with 4 consecutive type (B)
cells. Although the first natural frequency is not affected by this configuration, all peaks between 2 kHz and 3.5 kHz
vanish.

The bi-periodic configuration (C) allows for attempting a combination of the effects shown in the two previous
cases. The bi-periodic cell consists of three sub-elements with the same taper ratio followed by one with opposed
taper ratio.

The characteristics are displayed in Fig. 16. The principal stop band at low frequencies that was observed in type
(A) characteristics (Fig. 12) is combined with the mid-frequencies stop band similar to the one of Fig. 13 (type (B)
element).

The overall frequency response of a periodic shell with 2 consecutive bi-periodic cells appears in Fig. 17. Only
disturbance about 3 kHz can effectively propagate along the shell.

6. Conclusions

In this work, we developed a theoretical method based on the Transfer Matrix Formulation and the Wavelet
Transforms that effectively simulates the influence of periodicity, variable geometry and material properties on the
wave propagation characteristics of axis-symmetric shells. Several experiments were carried out in order to verify
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Fig. 14. Propagation characteristics of a periodic tapered shell type (B).

the numerical predictions. It is shown also that the Wavelet Transform has proven to be very powerful tool to
uniquely identifying and comparing the energy distribution both in the time-frequency domain.

Thin shells can be modeled as two-dimensional wave-guides, where the propagation of the longitudinal waves is
coupled with the flexural (radial) waves. A much richer scenario comes out as a result of this. Variations of the wall
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thickness, medium radius and element length of the shell can effectively filter out undesirable bands of frequencies
from the longitudinal and/or the transverse wave patterns. Still, the principal parameter that influences the width of
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Fig. 15. Transmitted force: type (B) tapered shell (solid), uniform shell (dashed).
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Fig. 16. Propagation characteristics of a periodic tapered shell type (C).

the stop bands is the ratio between the cross sections at the two ends of the shell element.

It was also shown that there are no significant improvements in the propagation characteristics when exponential

profiles were implemented instead of simpler linear polynomials.

Very similar results were obtained with functionally graded materials. Materials like that can be employed in
applications where the geometry of the structure is a constraint from a design point of view. Besides, it may be
easier to obtain much higher ratios. Finally, by combining the two effects one can obtain the flexibility needed for

some very demanding applications.

Different types of periodic taper configurations proved to have complementary effects on the wave character-

4500
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Fig. 17. Transmitted force: type (C) tapered shell (solid), uniform shell (dashed).

istics. Combinations of these complex geometries (bi-periodic tapered cells) produce the most effectual energy
redistribution.

With the analytical frame work presented in this paper, it would be logical to augment such a frame work with
appropriate optimization strategies to synthesize the shape and material distribution along the shell in a rational
manner. Furthermore, development of the solutions of the inverse problem for shape and material distribution would
also be a natural extension of the present study. In both the optimization and inverse problems, emphasis could be
placed on targeting certain frequency bands where dominate vibration may occur.

Appendix A: The wavelet transform

The Wavelet Transform (WT) of a signal 2(t) is an example of a time-scale decomposition obtained by dilating
and translating along the time axis a chosen analyzing function (wavelet) [1]. The integral or continuous WT relative
to some basic wavelet ¢(t) is defined as:

Wy (a,b) = % +/Oo:c(t) S (%) dt (A1)

where b is a translation parameter used for positioning the function ¢ (¢) over the time domain, and @ > 0 is a
scaling parameter dilating or contracting the function ¢(¢). The WT provides a flexible time-frequency window,
which automatically narrows when observing high frequency phenomena and widens when studying low frequency
components [1]. The wavelet function used in this paper is the Morlet wavelet, defined in the time domain as:

P(t) = e . ed et (A2)

The Morlet wavelet is a sinusoidal function, oscillating at the frequency w,,, modulated by a gaussian envelope of
unit variance. Being composed of a modulated sinusoidal function, the Morlet wavelet is well suited for reproducing
and analyzing signals in many applications and particularly in this work.

As signal decomposition, the WT cannot be directly compared to a time-frequency representation. However, it
can be shown that b represents a time parameter and that the dilation parameter a is strictly related to frequency [11,
13]. In the frequency domain, the Morlet wavelet becomes:
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1 2
U(w) = V2. e 3 wmww) (A3)

Equation (A3) shows that the frequency domain formulation of the Morlet wavelet is a gaussian function centered
at w = w,,. Its dilated version is expressed as:

U(a-w)=V2 7. 3 (@w-wn)’ (A4)

whose maximum s located at a-w = w,,. Since w,, = 1.8757 is a fixed parameter defining the wavelet function [11],
the center of the gaussian curve and therefore the frequency of the analysis can be located by changing the dilation
parameter as follows:
W= (AS)
a

The scale parameter can be hence considered as the inverse of a frequency parameter and thus the WT can be
classified as a time-frequency transform.

An alternative formulation of the continuous WT can be obtained transforming both the signal x(¢) and the wavelet
function ¢ (t) in the frequency domain:

+oo
Wy(a,b) = Va - /X(w)-\lf*(a-w)-ej"”'b-dw (A6)

being X (w) and ¥*(aw) - 7"“0"? the Fourier transforms of 2(t) and U* (=2) respectively.
This formulation of the WT can be expressed in a discrete form as:

W(m,n)vVm - Aa Z X(fn) 9" (m-Aa- fp)- el 2T frmAb (A7)

where f,, is the discrete frequency and Aa and Ab are discrete increments of dilation and translation parameters.
Equation (A.7) allows an easy implementation of the WT. The frequency domain formulation of the WT is particularly
convenient when the signal to be analyzed is expressed in the frequency domain.

Nomenclature
A Area
A State-space matrix
c Characteristic wave speed
D, Outer diameter
Dy Transverse elastic coefficient
E Young’s modulus of elasticity
g,q Longitudinal and transverse rigidity
G Transformation matrix
h Shell thickness
1 Identity matrix
k Wave number
K, Longitudinal elastic coefficient
M Bending moment
mp, mp  Element bending and electric mass matrices respectively
N Longitudinal traction force
Q Shear force
R,r Shell radius
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Kinetic energy
Trasfer matrix
Potential energy

U Longitudinal displacement
Volume

W,v,w  Transverse displacement
External work

Wy, WD Nodal transverse and electric displacements respectively

N =

—~
~—

ECATDE B0 X ®O

Displacement vector

State-space vector

Propagation constant amplitude
Propagation constant phase angle
Angular coordinate

Partial derivative

First variation

Strain

Shear strain

Eigenvalues matrix of the transfer matrix
Propagation constant

Mass density

Stress

Poisson’s ratio

Frequency

~—

2

Subscripts

D
L
N
0
T

u

Related to electric degrees of freedom
At location L

N elements

At location 0

0 In the r, ¥ direction

Relative to the uniform profile

TYz In the xyz direction

, T
Y

Derivative in the x-direction
Derivative in the y-direction

Superscripts

T

Matrix transpose

-1 Matrix inverse
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