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Summary

In order for the increased use of fiber-reinforced composite structures to be finan-
cially feasible, employment of reliable and economical systems to detect damage
and evaluate structural integrity is necessary. This task has traditionally been
performed using off-line non-destructive testing (NDT) techniques. Safety en-
hancement programs and cost minimization schemes for repairs, however, have
substantially increased the demand for real time integrity monitoring systems,
i.e. structural health monitoring (SHM) systems in the past few years. The
real time feature imposes an additional constraint on SHM systems to be fast
and computationally efficient. Among the existing approaches fulfilling these
requirements, guided ultrasonic wave (GUW)-based methods are of particular
interest, since they provide the possibility of finding small size defects, both
at the surface and internal, and covering relatively large areas with reasonable
hardware costs. Next to theses appealing features, there are certain complex-
ities in utilizing GUWs for SHM of fiber-reinforced composites, that mainly
arise from the multi-layer, anisotropic, and non-homogeneous nature of the ma-
terial. In addition, the multi-mode character of GUWs further increases the
complexity of the SHM problem in these materials. It is believed that com-
putationally efficient methods for simulation of GUWs in composite structures
can substantially contribute to the field of SHM. Such numerical tools do not
only improve the understanding of the propagation of ultrasonic waves and their
interaction with different damage types and boundary conditions, but can also
make model-based damage identification techniques feasible in the context of
on-line SHM.

In this dissertation an improved framework for simulation of GUWs in com-
posite structures is developed. The improvements are mainly brought about
through the use of (i) physical constraints that reduces the dimensionality of
the problem, (ii) improved approximation bases for spatial and temporal dis-
cretization of the governing equations, and (iii) efficient mathematical tools to
enable the possibility of parallel computation. The formulated approach is a
wavelet-based spectral finite element method (WSFEM), which offers the possi-
bility of complete decoupling of the spatial and temporal discretization schemes,
and results in parallel implementation of the temporal solution. Although the
concept of the WSFEM was introduced a few years prior to this research, to
the author’s best knowledge, no general framework was proposed for dealing
with 2D and 3D problems with inhomogeneity, anisotropy, geometrical com-
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plexity, and arbitrary boundary conditions. These issues are addressed in this
dissertation in multiple steps as described below.

1. Improvement of the temporal discretization using compactly-supported
wavelets, by computing the operators of the wavelet-Galerkin method over
finite intervals, and demonstrating about 50% reduction in the number of
sampling points, with the same accuracy, compared to the conventional
wavelet-based approach.

2. Extension of the existing formulation of the 1D WSFEM based on an in-
plane displacement field to 1D waveguides based on a 3D displacement
field. In the 1D finite element formulation, spectral shape functions are
employed which satisfy the governing equations, in which shear deforma-
tion and thickness contraction effects are also incorporated. The minimum
number of elements for modeling 1D waveguides is used in this approach.

3. Formulation of a novel 2D WSFEM in which frequency-dependent basis
functions are suggested for spatial discretization. Contrary to the con-
ventional WSFEM, the presented scheme discretizes the spatial domain
with 2D elements and does not require extra treatments for non-periodic
boundary conditions. Superior properties of the formulation are shown in
comparison with some time domain FEM schemes.

4. Generalization of the WSFEM and extension to 3D geometries. It is
demonstrated that the standard spatial discretization schemes can be com-
bined with the wavelet-Galerkin approach, to fully parallelize the temporal
solution. A higher-order pseudo-spectral finite element method, i.e. spec-
tral element method (SEM), is further adopted to attain spectral conver-
gence properties over space and time.

The developed WSFEM is subsequently employed in the passive time rever-
sal (TR) method, which is a model-based approach for detection of load and
damage location, and operates based on the time invariance of linear elastody-
namic equations. It is shown that using the passive TR scheme, the problem
of load and damage detection, which is essentially an inverse problem, can be
solved in the form of a forward problem, thereby alleviating uniqueness and
stability issues. A number of case studies and examples, numerical and exper-
imental, are presented throughout this dissertation to better demonstrate the
applicability of the proposed framework.
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Samenvating

Teneinde het toegenomen gebruik van vezelversterkte composieten financieel
haalbaar te doen zijn, is de beschikbaarheid van betrouwbare en economis-
che systemen om schade te detecteren en het beoordelen van de structurele
integriteit noodzakelijk. Deze taak wordt traditioneel uitgevoerd met behulp
van technieken voor off-line niet-destructief onderzoek (NDT). Veiligheidsver-
hogingsprogramma’s en overwegeningen van kostenminimalisatie van reparaties
hebben echter de vraag naar real-time integriteit monitoring systemen, i.e.
structural health monitoring (SHM) systemen, aanzienlijk doen toenemen in
de afgelopen jaren. De real-time functie legt een extra beperking op aan SHM-
systemen om snel en computationeel efficiënt te zijn. Onder de bestaande be-
naderingen die aan deze eisen tegemoetkomen, zijn methoden gebaseerd op
geleide ultrasone golf (GUW) van bijzonder belang, aangezien zij voorzien in
de mogelijkheid van het vinden van kleine defecten (zowel aan de oppervlakte
als intern) en dekking van relatief grote gebieden met redelijke hardware kosten.
Naast deze aantrekkelijke functies is er een zekere complexiteit in het gebruik van
GUW’s voor SHM van vezelversterkte composieten, die voornamelijk voortkomt
uit het multi-layer, anisotroop, en niet-homogene karakter van het materiaal.
Bovendien verhoogt het multi-mode karakter van GUW’s de complexiteit van
het SHM probleem in deze materialen. Er wordt aangenomen dat rekentech-
nisch efficiënte methoden voor simulatie van GUW’s in composietstructuren sub-
stantieel kan bijdragen aan het gebied van SHM. Dergelijke numerieke tools ver-
beteren niet alleen het begrip van de voortplanting van ultrasone golven en hun
interactie met verschillende soorten schade en randvoorwaarden, maar kunnen
ook het gebruik van model-gebaseerde schade-identificatietechnieken mogelijk
maken in het kader van on-line SHM.

In dit proefschrift wordt een verbeterd kader voor de simulatie van GUW’s in
composietstructuren ontwikkeld. De verbeteringen worden voornamelijk bereikt
door het gebruik van (i) fysieke constraints dat de dimensionaliteit van het
probleem kan verminderen, (ii) verbeterde approximatiebases voor ruimtelijke
en tijd-discretisatie van de vergelijkingen, en (iii) efficiënte mathematische tech-
nieken die de mogelijkheid van parallelle berekening bieden. De geformuleerde
benadering is een op wavelets gebaseerde spectrale eindige-elementenmethode
(WSFEM) die de mogelijkheid biedt van volledige ontkoppeling van de ruimtelijke
en tijd-discretisatie schema’s, en parallelle uitvoering van de temporele oploss-
ing. Hoewel het concept van de WSFEM gëıntroduceerd werd in de jaren vooraf-
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gaand aan dit onderzoek, werd er naar beste weten van de auteur geen algemeen
kader voorgesteld voor 2D en 3D problemen met inhomogeniteit, anisotropie, ge-
ometrische complexiteit, en willekeurige randvoorwaarden. Deze issues worden
behandeld in dit proefschrift in meerdere stappen zoals hieronder beschreven.

1. Verbetering van de tijd-discretisatie met behulp van compactly-supported
wavelets, door het berekenen van de operatoren van de wavelet-Galerkin
methode over eindige intervallen en leidend tot ongeveer 50% verminder-
ing van het aantal bemonsteringspunten, met dezelfde nauwkeurigheid in
vergelijking met de conventionele benadering.

2. Uitbreiding van de bestaande formulering van de 1D WSFEM gebaseerd
op een in-plane verplaatsingsveld tot 1D golfgeleiders gebaseerd op een 3D
verplaatsingsveld: in de 1D eindige-elementenformulering worden spec-
trale vormfuncties gebruikt die voldoen aan de vergelijkingen waarin ef-
fecten van afschuiving en dikte-krimp ook worden opgenomen. Het min-
imum aantal elementen voor het modelleren van 1D golfgeleiders wordt
gebruikt in deze benadering.

3. Formulering van een nieuw 2D WSFEM waarin frequentie-afhankelijke
basisfuncties worden voorgesteld voor ruimtelijke discretisatie: anders dan
conventionele WSFEM discretiseert de onderzoeksmethode het ruimtelijke
domein met 2D elementen en heeft geen extra behandelingen nodig voor
niet-periodieke randvoorwaarden. De superieure eigenschappen van de
formulering worden aangetoond in vergelijking met een tijdsdomein FEM-
schema.

4. Generalisatie van de WSFEM en uitbreiding naar 3D configuraties: er
wordt aangetoond dat de standaard ruimtelijke schema’s gecombineerd
kunnen worden met de wavelet-Galerkin methode om de temporele oploss-
ing volledig te parallelliseren. Een hogere-orde pseudo-spectrale eindige-
elementenmethode, i.e. spectrale elementenmethode (SEM), wordt verder
aangepast om spectrale convergentie-eigenschappen te bereiken in ruimte
en tijd.

De ontwikkelde WSFEMwordt vervolgens gebruikt in de methode van passieve
tijdsomkering (TR), die een model-gebaseerde benadering is voor de detectie van
de locatie van de belasting en de schade, en werkt op basis van de tijdinvari-
antie van lineaire elastodynamische vergelijkingen. Er wordt aangetoond met
de behulp van het passieve TR schema, dat het probleem van belasting- en de-
fectlocalizatie dat in wezen een inverse probleem is, kan worden opgelost in de
vorm van een voorwaarts probleem, waardoor het verlichten van uniciteit en sta-
biliteitsissues bereikt wordt. Een aantal case studies en voorbeelden, numerieke
en experimentele, worden gepresenteerd in dit proefschrift om de toepasseli-
jkheid van het voorgestelde kader beter aan te tonen .
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Chapter 1

Introduction

Autonomous systems which can evaluate structural integrity in real time are
known as structural health monitoring (SHM) systems [Staszewski et al., 2004,
Giurgiutiu, 2008, Boller et al., 2009, Balageas et al., 2006]. The primary ob-
jectives of SHM systems, in general, are reducing the cost of maintenance and
repairs, and most importantly in the context of transportation, improving safety.
These objectives are mainly achieved by detection of structural defects at an
early stage, and monitoring the load history applied on the structure [Staszewski
et al., 2004]. The cost-saving potential of SHM systems deals with reducing (i)
the direct costs, e.g. design and fabrication of repairs, and (ii) the indirect costs
induced by implementation of repairs for which the system has to be taken out
of service [Staszewski et al., 2004]. Structural health monitoring systems may
ideally replace scheduled maintenance programs with as-needed maintenance
schemes [Giurgiutiu, 2008, Boller, 2000] to reduce the indirect costs.

Traditionally, non-destructive testing (NDT) techniques have been used for
monitoring structural integrity of metallic and composite structures [Adams
et al., 1986, Cawley, 1985, Summerscales, 1990, Blitz and Simpson, 1996]. When
similar operations are implemented in an unmanned fashion with permanently-
installed sensors and actuators, the integrity evaluation technique falls into the
category of structural health monitoring [Giurgiutiu, 2008]. Since SHM systems
are meant to work in an online fashion, they should meet additional require-
ments compared to NDT systems, such as a short processing time. During the
operation, structures are interrogated by SHM systems, to transfer the infor-
mation required to assess the structural integrity.

Structural health monitoring can be generally performed in two main ways;
passive SHM, and active SHM [Giurgiutiu, 2008]. In passive SHM, there is a
one-way communication between the structure and the SHM system: the SHM
system only listens to the structure and uses an external model, e.g. numerical
or statistical, to evaluate structural integrity. Active SHM systems however,
listen and talk to the structure to directly examine if/how the structure has
been damaged. Different levels of SHM methods can be distinguished based on
the information that the SHM system can provide about the existence of the
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damage, extent of the damage, location of the damage, and remaining life of
the structure [Boller, 2000].

1.1 SHM of Composite Structures

In order for the increased use of fiber-reinforced composite structures to be
financially feasible, development of reliable, efficient, and economical SHM sys-
tems to detect and evaluate damage is necessary. Structural health monitor-
ing of composites is generally a more challenging issue than SHM of metallic
structures. The challenge can be ascribed to the complexity in the mechanical
behavior of fiber-reinforced composites in comparison with metallic structures,
e.g. anisotropy and multi-layer structure, and also barely-visible to non-visible
delaminations, which may, at their current or a later stage, adversely affect the
mechanical properties of the structures [Su and Ye, 2009, Summerscales, 1990].
Since impact is a major source of delamination initiation in composites, the
importance of load history monitoring is also more pronounced in the SHM of
composite structures than in metals.

1.2 Components of SHM Systems

Structural health monitoring systems work based on the fact that damage
changes the mechanical or electromechanical properties of structures. Every
SHM system, regardless of the physical principle based on which it operates, is
generally composed of a number of components. These components, as shown
in Figure 1.1, are data acquisition parts, signal processing tools, forward mod-
els, i.e. predictive models, and identification algorithms. Depending on the
type of the SHM tool, each of these components may gain a higher or a lower
significance than the others.

In an SHM system, data needs to be gathered from the actual hardware
at the first step using a data acquisition system. Next, the signals, which are
often contaminated with noise, need to be processed carefully. Certain features
may have to be extracted from the signals in the signal processing package.
Furthermore, a predictive model can be used to (i) improve the understating
of the user in correlating the obtained data to possible structural defects, and
(ii) improve the design and optimization of the SHM hardware, e.g. location
of the sensors and actuators. The damage identification part, which can be
model-based, or based on signal processing approaches, is finally used to identify
defects or history of external loads. For quantitative assessment of structural
integrity, the use of model-based approaches is rapidly growing, which signifies
the importance of accurate and computationally-efficient forward models.
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Damage Detection

Load History Monitoring

Damage DetectionDamage Detection

Load History MonitoringLoad History Monitoring

Signal Processing

Smoothing, denoising, feature extraction, etc. 

Data from the actual hardware
Sensors network and actuators

Identification Algorithms

Detection techniques and inverse solutions

SHM ToolSHM Tool

Predictive Models

Forward solutions and simulations

Figure 1.1: Schematic view of an SHM system.

1.3 SHM Methods

Structural health monitoring methods can be classified based upon the physi-
cal principle behind the SHM methodology. The most extensively-used SHM
approaches are based on modal data, electro-mechanical impedance, static mea-
surement, acoustic emission, and elastic waves. Su and Ye [2009] have provided
a concise description of each method along with its applications, merits, and lim-
itations, as listed in Table 1.1 on Page 6. For a detailed review of these methods,
the reader is referred to Staszewski et al. [2004], Balageas et al. [2006], Boller
et al. [2009].

1.4 Motivation

Among the well-established SHM methodologies listed in Table 1.1, the elas-
tic wave-based SHM has gained a special attention in the past decade based
on its merits: being cost-effective, fast and repeatable, able to inspect a large
area in a short time, sensitive to small damage, no need for motion of trans-
ducers, low energy consumption, and able to detect both surface and internal
damage [Su and Ye, 2009]. For thin-walled structures, since the frequency of
the diagnostic waves, which are guided by the free surfaces of the structure, lie
in the ultrasonic regime, these waves are often referred to as guided ultrasonic
waves (GUWs). Although GUWs are efficient tools for evaluation of structural
integrity, certain complexities exist in implementation of GUW-based SHM sys-
tems, as listed in Table 1.1. One of these major complexities is interpretation of
the signals gathered from the experiment. The complexity mainly comes from
the multi-layer structure, anisotropy, and possible non-homogeneity of advanced
composite structures, which cannot be readily dealt with in many conventional
NDT techniques.

Proper understanding of the underlying physics of GUWs in composite thin-
walled structures, based on which signal processing tools and the identification
scheme can also be enhanced, may be achieved using numerical models. Exten-
sive studies have been carried out on modeling the GUWs, e.g. Doyle [1989],
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Gopalakrishnan et al. [2008], Gaul et al. [2003], Delsanto et al. [1992], Ha and
Chang [2010], Hong and Kennett [2002a], Zhang et al. [2006]. The commonly-
used methods however, often require intensive computations for typical elastic
wave problems in composite structures, or are inflexible in dealing with geomet-
rical and material complexities. For example, finite element tools using first-
and second-order elements and an explicit Newmark time integration scheme
for wave propagation problems, often suffer from a low convergence rate due to
the low quality of the approximation functions. Furthermore, mesh refinement,
even locally at a damaged zone, adversely influences the time step size and fur-
ther increases the solution time, see Gopalakrishnan et al. [2008] and Chapter 2
of this thesis for more elaborate discussions. Despite the fact that any method
serving sufficient accuracy can be used in design of SHM systems, lack of com-
putational efficiency remains an obstacle for the growth of model-assisted SHM
methods for composite structures. It is believed that certain improvements in
computational efficiency of simulation of GUWs can be still brought about.
These improvements can be applied through (i) using more physical constraints
to reduce the dimensions of the problem while still providing the desirable accu-
racy, and (ii) using efficient mathematical tools and techniques which can enable
us to use the available computational resources more effectively, e.g. parallel
computation.

The focus of the developments in this dissertation is on a computationally-
efficient method, namely the wavelet-based spectral finite element method (WS-
FEM) which offers the possibility of complete decoupling of the spatial and
temporal discretization schemes, and parallel implementation of the solution.
Despite the notable progress so far in formulating the WSFEM as reported in
Gopalakrishnan and Mitra [2010] , there are still difficulties in dealing with 2D
and 3D problems with inhomogeneity, anisotropy, geometrical complexity, and
arbitrary boundary conditions, solutions to which are addressed in this disser-
tation.

1.5 Scope of the Thesis

The main contribution of this dissertation is improvement/development of the
WSFEM for simulation of GUWs in 1D, 2D, and 3D structures, and their
applications to SHM. In Chapter 2, some background knowledge in GUWs-
based SHM is presented. Chapter 3 is devoted to the mathematical founda-
tion of compactly-supported wavelets, multiresolution analysis, and the wavelet-
Galerkin method for spectral analysis of wave equations. The WSFEM is for-
mulated for simulation of GUWs in 1D waveguides in Chapter 4. The Wavelet-
Galerkin method is used for temporal discretization of the governing equations,
whereas a finite element discretization of the spatial domain is carried out with
spectral shape functions extracted from the waveguide characteristics of the
structure. Chapter 5 deals with the extension of the formulation of the WS-
FEM to 2D waveguides. In the proposed approach, contrary to the conventional
spectral methods, the problem is discretized with 2D elements the basis func-
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tions of which are functions of the corresponding wavenumbers in the wavelet-
transformed domain. Generalization of the WSFEM and extension to arbitrary
3D waveguides is presented in Chapter 6, where it is demonstrated that any
standard FEM can be adopted in the WSFEM for spatial discretization. In
Chapter 7, a model-based SHM methodology, i.e. the passive time reversal, is
implemented in which the models developed in chapters 4, 5, and 6 are employed
in damage/load location monitoring applications. Finally, conclusions and some
recommendations for the future research are presented in Chapter 8.
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Table 1.1: A review of commonly-used SHM methods [Su and Ye, 2009].

Approach Mechanism
Merits and appli-
cations

Demerits and lim-
itations

Modal-data-
based (eigen-
frequency,
mode shape
and curvature,
strain energy,
flexibility,
sensitivity,
damping prop-
erties, etc.)

Presence of struc-
tural damage re-
duces structural
stiffness, shifts eigen-
frequencies, and
changes frequency
response function
and mode shapes.

Simple and low cost;
particularly effective
for detecting large
damage in large in-
frastructure or rotat-
ing machinery.

Insensitive to small
damage or damage
growth; difficult to
excite high frequen-
cies; need for a large
number of measure-
ment points; hyper-
sensitive to bound-
ary and environmen-
tal changes.

Electro-
mechanical
impedance-
based

The composition
of a system con-
tributes a certain
amount to its total
electrical/mechanical
impedance of the
system, and presence
of damage modifies
the impedance in a
high frequency range,
normally higher than
30 kHz.

Low cost and simple
for implementation;
particularly effective
for detecting defects
in planar structures.

Unable to detect
damage distant from
sensors; not highly
accurate; accurate for
large damage only.

Static-
parameter-
based (dis-
placement,
strain, etc.)

Presence of damage
causes changes in dis-
placement and strain
distribution in com-
parison with bench-
mark.

Locally sensitive to
defects; simple and
cost-effective.

Relatively insensitive
to undersized damage
or the evolution of de-
terioration.

Acoustic
emission

Rapid release of
strain energy gener-
ates transient waves,
whereby presence or
growth of damage
can be evaluated by
capturing damage-
emitted acoustic
waves.

Able to triangulate
damage in different
modalities including
matrix crack, fibre
fracture, delamina-
tion, microscopic
deformation, welding
flaw and corrosion;
able to predict dam-
age growth; surface
mountable and good
coverage.

Prone to contamina-
tion by environmen-
tal noise; complex
signal; for locating
damage only; passive
method; high damp-
ing ratio of the wave,
and therefore suitable
for small structures
only.

Elastic-wave-
based (Lamb
wave to-
mography,
etc.)

Structural dam-
age causes unique
wave scattering phe-
nomena and mode
conversion, whereby
quantitative eval-
uation of damage
can be achieved by
scrutinising the wave
signals scattered by
damage.

Cost-effective, fast
and repeatable; able
to inspect a large
structure in a short
time; sensitive to
small damage; no
need for motion of
transducers; low
energy consumption;
able to detect both
surface and internal
damage.

Need for sophisti-
cated signal process-
ing due to complex
appearance of wave
signals, multiple
wave modes avail-
able simultaneously;
difficult to simulate
wave propagation in
complex structures;
strong dependence
on prior models or
benchmark signals.
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Chapter 2

Background on Ultrasonic

Wave Propagation in

Thin-walled Structures

The commonly-used methods for analysis and simulation of wave propagation
in thin-walled structures applied to structural health monitoring (SHM) are
reviewed in this chapter. Analysis and simulation are clearly distinguished in
this dissertation as the former, by convention in wave propagation, refers to
the extraction of the characteristics of waves in a waveguide, whereas the latter
deals with simulation of wave motion in the time domain.

As mentioned in Chapter 1, ultrasonic wave propagation-based methods
form an important class of damage detection and identification schemes in the
engineering fields. The minimum detectable size of a defect has an inverse re-
lation with the frequency of the diagnostic waves1. Up to few hundreds of kilo-
hertz are often required for diagnostic waves in SHM of thin-walled structures2.
In such frequency ranges, multiple modes of waves propagate in a structure.
These wave modes can be associated with a motion which is symmetric or anti-
symmetric with respect to the mid-plane of the thin-walled structure, respec-
tively known as symmetric waves and anti-symmetric waves [Viktorov, 1967].
The higher the excitation frequency, the more non-uniform the distribution of
the displacements becomes through the thickness of a thin-walled structure.
When there are multiple modes of low and high order, a different behavior than
that which is captured by elementary plate and shell theories in conventional
structural analysis is often observed. The difference is predominantly due to
the poor quality of the approximation of the assumed displacement fields used

1In a non-dispersive waveguide, the wavelength of the diagnostic waves is inversely propor-
tional to the excitation frequency. The minimum detectable damage size is often considered
to be half of the wavelength [Boller et al., 2009].

2Detecting a crack of 10mm in a steel plate of 1mm thick requires the excitation frequency
to be at least 250kHz, roughly speaking.
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in these theories [Wang and Yua, 2007], as a result of which the assumed dis-
placements in the thickness-wise direction are not able to capture the material
motion required to convey the waves. For example, neglecting the thickness
contraction mode in the displacement field of a plate structure modeled in 2D,
will result in a constant speed for the fundamental, i.e. the lowest mode, sym-
metric waves, irrespective of the frequency of the excited waves [Doyle, 1989].
As another example, the propagation speed of the fundamental antisymmetric
waves may be miscomputed to be significantly larger than the actual speed of
that particular mode in the absence of the shear deformation and rotary inertia
[Gopalakrishnan et al., 2008]. In non-destructive testing (NDT) and SHM, it
is therefore essential to identify the validity range of the model used to avoid
inaccurate interpretation of the diagnostic waves in the integrity monitoring
system.

In wave propagation analysis, by assuming a harmonic motion and iterat-
ing the solution procedure for a set of discrete frequencies, the behavior of the
propagating and non-propagating waves can be described. This description is
mostly provided in form of spectrum relations and dispersion relations, which
are briefly discussed later in this chapter. Using these relations, the speed of
the present wave modes and their wavelengths at different frequencies can be
determined. This information may be significant in some wave propagation-
based SHM approaches, since the arrival time of a wave packet along with
its corresponding propagation speed can be used to specify the distance from
a disturbance source. In this chapter, after presenting the general theory of
wave propagation in anisotropic media and introducing the basic definitions,
an insightful case study of wave propagation in a curved composite waveguide
is provided. This example highlights some important aspects of elastic wave
propagation in composite structures which are discussed throughout this disser-
tation. Some key considerations in using ultrasonic waves in SHM systems are
subsequently reviewed.

Simulation methods can alternatively be used to provide the time domain
solution of wave equations. This can be a challenging problem for SHM appli-
cations due to the high driving frequencies. A robust, accurate, flexible, and
computationally-efficient procedure is required to handle the physical and math-
ematical complexities of ultrasonic wave motion in a reasonable amount of time.
The most commonly-used methods are transformed domain methods and the
time domain methods, discussed in this chapter.

2.1 Guided Ultrasonic Waves in Thin-walled Struc-

tures

Depending on the boundary conditions, geometry, and material properties,
various types of waves may propagate through a solid body [Viktorov, 1967,
Staszewski et al., 2004]. Bulk waves, for example, travel within the interior
of a material and exhibit a finite number of wave modes. Waves propagating
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in thin-walled structures at ultrasonic frequency regimes are known as guided
ultrasonic waves (GUWs). Guided ultrasonic waves remain guided between two
free surfaces of a thin-walled structure viewed as a waveguide. Since GUWs are
confined inside the outer walls of a thin-walled structure, in both flat plate and
curved shells, they can travel over large distances. This feature makes GUWs
well-suited for the ultrasonic inspection of engineering structures such as air-
craft parts [Dalton et al., 2001, Gao and Rose, 2009, Rose and Soley, 2000,
Salamone et al., 2009, Puthillath and Rose, 2010], pressure vessels and oil tanks
[Jiangong et al., 2007, Rose et al., 1994, Feng et al., 2010], pipelines [Cawley
et al., 2003, Demma et al., 2004, Na and Kundu, 2002, Siqueira et al., 2004,
Volker and Bloom, 2011, Bloom et al., 2008, Breon et al., 2007, Ledesma et al.,
2009, Pan et al., 1999], and railways [di Scalea and McNamara, 2003, di Scalea
et al., 2005, McNamara and Lanza di Scalea, 2002, Rose et al., 2002, Wilcox
et al., 2003]. Guided ultrasonic waves obey the wave equations derived from
continuum mechanics laws, with appropriate stress boundary conditions at the
two surfaces of a thin-walled structure [Achenbach, 1993].

Damage, as a local discontinuity, can be identified in GUW-based SHM, by
studying the waves scattered by the discontinuity. Once a GUW packet propa-
gating at a certain speed encounters a damaged area, depending on the damage
type and configuration, a part of the wave packet may travel through this zone
and get refracted, and a part of it can get reflected by the damage. In GUW-
based SHM, in general, the information from the reflected and refracted wave
packets is used to investigate the integrity of the structure under interrogation.
As discussed in Chapter 1, the exciting and measuring of GUWs is usually a
reasonably cost-effective, fast and repeatable processes [Giurgiutiu, 2008].

In plates-like structures, GUWs travel as Lamb waves, i.e. a combination
of the pressure (P) waves and shear-vertical (SV) waves, and shear horizon-
tal (SH) waves [Viktorov, 1967]3. The SV waves are vertically polarized, thus
dominated by out-of-plane motion, while SH waves are horizontally polarized,
thus dominated by in-plane motion. Both Lamb waves and SH waves can be
symmetric or antisymmetric with respect to the plate mid-plane. The modes
of Lamb waves are conventionally called A0, S0, A1, S1, A2, S2, etc., where
A(n) and S(n), for n ∈ {0, 1, 2, · · · }, respectively denote the anti-symmetric
and symmetric modes. Higher values of n indicate higher-order modes. Shear-
horizontal waves are called similarly, e.g. SH0, SH1, SH2, however, the even
and odd values of n in SH(n), denote the symmetric and anti-symmetric SH
waves, respectively. Note again that the governing equations of GUWs are gen-
erally derived from traction-free boundary conditions on both surfaces of the
thin-walled structure. The propagation speed of these waves depends on the
product of excitation frequency and plate thickness [Achenbach, 1993].

The dependence of the propagation speed of waves on the frequency may
make the waveguide dispersive. In a dispersive waveguide, a disturbance with
a certain frequency bandwidth does not retain its shape throughout the propa-

3The term Lamb waves is commonly used when the structure is flat. Following the con-
vention, in this dissertation, the generic term GUW is used when the structure is curved, or
when both Lamb waves and SH waves are meant.
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gation, as waves at each frequency travel at different speeds. These issues will
be explained concisely in the next sections.

2.2 Spectral Analysis and Basic Definitions

An alternative approach to the analysis of mathematical functions or signals in
time is to use a transformed domain and, in particular, the frequency domain.
A frequency domain analysis, which is also known as a spectral analysis, decom-
poses a time series into a spectrum of cycles of different lengths [Doyle, 1989].
In wave propagation, spectral analysis is utilized to understand the wave me-
chanics in a waveguide by extracting the interrelations of wave properties, e.g.
frequency, wavenumber, wave velocities, [Su and Ye, 2009, Giurgiutiu, 2008, Bal-
ageas et al., 2006, Boller et al., 2009, Kundu, 2004], and will be briefly discussed
in this section.

2.2.1 Wave Equations in the Frequency Domain

The linear partial differential equations (PDE)s describing the wave motion in
a heterogeneous anisotropic elastic medium can be stated as [Achenbach, 1993]:

Lu+ f = J ü, in Ω, (2.1)

accompanied by some prescribed boundary conditions. In Equation (2.1), L is
a continuous differential operator, J is a matrix containing inertial properties
of the medium, u = (u1, u2, · · · , um)T is the vector of m dependent variables, Ω
denotes the material body, and the over-dots show differentiation with respect
to time. If a classical continuum mechanics model is considered, the dependent
variables will be translational degrees of freedom (DOFs). Rotational degrees
of freedom however, will be added to the translational DOFs, if the waveguide
is a Cosserat continuum4 [Suiker et al., 2001]. The vector f = (f1, f2, · · · , fm)T

specifies the given external excitation. The transformed form of the above equa-
tion in the frequency domain can be sampled at L points in time, and subse-
quently approximated using the discrete Fourier transform (DFT), or its more
computationally-efficient version known as fast Fourier transform (FFT), see
Appendix 1. Therefore,

L−1
∑

n=0

(

Lûn + f̂n

)

eiωnt =

L−1
∑

n=0

−ω2
nJ ûne

iωnt, (2.2)

where the (̂·)n shows the FFT coefficients corresponding to the nth discrete
frequency ωn. Since each eiωnt is independent, Equation (2.2) must be satisfied
for each n. To determine the characteristics of the medium as a waveguide, the

4The Cosserat theory of elasticity, also known as micropolar elasticity, incorporates a local
rotation of points as well as the translation assumed in classical elasticity, and a moment
stress as well as the force stress.
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homogenous form of Equation (2.2), i.e. f̂n = 0, is considered for each n. In the
Cartesian coordinate system for example, the solution to this equation is of the
type:

ûn = Ûn exp
(

i
[

ωt− (knxx+ kny y + knz z)
])

, (2.3)

where the vector Ûn contains unknown constants, which have to be determined
in accordance with the boundary conditions, and knx , k

n
y , and knz denote the

wavenumbers in x-, y-, and z- directions, respectively, corresponding to the nth
discrete frequency ωn. The wave vector defined by:

kn =
[

knx , k
n
y , k

n
z

]T
, (2.4)

points to the direction of the wave propagation [Wang and Yua, 2007].

2.2.2 Spectrum and Dispersion Relations

The characteristic equation of the waveguide can be obtained by substituting
Equation (2.3) in the governing equations (2.1). The characteristic equation
can be symbolically represented by an implicit functional form:

G (ωn,kn) = 0, (2.5)

or by an explicit form, i.e. dispersion relation:

ωn = W (kn). (2.6)

The exact solution of the dispersion relation for a continuum often requires
solving transcendental equations [Wang and Yua, 2007]. When using reduced
models however, e.g. plate theories, the dispersion relation will appear as a
polynomial eigenvalue problem (PEP), which can be solved straight-forwardly
using standard techniques [Gopalakrishnan et al., 2008].

In the presence of dispersion, which can be regarded as frequency-dependent
effects in wave propagation, wave velocity is no longer uniquely defined, giv-
ing rise to the distinction of phase velocity, i.e. velocity at which individual
harmonics move, and group velocity, i.e. velocity at which a wave packet or en-
velope, being localized in both time and frequency, propagates through space.
In the Cartesian coordinate system, the group velocity cng corresponding to ωn

is defined by:

cng = ∇W =
∂W

∂kn
, (2.7)

where ∇ denotes the gradient operator, and the phase velocity cnp by:

cnp =
W

kn

kn

|kn|
(2.8)

with kn denoting the magnitude of the wave vector kn. It can be realized from
the two equations above that, if the relation between the frequency and the
wavenumbers is linear, the group and phase velocities will be equal.
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2.2.3 Case Study: A Higher-order Model for GUWs in

Composite Cylindrical Shells

The generic forms and solutions presented so far in this section are employed for
analysis of wave propagation in composite curved panels. The main reason for
presenting this section here is not to study the waveguide behavior of particular
specimens, but to clarify the definitions and explanations of the wave mechanics
provided in previous and those that will be made in future sections. Besides
the insightful role of this example in extracting the waveguide characteristics
of an anisotropic medium, the formulation may also be useful in the design of
GUWs-based SHM systems.

Various methods such as analytical solutions [Nayfeh and Chimenti, 1989,
Nayfeh, 1991, Wang and Yuan, 2007, Yuan and Hsieh, 1998], higher-order plate
theories [Chitnis et al., 2001, Wang and Yua, 2007, Whitney and Sun, 1973,
Pahlavan, 2011], and semi-analytical finite element method (SAFEM) [Bartoli
et al., 2006, Dong and Nelson, 1972, Marzani et al., 2008, Nelson et al., 1971,
Rattanawangcharoen et al., 1992], have been developed by researchers to extract
the spectrum and dispersion relations for metallic and composite structures from
the generic form of the wave equation. Although analytical solutions can be
found in some cases, they require highly intensive computations, since the exact
solutions often involve solving transcendental equations [Wang and Yua, 2007,
Giurgiutiu, 2008]. A higher-order theory for multi-layered composite cylindrical
shells is formulated in this section, from which analysis of guided waves in flat
composite panels and flat and curved isotropic panels can also be extracted.
This work extends the model proposed by Wang and Yua [2007] for composite
flat plates, to cylindrical shells. In this model, antisymmetric and symmetric
waves are captured using third- and second-order expansion of the displacement
field, respectively. This model can also be regarded as an extension of the
Mindlin plate theory, which is a first-order plate theory and only captures the
lowest anti-symmetric wave mode [Whitney and Sun, 1973], to a third-order
plate theory.

The following displacement field was considered to implement the model:





ur
uθ
uz



 =





u0r + (r −R)χ1 + (r −R)
2
χ2

u0θ + (r −R) ̺1 + (r −R)
2
̺2 + (r −R)

3
̺3

u0z + (r −R)φ1 + (r −R)
2
φ2 + (r −R)

3
φ3



 (2.9)

in the cylindrical coordinate system (r, θ, z). The radius of the cylinder is de-
noted by R, and u0r, u

0
θ, and u

0
z are the displacements of the mid-plane of the

shell in r-, θ-, and z- directions, respectively. Also χi, ̺i, and φi, i ∈ {1, 2, 3},
are the associate higher-order degrees of freedom. The odd-order terms with
respect to r in uθ and uz together with even-order terms in ur describe anti-
symmetric wave modes; the other terms capture symmetric wave modes. The
vector of the dependent variables is defined by:

u =
(

u0r, χ1, χ2, u0θ, ̺1, ̺2, ̺3, u0z, φ1, φ2, φ3
)T
. (2.10)
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The assumed through-the-thickness distribution of the displacement field in
Equation (2.9) is accompanied by a 2D wave propagation pattern that only takes
place in the θ − z plane. To determine the wave propagation characteristics, a
harmonic motion was considered as:

u = Û exp (i [ωt− (kθrθ + kzz)]) (2.11)

where kθ and kz are the wavenumbers in the circumferential and longitudinal
directions, ω denotes the angular frequency, and u is the vector of dependent
variables the amplitude of which is shown by Û. For a prescribed propagation
direction γ,

kθ = k sin γ , kz = k cos γ. (2.12)

To derive the equations of motion, the strain-displacement and stress-strain
relations of the medium are required . The stress-strain relations for each layer
of the composite laminate follow the Hooke’s law for linear elastic materials
[Reddy, 1997]. The strain-displacement in the cylindrical coordinate system
[Yuan and Hsieh, 1998], when the radius R is reasonably larger than the thick-
ness of the laminate, can be expressed by:

ǫ =





∂
∂r

1
r 0 0 ∂

∂z
1
r

∂
∂θ

0 1
r

∂
∂θ 0 ∂

∂z 0 ∂
∂r − 1

R

0 0 ∂
∂z

1
r

∂
∂θ

∂
∂r 0





T 



ur
uθ
uz



 , (2.13)

where ǫ denotes the strain field in the reduced Voigt notation. Given the stress-
strain and strain-displacement relations, the equations of motion, i.e. Equation
(2.1), can be obtained using the Hamilton’s principle or balance of linear and
angular momentum [Reddy, 1997]. For the sake of brevity, the expanded form
of these equations is not shown here. Substituting the harmonic response in
the equations of motion, the problem was formulated as a polynomial eigen-
value problem (PEP), the procedure for which is as outlined in Wang and Yua
[2007]. It should be noted that contrary to flat plates with balanced layups,
the symmetric and anti-symmetric wave modes are coupled in a cylindrical
composite shell.

The presented model was validated numerically, not shown here, and the
results exactly match those of Wang and Yua [2007] when R→ ∞. Next, wave
modes in a flat Graphite-Epoxy panel with stacking sequence [0, 90, 0, 90]s were
studied at 50kHz. The material properties of each layer of the laminate are:
E1 = 118GPa, E2 = 9.0GPa, E3 = 9.0GPa, ν12 = .029, ν13 = .02, ν23 = .049,
G12 = 5.97GPa, G13 = 5.97GPa, G23 = 3.75GPa, ρ = 1570kg/m3, where for
i, j ∈ 1, 2, 3, Ei denotes the Young’s modulus in i-direction, Gij denotes the
shear modulus in the ij-plane, and νij and ρ respectively denote the Poisson’s
ratio and the density. In this notation, the lamina is considered in the 1-2-plane,
where fibers are along the 1-axis.

The group speed wave curves demonstrating good agreement between theory
and experiments conducted by Melo Mota [2011], are shown in Figure 2.1. The
difference between theory and experiment does not exceed 5%, and is attributed
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Figure 2.1: The group speed wave curves, R→ ∞.

to the uncertainties in the material properties and the test apparatus. The wave
curves illuminate the frontier of waves of different modes, i.e. fundamental an-
tisymmetric A0, fundamental symmetric S0, and fundamental shear-horizontal
SH0, at 50kHz. As mentioned earlier, the wave front in anisotropic waveguides
is not circular. At this frequency, S0 waves are the fastest waves in all direc-
tions, with the maximum speed along the direction(s) of the fibers. The A0
mode, which propagates uniformly in all directions, is the slowest mode, hence,
it has the smallest wavelength and may be more sensitive to small-sized damage.
The reason for the direction-independent speed of A0 is that the fundamental
anti-symmetric mode is highly dominated by the bending stiffness of a panel,
which is almost equal in all directions.

The phase speed dispersion curves for a cylindrical shell made of the same
material and stacking sequence with R = 500mm are shown in Figure 2.2, where
the multi-mode nature of the guided waves can be clearly observed. The pre-
sented model was compared to a lower order theory, in which only the first order
terms in Equation (2.9) were considered. It should be noted that this model is
different from that used in classical plate theories, as it still captures a first-order
deformation through the thickness of the laminate, i.e. thickness contraction.
The frequency varies between 0 and 2000kHz and different symmetric and anti-
symmetric waves propagate in this frequency regime. Following the convention,
symmetric, anti-symmetric, and shear-horizontal waves are respectively denoted
by S, A, and SH, with a subscript showing the mode number. The cut-off fre-
quency of various wave modes can be observed in the figure. The term cut-off
frequency refers to the frequency at which a certain wave mode starts to propa-
gate. For example, the cut-off frequency of the second anti-symmetric waves A1
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Figure 2.2: The phase dispersion curves for the composite cylindrical shell,
R = 500mm.

is about 1000kHz. Without further adjustments and corrections, the presented
third-order model provides accurate results up to the cut-off frequency of the
A2 mode [Wang and Yua, 2007].

The presented formulation provides a fast and computationally-efficient anal-
ysis tool for understanding the physics of guided waves in thin-walled structures.
This third-order model model presents accurate results if at the effective fre-
quency range of the excitation, the displacement distribution can be captured
with a third-order polynomial expansion. For alternative approaches and elab-
orate discussions on the analysis of wave propagation in composite structures,
the reader is referred to [Su and Ye, 2009, Giurgiutiu, 2008, Wang and Yua,
2007, Yuan and Hsieh, 1998].

2.3 Some Considerations in Using Guided Ul-

trasonic Waves

In order to minimize the issues arising from the multi-mode nature and the
dispersion of the GUWs in SHM systems, certain techniques such as modulation
of the excitation pulse and tuning of GUWs may be employed.

2.3.1 Wide-bandwidth Excitation versus Narrow-bandwidth

Excitation

In SHM, it is often desired that a diagnostic wave packet is a short-duration
pulse, such that its reflections from the structural discontinuities and edges do
not overlap, and hence, can be distinguished. If the diagnostic wave packet
and its reflections are separate envelopes, travel times can be computed in a
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straight-forward manner thereby facilitating the damage identification proce-
dure. Making a signal narrow in time however, generally, makes it wide in the
frequency domain, i.e. wide-banded signal. When a wide-banded signal with
a large frequency range is used in a dispersive medium, since waves at differ-
ent frequencies propagate at differing phase velocities, the observed pulse will
change shape while traveling. As a result, the experimentally-measured signals
from such waveguides become fuzzy and difficult to interpret. To cope with this
issue, the signals in the frequency domain can also be narrowed [Gopalakrishnan
et al., 2008]. Making the signals narrow in the frequency domain implies that
different frequencies in the signal, which lie within a narrow range and thus, very
close to each other, propagate at nearly equal phase speeds. In other words,
in a short frequency interval, the group speed, which is generally a nonlinear
function of frequency, varies almost linearly with respect to frequency. Mini-
mizing the dispersion of the signals in general, can improve the robustness and
accuracy of the signal processing for the arrival time picking of the diagnostic
waves.

Modulation is a standard technique for making narrow-banded pulses [Giurgiu-
tiu, 2008]. A monochromatic signal with the carrier frequency of ωc is multiplied
by a Hanning window5 banded in both time and frequency. This multiplication
keeps the central frequency of the pulse unchanged. The frequency band of the
signal however, depends on the temporal localization of the Hanning window.
The resulting signal, referred to as a narrow-banded pulse, is extensively used
in NDT and SHM. Different wide- and narrow-banded signals will be used in
chapters 4, 5, 6, and 7 of this dissertation.

2.3.2 Tuning of Guided Waves

The multimode nature of GUW can make their application for SHM very com-
plicated since at least two modes, with generally different dispersion character-
istics, can exist and propagate simultaneously. Each propagating mode may
interact with the structural discontinuities, e.g. damage and the boundaries,
and also with the other propagating mode(s), as a result of which interpretation
of the wavefield becomes difficult to impossible. Although subtraction of the
response of the intact structure, i.e. baseline response, may alleviate the com-
plexity of the data interpretation, it introduces a more drastic issue for SHM
systems: the need to obtain an accurate baseline signal, which is a function of
environmental and operational conditions also [Xu and Giurgiutiu, 2007]. Some
of the challenges regarding the baseline response will be addressed in chapter 7
of this dissertation.

Tuning of GUW is one of the well-established solutions to the problem of the
multimode appearance of GUW [Giurgiutiu, 2008, Xu and Giurgiutiu, 2007].

5The Hanning function, also called the Hann function, is frequently used to window signals,
and also to reduce aliasing in Fourier transforms. The Hanning function is given by:

H (t) =

{

cos2
(

πt

2a

)

; −a < t < a
0 ; elsewhere.
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Based on the physical characteristics of the actuator(s), the coupling of the
actuator(s) to the structure surface, excitation of the actuator(s), and the me-
chanical properties of the structure to be interrogated, one of the fundamental
wave modes may be deactivated at a specific driving frequency. This mode de-
activation process, which is known as tuning of GUW, is often an essential task
in the design and optimization of real SHM systems. By tuning the GUW, the
group speed of the activated mode will be, before interaction with structural dis-
continuities, the only speed at which the energy and information is transferred.
Since this dissertation does not deal with modeling of sensors and actuators, i.e.
the input signals on, and the output signals from the structure are respectively
forces and displacements, GUW tuning is not dealt with explicitly. The inter-
ested reader is referred to [Giurgiutiu, 2008] for detailed information on this
subject.

2.4 Simulation Methods for Propagation of Guided

Ultrasonic Waves

Simulation methods for propagation of GUWs can be categorized into time do-
main methods, and transformed domain methods [Gopalakrishnan et al., 2008].
The transformed domain methods, also known as spectral methods, predomi-
nantly use global orthogonal bases in a weighted residual scheme, to reduce
a system of multi-dimensional partial differential equations (PDEs) to a set of
ordinary differential equations (ODEs). This is carried out by successively trans-
forming the temporal and spatial domains to the frequency and the wavenum-
ber domains, respectively [Doyle, 1989, Gopalakrishnan et al., 2008]. The basis
functions in spectral methods are often infinitely differentiable, and used in a
Galerkin weighted residual scheme to solve the governing equations of a waveg-
uide. A classical example of such methods, which will be further discussed in
this section, is the Fourier spectral method.

Time domain methods for simulation of GUWs are, on the other hand,
mostly based on a weighted residual scheme for discretization of the physi-
cal spatial domain, and finite difference formulas for numerical time integra-
tion. A number of time domain approaches have been applied for simulation of
GUWs, e.g. the finite element method (FEM), [Koshiba et al., 1984, Belytschko
and Hughes, 1983, Oden and Reddy, 1976, Zienkiewicz and Cheung, 1967,
Hughes, 1987] the boundary element method (BEM) [Cho and Rose, 1996, Wang
and Achenbach, 1994, Gaul et al., 2003], the finite difference method (FDM)
[Virieux, 1986, Gsell et al., 2004], the finite strip element method [Bergamini
and Biondini, 2004, Dawe, 2002], and the local interaction simulation approach
(LISA) [Delsanto et al., 1992, Lee and Staszewski, 2007, Nadella and Cesnik,
2011]. Among all these methods, FEM seems to be, by far, the most extensively-
used approach, since it effectively deals with geometrically complex, inhomoge-
neous, and anisotropic structures. In FEM, a waveguide domain is subdivided
into elements, and basis functions, which are local in character, i.e. confined
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to an element, are used in a Galerkin approximation of the dependent variables
of the governing equations of the waveguide. Time integration in FEM is pre-
dominantly performed through an implicit or an explicit Newmark integration
method [Hughes, 1987]. For details of FEM, the reader is referred to Belytschko
and Hughes [1983], Oden and Reddy [1976], Zienkiewicz and Cheung [1967],
Hughes [1987]. A specific version of FEM known as the (pseudo)spectral finite
element method6 employs higher-order basis functions and is equipped with an
explicit time integration scheme. This approach, which alleviated a number of
shortcomings in the conventional FEM and offered an improved convergence
rate and accuracy [Komatitsch et al., 2000, Peng et al., 2009, Ha et al., 2010,
Kim and Chang, 2005], is outlined later in this section.

2.4.1 Fourier-based Spectral Finite Element Method

The fast Fourier transform (FFT)-based spectral method is the most well-
established transformed domain method, and was mainly introduced by Doyle
[1989]. In this approach, as discussed earlier, successive Fourier transforms are
employed for transformation of the governing equation from the physical tempo-
ral and spatial domains to the frequency and the wavenumber domains, respec-
tively [Doyle, 1989, Gopalakrishnan et al., 2008]. As a result of using the Fourier
transforms, the temporal and spatial variables in the governing equation are re-
placed with the transformation parameters, i.e. frequencies and wavenumbers.
In the Fourier-based spectral finite element method (FSFEM), the successive
transformations stop once the governing equations are expressed in terms of a
single spatial coordinate, usually selected based on the geometry, loading and
the boundary conditions. The remaining equations then, which can often be
solved exactly, are expressed in terms of nodal coordinates as a result of which,
the problem is formulated as a set of 1D finite element systems [Gopalakrish-
nan et al., 2008]. Various applications of the FSFEM in simulation of wave
propagation can be found in the literature, see for example Farris and Doyle
[1989], Chakraborty and Gopalakrishnan [2004, 2006], Gopalakrishnan et al.
[1992], Krawczuk et al. [2003], Krawczuk [2002], Mahapatra and Gopalakrish-
nan [2003, 2004], Mahapatra et al. [2000, 2006], Ostachowicz [2008], Palacz and
Krawczuk [2002], Palacz et al. [2005a], Rizzi and Doyle [1992].

The FFT-based spectral methods offer the possibility of parallel computation
of the system response to a set of monochromatic inputs with different frequen-
cies. Compared to polynomial approximation bases, Fourier bases provide a
more accurate expression of the dependent variable and their derivatives due
to their spectral nature [Gopalakrishnan et al., 2008]. Two major issues how-
ever, limited the growth of the applications of Fourier-based spectral methods;
(i) the periodicity assumption in the discrete Fourier transform and the subse-
quent drawback being the need to introduce artificial damping at the boundaries
of the domain [Doyle, 1989, Gopalakrishnan et al., 2008], (ii) the global basis

6It is emphasized that the (pseudo)spectral finite element method and spectral methods
are completely different in nature, and should not be mistaken.
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of the Fourier space making the method inefficient in dealing with complex ge-
ometries. Later, Mitra and Gopalakrishnan [2005] suggested using the discrete
wavelet transform (DWT) [Daubechies, 1992] to be applied in a Galerkin sense,
as an alternative to FFT to alleviate some of these issues.

2.4.2 Wavelet-based Spectral Finite Element Method

Daubechies compactly-supported wavelets [Daubechies, 1992], which will be dis-
cussed in detail in Chapter 3 of this dissertation, are powerful tools for solving
partial differential equations (PDEs) on bounded regions with strong gradients.
This characteristic of Daubechies wavelets comes from the fact that they pos-
sess several appealing properties such as orthogonality, compact support, exact
representation of polynomials up to a certain degree, and an ability to represent
functions at different resolutions [Amaratunga and Williams, 1997, Amaratunga
et al., 1994, Beylkin, 1992, Chen and Hwang, 1996, Chen et al., 1996, Han et al.,
2006, Ko et al., 1995, Ma et al., 2003, Patton and Marks, 1996, Qian and Weiss,
1993]. The idea of using Daubechies compactly-supported wavelets [Daubechies,
1992] for spectral analysis of wave propagation in 1D and 2D waveguides has
mainly been pursued by Mitra and Gopalakrishnan [Mitra and Gopalakrishnan,
2006d, 2007, 2005, 2006a,b]. They have shown computational improvements
with DWT in comparison to the Fourier-based analysis by taking advantage
of the removed periodicity assumption and the compact support of Daubechies
wavelets [Mitra and Gopalakrishnan, 2005]. Formulation of the wavelet-based
spectral finite element method (WSFEM) by Mitra and Gopalakrishnan, which
is referred to as the conventional WSFEM in this dissertation, is analogous
to the FSFEM, i.e. the FFT in the formulation is replaced with the wavelet-
Galerkin approximation. This topic is discussed in a more elaborate fashion in
chapters 3 and 5.

Despite the significant progress achieved by Mitra and Gopalakrishnan, there
are still difficulties in dealing with 2D and 3D problems that have geometrical
complexity and arbitrary boundary conditions, some solutions to these prob-
lems are given in this dissertation in chapters 3 to 6. Note that a different
application of wavelets to solve wave equations based on representation on the
spatial derivative operators has also been extensively reported in the literature,
see for example [Faccioli et al., 1997, Hong and Kennett, 2002a,b, Amaratunga
and Sudarshan, 2006, Sudarshan et al., 2006, Han et al., 2006, Qian and Weiss,
1993, Amaratunga et al., 1994, Ko et al., 1995, Patton and Marks, 1996, Ma
et al., 2003], however, this is not aligned with the interest demonstrated in the
present dissertation for spectral formulation of the elastic wave equation.

2.4.3 Spectral Element Method

The psudospectral element method, also known as the spectral element method
(SEM), is a spectrally-convergent7 higher-order finite element method for solv-

7Given p the order of a polynomial basis, a method is spectrally-convergent if the numerical
errors decay faster than any power of 1/p [Canuto, 2007].

19



Chapter 2. Background on Ultrasonic Wave Propagation in Thin-walled Structures

ing partial differential equations. The SEM was developed by Patera [1984] to
solve fluid dynamics problems with slow convergence. Patera introduced SEM
as a method which combines the generality of the finite element method with the
accuracy of spectral techniques. Unlike the spectral methods however, which
transform the governing equations from the physical space to the spectral space,
orthogonal interpolating polynomials preserving partition of unity are employed
in SEM, which keep the discretized governing equations in the physical space
[Patera, 1984, Canuto, 2007]. In addition, in contrast to the spectral meth-
ods, the interpolating polynomials in SEM are applied at the element level,
giving rise to the possibility of obtaining convergence by increasing the number
of elements, i.e. h-refinement, or by increasing the degree of the polynomials,
i.e. p-refinement. These polynomials can be either Chebyshev-Gauss-Lobatto-
Lagrange or Legendre-Gauss-Lobatto-Lagrange polynomials. The latter how-
ever, lead to a diagonal mass matrix in the FEM formulation, and are prefer-
able in most applications [Canuto, 2007]. The advantage of a diagonal mass
matrix is that it makes the SEM very efficient for solving transient problems
when combined with the explicit time integration, i.e. the Newmark-β, scheme
[Komatitsch et al., 2000]. In this dissertation, the term SEM always refers to
the spectral element method based on Legendre-Gauss-Lobatto-Lagrange poly-
nomials.

Application of SEM in elastic wave propagation simulation seems to have
been first introduced in Geophysics by Seriani [Seriani, 1998, Priolo et al., 1994,
Seriani and Oliveira, 2008, Seriani and Priolo, 1994], and its use has been contin-
ued by several researchers, see for example [Komatitsch et al., 2000, Komatitsch
and Tromp, 1999, 2002a,b, Komatitsch and Vilotte, 1998]. In simulation of
GUWs for SHM applications, it took the scientific community a few years to
import the SEM from Fluid Mechanics and Geophysics [Kim and Chang, 2005].
Various applications of SEM in modeling waveguides with and without dam-
age, sensors, and actuators have been reported in the literature, see for example
Kudela et al. [2007], Palacz and Krawczuk [2002], Peng et al. [2009], Ha et al.
[2010], Kim and Chang [2005], Kim et al. [2008], Moll et al. [2010].

In SEM, numerical integration over the element domain is performed us-
ing a nodal quadrature, i.e. the integration points are the same as the ele-
ment nodes. In one dimension, these nodes are located on the unequally-spaced
Gauss-Lobatto-Legendre (GLL) points, as the N + 1 roots of:

(1− ξ2)P ′

N (ξ) = 0 , ξ ∈ [−1, 1], (2.14)

where P ′

N (ξ) is the first derivative of the Legendre polynomial of degree N . A
3D master SEM element with Nξ = 5, Nη = 5, and Nγ = 2 is shown in Figure
2.3, where ξ, η, and γ denote the local coordinates.

Following the standard FEM [Hughes, 1987], the mass and the stiffness ma-
trices can be constructed. The only difference in computation of these matrices
will be that the GLL integration rule is used instead of the Gauss quadrature.
Note that if N = 1 or N = 2, a standard Galerkin FEM is retrieved based on lin-
ear or quadratic elements, respectively. The reader is referred to [Canuto, 2007]
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γ η

ξ

γ η

ξ

Figure 2.3: A 3D SEM element with Nξ = 5, Nη = 5, and Nγ = 2.

for detailed information on numerical aspects of SEM, accuracy, and conver-
gence. Note that accurately capturing the geometry through the isoparametric
formulation is also possible using SEM due to the higher order basis functions
in SEM [Komatitsch et al., 2000].

Having assembled the global mass and stiffness matrices, the explicit New-
mark time integration scheme based on the central difference formulas can be
adopted. Therefore:

(

1

∆t2
M+

1

2∆t
C

)

qt+∆t = ft −
(

K− 2

∆t2
M

)

qt −
(

1

∆t2
M− 1

2∆t
C

)

qt−∆t

(2.15)
where K, M, and C respectively denote the global stiffness, mass, and damping
matrices, q is the global nodal displacement vector, and f is the vector of ex-
ternal point loads. The subscript shows the time step, and ∆t denotes the time
interval. It can be observed in the equation above that the solution at each time
step depends only on the quantities at the previous time steps. Explicit meth-
ods are very efficient when the mass and the damping matrices have diagonal
structures. The damping matrix hence, is often considered to be proportional to
the mass matrix, to avoid inversion of a non-diagonal matrix [Komatitsch et al.,
2000]. The disadvantage of explicit methods is the limitation of the time step
size due to a stabilization criterion [Hughes, 1987]: there is a critical time step
size ∆tcr above which the integration scheme becomes unstable. This critical
time step size is determined by the stiffest element in the entire model.

2.5 Motivation of Using Wavelets for Spectral

Finite Element Simulation of GUWs

The application of guided ultrasonic waves in SHM of thin-walled structures
was briefly reviewed in this chapter. The basic concepts and terms required for
GUWs-based SHM were defined, and some of the more-commonly used simula-
tion methods for GUWs in anisotropic structures, i.e. FEM and SEM, Fourier-
based spectral FEM, and wavelet-based spectral FEM, were also discussed. It

21



Chapter 2. Background on Ultrasonic Wave Propagation in Thin-walled Structures

is believed that there are certain aspects of these methods, which can be im-
proved, or constructively combined with other available approaches, to provide
more computationally-efficient tools. Following this notion, the next four chap-
ters of this dissertation are devoted to the development of spectral finite element
schemes for simulation of GUWs. The key idea behind the proposed approaches
to simulate GUWs in this dissertation is to take advantage of the complementary
features of the wavelet-based spectral analysis with the Galerkin finite element
discretization of the spatial domain. In the next chapter, i.e. Chapter 3, the
mathematical foundation of the wavelet transform and the wavelet-Galerkin dis-
cretization will be considered. Construction of 1D, 2D and 3D WSFEM will be
presented in chapters 4, 5, and 6, respectively. These models will be used in
Chapter 7 to develop an SHM methodology for load and damage monitoring in
composite structures.
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Chapter 3

Wavelet Transform and

Applications

A wavelet is a wave-like oscillation which has compact support1. Wavelet analy-
sis allows a square-integrable function2 over an interval to be expressed in terms
of orthonormal compactly-supported function bases. Wavelets are designed to
exhibit specific properties that make them ideal candidates for signal processing
in the time-frequency domain, data compression, and solving partial differential
equations (PDEs).

The first mention of the wavelet analysis appears to be in an appendix
of the thesis of Alfred Haar [1910]. After Haar, separate studies, which did
not appear to be parts of a coherent theory, were performed until Zweig’s dis-
covery of the continuous wavelet transform (CWT) [Zweig et al., 1976]. This
was a notable contribution to wavelet theory [Meyer, 1993]. Wavelet analy-
sis was developed further in the 1980’s by Goupillaud et al. [1984] and their
formulation of the CWT, Daubechies [1988] and her construction the orthogo-
nal compactly-supported support wavelets, and Mallat’s introduction of multi-
resolution framework for wavelets [Mallat, 1989].

Wavelets, as a mathematical concept, have extensive applications in various
disciplines [Williams and Amaratunga, 1997]. They can be used to analyze non-
stationary time series, whereas Fourier analysis generally can not be. In wavelet-
based image processing for example, if one removes the highest frequencies of
the transformed image, the reconstructed image still looks like a low resolution
version of the full picture, while when Fourier analysis or other global functional

1The support of a function is the set of points where the function is not zero. A function
has compact support if it is zero outside of a compact set.

2A square-integrable function, also called a quadratically integrable function, is a real- or
complex-valued measurable function for which the integral of the square of the absolute value
is finite, i.e.

∫

∞

−∞

|f(t)|2dt < ∞ , t ∈ C
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bases are used, the image may lose all resemblance to the original picture, after
a few harmonics are removed [Williams and Amaratunga, 1997]. The FBI uses
wavelets to compress and store fingerprints information [Bradley et al., 1993]. In
structural health monitoring (SHM), wavelets multi-resolution analysis (MRA)
is frequently used in damage detection algorithms [Giurgiutiu, 2008, Grabowska
et al., 2008, Rizzo and di Scalea, 2006a,b, Staszewski et al., 2004]. Wavelets are
also widely employed to improve the efficiency of solving partial differential
equations (PDEs) [Amaratunga and Williams, 1997, Amaratunga et al., 1994,
Beylkin, 1992, Chen and Hwang, 1996, Chen et al., 1996, Qian and Weiss, 1993].
They are for instance, applied to the analysis of propagation of waves in various
disciplines, such as in fluid dynamics [Chen and Hwang, 1996, Qian and Weiss,
1993] and electromagnetics [Fujii and Hoefer, 2003, Karumpholz and Katehi,
1996].

Wavelets also appear in different contexts of structural dynamics. As one ap-
plication, they are utilized to form the basis functions in finite element analysis
(FEA) [Ko et al., 1995, Ma et al., 2003, Patton and Marks, 1996]. Alterna-
tively, they are employed to block-diagonalize the finite element mass matrix,
to improve the efficiency of the time integration scheme [Goswami et al., 1995].
The idea of using compactly-supported wavelets [Daubechies, 1992] for spectral
analysis of wave propagation was suggested and has mainly been pursued by
Mitra and Gopalakrishnan [2006d, 2007, 2005, 2006a,b]. They have shown how
the wavelet-Galerkin approach can be used to improve the computation time
and accuracy compared to Fourier-based analysis.

In this chapter, a concise review of the wavelet transform, and some im-
proved aspects of the wavelet-Galerkin method suggested by the present work,
are provided. The materials presented in this chapter are essential for the rest
of this dissertation, from solving PDEs of wave motion, to denoising the sig-
nals gathered from real hardware. At the beginning, the CWT, the Daubechies
compactly-supported wavelets, and the MRA are described. Further, the wavelet-
Galerkin method (WGM) and the decoupled wavelet-Galerkin method (DWG)
for solution of linear wave equations are presented in a general fashion. Sub-
sequently, an improved approach for elimination of the so-called edge effects of
the WGM as a well-known drawback of using Daubechies wavelets on bounded
domains is presented. The chapter ends with some numerical examples to clar-
ify the concept of the DWG, and illustrate the improvements brought in by the
formulation presented here.

3.1 The Continuous Wavelet Transform

The continuous wavelet transform (CWT), also known as the integral wavelet
transform, maps a one-dimensional signal to a time-frequency or time-scale joint
representation. The CWT is, in general, defined in reference to a mother func-
tion ψ ∈ L

2 (R), where L2 denotes the space of square-integrable functions. The
term mother implies that the family of wavelets is derived from ψ, by translating
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and scaling, i.e. dilation of, the function:

ψa,b (t) =
1√
a
ψ

(

t− b

a

)

, a ∈ R
+, b ∈ R (3.1)

where b is the translation parameter and a is the scaling parameter, which can be
interpreted as the reciprocal of the frequency. Further, t can be considered as the
time variable. The normalization is chosen such that ‖ψa,b‖ = ‖ψ‖, which keeps
the energy of the signal constant across the different scales. The continuous
wavelet transform of the continuous square-integrable function f : t → R with
respect to this family is:

CWTa,b (f) =
〈

f, ψ∗

a,b

〉

=

∫ +∞

−∞

f (t)ψ∗

a,b (t) dt (3.2)

where ∗ denotes the complex conjugate. It is known that reconstruction of an L
2

function requires satisfaction of the admissibility condition [Daubechies, 1992]:

∫

∞

0

1

ω
|Ψ|2dω <∞ (3.3)

with Ψ(ω) =
∫

ψ(t)eiωtdt being the Fourier transform of ψ, and ω denoting the
angular frequency. The admissibility condition therefore implies

Ψ(0) =

∫

∞

−∞

ψ(t)dt = 0 (3.4)

which is imposed by the requirement that the integral in Equation (3.3) should
stay bounded when ω → 0. From Ψ(0) = 0, it can also be extracted that
wavelets have a band-pass spectrum (it completely blocks the zero frequency),
and thus can be used as band-pass filters. This important property will be used
later in this chapter for describing the discrete wavelet transform and multi-
resolution analysis.

The inverse CWT is given by [Daubechies, 1992]:

f (t) =

∫ +∞

−∞

∫ +∞

0

CWTa,b (f)ψa,b (t) da db. (3.5)

For most practical applications where the functions are evaluated or measured
at only a limited number of discrete points, there is no analytical solution
for equations (3.2) and (3.5). Although numerical integration may, with loss
of generality, partially alleviate this issue, the time-bandwidth product of the
CWT : R → R

2 can be problematic, since its size is the square of that of the sig-
nal. The signal description should, ideally, have as few components as possible
for the sake of computational efficiency.
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3.2 The Discrete Wavelet Transform

The discrete wavelet transform (DWT) was developed to overcome the difficul-
ties of the numerical implementation in using CWT for analytically-unknown
functions. Discrete wavelets are not continuously scalable and translatable, and
therefore can only be scaled and translated in discrete steps. Modification of
equation (3.1) for the DWT reads:

ψj,k(t) =
1
√

aj0

ψ

(

t− kb0

aj0

)

; ∀j, k ∈ Z. (3.6)

The scaling factor a0 > 1 suggests a fixed dilation step. It also affects the overall
translation of the mother wavelet function. With an appropriate mother wavelet
function and the specific choice of a0 = 2 and b0 = 1 providing dyadic sampling
of the time and the frequency axes, the orthonormal basis {ψj,k : j, k ∈ Z} can
be generated such that

〈ψj,k, ψl,m〉 = δjlδkm (3.7)

in which δij is the Kronecker delta and

ψj,k(t) = 2−j/2ψ
(

2−jt− k
)

. (3.8)

A function f(t) can, hence, be expressed in terms of the wavelets basis as follows:

f (t) =

∞
∑

j,k=−∞

fj,kψj,k(t) (3.9)

where fj,k are the transformation coefficients. If the wavelet function has a
compact support, the above series over the translation factor k can be computed
readily. The series over the scale j however, is more challenging to deal with,
since the wavelet functions do not cover the entire spectrum of f ; each time
the scale increases, the wavelet is stretched in the time domain with a factor of
two and the bandwidth is halved. Each new scale therefore, covers half of the
remaining spectrum. This means that an infinite number of wavelet functions
are required for an accurate representation of f . To cope with this issue, the
so-called scaling function was introduced by Mallat [1989], which is responsible
for covering that region of the spectrum which is not spanned by the wavelet
function at each scale. Equation (3.4) suggests that, since for ω = 0, Ψ(0) = 0,
the normalized scaling function ϕ should satisfy:

Φ(0) =

∫

∞

−∞

ϕ(t)dt = 1 (3.10)

where Φ(ω) =
∫

ϕ(t)eiωtdt is the Fourier transform of ϕ. From a signal represen-
tation point of view, if both the wavelet and the scaling functions are considered,
no information is lost and the signal can be perfectly reconstructed.
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Figure 3.1: Iterated filter bank for multi-resolution analysis.

3.2.1 Multi-resolution Analysis

The idea of using the scaling function is essential in wavelets multi-resolution
analysis (MRA). Based on the properties of the wavelet and the scaling func-
tions, the DWT can be viewed as an iterated filter bank [Amaratunga and
Williams, 1997]. The basic idea is to analyze a signal by passing it through a
filter bank, which is a well-established procedure in sub-band coding3 [Ama-
ratunga and Williams, 1997]. The filter bank splits the signal spectrum into
two parts; a low-pass part and a high-pass part. The high-pass part contains
the smallest details of the signal, i.e. highest frequencies. The low pass part
however, still contains some details which may be of interest. In this case, it can
be split into low and high frequency spectra, and the procedure, as graphically
illustrated in Figure 3.1, can be reiterated until the number of created bands is
satisfactory.

The mathematical framework of the Daubechies compactly-supported wavelets
is constructed in the context of the MRA. A multi-resolution analysis, in general,
consists of a sequence of embedded subspaces

0 ⊂ · · · ⊂ V2 ⊂ V1,⊂ V0,⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L
2(R) (3.11)

with
⋂

m∈Z

Vm = 0. (3.12)

If the orthogonal projection operator onto Vj is denoted by Pj , then Pjf = f(t)
for all f(t) ∈ L

2(R) if j → −∞.
The multi-resolution aspect is a consequence of an additional requirement

known as scale invariance; all the spaces are scaled versions of the central space
V0. There is also a complementary requirement known as shift invariance stating
that f(t− k) ∈ Vj for all k ∈ Z. These properties imply that, by scaling down,
samples are considered at half the number of evaluation points. In the MRA

3Any form of transform coding that breaks a signal into a number of different frequency
bands, and encodes each one independently, is called sub-band coding. Such a decomposition
is mostly the first step in data compression for audio and video signals.
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framework of interest, the problem to be solved is to find an orthonormal basis
{ϕ0,k; k ∈ Z} in V0, from which the multi-resolution bases can be constructed
with:

ϕj,k (t) = 2−j/2ϕ
(

2−jt− k
)

; ∀j, k ∈ Z. (3.13)

The relationship between the two subspaces Vn and Vn−1 onto which f(t) ∈
L
2(R) can be projected, is defined by the equation above. The difference be-

tween these two projections, as mentioned in Section 3.2, is presented with the
orthogonal complement of Vj in Vj−1, denoted by Wj such that

Vj−1 = Vj ⊕Wj (3.14)

where ⊕ denotes the orthogonal, i.e. internal Hilbert, direct sum. The subspace
Wn is spanned by the orthonormal basis {ψj,k; j, k ∈ Z} of L2(R):

ψj,k (t) = 2−j/2ψ
(

2−jt− k
)

; ∀j, k ∈ Z. (3.15)

The orthogonal projection operator onto Wj , denoted by Qj , reads:

Qjf =

∞
∑

k=−∞

〈f, ψj,k〉ψj,k =

∞
∑

k=−∞

dj,kψj,k (3.16)

where dj,k are known as the detail coefficients. Similarly, the orthogonal pro-
jection operator onto Vj can be expressed by

Pjf =

∞
∑

k=−∞

〈f, ϕj,k〉ϕj,k =

∞
∑

k=−∞

cj,kϕj,k (3.17)

where cj,k are the approximation coefficients. In accordance with Equation
(3.14), the projection of f onto Vj−1 can be written as

Pj−1f = Pjf +Qjf. (3.18)

This forms the basis of multi-resolution analysis associated with DWT. Since
Wj⊥Vj and Wj−1⊥ (Vj ⊕Wj), it can be concluded that Wj⊥Wj−1 and hence,
each level of wavelet subspace is orthogonal to every other level. Thus, the
wavelet functions ψj,k are orthogonal for all j, k ∈ Z. Multi-resolution analysis
breaks down the original L2(R) into a set of orthogonal subspaces at different
scales. Designing appropriate basis functions ψ and ϕ with specific properties
is the problem solved by Daubechies [1988] for the first time, and is now used
widely in various applications.

3.2.2 Daubechies Compactly-supported Wavelets

The orthonormal bases of compactly-supported wavelets are designed based
upon a set of desirable properties for MRA. The wavelet function ψ and its
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companion, the scaling function ϕ, are governed by a set of N filter coefficients
{ak; k = 0, 1, · · · , N − 1} through the two-scale relation:

ϕ (t) =

N−1
∑

k=0

akϕ (2t− k) (3.19)

and its counterpart

ψ (t) =

N−1
∑

k=0

(−1)
k
a1−kϕ (2t− k) (3.20)

which ensures that ψ is orthogonal to ϕ. These equations are set up by express-
ing the space V0 in terms of the basis of V−1, c.f. Equation (3.11). The constant
N is known as the wavelet order and must be an even integer [Daubechies,
1992]. The support of ϕ is [0, N − 1], whereas the support of the corresponding
wavelet ψ is [1− N

2 ,
N
2 ]. The filter coefficients ak are derived by imposing certain

conditions established by Daubechies:

N−1
∑

k=0

ak = 2 (3.21)

N−1
∑

k=0

akak−m = δ0m; ∀m ∈ Z (3.22)

N−1
∑

k=0

(−1)ja1−kak−2m = 0; ∀m ∈ Z (3.23)

N−1
∑

k=0

(−1)kkmak = 0; ∀m ∈ 0, 1, · · · , N
2

− 1. (3.24)

These coefficients are fixed for a specific wavelet or scaling function basis and
need to be calculated only once. Equations (3.21) to (3.24) are essentially
extracted from the following properties of the scaling and the wavelet functions.

∫

∞

−∞

ϕ(t)dt = 1 (3.25)

∫

∞

−∞

ψ(t)dt = 0 (3.26)

∫

∞

−∞

ϕ(t− k)ϕ(t− j)dt = δkj (3.27)

∫

∞

−∞

ϕ(t)ψ(t−m)dt = 0 (3.28)

∫

∞

−∞

tnψ(t)dt = 0;n = 0, 1, · · · , N
2

− 1, (3.29)
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where j, k,m ∈ Z. The first two equations above are extracted from the admis-
sibility condition as presented earlier in Section 3.1. Equation (3.27) represents
the orthogonality of the scaling function under translation, and Equation (3.28)
expresses the orthogonality of ϕ and ψ. Finally, Equation (3.29) states that the
moments of the wavelet function are zero up to a certain order. This equation
imposes that the set

{

1, t, · · · , tN/2−1
}

is a linear combination of the integer
translates of the scaling function, i.e. ϕ(t − k). The exact expression for such
a linear combination is given in Appendix B. The orthogonal properties of the
scaling function and the wavelet function can be stated in the MRA framework
as follows [Chen et al., 1996]:

∫ +∞

−∞

ϕj,kϕj,ldt = δlk (3.30)

∫ +∞

−∞

ψj,kψl,mdt = δjlδkm (3.31)

∫ +∞

−∞

ϕj,kψj,mdt = 0 (3.32)

for j, k,m ∈ Z. It is known that there are no explicit expressions for calculating
the values of the scaling function and the corresponding wavelet function at an
arbitrary point [Daubechies, 1992]. However, the function values of ϕ and ψ at
dyadic points can be recursively computed from the two-scale relations (3.19)
and (3.20). The algorithms used to obtain these values at integer points are
given in Appendix B.

3.3 Wavelets For Solution of PDEs

The fact that Daubechies wavelets Daubechies [1992] possess several appeal-
ing properties such as orthogonality, compact support, exact representation of
polynomials up to a certain degree, and ability of representing functions at dif-
ferent resolutions, has resulted in an extensive use of wavelets in solving PDEs
[Amaratunga and Williams, 1997, Amaratunga et al., 1994, Beylkin, 1992, Chen
and Hwang, 1996, Chen et al., 1996, Qian and Weiss, 1993]. The formulation
is essentially derived through the wavelet collocation method (WCM) [Harten,
1994] or the wavelet-Galerkin method (WGM) [Qian and Weiss, 1993].

Daubechies wavelets are known as desirable bases for the Galerkin solution
of PDEs [Amaratunga and Williams, 1997, Chen et al., 1996, Qian and Weiss,
1993]. They are orthogonal with compact support, and the integral of their
product can be computed exactly. The efficiency of the WGM has been demon-
strated repeatedly in various disciplines such as for Navier-Stokes equations
[Qian and Weiss, 1993], Helmholtz equations [Qian and Weiss, 1993], Burgers
equation [Chen and Hwang, 1996], and the population balance problem [Chen
et al., 1996]. The spectral convergence of the WGM has been demonstrated by
Qian and Weiss [1993] for various types of PDEs. The focus of this dissertation
is also on the WGM, the details of which are explained in the present chapter.
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3.3.1 Spectral Analysis Using Wavelets

The idea behind using wavelets to solve PDEs is similar to the Fourier-based
spectral analysis: transformation of the elastodynamic equations expressing the
wave motion from the time domain to another domain in which an accurate
approximation of the displacement field can be sought. This is done in accor-
dance with an extended version of the single-scale WGM presented by Mitra and
Gopalakrishnan [2005], which does not utilize the MRA, but decouples the equa-
tions in the transformed domain. An elaborate, computationally-improved, and
generalized formulation of the method called the decoupled wavelet-Galerkin
approach (DWG) is outlined in this dissertation.

3.4 The Single-scale Wavelet-Galerkin Method

The wavelet-Galerkin method has been extensively applied to solving PDEs
on regions with strong gradients due to its orthogonality characteristics, exact
representation of polynomials up to a certain order, and compact support of
Daubechies wavelets [Amaratunga and Williams, 1997, Chen and Hwang, 1996,
Qian and Weiss, 1993]. A concise description of the method is provided in this
section.

Consider a domain Ω and assume the arbitrary scalar function f : (Ω, t) →
R to be discretized at L equally-spaced points in time separated by the time
interval ∆t. In order to avoid dealing with wavelet parameters at non-integer
points, the dimensionless time τ can be utilized [Mitra and Gopalakrishnan,
2005] such that,

tτ = τ∆t , ∀τ ∈ [0, L− 1]. (3.33)

The single-scale approximation of the temporal behavior of f can be achieved
at the resolution level zero. In this way, one only deals with the approximation
coefficients, since the translates of ϕ span the whole function space (Figure
3.2) and therefore, can be used as a basis to approximate f [Amaratunga and
Williams, 1997]:

f ≈ f̃ =
∑

k

f̂kϕ0,k =
∑

k

f̂kϕk , k ∈ Z. (3.34)

In the above equation, ϕk = ϕ (τ − k) and f̂k : Ω → R are the weights of
the translated functions, i.e. the approximation coefficients. For simplicity in
notations, the translation of the scaling function at the resolution level zero, i.e.
ϕ0,k, is shown by ϕk. It is known that, the scaling function of the compactly-
supported wavelets is nonzero only at N−2 points, i.e. ϕ(τ −k) 6= 0 for τ −k =
1, 2, · · · , N − 2 [Amaratunga and Williams, 1997]. The matrix representation
of Equation (3.34) will therefore, have a bandwidth of N − 2. Note that the
smoothness of the scaling function increases as the order of the wavelets grows.
As mentioned earlier, the scaling function of compactly-supported wavelets can
be evaluated at integer points using the algorithms presented in Appendix B.
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The scaling function φ(τ-k)

Figure 3.2: Translation of a single scaling function to approximate a transient
function.

For a system of linear PDEs, each of the form F(f1, ∂f
2

∂t ,
∂2f3

∂t2 , · · · ) = 0 with
f i : (Ω, t) → R, the functions f i can be expressed in terms of the approximation
coefficients according to Equation (3.34):

f̃ i =
∑

k

f̂ ikϕk , ∀i ∈ [0, 1, 2, · · · ] , k ∈ Z. (3.35)

An approximation to the solution can be subsequently obtained in a Galerkin
sense. To determine the unknown approximation coefficients, the WGM projects
the resulting expression onto the subspace spanned by the translates of the
scaling function acting as the test functions, i.e.:

∫

T

F(f̃1,
∂f̃2

∂t
,
∂2f̃3

∂t2
, ...)ϕjdτ = 0 , ∀j ∈ [0, 1, ..., L− 1], (3.36)

where T defines the integral bounds. Some functionals known as connection co-
efficients result from substitution of Equation (3.35) in Equation (3.36) [Ama-
ratunga and Williams, 1997, Qian and Weiss, 1993]:

Γn
k−j =

〈

ϕ
(n)
k , ϕj

〉

, ∀k ∈ Z, j ∈ [0, 1, · · · , L− 1]. (3.37)

In the above equation, the superscript (n) denotes the nth derivative with re-
spect to time, and 〈., .〉 is the the inner product, i.e. 〈f, g〉 =

∫

T
f(τ)g∗(τ)dτ

with ∗ reflecting the complex conjugate of the corresponding function. Since the
derivatives of the compactly-supported wavelets are highly oscillatory, numeri-
cal quadrature techniques for computing the connection coefficients are mostly
unstable or inaccurate [Amaratunga and Williams, 1997, Qian and Weiss, 1993]
and it is therefore necessary to evaluate them exactly.

The connection coefficients are, in general, functions of T. Depending on the
choice of the integration domain T, some values of the approximated function
may be required that lie outside of the window of interest. This issue is known
as the edge effects of the wavelets, and will be discussed in detail in sections 3.6
and 3.7.

3.5 The Decoupled Wavelet-Galerkin Method

A generic formulation of the WGM for wave propagation problems is introduced
in this section. The equations of motion can be expressed in a general form of
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a system of linear PDEs in space and time as:

Lu+ f = J ü (3.38)

where, in the present study, L is a linear continuous differential operator that
reflects the elastic properties of the medium, J is a matrix containing the in-
ertial properties of the medium, and u = (u1, u2, · · · , um)T denotes the vec-
tor of m dependent variables, i.e. displacements and rotations. The vector
f = (f1, f2, · · · , fm)T specifies the given external forces. In accordance with
Equation (3.34), the single-scale approximation of Equation (3.38) can be ex-
pressed as a system of PDEs in space only:

L
∑

k

ûkϕk +
∑

k

ûkϕk = J
∑

k

ûkϕ̈k , k ∈ Z. (3.39)

Since the differential operator L is linear, it will be later moved inside the
summation. Application of the WGM to the equation (3.38) requires taking the
inner product of both sides of Equation (3.39) by φj :

∑

k

(

Lûk + f̂k

)

〈ϕk, ϕj〉 =
1

∆t2

∑

k

J ûk 〈ϕ̈k, ϕj〉 , ∀j ∈ [0, 1, · · · , L− 1] (3.40)

which, using connection coefficients of Equation (3.37), can be rewritten as
follows:

∑

k

(

Lûk + f̂k

)

Γ0
k−j =

1

∆t2

∑

k

J ûkΓ
2
k−j . (3.41)

For the sake of efficiency in notation, the above system ofm PDEs is rearranged;
by forming them×Lmatrices Û and F̂ such that Û[µ, p] = uµp and F̂[µ, p] = fµp ,
with µ ∈ [1, 2, · · · ,m] and p ∈ [1, 2, · · · , L] respectively being the row number
and the column number, Equation (3.41) can be presented as follows:

Γ0

(

LÛ+ F̂
)T

=
1

∆t2
Γ2

(

J Û
)T

. (3.42)

In the above equation, Γ0 and Γ2 are L× L band-limited matrices the compo-
nents of which are the values of connection coefficients Γ0

k−j and Γ2
k−j , respec-

tively. The independence of the discrete temporal operators, i.e. Γ0 and Γ2,
from the spatial operator L can be understood from Equation (3.42); the spatial
operator does not influence the construction of the temporal operators. Further-
more, since the orthogonality condition (3.27) holds only if T = [−∞,+∞], Γ0

is, in general, not an identity matrix as the integral domain T for the computa-
tion of connection coefficients can be chosen arbitrarily.

Equation (3.42) is a coupled system of L homogenous PDEs. The bandwidth
of the matrix Γ2, which shows how the dependent variables, i.e. displacements,
at different times are connected, is determined by the order of the compactly-
supported wavelets N . Higher-order wavelets correlate more time steps through
a wider matrix band. These matrices are however, independent of the mate-
rial or geometrical properties of the problem. The coupled equations can be
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decoupled through the eigen-decomposition of Γ−1
0 Γ2. The projection of the

approximation coefficients matrix Û on the eigen-space of Γ−1
0 Γ2 is denoted by

an overbar and can be accordingly expressed as:

ŪT = Φ−1ÛT (3.43)

where Φ is the eigen-vector basis of Γ−1
0 Γ2. It is apparent that the decoupling

process depends only on the number of sampling points in time. For the sake of
computational efficiency, the eigen-vectors and eigen-values can be stored when
the number of sampling points is large. Using Equation (3.43) and standard
algebra, Equation (3.42) can be rewritten as:

Φ−1
(

LÛ+ F̂
)T

=
1

∆t2
Φ−1

(

Γ−1
0 Γ2

)

ΦΦ−1
(

J Û
)T

. (3.44)

and further simplified to:

LŪ+ F̄ =
1

∆t2
J ŪΛ, (3.45)

where Λ is the eigen-value matrix of Γ−1
0 Γ2, the jth component of which will be

denoted by κ2j . From Equation (3.45), the transformed form of the equations of
motion corresponding to each j ∈ [0, 1, · · · , L− 1], can be expressed as a linear
relation between the jth column of Ū and the jth column of F̄, and finally
presented as:

Lūj + f̄j = ω̄2
jJ ūj , (3.46)

where
ω̄j =

κj
∆t

, j ∈ [0, 1, · · · , L− 1], (3.47)

is the DWG frequency. The term jth wavelet point will be used hereafter to
indicate the solution associated with κj .

Using the DWG, the transient problem is now broken down into a set of
temporally uncoupled stationary PDEs which can be solved in parallel at the
different wavelet points. A linear combination of the transformed responses
at the wavelet points weighted in accordance with equations (3.43) and (3.35)
brings the response back into the real time.

The independence of the solution steps may seem surprising at the first
glance, however, in analogy with the Fourier domain analysis and modal super-
position techniques, the solution in time is a weighted superposition of the sys-
tem response to a set of virtual frequencies defined at the discrete wavelet points.
Mathematically speaking, there exists a subspace onto which temporally-linear-
second-order equations can be projected and appear in a decoupled fashion.
The eigen-values of the projection scaled by the reciprocal of the time interval
specify the virtual frequencies.

It has to be pointed out that since Γ−1
0 Γ2 is not symmetric, its eigen-values

are, in general, complex numbers. This however, is not a problematic issue
and can be handled in a straight-forward manner, as will be discussed in the
following section.
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3.6 Periodic and Non-periodic Conditions

Accurate computation of the connection coefficients is of a great importance in
the WGM. The highly oscillatory nature of the scaling function makes standard
numerical quadrature of integrals impractical. Latto et al. [1991] developed a
procedure to compute the connection coefficients in Equation (3.37) over an
unbounded domain, i.e. [−∞,∞]. This procedure has been used extensively
in the WGM [Amaratunga and Williams, 1997, Amaratunga et al., 1994, Mitra
and Gopalakrishnan, 2006d, 2007, 2005, 2006a,b]. If the integration domain in
Equation (3.37) is unbounded, by expanding equation (3.41), edge effects appear
on both the left and right hand sides of the time window of interest, and need to
be dealt with carefully. The edge effects in this case are associated with N − 2
terms in the connection coefficients which correspond to N − 2 out-of-range
indices at each side of the time window.

Accounting for the out-of-range values is generally an approximate proce-
dure, unless there are certain conditions at the boundaries such as periodicity,
symmetry or antisymmetry. Assuming periodicity is the simplest way to tackle
such problems; however, it may lead to inaccurate results for non-periodic con-
ditions. Amaratunga and Williams introduced an extrapolation technique to
mitigate the edge effects [Amaratunga et al., 1994]. Although this scheme may
be efficient in some applications, its accuracy depends highly on the type of the
problem and initial/boundary conditions.

3.7 Edge Effects Removal

An improved scheme for dealing with the edge effects of the wavelet-Galerkin
method is suggested in this research, which operates based on the computa-
tion of the connection coefficients of compactly-supported wavelets in Equation
(3.37) on a finite domain. To clarify the concept, the connection coefficients in
Equation (3.37) can be first written in a non-compact form as:

〈

ϕ
(n)
k , ϕj

〉

T

=

∫ ξ

0

ϕ(n)(τ − k)ϕ(τ − j)dτ, ∀k ∈ Z, j ∈ [0, 1, · · · , L− 1], (3.48)

where T ∈ [0, ξ], and indicates the integration domain. To compute the values
of the above integral, the change of variables η = τ − j is applied. This results
in:

〈

ϕ
(n)
k , ϕj

〉

T

=

∫ ξ−j

−j

ϕ(n)(η − [k − j])ϕ(η)dη. (3.49)

Equation (3.48), in which the integral bounds are updated according to the new
variable η, can be split into two parts by subdividing the integration domain as
follows:

〈

ϕ
(n)
k , ϕj

〉

T

= −
∫

−j

0

ϕ(n)(η − [k − j])ϕ(η)dη +

∫ ξ−j

0

ϕ(n)(η − [k − j])ϕ(η)dη.

(3.50)
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The first term in Equation (3.50) vanishes in accordance with Equation (B.12)
in Appendix B, hence,

∫ ξ−j

0

ϕ(n)(η − [k − j])ϕ(η)dη = Γn
k−j , (3.51)

where Γn
k−j : ξ−j → R, is obtained from the definition given in Equation (B.10).

From Equation (3.49), the properties of the connection coefficients of Daubechies
wavelets over finite intervals in equations (B.11) to (B.14), and Equation (3.51),
it was understood that if ξ = L, where L is the number of temporal sampling
points, all the connection coefficients at the right-hand side of the time window,
i.e. k > L−1, become zero, see property (B.12). At the left-hand-side of the time
window, the number of out-of-range values of the connection coefficients does not
change compared to the case which is based on the infinite integration domain,
i.e. N − 2 out-of-range indices of the approximation coefficients are still needed
to be known. However, since these values lie only at the left-hand-side of the
window of interest, for zero initial conditions, the out-of-range components can
be discarded. As a consequence, the matrix equation (3.42) becomes free of edge
effects and the accuracy of the DWG improves, as will be demonstrated later in
this section. For non-zero initial conditions, the method of wavelet extrapolation
[Williams and Amaratunga, 1997] or the capacitance matrix method [Qian and
Weiss, 1993] can be adopted. Since zero initial conditions are plausible for SHM
applications of wave propagation, this assumption will be made throughout this
dissertation.

To computed the connection coefficients on a bounded domain, the technique
used by Chen and Hwang [1996] and Chen et al. [1996] for the solution of
the Burger’s equation and the population-balance problem is utilized. The
procedure to calculate the connection coefficients is outlined in Appendix B. It
seems that since Chen and Hwang used the WGM for spatial transformations,
in which incorporation of natural and essential boundary conditions at both
sides of the domain was crucial, the potential contribution of computing the
connection coefficients over a bounded domain in an edge effect removal scheme
was not realized or not viewed as significant in their work.

It is illustrated in Figure 3.3 how the connection coefficients are assembled
as components of a matrix, if Equation (3.37) has an unbounded integration
domain. In this case, r, which is the number of components corresponding to
out-of-range values at each side of the physical domain, will be N − 2 [Beylkin,
1992, Williams and Amaratunga, 1997] and the sub-matrixQc will be a Toeplitz,
i.e. diagonal-constant, matrix. Alternatively, and as mentioned above, compu-
tation of the connection coefficients over the finite dimensionless time window
[0, L] ensures that all the components of the sub-matrix QR vanish. In addition,
Qc is no longer a Toeplitz matrix, however, the number of out-of-range values
at the left-hand-side, i.e. r, does not change.

A quantitative comparison between the periodic connection coefficients, the
extrapolated connection coefficients, and the present method, in terms of the
condition number of Γ−1

0 Γ2 is provided, as shown in Figure 3.4 and Figure
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Figure 3.3: Representation of the out-of-range components.
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Figure 3.4: Dependence of the condition number of Γ−1
0 Γ2 on the wavelet orders

for L = 200.

3.54, and has been computed based on the l2-norm of Γ−1
0 Γ2. The periodic

boundary conditions and the extrapolated boundary conditions were considered
in accordance with the coefficients computed over an unbounded domain, as a
result of which Γ0 becomes an identity matrix due to the orthogonality of the
scaling functions. From the dependence of the condition number of Γ−1

0 Γ2 on
the order of the compactly-supported wavelet demonstrated in Figure 3.4, the
superior behavior of the present method over the extrapolation scheme can be
observed. Although the periodic case has a smaller condition number that is
virtually independent of the wavelet order, it is only applicable to very specific
problems. The direct relationship between the wavelet order and the condition

4If the condition number is very large, the matrix is so-called ill-conditioned and may be
almost singular. Computation of the inverse, or solution of a linear system of equations for
an ill-conditioned system is prone to large numerical errors. A non-invertible matrix has the
condition number equal to infinity.
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Figure 3.5: Dependence of the condition number of Γ−1
0 Γ2 on the number of

temporal nodes for N = 8.

number of interest suggests that, although the properties of the approximation
basis improve with the wavelet order, from a computational point of view, the
wavelet order should be kept small. Otherwise, preconditioning techniques may
be required. The effect of the number of sampling points on the condition
number of Γ−1

0 Γ2 depicted in Figure 3.5 for N = 8 shows a similar trend to
that shown in Figure 3.4, i.e. the extrapolation scheme is characterized by
the highest condition number, followed by the present scheme and the periodic
scheme.

3.8 Implementation and Applications - The 1D

Wave Equation

The WGM and the required considerations for implementation of the method
were discussed in the previous sections. In order to clarify the concept, the
WGM will now be applied to solving the 1D wave equation in a linear solid:

∂2u

∂x2
+ f =

1

c2
∂2u

∂t2
(3.52)

where c =
√

E/ρ is the wave speed with E and ρ being the Young’s modulus
and the material density, respectively, and f is the applied force. Discretizing
Equation (3.52) temporally at L points and using the DWG, it can be presented
at the jth wavelet point as

d2ūj
dx2

+ f̄j =
ω̄2
j

c2
ūj . (3.53)
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The homogeneous solution of the above equation is:

ūj(x) = C1e
kjx + C2e

−kjx ; kj =
ω̄j

c
. (3.54)

The constants C1 and C2 are determined in accordance with the boundary
conditions. At an arbitrary location, the axial load can be written as:

f̄j(x) = EA
dūj
dx

= EAkj ūj(x) (3.55)

where A denotes the cross-section area of the bar. If an element with length l
and two nodes at x = 0 and x = l is assumed, the nodal forces f̄j = [f̄j(0), f̄j(l)]

T

can be connected to the nodal displacement vector ūj = [ūj(0), ūj(l)]
T via a

dynamic stiffness matrix K̄j :

f̄j = EAkj

(

1 −1
ekj l −e−kj l

)(

C1

C2

)

= EAkj

(

1 −1
ekj l −e−kj l

)(

1 1
ekj l e−kj l

)−1

ūj = K̄jūj . (3.56)

The significant advantage of the wavelet-based approach over the standard
FEM is that the dynamic stiffness matrix is constructed from the exact solution
of the wave equation. As a consequence, as long as there is no discontinuity in
the waveguide, a single element can capture the motion exactly, irrespective of
the length of the waveguide. Note that the solution of the finite element formu-
lation needs to be transformed back to the space of the wavelets approximation
coefficients in accordance with Equation (3.43), and subsequently to real time
according to (3.35).

For numerical verification of the present approach, consider an aluminum
beam with E = 70 GPa and ρ = 2700 Kg/m3. The beam properties are
uniform along the length. To demonstrate the improvements of the present
method to previous studies, the spurious oscillations appearing in the response
were studied. The spurious oscillations appear as a consequence of a low-quality
discretization, i.e. an insufficient temporal sampling rate. The solution obtained
from the exact computation of the connection coefficients was compared to the
solution from the wavelet extrapolation scheme [Mitra and Gopalakrishnan,
2005]. It is noted that the spatial formulation characterized by the dynamic
stiffness matrix was similar in both approaches.

The velocity response of the structure subjected to a modulated triangular
load pulse with duration of 50µs, which does not have significant frequency
components beyond 50 kHz, is illustrated in figures 3.6 and 3.7. The order of
the compactly-supported wavelets N is 8 in both figures, whereas the number
of temporal sampling points L is 100 in Figure 3.6 and 300 in Figure 3.7.

The reduction in the amplitude of the spurious oscillations in result of using
the presented edge effect removal scheme compared to the extrapolation-based
scheme [Mitra and Gopalakrishnan, 2005] is demonstrated in Figure 3.6. As
shown in Figure 3.7, the difference between the two methods is less pronounced

39



Chapter 3. Wavelet Transform and Applications

0 200 400 600
−5

0

5

10

15
x 10

−3

time (µs)

ve
lo

ci
ty

 (
m

/s
)

 

 

with extrapolation
present method

Figure 3.6: Comparison of the present method with the extrapolation-based
method [Mitra and Gopalakrishnan, 2005] for N = 8 and L = 100.
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Figure 3.7: Comparison of the present method with the extrapolation-based
method [Mitra and Gopalakrishnan, 2005] for N = 8 and L = 300.
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Figure 3.8: The dependence of the amplitude of spurious oscillations on the
number of sampling points for N = 6.

at higher sampling rates for L = 300. It is worthwhile to note that in simula-
tion of propagation of ultrasonic waves in structures and their interaction with
structural discontinuities, the spurious oscillations should be sufficiently small
in magnitude, i.e. the signal-to-noise ratio should be large enough, to allow
distinguishing them from scatterings of waves due to the defects.

In order to quantitatively compare the edge effect removal scheme for dif-
ferent number of temporal sampling points, a sup-norm measure5 of the spuri-
ous oscillations was adopted. The comparison, as shown in Figure 3.8, reveals
that for a fixed wavelet order and discretization, a significant computational
saving can be achieved using the presented improved scheme for computation
of the connection coefficients. Although the sup-norm of the spurious oscilla-
tions spectrally decays by increasing the sampling rate in both schemes, the
present method requires nearly 50% of the temporal sampling points used in
the extrapolation-based results. This can be of a great importance in higher-
dimension structures, which will be studied further in this dissertation.

3.9 Concluding Remarks and Extension to Higher

Dimensions

The theory of the wavelet transform and the wavelet-Galerkin method were
elaborately discussed in this chapter. The decoupling of the linear wave equa-
tions with respect to the temporal variable was demonstrated using the wavelet-
Galerkin method applied to a generic form of linear second-order PDEs with

5On an n-dimensional Euclidean space Rn, the sup-norm of the vector x = (x1, x2, · · · , xn)
is given by:

‖x‖sup = max (|x1|, |x2|, · · · , |xn|) .
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respect to time. Furthermore, an improved scheme for computation of the
derivative operators in the wavelet-Galerkin method was presented, with which,
for a certain accuracy level, a significant reduction in the number of sampling
points compared to the conventional approach was achieved. This improved
scheme will be applied to the temporal discretization of linear wave equations in
the remaining of this dissertation. In the next chapter, the decoupled wavelet-
Galerkin approach will be applied to a 1D formulation of the wavelet-based
spectral finite element method that includes shear deformation, rotary inertia,
and thickness contraction effects in composite beam-like structures.

Regarding the extension of the method to higher-dimensional problems, as
discussed in Chapter 2, the conventional transformed domain methods employ
successive transformations over the temporal and spatial coordinates until they
are left with a set of ODEs that can be solved exactly [Doyle, 1989, Gopalakr-
ishnan et al., 2008, Gopalakrishnan and Mitra, 2010]. Although some major
difficulties in using the Fourier transform that result from the periodicity as-
sumption and the global non-compactly-supported basis, can be eliminated by
employing the DWG, as suggested by Amaratunga and Williams [1997] and
Gopalakrishnan and Mitra [2010], and improved by the present work, there are
still difficulties with dealing with 2D and 3D problems which have geometrical
complexities and non-periodic boundary conditions [Mitra and Gopalakrishnan,
2006d, 2008]. This issue will be dealt with in depth in this dissertation and novel
solutions will be presented in chapters 5 and 6 to deal with engineering struc-
tures.
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Chapter 4

Wavelet-based Spectral

Finite Element Method for

Modeling One-dimensional

Waveguides

As a result of the growing application of composite stringers, frames, and stiff-
ened structures in the aerospace industry, the need to develop computationally-
efficient models for analysis and simulation of ultrasonic wave propagation in
these structures is pronounced for structural health monitoring (SHM) pur-
poses. From a wave propagation point of view, these structures are typically
1D waveguides, i.e. guided waves propagate only in one direction, although the
material motion may be in more than one dimension. Despite the applicability
of 3D models to simulate such waveguides, their computational cost may not be
justified for many SHM applications.

In order to develop efficient and fast simulation tools, simplifying assump-
tions on the description of the displacement fields are usually made. The ac-
curacy of these assumptions, as mentioned in Chapter 2, declines at higher
frequencies since the assumed displacement fields are not sufficiently rich any-
more to capture higher order wave modes. The primary goal of an optimized
simulation tool is to keep the computation time as low as possible, while a
reasonable accuracy level is preserved. For reducing the model, inaccurate as-
sumptions which are not valid in the frequency range of interest may result in
a significant mismatch between the numerical results and experiments, thereby
degrading the performance of the model-based identification schemes of SHM
or non-destructive testing (NDT).

Despite the extensive studies on the propagation of guided ultrasonic waves
in doubly-bounded waveguides1 e.g. composite plates and shells as discussed in

1In doubly-bounded waveguides, waves can only propagate between the two free surfaces
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Chapter 2, it is believed that the study of wave propagation in composite beams
and rings acting as quadruply-bounded waveguides is not adequately addressed
so far (the term quadruply-bounded waveguides denotes the wavelength is of the
same order as the beam height and width). The semi-analytical finite element
method (SAFEM), also known as the waveguide finite element method, may be
regarded as the most notable procedure developed for analysis of quadruply-
bounded waveguides [Hayashi et al., 2006, Bartoli et al., 2006]. The SAFEM
assumes harmonic motion in the lengthwise direction and employs finite element
discretization over the cross-section of the waveguide. Although the SAFEM
can handle the analysis of the wave propagation in an infinitely long waveguide,
simulation of wave motion in in bounded waveguides using SAFEM does not
seem to be straight-forward.

For the simulation of wave propagation in straight composite beams (with
and without delamination), a model based on the Fourier-based spectral fi-
nite element method (FSFEM) was presented by Gopalakrishnan et al. [2008],
which takes shear deformation and thickness contraction effects into account.
A similar model but with neglecting the thickness contraction effect was later
implemented using the wavelet-based spectral finite element method (WSFEM)
[Mitra and Gopalakrishnan, 2006c]. Among other works on delamination mod-
eling in composite straight beams for SHM applications, the studies carried out
by Mahapatra and Gopalakrishnan [2004], Nag et al. [2003], and Palacz et al.
[2005b] are also of interest. It seems that the influence by the curvature, which
can add new coupling terms to the final equations, has not been addressed in
the literature.

In Chapter 3, a wavelet-based spectral formulation was shown for a sim-
ple bar example, in which both the material deformation and the waveguide
were one-dimensional. In the present chapter, a 1D model is formulated for
wave propagation analysis and simulation in composite beam-like structures,
with displacement components defined in three dimensions. By studying the
dispersion relations, the improvement by the proposed model, which considers
the contraction effect in the width-wise direction in addition to the thickness-
wise direction, is presented. To simulate the propagation of fundamental wave
modes in a curved anisotropic waveguide, the wavelet-based spectral finite el-
ement method (WSFEM) is employed. The governing equations transformed
through the wavelet-Galerkin method are solved exactly. The wave motion can
hence be captured exactly in the absence of discontinuities, irrespective of the
waveguide length. Furthermore, a model with structural discontinuities that can
be viewed as piecewise continuous structure can be modeled with the minimum
number of finite elements. This approach can bring a substantial reduction
in the solution time, in comparison with the standard FEM. Furthermore, a
delamination model is implemented whereby the effects of curvature, shear de-
formation, rotary inertia and thickness contraction in two planes are taken into
account. The delamination model is developed by assuming that the cross-
section is split into two parts, which are subsequently connected by means of

of the waveguide, e.g. plates.
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Figure 4.1: A schematic view of the curved beam element.

compatibility conditions. In order to verify the performance of the method and
demonstrate the features, some numerical examples of delaminated composite
beams and rings are provided in the end.

4.1 A General Anisotropic Curved Beam Model

The governing equations of a waveguide may be derived based on a set of as-
sumptions on the distribution of the displacement field. In Chapter 2, a model
was presented based on the expansion of the displacement field up to third-
order terms about the mid-plane, and the accuracy of first-order models was
discussed. The first-order model derived from the first-order shear deforma-
tion theory (FSDT) may capture the fundamental antisymmetric guided waves
with a reasonable accuracy. Accurate estimation of the fundamental symmetric
mode at high frequencies however, depends on if and how the contraction terms
are accounted for in the model. The contraction can occur in different direc-
tions, i.e. thickness-wise and width-wise directions. It seems that the models
presented so-far in the literature [Mitra and Gopalakrishnan, 2006c, Gopalakr-
ishnan et al., 2008, Mahapatra and Gopalakrishnan, 2004, Nag et al., 2003,
Palacz et al., 2005b, Pahlavan et al., 2010], have neglected the presence of the
in-plane and the out-of-plane contraction effects at the same time. To improve
on these models and alleviate the short-comings arising from the neglected con-
traction term(s), a model describing the wave motion in a curved anisotropic 1D
waveguide in the presence of the axial-flexural-shear coupling is implemented in
this section.

4.1.1 Equations of Motion

Consider a finite curved beam element with constant radius R, thickness h, and
width b, as shown in Figure 4.1. By neglecting the mid-plane r − θ motion in
the z−direction, the assumed displacement field in the cylindrical coordinate
system can be expanded in a Taylor series about the mid-plane, i.e. r = R:

d =





uθ (s, r, t)
uz (s, z, t)
ur (s, r, t)



 =





u(s, t) + (r −R)φ(s, t)
zχ(s, t)

w(s, t) + (r −R)ψ(s, t)



 (4.1)
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where s = rθ is the hoop coordinate, φ denotes the rotation of the cross-section
in accordance with the FSDT, ψ and χ are respectively the contraction terms
along the r and z coordinates, u is the circumferential displacement, and w
denotes the radial displacement of the mid-plane. With the choice of proper
correction factors, it is known that the FSDT is sufficiently accurate for describ-
ing the fundamental antisymmetric wave mode [Wang and Achenbach, 1994].
It will also be shown later in this section that the contraction terms may play a
significant role in capturing the fundamental symmetric Lamb wave mode. The
engineering strain-displacement relations in the cylindrical coordinate system
are formulated as:

ǫ =

















εθθ
εzz
εrr
γrz
γrθ
γzθ

















=

















∂uθ

∂s + ur

r
∂uz

∂z
∂ur

∂r
∂uz

∂r + ∂ur

∂z
∂ur

∂s + ∂uθ

∂r + uθ

r
∂uz

∂s + ∂uθ

∂z

















. (4.2)

For convenience in notation, the dependent variables are assembled in the vector
u:

u = (u, ψ,w, φ, χ)
T
. (4.3)

From the stain field shown and the displacement field in Equation (4.1), the
only zero stain is γrz, and the rest of the strain components contribute in the
motion. It should be added that in order to facilitate further computations
regarding the last term in γrθ, the radius of the curved beam is assumed to be
fairly large compared to the laminate thickness.

In order to obtain the governing equations for a composite beam, Hamilton’s
principle is employed [Reddy, 2005]. For a linear elastic material occupying the
spatial domain Ω, the strain energy is given by:

U =
1

2

∫

Ω

ǫ
TCǫdv, (4.4)

where dv denotes the volume element. The 6×6 matrix C contains the stiffness
muduli of each lamina of a multilayered composite material:

C =



























C11 C21 C31 0 0 C61

C21 C22 C32 0 0 C62

C31 C32 C33 0 0 C63

0 0 0 C44 C54 0

0 0 0 C54 C55 0

C61 C62 C63 0 0 C66



























. (4.5)

The kinetic energy of the body with the material density ρ is defined as:

T =
1

2

∫

Ω

ḋT ρ ḋdv, (4.6)
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where the displacement vector was given in Equation (4.1). The Lagrangian
can be subsequently introduced as:

L = T − (U + V ), (4.7)

where V is the potential function of the applied external forces. Deriving the
Lagrangian in terms the dependent variables u, ψ,w, φ, and χ introduced in
equation(4.1), and taking the variation with respect to each, five coupled partial
differential equations are obtained as follows:

δu : KA55
∂w

∂s
+KA55φ−K2B55φ+KB55

∂ψ

∂s
−K2A55u+A21

∂χ

∂s

+A31
∂ψ

∂s
+KA11

∂w

∂s
+KB11

∂ψ

∂s
+B11

∂2φ

∂s2
+A11

∂2u

∂s2

= I z
0

∂2u

∂t2
+ I r

1

∂2φ

∂t2

(4.8)

δψ : −χA32 −A31
∂u

∂s
−KA31w −K2B11w −KB11

∂u

∂s

−KB21χ−KD11
∂φ

∂s
−B31

∂φ

∂s
− ψA33 −K2D11ψ − 2KB31ψ

+D55
∂2ψ

∂s2
−KB55

∂u

∂s
−KD55

∂φ

∂s
+B55

∂2w

∂s2
+B55

∂φ

∂s

= I r
2

∂2ψ

∂t2
+ I r

1

∂2w

∂t2

(4.9)

δw : −KA11
∂u

∂s
−KA21χ−KA31ψ −K2B11ψ −KB11

∂φ

∂s

−K2A11w +A55
∂φ

∂s
−KA55

∂u

∂s
−KB55

∂φ

∂s
+B55

∂2ψ

∂s2

+A55
∂2w

∂s2
= I z

0

∂2w

∂t2
+ I r

1

∂2ψ

∂t2

(4.10)

δφ : KA55u−A55
∂w

∂s
−K2B55u+KB55

∂w

∂s
+KD55

∂ψ

∂s

−B55
∂ψ

∂s
−A55φ−K2D55φ+ 2KB55φD11

∂2φ

∂s2
+KB11

∂w

∂s

+KD11
∂ψ

∂s
+B11

∂2u

∂s2
+B21

∂χ

∂s
+B31

∂ψ

∂s
= I r

2

∂2φ

∂t2
+ I r

1

∂2u

∂t2

(4.11)

δχ : −A32ψ −A21
∂u

∂s
−KA21w −KB21ψ −B21

∂φ

∂s
−A22χ

+J z

2

∂2χ

∂s2
A66 = I z

2

∂2χ

∂t2

(4.12)

where the curvature K (the reciprocal of R) is used for the sake of simplicity in
notation. Furthermore, the laminate stiffness and inertia coefficients are given
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by:

(

Aij Bij Dij

Ir0 Ir1 Ir2

)

=

Nl
∑

n=1

∫ ri+1−R

ri−R

(

Cn
ij

ρ

)

[

1, r, r2
]

b dy, (4.13)

with Cn
ij denoting the (i, j)th component of the material stiffness matrix. In

addition,

Iz2 =
1

b

Nl
∑

n=1

∫ b
2

−
b
2

z2dz. (4.14)

Equations (4.8) to (4.12) express the wave motion in a 1D curved waveguide
with axial-flexural-shear coupling. The boundary conditions required to solve
these equations can be obtained by taking the variation of the Lagrangian with
respect to the first derivative of each dependent variable [Reddy, 1997], which
leads to

Fθ(s, t) = −A31ψ −A21χ−A11
∂u

∂s
−KB11ψ −KA11w −B11

∂φ

∂s
(4.15)

Mrr(s, t) = −D55
∂ψ

∂s
+KB55u+KD55φ−B55

∂w

∂s
−B55φ (4.16)

Frθ(s, t) = −A55φ−A55
∂w

∂s
+KB55φ+KA55u−B55

∂ψ

∂s
(4.17)

Mz(s, t) = −D11
∂φ

∂s
−KB11w −KD11ψ −B11

∂u

∂s
−B21χ−B31ψ (4.18)

Mzz(s, t) = −J z

2
A66

∂χ

∂s
. (4.19)

Note that if the radius is very large, the terms multiplied by the curvature K
vanish and the governing equations will reduce to those for a straight beam. If
the contraction in z -direction is neglected as well, the governing equations will
become identical to those obtained by Gopalakrishnan et al. [2008]. Further in
this section, the importance of the contraction terms will be highlighted.

4.2 Spectrum and Dispersion Relations

In order to study the propagation characteristics and the dispersion properties
of the described waveguide, a harmonic response is assumed in accordance with

u(s, t) = ûei(ks−ωt) (4.20)

where k is the wavenumber, ω is the angular frequency, and û denotes the
corresponding amplitudes of u. Substitution of the harmonic solution with
the prescribed frequency ω into equations (4.8) to (4.12) can be written in the
following matrix-vector form,

W(k)û = 0. (4.21)
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Figure 4.2: Group speed dispersion curves for the aluminium beams with R =
500 mm and R→ ∞.

In order to find the non-trivial solution, the determinant of W(k) should be
equated to zero. For the problem under investigation, this leads to a standard
polynomial eigenvalue problem (PEP) of order 2 with respect to the wavenum-

ber, with five variables (û, ψ̂, ŵ, φ̂, χ̂). Solution techniques for PEPs have been
discussed in detail by Gopalakrishnan et al. [2008].

The current model may be viewed as an application of the Timoshenko beam
theory in the r− θ plane, and the Mindlin-Hermann rod theory [Doyle, 1989] in
the r−θ and θ−z planes. In order to study the influence of different deformation
modes assumed, the present model is reduced to some special cases. In the
comparative study, the material is considered to be aluminum. Examples of
composite beams however, are also provided later in this section. The thickness
h and the width b of the waveguide are 1 mm and 20 mm, respectively.

For the first case, the beam curvature is considered to be negligible, i.e.
K → 0. This simplifies the equations to a straight waveguide. The group
speed dispersion curves for this case are illustrated in Figure 4.2. Within the
frequency range of [0,200] kHz, two symmetric, i.e. S0 and S1, and one antisym-
metric, i.e. A0, wave modes propagate. It can be observed that the influence
of the curvature is pronounced only at the low frequency regime. Beyond a
certain frequency, which is about 25 kHz in this example, wave propagation
is characterized only by the cross-section and material properties and not the
curvature, i.e. wave propagation beyond 25 kHz is a localized phenomenon. At
lower frequencies however, the coupling effect due to the curvature is significant
and cannot be neglected, in other words, the global response becomes more
dominant.

In the second case, the assumption of negligible contraction in the z -direction
(χ = 0) is imposed to the straight beam. This simplifies the model to that
derived by Mahapatra and Gopalakrishnan [2003] for describing axial-flexural-
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Figure 4.3: Influence of the contraction term on the group speed dispersion
curves for an aluminum beam (b = 20 mm).

shear coupling in laminated composite beams. The group speed curves for this
case are shown in Figure 4.3, and compared to the Rayleigh-Lamb solution.

The Rayleigh-Lamb solution for plate structures, as discussed in Chapter
2, is based on the plane-strain assumption in the r − θ plane, whereas the
model presented by Mahapatra and Gopalakrishnan [2003] assumes plane-stress
conditions. For a quadruply-bounded waveguide, these models may result in
inaccuracies in the dispersion relations as shown in Figure 4.3: the Rayleigh-
Lamb solution overestimates the propagation speed of the symmetric waves,
since it does not consider the finite width of the waveguide. Although the
model assuming plane-stress conditions is in agreement with the present model
up to a certain frequency (50 kHz in this example i.e. f.h = 1000 kHz mm), it
diverges sharply after this frequency and does not capture any cut-off frequency
for the next antisymmetric mode A1(3). It should be noted that the present
model is also limited to a certain frequency range, below the cut-off frequency
of S1. The validity range of this first-order model may also be estimated from
Figure 2.2 in which a first-order model was compared to a third-order model.
The limit frequency according of this model, which is in accordance with the
Mindlin-Hermann theory for S0 waves [Doyle, 1989], is much higher than the
model that neglects the contraction in the θ − z plane, see Figure 4.4. The
accuracy of the present model will be validated in Section 4.3 by comparing to
a 3D time-domain spectral element method (SEM).

The influence of the beam width on the group speed dispersion curves is
illustrated next in Figure 4.4. For a beam with a reduced width b = 5 mm, it
can be observed that including and excluding the thickness contraction in the
z -direction result in nearly the same response up to 200 kHz which is equiva-
lent to f.b = 1000 kHz mm. The difference between the two models however,
was significant in Figure 4.3 for b = 20 mm. The main conclusion drawn from
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Figure 4.4: Influence of the contraction term on the group speed dispersion
curves for an aluminum beam (b = 5 mm).

this study is that the importance of including the thickness contraction in the
thickness-wise and the width-wise directions in the beam model is highly de-
pendent on the geometry of the waveguide. The product of the frequency and
the width and/or thickness needs to be carefully considered before using an
approximate solution.

Although not presented here, other special cases can still be extracted from
the present model. For instance, excluding the thickness contraction in r -
direction as well (ψ = 0), represents the classical FSDT; or the elementary beam
theory can be successively examined by addition of the conditions Ir1 = Ir2 = 0
and Cn

33, C
n
55 → ∞ to the previous conditions. From the results demonstrated

by Gopalakrishnan et al. [2008], the inaccuracy of such elementary theories at
high frequencies was concluded, thus they can not be applicable in SHM.

As a concluding remark, in dynamics, in contrast to static analysis of struc-
tures, the product of the thickness and frequency determines what assumptions
can be made for the distribution of the displacement fields. The maximum
frequency which can be captured accurately in a waveguide with rectangular
cross-section is determined by the largest dimension of the cross-section of the
waveguide. When the width of a waveguide is an order of magnitude larger
than the thickness, the contraction effect may be neglected in the thickness-
wise direction, and vice versa. It should also be noted that at frequencies which
are sufficiently high to trigger higher order Lamb wave modes, i.e. beyond the
first cut-off frequency, the assumed displacement fields should be enriched with
higher-order functions, or 2D/3D models should be used, in order to obtain a
more accurate solution.
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4.3 Wavelet-based Spectral Finite Element Im-

plementation of the Problem

The spectral finite element formulation is based on the decoupled wavelet-
Galerkin method (DWG) explained in detail in Chapter 3, through which equa-
tions (4.8) to (4.12) can be represented in a temporally-decoupled fashion. The
displacement field at the jth wavelet point ūj can be expressed as follows

ūj = ūje
ikjs (4.22)

where ūj denotes the amplitude envelope of the wave, and kj is the wavenumber
at the jth wavelet point. The governing equations at the jth wavelet point can
hence, be shown in matrix notation as

(

A2k
2 +A1k +A0

)

ūje
ikjs = 0 (4.23)

where the coefficient matrices A1,A2, and A3 can be readily derived from
equations (4.8) to (4.12). Equation (4.23) is in fact a PEP, analogous to the
dispersion analysis, with 5 × 2 = 10 eigenvalues, where 5 is the number of
dependent variables, see Equation (4.3), and 2 is the PEP order. In order to
obtain a non-trivial solution, the wavenumbers k setting the determinant to zero
are sought. The system response to any input can be constructed as a linear
combination of the resulting 10 eigenfunctions as

ūj =
10
∑

n=1

cj,nAj,ne
ikj,ns (4.24)

where the weights cj,n need to be determined in accordance with the boundary
conditions. The nth component of the eigenvector denoted by Aj,n, and the
nth wavenumber kj,n, correspond to the nth eigenfunctions at the jth wavelet
point. Equation (4.24) can be represented in matrix notation as

ūj = Qjcj ;Qj [m,n] = Am
j,ne

ikj,ns (4.25)

with the weight coefficients cj,n being put in vector cj . AlsoQj [m,n] denotes the
component at themth row and the nth column of the matrixQj . If the obtained
eigenfunctions form a basis to express the displacement fields, the resulting
formulation will present an exact solution, provided that no discontinuity exists
in the physical domain Ωe ⊆ R. If formulated as a finite element method
to construct a dynamic stiffness matrix, the implementation would not be an
error minimization scheme as the error, i.e. the residual of the homogenous
governing equation, is naturally zero; but is only a way to conveniently model
the generally-inhomogeneous domain Ω with Nel non-overlapping homogeneous
subdomains Ωe, i.e.

Ω =

Nel
⋃

e=1

Ωe (4.26)
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Figure 4.5: The curved two-noded beam element.

and readily incorporate the boundary conditions.
A two noded curved beam element is considered here as shown in Figure

4.5. The element nodal displacements q̄j can be written in terms of the weight
coefficients and a projection matrix denoted by Tj :

q̄j = Tjcj ;Tj [m,n] = Am
j,ne

ikj,ns̄(n) (4.27)

where

s̄ (n) =

{

0 for 1 ≤ n ≤ 5

le for 6 ≤ n ≤ 10.
(4.28)

The spectral interpolation functions relating the displacement fields to the nodal
displacements at the jth wavelet point can be consequently constructed as fol-
lows:

ūj = QjT
−1
j q̄j = Nj q̄j , (4.29)

where Nj is the matrix of basis, i.e. shape, functions at the jth wavelet point.
The procedure is hereafter completely analogous to FEM. The finite element
basis which already includes the dynamic properties of the structure can be
utilized to compute the dynamic stiffness matrix K

dyn
j as

K
dyn
j =

Nel
⋃

e=1

(

Ke
j + ω̄jC

e
j + ω̄2

jM
e
j

)

(4.30)

where ω̄j is the jth wavelet frequency, and Ke
j , C

e
j , and Me

j are respectively the
stiffness, the damping, and the mass matrices at the element level for the jth
wavelet point as given by

Ke
j =

∫

Ωe

BT
j CBjdΩ (4.31)

Ce
j =

∫

Ωe

NT
j ηjNjdΩ (4.32)

Me
j =

∫

Ωe

NT
j ρNjdΩ (4.33)
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Figure 4.6: Comparison of the present 1D model with 3D time-domain SEM
at 50 kHz. The second envelop arriving at about 200µs is the reflection of S0
waves from the beam end.

where the strain-nodal displacement matrix Bj = LNj with L being the displ-
acement-strain continuous operator matrix, and ηj is the frequency-dependent
damping coefficient. As mentioned earlier, since the finite element formulation
satisfies the equations of motion exactly, as long as there is no discontinuity
and inhomogeneity in the system, a single element is sufficient to capture the
displacement at the jth wavelet point exactly.

The present model is compared to a 3D time-domain (TD) spectral element
method (SEM) for a free-free straight aluminum beam with l = 500 mm, h = 1
mm, and b = 20 mm, whose group speed curves were given in Figure 4.3. The
simulation time is 400 µs discretized at 13333 sample points in the TD solution
and 400 points in the WSFEM. The SEM model has 4545 degrees of freedom
(DOFs) based on the mesh pattern 20 × 1 × 2 in the length-, thickness-, and
width-wise directions, and the corresponding basis order of 5, 2, and 2, whereas
the WSFEM uses 1 element with 10 DOFs, as explained above. The external
load is a 5-cycle narrow-banded Hanning-windowed pulse with central frequency
f0, applied at one end of the beam. The displacement response at the same
point, excitation point, is illustrated in figures 4.6 and 4.7 for f0 = 50 kHz and
f0 = 100 kHz, respectively.

A very good agreement between the two methods at 50 kHz can be observed
in Figure 4.6. At 100 kHz however, despite the good match between the arrival
times at about 200 µs, a mismatch due to different dispersion characteristics can
be seen that, depending on the application, may or may not be significant. This
is in fact, the price that one may afford for such a computationally-inexpensive
method, which saves drastically in the computational power and time. In dam-
age identification schemes which are based on the time of flight (TOF) of the
ultrasonic wave packets and transmission/reflection coefficients, the 1D WS-
FEM can provide the sufficient accuracy. Similar to the Fourier-based spectral
FEM [Gopalakrishnan et al., 2008], adoption of correction factors can enhance
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Figure 4.7: Comparison of the present 1D model with 3D time-domain SEM
at 100 kHz. The second envelop arriving at about 200µs is the reflection of S0
waves from the beam end.

the accuracy of the 1D formulation for practical applications. For estimation
of the accuracy of the method in the absence of a reference solution, compari-
son of the frequency-thickness product of the structure with that of the cut-off
frequency of higher-order modes is generally required.

4.4 Extended Applications of the Implemented

Model

The implemented finite element framework in this chapter is a computationally-
efficient model for the waveguides which limit the waves to propagate in a single
direction. From this model, a number of special cases were extracted in previous
sections. In this section, some extended applications derived from the presented
model are outlined.

4.4.1 Composite Rings

Although the application of composite rings and frames is growing intensively
in aerospace industry, it seems that to date, not enough attention is paid to
the numerical models of wave propagation in such structural members. With
the implemented curved element, modeling ring-type composite structures is
straight-forward. The ring-type structure which can be circular or oval, can be
made by assembling the appropriately constructed elements, and a subsequent
imposition of periodic boundary condition equalizing the displacements of the
end points.
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4.4.2 Frame Structures

Frames structures composed of straight and/or curved members can be modeled
using the implemented WSFEM. Similar to the standard FEM, transformation
of the coordinate system is required to model the rotated members in the global
coordinate system.

4.4.3 Delamination Modeling in Composite Beams

Delamination in composites is the most challenging type of damage from an in-
spection point of view, as discussed in Chapter 1. In a typical SHM application,
the travel time of a diagnostic wave packet through a delamination of order if a
few centimeter is of the order of a few microseconds, and the displacement of the
waveguide is orders of magnitude smaller than the laminate thickness. The com-
plexity of interaction of the diagnostic waves with the damaged area exhibiting
nonlinearities may be hence approximated by simplified models, without sub-
stantial loss of information, especially about the location of the defect. In other
words, under such conditions, avoiding computationally-expensive and sophis-
ticated nonlinear damage mechanics models and instead, using reduced-order
models to approximate the behavior of the delaminated waveguide at ultrasonic
frequencies can be justified.

To date, it seems that the use of these methods in health monitoring of
delaminated ring-type composite structures has not been addressed in the lit-
erature. Some computationally-efficient models for delaminated straight beams
have been suggested by Mahapatra and Gopalakrishnan [2004], Mitra and Gopalakr-
ishnan [2006c], Nag et al. [2003]. In the present research, the approach used in
the abovementioned references is modified and extended to the implemented
curved beam model; the delaminated region is considered as two split sections
(2 and 3) shown in Figure 4.8, each being a free-free-free-free quadruply-bounded
waveguide. Each of these sub-structures represents a radial-tangential coupling
due to curvature, and asymmetry due to the generally-unbalanced layup at each
subsection.

In the conventional approach for straight beams [Mahapatra and Gopalakr-
ishnan, 2004, Mitra and Gopalakrishnan, 2006c, Nag et al., 2003], compati-
bility conditions are established to couple the delaminated segment and the
neighboring elements and subsequently, a 2-noded delaminated element is ob-
tained. These conditions are primarily used in order to match the displacements
and equilibrate the forces at the intersections. In this dissertation, a dynamic
equivalent of that approach is employed, which facilitates extension of the de-
lamination model to the present enriched curved waveguide model. The term
equivalent implies that instead of the additional constraint equations, the com-
patibility conditions for the displacements, rotations, forces and moments are
applied through the standard assembling process of the finite element formula-
tion. The approach uses two elements of thickness h at the delaminated region,
where h is the total intact laminate thickness. Each of the two elements how-
ever, contains a number of layers with zero stiffness and mass. This way, a
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1
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delamination

Figure 4.8: The delamination model in a composite beam.

coupling is introduced in the delaminated section, as a result of the asymmetry
of each sub-section laminate. The schematic view of the model for a straight
member is illustrated in Figure 4.8. Note that this system can be attached to
undamaged curved beam elements in a straight-forward manner, following the
standard procedure in the FEM [Reddy, 2005].

4.5 Numerical Examples

For the sake of numerical verification, a straight composite beam (R→ ∞) mm
with thickness h = 1 mm, width b = 20 mm, and length=500 mm is considered.
The material chosen is AS/3501-6 graphite-epoxy with the properties given in
Section 2.2.3. The ply-stacking sequence is [0]8 where the 0◦ fibers are aligned
in the longitudinal direction. The structure has free-free boundary conditions.
The external load which is a 5-cycle narrow-banded Hanning-windowed pulse
with central frequency of 100 kHz, is applied at the left end in the longitudinal
direction. The assumed delamination is 10 mm long and is located at the center
of the beam (right end at x = 250 mm) between the third and the fourth
material layers. The order of the compactly-supported wavelets for the temporal
approximation is N = 6, and the 200 µs time window is discretized at L = 250
sample points. Four elements are sufficient in modeling the beam; two elements
for the two intact segments at the left- and right-hand-sides of the delamination,
and two elements for modeling the delaminated segment as explained in Section
4.4.3.

The displacement response of the structure at the excitation point is shown
in Figure 4.9. The baseline response, which is the response of the undamaged
structure, is plotted in the same figure. Also a contour plot illuminating the
displacement response of the beam as a function of time and location can be
observed in Figure 4.10. The difference between the baseline response and the
response of the delaminated beam can be seen in Figure 4.9. The additional
wave packet in the response of the delaminated beam starting at nearly 60µs
(the dashed line) in this figure, is due to the reflection of the incoming waves
by the delamination. This can also be seen in Figure 4.10, where a secondary
branch separates from the main branch due to the interaction of the waves with
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Figure 4.9: The displacement response of the delaminated ring at the excitation
point.

Figure 4.10: The displacement response of the delaminated composite beam.

delamination at about t = 60 µs and x = 250 mm. The reflections by the beam
ends at x = 0 and x = 0.5 m can also be observed.

In the next example, a composite ring with radius R = 500 mm is considered.
The material, stacking sequence, height, and width of the beam are the same as
in the previous example. As shown in Figure 4.11, the structure is not clamped,
i.e. no displacement boundary condition. The external load signal is also the
same as in the previous example, and is applied at point A in the circumferential
direction. A 10 mm long delamination between the third and the fourth layers
of the laminate, is located at zone D, 270◦ from point A. The time window
chosen is 560 µs which is discretized at L = 560 sample points.

The displacement response of the ring at point A is shown in Figure 4.12.
When the diagnostic waves are generated by applying the external excitation,
the delamination reflects a part of the incoming waves. These reflections arrive
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Figure 4.11: The model of the delaminated ring. The delamination is located
at point D.
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Figure 4.12: The displacement response of the delaminated ring at point A.

at the measurement point A, at about 200 µs. One can determine the location of
the delamination by extracting the group speed of the S0 waves at 100 kHz, and
the time of flight of the reflected packet. This will be discussed in Chapter 7,
and more advanced approaches will be presented for autonomous identification
of delamination in composite structures.

A contour of the displacement response of the composite ring in the cir-
cumferential direction is plotted in Figure 4.13. Although it may not be very
clear at the first glance, about the time 120 µs and the angular location 270◦, a
secondary branch orthogonal to the top main branch appears, which shows the
waves bouncing off the delamination. It can also be observed that the ampli-
tude of the wave packet decreases slightly as it passes through the delamination,
since it loses a part of its energy through the reflected waves.

The deformations of the beam at six different times scaled up by 6×107, are
illustrated in Figure 4.14. Once the diagnostic waves are sent to the structure,

59



Chapter 4. Wavelet-based Spectral Finite Element Method for Modeling One-dimensional Waveguides

Figure 4.13: The displacement response of the delaminated composite ring.

they travel through both the upper and the lower segments of the ring. The
propagation at this frequency is a highly localized phenomenon. Thus, before
reaching the delamination, the displacement field is symmetric with respect to
the trajectory dividing the ring into the upper half and the lower half. At
149.6 µs, the reflection from the delamination appears. At 224 µs, the reflected
packet is passing through point A, which can be seen in Figure 4.14 and also at
the coordinate (224,365) in Figure 4.13. After interacting with the other wave
packets, it is more difficult to extract information from the response.

It is worthwhile to drop the point that in this particular example, if the
delamination was located at 180◦ from point A, no reflection would be seen as
the transmitted and reflected signals on each side would add up to the original
incoming waves.

4.6 Advantages and Limitations of The Proposed

1D Model

A computationally-efficient model was presented in this chapter which can cap-
ture propagation of the fundamental modes of guided waves in composite beams.
The accuracy of the model depends on the geometry of the structure and the
frequency content of the diagnostic waves. Using the present model, the dis-
persion curves of the waveguide are extracted from which the accuracy of the
model can be estimated. This model will be used in Chapter 8 in a model-based
SHM system, for delamination identification in composite beams and rings. For
the cases where the present model can not be adopted e.g. very thick beams,
2D and 3D models as explained in the next chapters may be used.

60



4.6. Advantages and Limitations of The Proposed 1D Model

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

time = 0.8 µs

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

time = 75.2 µs

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

time = 149.6 µs

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

time = 224 µs

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

time = 298.4 µs

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

time = 372.8 µs

Figure 4.14: Propagation of S0 waves in the delaminated composite ring (dis-
placement scaling = 6× 107).
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Chapter 5

Wavelet-Based Spectral

Finite Element for 2D

Waveguides

The wavelet-based spectral finite element method (WSFEM) was formulated
for 1D waveguides in Chapter 4. This Chapter is devoted to extending the
WSFEM to 2D waveguides, in particular to plate structures undergoing in-plane
displacements1.

The formulation of the 1D WSFEM, as outlined in Chapter 4, is based on
the wavelet-Galerkin approach (see Chapter 3) for temporal discretization of
the governing partial differential equations (PDEs) in 1D waveguides. The in-
terpolation functions in the WSFEM for the spatial discretization were chosen
to be the eigen-functions of the free-space solution of the homogeneous wave
equations. Accordingly and below the cut-off frequency of the higher-order
modes, the constructed finite elements were, irrespective of the length of the
1D continuous (sub)structure, able to accurately capture the wave motion with
a single element. The number of degrees of freedom (DOFs) in the discretized
problem is order(s) of magnitude lower in the WSFEM than in the conven-
tional polynomial-based FEM equipped with Newmark schemes for time inte-
gration. Although the wavelet-based spectral formulation obtained in Mitra and
Gopalakrishnan [2005], which has been further improved in chapters 3 and 4 of
the present dissertation, is inherently advantageous for simulation of wave prop-
agation in 1D waveguides, engineering applications often require more complex
and higher-dimensional models. In order to develop a spectrally-formulated fi-
nite element framework to solve 2D wave equations, Mitra and Gopalakrishnan
[2006d, 2007] use the wavelet-Galerkin method temporal and spatial discretiza-
tion of the solution. They apply the Daubechies wavelets as an alternative to

1The article ”A 2D wavelet-based spectral finite element method for elastic wave propaga-
tion”, Pahlavan et al. [2012a] in Philosophical Magazine, has been extracted from the content
of this chapter.
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the fast Fourier transform (FFT) in the FFT-based spectral FEM, see Chapter
2: transforming both the time parameter and one of the spatial coordinates, and
subsequently solving the ordinary differential equation in terms of the remaining
spatial coordinate with FEM [Mitra and Gopalakrishnan, 2006d, 2007]. Despite
the advantages of this approach referred to as the conventional WSFEM in this
dissertation, in terms of (i) allowing for a decoupling of the governing equations
in the transformed domain, which naturally enables parallel computation, and
(ii) providing a time discretization scheme that is independent of the spatial
discretization, undesirable artificial edge effects in space and time are observed.
The elimination of these edge effects requires the application of elaborate extrap-
olation schemes at the temporal and spatial boundaries of the problem under
consideration, as discussed in Chapter 3, see also [Qian and Weiss, 1993, Mi-
tra and Gopalakrishnan, 2006d, 2007, Williams and Amaratunga, 1997]. With
respect to a spatial coordinate, such a scheme only works adequately if the ge-
ometrical boundary and the corresponding boundary conditions are relatively
straightforward.

In the present chapter, a novel wavelet-based spectral finite element method
(WSFEM) is proposed that keeps the appealing features of the conventional
wavelet-based spectral method, but overcomes its restrictions. The approach,
which is elaborated for a two-dimensional orthotropic structure, is based on a
temporal transformation of the governing equations to the wavelet domain using
a wavelet-Galerkin approach. The resulting equations are decoupled by means of
an eigenvalue analysis, and subsequently spatially discretized in the wavelet do-
main with FEM. A 9-noded element with exponential shape functions is derived
for the FEM discretization, where the complex arguments of the shape functions
are determined from the characteristics of compression and shear waves prop-
agating along the principal axes of orthotropy2. The final solution is obtained
by back-transforming the FEM nodal displacements computed in the wavelet
domain to the time domain. Since there is no geometrical edge effect when all
spatial coordinates are discretized with FEM in the physical spatial domain,
the WSFEM formulation is suitable for studying wave propagation phenomena
in structures with arbitrary shape and boundary conditions. Furthermore, the
temporal edge effects emerging from the DWT of the time parameter can be
eliminated for zero initial conditions in a straightforward fashion, as demon-
strated in Chapter 3. The governing equations in the transformed domain are
uncoupled for each wavelet point, which makes the WSFEM approach suitable
for parallel computation.

The accuracy and applicability of the 2D WSFEM approach were demon-
strated in the numerical results section, by examining the dispersion relations
of a benchmark problem on Lamb, waves in an isotropic, plane-strain layer
with traction-free surfaces, and comparing the numerical result to the well-
known Rayleigh-Lamb solution [Achenbach, 1993, Doyle, 1989]. In addition,
the in-plane propagation of compression and shear waves in a plate subjected

2A different implementation of the method based on 8-noded elements can be found in
Pahlavan et al. [2011].
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to an impact load is simulated, and the result is compared to FEM solutions
computed with linear and quadratic elements and a direct numerical time-
integration scheme. The effect of anisotropy and irregular material interfaces
and boundaries were demonstrated by comparing the WSFEM solutions for an
isotropic plate to that of an orthotropic plate, and to that of a plate made of
two dissimilar materials, with and without a cut-out at one of the plate corners.

5.1 Description of the 2D Model

The wavelet-Galerkin approach outlined in Chapter 3, is applied to the case of
the in-plane dynamic response of an orthotropic layer. Assuming a 2D domain
Ω in the x− y plane, with finite thickness in the z-direction, and adopting the
plane-stress assumption, the equations of motion in the x− and y-directions of
the layer, which are assumed to coincide with the principal axis of orthotropy,
can be deduced from the general three-dimensional case presented in [Reddy,
2007] as:

Q11
∂2u

∂x2
+ (Q12 +Q66)

∂2v

∂x∂y
+Q66

∂2u

∂y2
= ρ

∂2u

∂t2
(5.1)

Q22
∂2v

∂y2
+ (Q21 +Q66)

∂2u

∂x∂y
+Q66

∂2v

∂x2
= ρ

∂2v

∂t2
(5.2)

where ρ is the material density, t ∈ R
+ denotes the real time, and u : Ω× t→ R

and v : Ω × t → R are respectively the displacements in x- and y-directions.
Also Qij for i, j ∈ {1, 2, 6} are the in-plane stiffness components where, in ac-
cordance with Voigt’s notation, the stress and strain tensor components indexed
by 11, 22, 12, correspond to the rows, and columns, 1, 2, 6 of the stiffness matrix,
respectively. Under plane-stress conditions, the non-zero stiffness components
have the form:

Q11 =
E1

1− ν12ν21
, Q12 = Q21 = ν21Q11, Q22 =

E2

1− ν12ν21
, Q66 = G12. (5.3)

From Equation (5.3)2, it follows that symmetry of the stiffness matrix re-
quires that ν12E1 = ν21E2, which essentially leaves the two-dimensional or-
thotropic model with four independent stiffness parameters, i.e., the axial stiff-
nesses E1, E2, the Poisson’s ratio ν12, and the shear modulus G12. Furthermore,
since the thickness in the z-direction does not influence the wave propagation
in the x− y plane of the layer, this parameter does not appear in equations 5.1
to 5.3.
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5.2 The Wavelet-Galerkin Discretization of the

2D Wave Equation

The time discretization of the problem is performed by relating the real time t
to dimensionless time τ via:

t = τ∆t ; τ ∈ [0, L− 1] (5.4)

to correspond with dividing the time window of interest into L−1 time intervals
∆t. Applying the decoupled wavelet-Galerkin approximation (DWG) presented
in sections 3.4 and 3.5 to the equations of motion (5.1) and (5.2), and invoking
Equation (5.4), result in:

Q11
∂2ūj
∂x2

+ (Q12 +Q66)
∂2v̄j
∂x∂y

+Q66
∂2ūj
∂y2

− ρω̄2
j ūj = 0 (5.5)

Q22
∂2v̄j
∂y2

+ (Q21 +Q66)
∂2ūj
∂x∂y

+Q66
∂2v̄j
∂x2

− ρω̄2
j v̄j = 0 (5.6)

∀j = 0, 1, ...L− 1.

In the above equations, ūj : Ω → R and v̄j : Ω → R are the transformed dis-
placements in the wavelet domain, following from the application of the DWG,
and ω̄j denotes the wavelet frequency defined by Equation (3.46).

As discussed in chapters 3 and 4, decoupling the temporally transformed
differential equations enables one to solve them independently at each wavelet
point j, thereby allowing for a parallel implementation of the time discretiza-
tion procedure. The spatial discretization of equations 5.5 and 5.6 is performed
using a finite element approach. This makes the present approach different from
other wavelet-based solution procedures for 2D problems [Mitra and Gopalakr-
ishnan, 2006d, 2008], where, in addition to a wavelet transformation used for
the discretization of the time coordinate, a second wavelet transformation was
applied for discretizing one spatial coordinate, and a 1D FEM was subsequently
employed to discretize the resulting ordinary differential equations in terms of
the other spatial coordinate. As mentioned in the introduction of this chapter,
the advantage of discretizing equations 5.5 and 5.6 fully with FEM is that it
circumvents the need to meet specific requirements on the type of boundary
conditions and the geometry which can be modeled.

5.3 Spatial Discretization of the Transformed 2D

Wave Equations

In the present dissertation, specialized basis functions for approximation of the
response at each wavelet point are suggested by selection of appropriate func-
tions that closely match the characteristics of the physical problem under con-
sideration. For the study of wave propagation problems in the wavelet domain,
it is a natural choice to perform the spatial discretization of Equation (5.5)
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by choosing the basis of the displacement fields in accordance with the series
expansions:

ūj(x, y) =
∑

p

∑

q

Cj
pq exp

[

i
(

kj,px x+ kj,qy y
)]

(5.7)

v̄j(x, y) =
∑

p

∑

q

Dj
pq exp

[

i
(

kj,px x+ kj,qy y
)]

(5.8)

∀j = 0, 1, · · · , L− 1,

where Cj
pq and Dj

pq are the expansion coefficients, and p and q are integers. The

constants kj,px and kj,qy can be determined in accordance with the characteristics
of specific waves propagating through the structure. In the present study, as
will be shown below, these constants which are related to wave-numbers, are
derived from the characteristics of the compression (P) and shear (S) waves
propagating along the principal axes of orthotropy, i.e., the x- and y-directions.

First, the wave-numbers corresponding to the P and S waves propagating
in the x-direction is obtained. The wavelength of such plane waves in the y-
direction is infinitely large, which relates to a wave-number equal to zero. This
condition is in agreement with:

kj,0y = 0. (5.9)

The corresponding wave-numbers in x-direction can be computed by substi-
tuting Equation (5.9) into Equation (5.7), followed by inserting the result into
Equation (5.5) and calculating the non-trivial solutions. The expression in terms
of the displacement ūj , which is associated with the P waves in x-direction, then
provides:

kj,1x = ikjx,P = i

√

ρω̄2
j

Q11
, ; kj,2x = −ikjx,P , (5.10)

while for the expression in terms of the displacement v̄j , which is associated
with the S waves in x-direction, it is found that:

kj,3x = ikjx,S = i

√

ρω̄2
j

Q66
; kj,4x = −ikjx,S . (5.11)

In expressions (5.10) and (5.11), the parameters kjx,P and kjx,S have the

dimension length−1, and may be interpreted as wave-numbers of the P waves and
S waves in x-direction, respectively. These wave-numbers are generally complex-
valued, due to the fact that the frequencies ω̄j coming from the orthogonal
decomposition of the governing equations in the wavelet domain are complex-
valued.

The propagation of compression and shear waves in the y-direction corre-
sponds to a wave-number in the x-direction equal to zero, which is in agreement
with the condition:

kj,0x = 0. (5.12)

67



Chapter 5. Wavelet-Based Spectral Finite Element for 2D Waveguides

Combining Equation (5.12) with Equation (5.7) followed by inserting the
result into Equation (5.5), leads to a non-trivial solution for the expression in
terms of the displacement v̄j , which is associated with the P waves in y-direction
with the wave-number:

kj,1y = ikjy,P = i

√

ρω̄2
j

Q22
; kj,2y = −ikjy,P , (5.13)

In addition, from the expression in terms of the displacement ūj , which is
associated with the S waves in y-direction, it can be derived that:

kj,3y = ikjy,S = i

√

ρω̄2
j

Q66
; kj,4y = −ikjy,S . (5.14)

Note from Equation (5.11) and Equation (5.14) that the wave-numbers kjx,S
and kjy,S , respectively characterizing the propagation of the S waves in x- and
y-directions, are equal. Conversely, from equations (5.10) and (5.13), it may be
observed that the wave-numbers kjx,P and kjy,P , characterizing the propagation
of the P waves in x- and y-directions, respectively, are different. This difference
can be ascribed to the orthotropic material characteristics of the layer. Com-
bining the above result with the general form Equation (5.7), the displacements
ūj and v̄j may be expressed as:

ūj(x, y) =
∑

p=0,1,2

∑

q=0,3,4

Cj
pq exp

[

i
(

kj,px x+ kj,qy y
))

, (5.15)

v̄j(x, y) =
∑

p=0,3,4

∑

q=0,1,2

Dj
pq exp

[

i
(

kj,px x+ kj,qy y
))

, (5.16)

In the resulting expressions, i.e. Equation (5.15) and Equation (5.16), the
wave-numbers of the compression and shear waves are substituted, in accordance
with equations (5.10) to (5.14). Furthermore, for notational convenience, the
expansion coefficients Cj

pq and Dj
pq in Equation (5.15) and Equation (5.16) are

designated here as Cj
k and Dj

k, respectively, with k ∈ {1, 2, · · · , 9}, where 9 is
number of constants in each equation. When storing these 9×2 = 18 coefficients
in a vector

cj =
[

Cj
1 , C

j
2 , . . . , C

j
9 , D

j
1, D

j
2, . . . , D

j
9

]T
, (5.17)

equations (5.15) and (5.16) can be expressed in matrix-vector format:

ūj = Pjcj , ∀j = 0, 1, · · · , L− 1, (5.18)

where the vector ūj contains the two displacement functions ūj(x, y) and v̄j(x, y),
and the 2 × 18 matrix Pj contains the exponential functions, their products,
and two times unity, in correspondence with equations (5.15) and (5.16).

It is apparent that equations (5.15) and (5.16) do not provide an exact so-
lution to equations (5.5) and (5.6), but include a linear combination of some

68



5.3. Spatial Discretization of the Transformed 2D Wave Equations

interpolation functions derived from the physics of wave propagation in the
waveguide under investigation. Once the coefficients of the approximation, i.e.
cj , are obtained, the displacement field can be readily reconstructed. To deter-
mine these coefficients in such a way that the error in the wavelet transformed
PDEs (5.5) and (5.6) is minimized in the l2 norm, the Galerkin weighted residual
method is employed based on which, a finite element formulation is provided.

In order to solve for the coefficients cj within a FEM-setting, a 9-noded,
C0-continuous, rectangular finite element is constructed that has two-degrees
of freedom per node. The nodes are located, respectively, at the 4 corners of
the element, in the middle of each of the 4 element edges, and at the element
center. A standard FEM-approach is subsequently followed, where the nodal
coordinates xr, yr of each element node r ∈ {1, 2, · · · , 9} are substituted into
Equation (5.18), providing the displacements at each node. The nodal displace-
ments of the element may be stored in a vector q̄e

j , given by:

q̄e
j =











Pj |x=x1,y=y1

Pj |x=x2,y=y2

...
Pj |x=x9,y=y9











cj = Tjcj (5.19)

As a next step, the 18 × 18 matrix Tj is inverted to solve for the 18 unknown
coefficients, i.e., cj = T−1

j q̄e
j . Substituting this solution back into Equation

(5.18) results in:

ūj = PjT
−1
j q̄e

j = Nj q̄
e
j (5.20)

where the 2×18 matrixNj = PjT
−1
j characterises the (spectral) shape functions

of the element, which need to be computed for each wavelet point j separately.
Some characteristics of the shape functions are illustrated in Figure 5.1, using
a discretized interval of L = 150 wavelet points, where the real and imaginary
parts of the shape functions Nj for a corner node, with local coordinates x=0,
y=0, of the 9-noded rectangular element are sketched over the element surface
0.03× 0.03m2. The wavelet points selected are the initial, i.e. j = 0, see Figure
5.1-a, and the final , i.e. j = 149, see Figure 5.1-b, wavelet points of the interval
τ ∈ [0, L− 1] considered.

Figure 5.1 confirms that (i) the interpolation condition, i.e. unity value for
the real part ℜ (Nj) corresponding to the chosen node and zero value at all other
nodes, and (ii) the local support condition, i.e. the real and imaginary parts of
the shape function vanish across the element boundary, are satisfied. Since the
shape functions are C0-continuous, the interelement displacement compatibility
condition is also met. The presence of the imaginary part of a shape function
is inherent to a FEM formulation in the wavelet domain, which is characterized
by complex-valued parameters, such as the wavelet frequency ω̄j , and the wave-
numbers presented in equations (5.9) to (5.14). From Figure 5.1, it can be
seen that a shape function related to the lowest wavelet point j = 0 represents
relatively long waves of relatively low frequency, and a shape function related to

69



Chapter 5. Wavelet-Based Spectral Finite Element for 2D Waveguides

(a)

0
0.01

0.02
0.03

0
0.01

0.02
0.03
−0.5

0

0.5

1

1.5

x (m)y (m)

ℜ
( 

N
0)

0
0.01

0.02
0.03

0
0.01

0.02
0.03

−0.01

0

0.01

0.02

x (m)y (m)

ℑ
( 

N
0)

(b)

0
0.01

0.02
0.03

0
0.01

0.02
0.03

−1

0

1

2

x (m)y (m)

ℜ
( 

N
14

9)

0
0.01

0.02
0.03

0
0.01

0.02
0.03

−2

−1

0

1

2

x 10
−5

x (m)y (m)

ℑ
( 

N
14

9)

Figure 5.1: Real part ℜ(Nj) and imaginary part ℑ(Nj) of a FEM shape function
Nj for two different wavelet points, plotted over the surface (= 0.03× 0.03 m2)
of a single 9-noded rectangular element. (a) Shape function N0[1] of the element
node 1 located at x = 0, y = 0, corresponding to the initial wavelet point j = 0.
(b) Shape function N149[1] of the element node 1 located at x = 0, y = 0,
corresponding to the final wavelet point j = 149(= L− 1).
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the highest wavelet point, j = 149, represents relatively short waves of relatively
high frequency. The convention is such that the wavelengths corresponding to
the shape functions Nj decreases with increasing value of the wavelet point j.

The matrix Nj with the element shape functions can be used in the usual
way to construct the element stiffness matrix Ke

j , and the element mass matrix
Me

j as:

Ke
j =

∫

Ωe

(LNj)
TD(LNj)dV , Me

j =

∫

Ωe

NT
j RNjdV (5.21)

in which Ωe denotes the element volume, the 3×3 matrixD contains the stiffness
moduli of the orthotropic material, as presented in Equation (5.22), the 3 × 2
matrix L includes the differential operators required for the computation of the
strains, and the 2× 2 matrix R contains the material density ρ, i.e.:

D =





Q11 Q12 0
Q21 Q22 0
0 0 Q66



 , (5.22)

L =





∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x



 , (5.23)

and

R =

[

ρ 0
0 ρ

]

. (5.24)

In Equation (5.21), the integration over the element volume required for
computing Ke

j and Me
j can be performed analytically, due to the exponential

nature of the shape functions Nj .
Following a weak formulation of the governing equations of the structural

problem modeled, the system of equations that needs to be solved within a
FEM-setting is derived in the usual way, leading to:

K̄j q̄j = f̄j (5.25)

where the dynamic stiffness matrix of the structure is given by:

K̄j = Kj + ω̄2
jMj (5.26)

The mass matrix Mj and the stiffness matrix Kj are the assembly of the ele-
ment mass and stiffness matrices presented in Equation (5.21), and the wavelet
frequency ω̄j is as defined in Equation (3.46). Further, the nodal displacement
vector q̄j is constructed from the element displacements presented in Equa-
tion (5.19), and the nodal force vector f̄j accounts for the traction boundary
conditions applied along the surface Se of the finite element via:

f̄j =

∫

Se

NT
j t̄jdS (5.27)
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where, for simplicity, the body forces are omitted. In Equation (5.27), the trac-
tions in the wavelet domain i.e. t̄j , follow from the corresponding approximation
coefficients t̂j :











t̄j=0

t̄j=1

...
t̄j=L−1











= Φ−1











t̂j=0

t̂j=1

...
t̂j=L−1











(5.28)

where Φ−1 transforms a function from the domain of the approximation coef-
ficients to the wavelet domain, see Section 3.4. The approximation coefficients
t̂j appearing in Equation (5.28) are obtained component-wise from the actual,
time-dependent traction t, using the inverse relation of Equation (3.35), i.e.
through performing the discrete wavelet transform. After invoking Equation
(5.25) to solve for the nodal displacements q̄j in the wavelet domain, the ap-
proximation coefficients of the nodal displacements can be obtained via:











q̂j=0

q̂j=1

...
q̂j=L−1











= Φ











q̄j=0

q̄j=1

...
q̄j=L−1











(5.29)

after which the components of the time-dependent nodal displacement vector q
are calculated using the inverse DWT, see Equation (3.35).

It should be mentioned that dissipation effects, which have been omitted in
the present analysis for simplicity reasons, can be straightforwardly included
in the formulation by extending Equation (5.26) with a term ω̄jCj . Here, the
matrix Cj contains the characteristics of the linear damping model used. This
matrix is constructed in the same way as the mass matrix Mj , see Equation
(5.21).

The implemented WSFEM is presented schematically in Figure 5.2, in which
the decoupled FEM solution procedure in the wavelet domain is shown.

5.4 Numerical Results

In order to evaluate the performance of the 9-noded element presented in the
previous section, first, a benchmark problem with a well-known solution was
studied. The benchmark problem relates to the propagation of Lamb waves,
see Chapter 2, in an infinitely long in x-direction, homogeneous, isotropic layer
of thickness H in y-direction, under plane-strain conditions in the z-direction.
The layer was subjected to traction-free boundary conditions at its top, i.e.
y = H/2, and bottom, i.e. y = −H/2, surfaces. The equations of motion (5.1)
and (5.2), which hold for an anisotropic layer under plane-stress conditions,
could be straightforwardly adapted to the case of an isotropic layer under plane-
strain conditions by expressing the stiffness coefficients in Equation (5.1) and
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Figure 5.2: Schematic representation of the wavelet-based spectral finite element
method. The decoupled wavelet-Galerkin scheme breaks down the equations of
motion into a number of systems of linear equations, which can be solved in
parallel.

Equation (5.2) as:

Q12 = Q21 = λ, Q66 = µ, Q11 = Q22 = λ+ 2µ, (5.30)

where the Lamé constants λ and µ were formulated in terms the Young’s
modulus E and the Poisson’s ratio ν, i.e. λ = νE/[(1 + ν)(1 − 2ν)], and
µ = E/[2(1 + ν)]. The benchmark problem was solved by choosing the stiffness
parameters and density in correspondence with the values for aluminium, i.e.,
E = 70GPa and ν = 0.3, and ρ = 2700kg/m3. The dispersion curves were
obtained in the standard way, by substituting the harmonic plane wave solution
for the displacements u and v, given by:

u(x, y, t) = ū exp[i(ωt− kxx− kyy)], (5.31)

v(x, y, t) = v̄ exp[i(ωt− kxx− kyy)], (5.32)

into the equations of motion (5.1), and numerically computing the non-trivial
solution, known as the Rayleigh-Lamb solution, from the roots of the obtained
transcendental equation Achenbach [1993], Graff [1975]. In Equation (5.32) and
Equation (5.33), ū and v̄ are the wave amplitudes, kx and ky are the wavenum-
bers in x- and y-directions, and ω is the angular frequency. The Rayleigh-Lamb
solution was compared to the dispersion curves computed numerically using the
formulation presented in Section 5.3. In the numerical simulation, a layer of 2m
long and 0.05m thick was modeled, and discretized by 640 9-noded rectangular
elements, i.e., 4 elements across the thickness of the layer and 160 elements
across the length. The layer was free-free, and subjected to a harmonic load
with unit amplitude at its upper left corner. The frequency of the load was
increased stepwise from 2 to 100kHz, using increments of 2kHz. The nodal dis-
placements were computed in the frequency domain for each step, by solving a
system of equations similar to Equation (5.25), with the wavelet parameter ω̄j
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Figure 5.3: The dispersion curves for the lowest 5 modes, i.e. 3 symmetric and
2 antisymmetric modes, of a layer of thickness H = 0.05m.

in Equation (5.26) replaced by iω. The nodal displacements along the upper
boundary of the layer, i.e., at y = H/2, were subsequently subjected to a Fourier
transform, which provides the wave-numbers kx characterizing the response at
the frequency f considered.

The dispersion curves for the 5 lowest Lamb wave modes are presented in
Figure 5.3, by plotting the frequency f(= ω/2π) versus the wave-number kx
in x-direction. The semi-analytical solution and the numerical solution are in
very good agreement. The numerical dispersion curves presented in Figure 5.3
were directly computed in the frequency domain, i.e., a computation of the
layer response in time was not required. This study hence, only reveals that the
spatial discretization of the numerical formulation was adequate and precise.

In order to illustrate time discretization aspects of the WSFEM formula-
tion, a second example was considered where a 300× 300× 1mm3 plane-stress,
homogeneous, isotropic aluminium plate with E = 70GPa and ν = 0.3, and
ρ = 2700kg/m3 was subjected to an in-plane impact load, as shown in Figure
5.4. The load had a unit amplitude and a frequency content of 0-40 kHz, and
was applied in the vertical , i.e. y-, direction at the middle of the lower plate
edge. The plate was supported in x- and y-directions at the two corners of the
upper edge.

The displacement v in the y-direction evaluated at the center of the plate,
i.e. point C, is depicted Figure 5.5 as a function of time, corresponding to
(i) an accurate, reference solution computed with FEM, (ii) a FEM computa-
tion (FEM-Q) that used 9-noded quadrilateral elements with quadratic shape
functions, (iii) a FEM computation (FEM-L) that used 4-noded quadrilateral
elements with linear shape functions, and (iv) a computation performed using
the WSFEM approach presented in this chapter. The time integration of the
FEM reference solution (i) and the other two FEM solutions (ii) and (iii) was
performed with a second-order accurate, central difference scheme, in correspon-
dence with Newmark time-integration parameters equal to β = 0, γ = 0.5, see
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Figure 5.4: The geometry and loading: (left) the square plate (300×300×1mm3)
subjected to an external loading F (t) at the lower plate edge; (right) loading
characteristics as a function of time and frequency (inset).

Hughes [1987] .

The order of the Daubechies wavelets used in the WSFEM approach was
N = 6. The number of nodes used for computations (ii), (iii) and (iv) were the
same, namely 289, corresponding to meshes of 8× 8 = 64 9-noded elements and
16 × 16 = 256 4-noded elements. The time increment for the FEM computa-
tions (ii) and (iii) equaled 0.1 µs, which warranted that the central difference
scheme remained stable. In the WSFEM, the choice of the time increment was
not critical from the stability perspective. From the accuracy point of view,
preliminary WSFEM simulations showed that, for the current boundary value
problem, a time increment of ∆t = 3.0µs provides a result that does not re-
ally change in accuracy when the time interval is smaller. The time interval
∆t = 3.0µs caused the sampling density L in the wavelet domain apparently to
be sufficiently high to accurately capture the response characteristics generated
by the loading specified in Figure 5.4. Note that for a given time window of
interest, the connection between L and ∆t is explicitly set by Equation (5.4).

In order to generate a FEM reference solution constructed with 9-noded
quadrilateral elements with a relatively high spatial accuracy, the total number
of nodes was taken to be considerably larger than for the other three solutions,
namely 58081 nodes corresponding to 120 × 120 = 14400 elements, while the
discrete time step was taken to be significantly smaller, i.e. ∆t = 0.005µs. The
time window used for the simulations was tend = 150µs. It can be observed
from Figure 5.5 that the calculated responses look qualitatively similar, and
that the WSFEM solution provided the best approximation to the reference
solution. The accuracy of the FEM-Q solution was slightly less than that of the
WSFEM solution, while the FEM-L was the least accurate, especially during
the last 30µs of the response. As the mesh become finer, all methods converge
to the reference solution as demonstrated in Figure 5.6 for 6561 nodes. In this
case also, the WSFEM provides a better accuracy than FEM-L and FEM-Q.

In order to quantitatively compare the convergence behavior of the WSFEM,
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Figure 5.5: Vertical displacement v at the center of the plate, i.e. point C in
Figure 5.4. The WSFEM and FEM-Q and FEM-L solutions constructed with
meshes of 289 nodes are compared to a FEM reference solution.
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FEM-L and FEM-Q solutions under mesh refinement, the root mean square
(RMS) error of the vertical displacement vC at point C was computed as:

RMS =

(

∫ tend

0
[vC(t)− vC,ref (t)]

2
dt

∫ tend

0
[vC,ref (t)]

2
dt

)
1
2

(5.33)

with vC,ref the vertical displacement related to the FEM reference solution and
tend = 150µs. The integral in Equation (5.33) was computed using direct nu-
merical integration, similar to the previous example. The RMS error is depicted
in Figure 5.7, illustrating that the mesh convergence rate is similar for the three
solutions, but that the WSFEM solution had the smallest error for an arbitrar-
ily mesh fineness, followed by the FEM-Q solution and the FEM-L solution.
A certain value of RMS error can be achieved by a few times less degrees of
freedom in the WSFEM compared to the FEM-L. This result is consistent with
the result plotted in Figure 5.5.

In addition to the RMS error, the convergence of the residual error in the
strong form of the governing equations may be examined. The residual error is
calculated by taking the l2, i.e. Euclidian, norm of the residuals of the equations
of motion (5.1) and (5.2) evaluated at the plate center (i.e., point C, see Figure
5.4-a). The convergence rate of this residual error turns out to be similar for the
WSFEM and FEM-Q computations, in a sense that it decreases with a factor 5
to 6 when the number of elements is increased by a factor of 25. Conversely, for
the FEM-L simulation, the decrease in the residual error is negligible for this
increase in mesh refinement.

Finally, the time evolution of the displacement v in y-direction was consid-
ered over the whole plate using the WSFEM solution for the isotropic plate
with 10×10 = 100 elements, see Figure 5.8-a. The effect of anisotropy becomes
clear when the structural response of an orthotropic plate is compared to that
of an orthotropic plate depicted in Figure 5.8-b. For the orthotropic plate, the
stiffness in the x-direction was taken 25% higher than for the isotropic, alu-
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minum plate, i.e., E1 = 87.5GPa, while in y-direction the stiffness was 25%
lower, E2 = 52.5GPa. The value of the Poisson’s ratio ν12 = 0.25, which, due
to symmetry of the stiffness tensor, corresponds to ν21 = E1ν12/E2 = 0.42, (see
Equation (5.3)), and the shear modulus G12 = 35GPa. The densities in both
cases were similar, i.e. 2700 kg/m3. As shown in Figure 5.9-a, the analysis was
further extended by considering the response of a composite plate consisting of
the above-mentioned isotropic material at the lower part of the plate, and the
orthotropic material at the upper part of the plate. As indicated by the black
line, an interface with perfect bonding and a rectangular tooth geometry, tooth
length=tooth width=0.1m, connected the two materials in the middle of the
plate. The effect of an irregular plate boundary on the response characteristics
was examined in Figure 5.9-b, by providing the composite plate of Figure 5.9-a
with a 50× 50× 1mm3 cut-out at its lower right corner.

The contour plots in Figure 5.8 and Figure 5.9 illustrate that at t = 36µs,
only part of the load signal had yet been applied, resulting into a compres-
sion (P) wave propagating along the trajectory x = 0.15m, a shear (S) wave
propagating along the trajectory y = 0, and a combination of these two waves
propagating along other trajectories. At t = 59µs, the front of the P wave had
passed the plate center, where a comparison between Figure 5.8-a and 7b shows
that the wave front for the orthotropic case was more straight than for the
isotropic case, due to the different stiffness parameters in x- and y-directions.
From the location of the P wave front along x = 0.15m, it may be concluded
that the P wave velocity in the y-direction in the orthotropic plate is lower
than in the isotropic plate, which can be ascribed to the lower stiffness of the
orthotropic material in the y-direction. It is further indicated in Figure 5.8-a
and Figure 5.8-b that at t = 84µs, the fronts of P and S waves had reached the
plate boundaries, which led to interference between incident waves and waves
reflected at the boundaries. At t = 108µs, the tails of incident P and S waves
had also reached the plate boundaries, which further intensified the interference
pattern of the incident and the reflected waves.

From the response of the composite plate in Figure 5.9-a, it can be observed
that at t = 84µs, waves propagating from the lower, isotropic part of the plate
had reflected, and refracted, at the interface with the orthotropic part, as a result
of which the displacement pattern in the isotropic part of the plate had become
different from that of the isotropic plate in Figure 5.8-a. Due to additional wave
reflections, this difference grew with time, as illustrated by the displacement
patterns for t = 108µs in Figure 5.8-a and Figure 5.9-a. The effect of the
cut-out on the dynamic response was apparent from breakage of the vertical
symmetry of the displacement pattern after the P and S waves had reached the
left and right plate boundaries, see Figure 5.9-b for t = 84µs and t = 108µs.

The above examples show that the WSFEMmethod is suitable for simulating
elastic wave propagation problems in an accurate and efficient manner. The
main strength of the present method is that it combines the wavelet-Galerkin
method and FEM in an optimal way, i.e., the wavelet-Galerkin method is used
only for the temporal discretization of the problem, making the method suitable
for parallel computation, and FEM is employed for the spatial discretization
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of the problem, as a result of which, geometries and boundary conditions of
arbitrary complexity can be modeled.

5.5 Concluding Remarks

A WSFEM formulation has been proposed for the analysis of 2D elastic wave
propagation problems. The method uses a wavelet-Galerkin approach for trans-
forming the governing equations from the time domain to the wavelet domain,
after which the spatial dependency of the displacement response is solved for in
the wavelet domain by means of FEM endowed with exponential shape func-
tions. The final response is obtained by transforming the computed nodal dis-
placements from the wavelet domain back to the time domain.

A WSFEM approach was proposed and formulated in this chapter to simu-
late elastic wave propagation in 2D waveguides. The method uses the wavelet-
Galerkin approach for transforming the governing equations from the time do-
main to the wavelet domain, after which the spatial dependency of the govern-
ing equations was solved using a spectral FEM equipped with exponential shape
functions. The response was subsequently transformed back to the time domain
by employing the inverse transform.

The performance of the WSFEM approach was compared to that of a stan-
dard FEM approach, showing that the accuracy of WSFEM was similar to that
of FEM equipped with quadratic shape functions and a second-order accurate,
Newmark explicit, i.e. Newmark-β, time-integration scheme. In terms of com-
putational efficiency, the WSFEM approach offers a significant advantage to
using FEM equipped with a direct time-integration scheme, in a sense that the
time-discretized equations can be solved for each wavelet point separately. This
makes the WSFEM approach inherently suitable for parallel computation. An-
other appealing feature of the WSFEM is the stability of the time discretization
scheme, which allows us to use relatively large time intervals in the computation
of the response. Extension of the WSFEM to 3D structures will be discussed in
the next chapter.
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(a)

(b)

Figure 5.8: Contour plot of the displacement v in the y-direction; (a) isotropic
plate, (b) orthotropic plate.
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(a)

(b)

Figure 5.9: Contour plot of the displacement v in the y-direction; (a) heteroge-
neous plate, (b) heterogeneous plate with cut-out.
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Chapter 6

Generalization of the

WSFEM: Spectral

Formulation of Finite

Element Methods

A novel and generic formulation of the wavelet-based spectral finite element
approach, which is applicable to linear transient dynamics and elastic wave
propagation problems, is presented in this chapter1.

The fact that Daubechies wavelets [Daubechies, 1992], as presented in Chap-
ter 3, possess several appealing properties such as orthogonality, compact sup-
port, exact representation of polynomials up to a certain degree, and an ability
to represent functions at different resolutions, has resulted in the extensive use
of wavelets in signal processing [Abbate et al., 1997, Daubechies, 1992, Giurgiu-
tiu, 2008, Mallat, 1989], electromagnetics [Fujii and Hoefer, 2003, Karumpholz
and Katehi, 1996], and computational fluid and solid mechanics [Amaratunga
and Williams, 1997, Amaratunga et al., 1994, Beylkin, 1992, Chen and Hwang,
1996, Chen et al., 1996, Han et al., 2006, Ko et al., 1995, Ma et al., 2003, Patton
and Marks, 1996, Qian and Weiss, 1993]. Among these applications, the use of
Daubechies compactly-supported wavelets for spectral analysis of elastic wave
propagation was suggested and has mainly been pursued by Mitra and Gopalakr-
ishnan [Mitra and Gopalakrishnan, 2006d, 2007, 2005, 2006a,b]. This approach
is referred to as conventional wavelet-based spectral finite element method in
this dissertation. Gopalakrishnan and Mitra [2010] use the Daubechies wavelets
in a Galerkin sense as an alternative to the fast Fourier transform (FFT) to
alleviate the issues arising from the imposed periodicity in the formulation of

1The article ”Spectral Formulation of Finite Element Methods Using Daubechies
Compactly-Supported Wavelets for Elastic Wave Propagation Problems”, Pahlavan et al.
[2012b] in Wave Motion, has been extracted from the content of this chapter.
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the Fourier transform. Their investigations have shown improvements in the
required computational power, in comparison with the FFT-based analysis, by
taking advantage of avoiding a periodicity assumption and the compact support
of Daubechies wavelets. As mentioned in chapters 4 and 5, despite the signifi-
cant progress achieved by Mitra and Gopalakrishnan, there are still difficulties
to overcome, when dealing with 2D and 3D problems with geometrical complex-
ities and non-periodic boundary conditions. The wavelet-based spectral analy-
sis, in analogy with the FFT-based spectral analysis, employs global orthogonal
bases for transformation of the governing equations from the time domain to the
frequency domain, and from the physical spatial domains to the wavenumber
domains, to convert a system of multi-dimensional partial differential equations
(PDEs) to a set of ordinary differential equations (ODEs) [Doyle, 1989, Farris
and Doyle, 1989, Gopalakrishnan et al., 1992, 2008]. Dealing with engineer-
ing structures with directional properties and local variations in the structural
characteristics, however, can not be handled straight-forwardly in a non-physical
domain, i.e. the wavenumber domain. Regarding the inflexibility of the con-
ventional wavelet-based spectral method in dealing with non-basic geometries,
the author suggested an alternative solution in Chapter 5, i.e. applying the
wavelet-Galerkin method temporally and using a tailored finite element method
for the spatial discretization, the shape functions of which were based on the
wavenumbers corresponding to the introduced frequencies in the transformed
wavelet domain. Improvements over the time domain standard finite element
method (FEM) with linear and quadratic basis functions was demonstrated us-
ing the proposed wavelet-based finite element method (WSFEM), which was
more pronounced in the temporal discretization. As a next step, the formula-
tion needs to be extended to capture the response of more complex structures
used in the engineering world. Although the approach proposed in Chapter 5
offers an improved framework to deal with 2D structures, the non-standard fi-
nite element formulation with frequency-dependent approximation bases, which
requires incorporation of more wave modes in more complex media, introduces
complexities in the formulation that may hinder its extension to 3D waveguides
and structures.

A novel framework for elastic wave propagation simulation is proposed and
formulated in the present chapter, which can combine a wavelet-based spectral
analysis for the temporal discretization, with any standard finite element spatial
discretization scheme, on the basis of their complementary merits. Employing
the wavelet-Galerkin method described in Chapter 3 of this dissertation, the
variational principle of virtual work is expressed in a temporally-transformed
domain. After a subsequent decoupling projection, the wavelet frequencies cor-
responding to the temporal discretization are introduced. The resulting equa-
tions are coupled only spatially. The variational problem hence, can be reduced
to a set of temporally independent problems, which can be solved using any
spatial discretization method, e.g. FEM. Note that the 2D WSFEM presented
in Chapter 5, is a special case of the formulation presented in this chapter.
Since the 3D WSFEM allows for the solution corresponding to each virtual fre-
quency separately, the computations can be performed in parallel, in analogy
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with the 1D and 2D formulations in chapters 4 and 5. Although applicable to
all finite element schemes, the focus of the presented numerical examples is on
the so-called spectral element method (SEM) outlined in Chapter 2. In SEM,
higher-order polynomials are used as basis functions and the element nodes are
located on Gauss-Lobatto-Legendre (GLL) points thereby having hp-refinement
and spectral convergence properties [Komatitsch et al., 2000, Peng et al., 2009].
Accurately capturing the geometry through the isoparametric formulation is
possible in the present formulation due to the higher order basis functions in
SEM. As a result of the wavelet-Galerkin method used, the wavelet-based spec-
tral finite element method (WSFEM) has spectral convergence also with respect
to the temporal discretization.

Using 3D numerical examples, the features of the presented WSFEM method
are demonstrated and the possible ways of improving the solution speed are dis-
cussed in this chapter. Having verified the accuracy of the WSFEM formulation
and its implementation, a composite laminate fully discretized with 3D SEM
elements is modeled. The distribution of the displacement, the strain, and the
stress fields are obtained, which provide detailed information about the sym-
metric and antisymmetric Lamb waves propagating through such a complex
waveguide.

6.1 Temporal Discretization: Spectrally-implem-

ented Principle of Virtual Work

The decoupled wavelet-Galerkin method (DWG) introduced in Chapter 3, is
applied to the variational principle of virtual work in this section. Principle
of virtual work permits derivation of the equations of motion from a definite
integral involving the virtual internal work, i.e., strain energy, of a body and
the virtual work performed by external forces [Reddy, 2005, 2007]. The corre-
sponding virtual displacements are hypothetical and arbitrary, and the actual
loads act on their fixed values.

The virtual strain energy of an elastically deformed body is given by:

δU =

∫

Ω

σ : δǫ dv, (6.1)

where σ and ǫ are respectively, the second-order stress and strain tensors, (:)
indicates the tensor product, and dv denotes the volume element in the material
body Ω ⊆ R

3. The relation between the stress and the strain tensors in a linear
elastic material obeys the Hooke’s law:

σ = C : ǫ. (6.2)

In the equation above, C is the forth-order stiffness tensor. Denoting the dis-
placement vector by u : Ω× t → R

3, where t is the real time, the second-order
strain tensor can be expressed by:

ǫ =
1

2

[

∇u+ (∇u)
T
]

. (6.3)
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The virtual displacement vector δu is composed of the variations of the de-
pendent variables, i.e. degrees of freedom, which can be varied separately and
independently [Doyle, 1989]. Using the reduced Voigt notation, the Hooke’s law
in Equation (6.2) can be rewritten as:
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. (6.4)

Note that in this notation, the stiffness matrix in the reduced notation remains
symmetric i.e.:

Cij = Cji ∀i, j = 1 to 6. (6.5)

The total virtual work of a deformable solid body is divided into the contribution
of the virtual work of external forces and internal forces. The virtual work of
external forces can be broken further into the virtual work of the surface loads,
i.e. δW s, and the virtual work of the body forces, i.e. δW b. Hence:

δW = (δW s + δW b)− δU, (6.6)

Using the D’Alembert’s principle, the inertia forces can also be treated as body
forces [Doyle, 1989]. Hence:

δW b = δW v + δW d =

∫

Ω

f b · δudv −
∫

Ω

ρü · δudv. (6.7)

where δW d is the virtual work of the inertia forces, and δW v denotes the virtual
work done by the rest of the body forces denoted by f b. The principle of virtual
work states that the body is in equilibrium, if the total vitual work is zero
for every independent kinematically-admissible virtual displacement δu [Doyle,
1989]:

∫ t2

t1

δ
[

W s +W v +W d − U
]

dt = 0. (6.8)

To tackle dynamic problems, often, the Hamilton’s principle is derived from
the principle of virtual work, which reformulates the virtual work of the inertia
forces in terms of the virtual kinetic energy of the body [Reddy, 2005, Doyle,
1989]. Subsequently, taking the variation with respect to each dependent vari-
able leads to the strong form of m governing equations, and the corresponding
boundary conditions, where m denotes the number of dependent variables, see
Reddy [2005] for the details. For extraction of the governing equations and
the boundary conditions, the integrand equivalent to the one in Equation (6.8),
can be set to zero, since the components of the virtual displacement vector can
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be varied separately and independently, and the integral bounds are arbitrary
[Doyle, 1989].

In this study, alternatively, since only the weak form of the governing equa-
tions is desired, which will be later solved using the finite element method,
derivation of the strong form of the equations is omitted. Following the stan-
dard FEM, the boundary conditions are approximated and applied through the
finite element formulation, similar to Chapter 5 of this dissertation. In addition,
the use of the wavelet-Galerkin method circumvented the derivation of Hamil-
ton’s principle, as it can straight-forwardly handle the derivatives with respect
to time. The integrand in the principle of virtual work, i.e. Equation (6.8), is
set to zero, for the same reason as in the Hamilton’s principle explained above.

To employ the wavelet-Galerkin method (see Chapter 3), assume the actual
displacement field, the external forces, and the body forces to be discretized at
L equally-spaced points in time separated by the time interval ∆t. To avoid
dealing with wavelet parameters at non-integer points, as discussed in Section
3.4, the dimensionless time τ can be utilized such that,

tτ = τ∆t ; ∀τ ∈ [0, L− 1]. (6.9)

The corresponding virtual energies and works in Equation (6.8) can be expressed
by applying the wavelet transform in accordance with Equation (3.35). Indi-
cating the approximation coefficients of a function by the hat-sign, and the
translates of the wavelet scaling function by ϕk, k ∈ Z, it can be written that:

∑

k

δŴ s
kϕk +

∑

k

δŴ v
kϕk −

∑

k

δÛkϕk −∆t−2
∑

k

ρδB̂kϕ̈k = 0, (6.10)

where, based on the fact that the variation δu can be varied separately and
arbitrarily at each time instant [Doyle, 1989], the normalized virtual energy
δB̂k is introduced as:

δB̂k =

∫

Ω

ûk.δudv =

∫

Ω

ûk.δûkdv. (6.11)

Also note that the term ∆t−2 in Equation (6.10) appears as a result of the
change of variable from t to the dimensionless time τ . In accordance with the
wavelet-Galerkin method presented in Chapter 3, one can take the inner product
on both sides of Equation (6.10) with ϕj for j = 0, 1, · · · , L− 1 as:

∑

k

[

δŴ s
k 〈ϕk, ϕj〉+ δŴ v

k 〈ϕk, ϕj〉 − δÛk 〈ϕk, ϕj〉 −∆t−2ρδB̂k 〈ϕ̈k, ϕj〉
]

= 0.

(6.12)
Accordingly, the following form of the principle of virtual work for j = 0, 1, · · · , L−
1 can be obtained:
∑

k

δŴ s
kΓ

0
k−j +

∑

k

δŴ v
k Γ

0
k−j −

∑

k

δÛkΓ
0
k−j −∆t−2

∑

k

ρδB̂kΓ
2
k−j = 0. (6.13)

where Γi
k−j , for i = 1, 2, denotes the zeroth- and the second-order connection

coefficients of Daubechies wavelets derived in Section 3.4. Rearrangement of
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the above L equations in a matrix-vector configuration can be represented as
follows:

δŴs + δŴv − δÛ−∆t−2ρΛ0
−1Λ2δB̂ = 0, (6.14)

where Λ0 and Λ2, as introduced in Section 3.4, are each a band-limited ma-
trix the components of which are the values of the zeroth- and second-order
connection coefficients. Equation (6.14) is a coupled system of L homogenous
partial differential equations, similar to the formulation in chapters 3, 4, and 5.
Equation (6.14) expresses the relationship between the adjacent displacements
in time. The bandwidth of the matrix Λ0

−1Λ2 is determined by the order of
the compactly-supported wavelets N . Higher order wavelets correlate more time
steps through a wider matrix band. These matrices however, are independent
of the material or geometrical properties of the problem and vary only with the
number of sampling points.

The coupled set of equations (6.14) can be subsequently decoupled through
the eigendecomposition of Λ0

−1Λ2. Similar to chapters 3, 4, and 5, the projec-
tion of the approximation coefficients vector of a scalar function f denoted by f̂ ,
on the eigenspace of Λ0

−1Λ2 denoted by an over-bar and called the transformed
domain, can be accordingly obtained by:

f̄ = Φ−1f̂ , (6.15)

whereΦ is the eigenvector basis ofΛ0
−1Λ2. Each of the L temporally-decoupled

PDEs corresponding to equations (6.14) can be solved independently. These
equations for the wavelet points j = 0, 1, · · · , L− 1 are:

δW̄ s
j + δW̄ v

j − δŪj −∆t−2ρλ2jδB̄j = 0, (6.16)

with λ2j the jth eigenvalue of Λ0
−1Λ2. Equation (6.16) is the principle of virtual

work expressed via the DWG. Equation (6.16) can also be written as:

δ
[

W̄ s
j + W̄ v

j − Ūj − ρω̄2
j B̄j

]

= 0, (6.17)

where the wavelet frequency is ω̄j = ∆t−1λj , i.e. the eigenvalues of Λ0
−1Λ2

scaled by the reciprocal of the time interval. Note that since Λ0
−1Λ2 is not a

symmetric matrix, its eigenvalues are in general, complex numbers.
The transient problem is now broken down into a set of temporally-uncoupled

system of PDEs which can be solved in parallel for different wavelet points.
These equations can be therefore solved at each wavelet point, using an approx-
imate solution method such as the finite element method, the finite difference
method, the boundary element method, etc. A linear combination of the trans-
formed responses at the wavelet points weighted in accordance with Equation
(6.15), brings the response back into the real time.

On the independence of the solution steps, physically speaking, the solution
in time is a weighted superposition of the system response to a set of virtual
frequencies defined at the discrete wavelet points in analogy with the Fourier
domain analysis. Alternatively speaking, there exists a subspace onto which,
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temporally-linear-second-order equations can be projected and appear in a de-
coupled fashion.

As mentioned in Chapter 3, the DWT generally requires extra attention to
be paid to the edges of the time window of interest, due to the edge effects of
the wavelets. This can be dealt with using different approaches as discussed
in sections 3.6 and 3.7. In this chapter, the method suggested by the author
in Section 3.7 and applied in chapters 4 and 5, is employed, which is based
on a finite integration domain for computation of the connection coefficients.
Note again that as a result of the integration on a finite interval equal to the
length of the non-dimensional time window of interest, despite the orthogonal-
ity of the scaling functions of Daubechies wavelets, the connection coefficient
matrix Λ0 becomes non-diagonal. This technique makes the approach free of
edge effects for problems with zero initial conditions. Although not studied in
this dissertation, the capacitance matrix method [Qian and Weiss, 1993], or an
extrapolation-based scheme [Williams and Amaratunga, 1997] may be adopted
for non-zero initial conditions.

6.2 Spatial Discretization: Wavelet-based Spec-

tral Finite Element Formulation

A Galerkin approach for spatial discretization of the weak form of the governing
equation, i.e. Equation (6.17), can be adopted by choosing the same basis (trial)
functions and weighting (test) functions, to approximate the displacement field.
The chosen basis functions can be used for both the real and imaginary parts
of the dependant variables at different wavelet points thereby, in contrast to
the 2D formulation in Chapter 5, obtaining a fixed stiffness and mass matrices
throughout the analysis.

First, the approximation coefficients of the displacement field u, in accor-
dance with Equation (3.35), are obtained by:

u =
∑

k

ûkϕk. (6.18)

Analogous to Equation (6.15), the displacement field in the domain of the ap-
proximation coefficients and the displacement field in the wavelet domain are
correlated as:
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ûj=L−1











L×3

. (6.19)

The selection of basis functions can follow any of the available standard forms.
At wavelet point j, the vector of the transformed dependent variables ūj , can
be expressed in terms of the nodal displacements vector q̄e

j through the matrix
of shape functions Ne. In Cartesian coordinate system:

ūj(x, y, z) = Ne(x, y, z)q̄e
j . (6.20)
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As mentioned above, Ne is not a function of j, i.e. wavelet point. By invoking
Equation (6.20), the energy functionals in Equation (6.17) can be expressed in
the element level by the following relations:

Ūj =
1

2

∫

Ωe

ǭ
T
j Dǭjdv =

1

2

∫

Ωe

q̄eT

j BeTDBeq̄e
jdv (6.21)

B̄j =
1

2

∫

Ωe

ūT
j ūjdv =

1

2

∫

Ωe

q̄eT

j NeTNeq̄e
jdv (6.22)

W̄ s
j =

∫

Ωe

ūT
j f̄

s
j dv =

∫

Ωe

q̄eT

j NeT f̄sj dv (6.23)

where f̄sj is the vector of surface tractions, D denotes the constitutive matrix,
and Be definend by:

Be = LNe, (6.24)

is the strain-nodal displacements matrix with L being the linear differential
operator relating the strain field to the displacement field:

L =







∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0







T

. (6.25)

Note that the body forces are neglected for the sake of simplicity. Using rela-
tions (6.21) to (6.23), the finite element solution of Equation (6.17) in the jth
decoupled wavelet point can be obtained by taking the variation with respect
to the nodal displacement vector q̄e

j . This operation at the global level for a
linearly damped system will lead to:

(

K+ ω̄jC+ ω̄2
jM
)

q̄j = f̄j , (6.26)

where q̄j denotes the global nodal displacement vector at the jth point of trans-
formed domain. The matrices K, C and M are respectively, the stiffness, the
damping and the mass matrices. The transformed global vector of the external
forces is shown on the right-hand-side of the equation by f̄j . The matrices of
Equation (6.26) are computed in accordance with the standard finite element
method, by assembling the corresponding matrices at the element level:

K =

Nel
⋃

e=1

Ke, M =

Nel
⋃

e=1

Me, f̄j =

Nel
⋃

e=1

f̄ej , C = ᾱjK+ β̄jM, (6.27)

where Nel is the total number of elements, and ᾱj and β̄j denote the frequency-
dependent damping coefficient. For computation of the matrices in Equation
(6.27), the SEM is utilized by employing higher-order Lagrange polynomials
in conjunction with Gauss-Lobatto-Legendre (GLL) points and the GLL nodal
quadrature, see Chapter 2. Following an isoparametric formulation and intro-
ducing the mapping Je from the element domain Ωe to the reference domain
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with coordinates (ξ, η, γ) on [−1, 1]3, the mass, stiffness, and the nodal forces
in the element level can be computed as:

Me =

∫

Ωe

NeT ρeNedv

= ρe
N1+1
∑

i=1

ωi

N2+1
∑

n=1

ωn

N3+1
∑

k=1

ωkN
e(ξi, ηn, γk)

TNe(ξi, ηn, γk) det(J
e
ink), (6.28)

Ke =

∫

Ωe

BeTDeBedv

=

N1+1
∑

i=1

ωi

N2+1
∑

n=1

ωn

N3+1
∑

k=1

ωkB
e(ξi, ηn, γk)

TDeBe(ξi, ηn, γk) det(J
e
ink), (6.29)

f̄ej =

∫

Ωe

NeT f̄sj dv

=

N1+1
∑

i=1

ωi

N2+1
∑

n=1

ωn

N3+1
∑

k=1

ωkN
e(ξi, ηn, γk)

T f̄sj (ξi, ηn, γk) det(J
e
ink). (6.30)

In the equations above, ωi are the quadrature weights, N1, N2, and N3

are respectively, the degree of polynomials in the directions of ξ, η, and γ. The
results obtained in the wavelet domain have to be transformed back to the space
of the approximation coefficients, and subsequently to real time, similar to the
procedure outlined in Chapter 5.

A graphical implementation of the approach is shown in Figure 6.1. Each
decoupled system of linear equations (SLEs) includes a different dynamic stiff-
ness matrix as a linear combination of the mass, the damping and the stiffness
matrices in accordance with Equation (6.26). To summarize the entire solution
procedure, the following steps have to be taken to solve a problem.

Step 1: Computation of the approximation coefficients of the wavelet trans-
form at the resolution level zero, in accordance with Equation (3.37).

Step 2: Computation of the connection coefficients for construction of matrices
Λ0 and Λ2 in Equation (6.14).

Step 3: Finding the wavelet frequencies ω̄j in Equation (3.47), to be used in
Equation (6.26).

Step 4: Transformation of the input functions, e.g. applied forces, using Equa-
tion (6.15).

Step 5: Construction of the finite element matrices K, M, and C in Equation
(6.27).

Step 6: Formation of the dynamic stiffness matrix of Equation (6.26) at each
wavelet point j.

Step 7: Solving the linear system of algebraic equations (6.26) for each wavelet
point.

Step 8: Back-transformation to real time.
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Figure 6.1: The wavelet-based spectral formulation of finite element methods.
The spatial discretization can be performed using a finite element scheme, e.g.
SEM. The resulting stiffness, mass, and damping matrices are fed into the
wavelet-Galerkin based solver, which in essence, is responsible for the temporal
discretization of the problem. For dealing with complex geometries, the finite
element model can also be constructed in commercial software.

6.3 Some Remarks about the Wavelet-based Spec-

tral Finite Element Method

In order to better understand the introduced wavelet-based spectral finite ele-
ment method (WSFEM), some of its computational aspects are outlined in this
section.

1. The WSFEM can be implemented in parallel, since there is no connection
between the computations at different time steps2. The maximum speed-
up factor which can be achieved using parallel computing can be estimated
from Amdahl’s law [Amdahl, 1967]. If there is no limitation on the number
of available CPUs and the memory bandwidth for parallel computations,
the limit speed-up factor will be equal to the reciprocal of the portion of
the algorithm that cannot be parallelized3. In practical applications, the
solution time may also depend on the size of the problem to be solved,
the CPU(s) cache, the available memory size, and the memory type, see
Appendix D.

2. Improved accuracy in the temporal discretization can be achieved by both

2In both explicit and implicit time-domain schemes, the time marching procedure makes
the solution at each time step dependent on the solution at the previous step(s), and sometime
current step, making the parallelization impractical.

3For example, assuming that the parallelizable portion of the problem is 90% the entire
solution of the transient problem, the solution cannot be sped up more than 10 times, irre-
spective of the number of processing units.
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increasing the number of sampling points, and increasing the wavelet or-
der.

3. The temporal discretization is independent of the spatial discretization. In
a typical elastic wave propagation problem, no more than few hundreds of
temporal sampling points are usually required to capture the frequencies
of interest within the time window of interest, i.e. shorter time windows
for high frequency problems, and vice versa.

4. The transformation operators can be computed once and stored for large
number of temporal sampling points, since the transformation operators
are independent of the physical properties. As a rough estimation, the
forward and the inverse projections for a few hundreds of sampling points
take a normal processor a fraction of a second to compute.

5. Frequency-dependent damping models are, contrary to both implicit and
explicit Newmark time integration schemes, straight-forward to apply in
the WSFEM.

6. Unlike the frequency domain spectral methods, the WSFEM is free from
additionally-imposed conditions such as periodicity. The results in the
transformed domain can hence be accurately reconstructed in the time
domain, as confirmed by the results in the next sections and also chapters
4 and 5.

7. Similar to the time domain methods, all finite element schemes currently-
used for linear elasticity problems, e.g. SEM, NURBS-based FEM [Hughes
et al., 2008], or finite element models from commercial software, can be
adopted into the WSFEM formulation. This makes the approach flexible
in dealing with various engineering applications.

8. The WSFEM, as a result of its spectral formulation, does not present
significant numerical dispersion, see the numerical verification in Appendix
C.

9. Similar to time-domain SEM, capturing surface waves does not require
additional treatment in the formulation and the free surface boundary
conditions are naturally imposed in the finite element formulation of the
problem.

10. Non-zero initial conditions are not straight-forward to deal with. As dis-
cussed in Chapter 3 however, wave propagation problems in structural
health monitoring (SHM) nearly always meet the zero initial conditions.
In case initial conditions are not zero and important to consider, the meth-
ods mentioned in Section 3.4 may be applied.

11. The method is not suitable for nonlinear problems.
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As a general remark, in the absence of parallel computation facilities, de-
pending on the problem under investigation, the WSFEM may or may not be
faster than the explicit Newmark scheme. This also strongly depends on the
efficiency of the solution techniques employed for solving linear systems of equa-
tions schematically shown in Figure 6.1. Optimized techniques can speed up the
WSFEM solution time. If, for example, SEM is utilized for spatial approxima-
tion, only the diagonal components of the dynamic stiffness matrix change at
each wavelet point, hence, an appropriate factorization may substantially reduce
the computational time of the WSFEM.

6.4 Validation: Lamb waves in an infinite alu-

minium plate

The developed WSFEM was validated through a number of numerical and an-
alytical solutions of 1D, 2D and 3D problems. As an example, predictions of
the present method for the benchmark problem in Ha and Chang [2010] are
compared to the exact results. The problem of interest is the time domain sim-
ulation of the propagation of fundamental Lamb wave modes in an aluminum
plate with thickness of 1 mm. The excitation force is a narrow-banded burst
with central frequency of 50 kHz, applied as point load tangent to top free sur-
face of the plate. Following Ha and Chang [2010], the plate dimensions are
chosen sufficiently large so that the reflections from the edges do not appear in
the time window of interest, i.e. 200 µs. In the WSFEM, the number of time
samples was chosen as L = 300, the SEM order Nx = Ny = 5 and Nz = 3,
where z is the direction perpendicular to the free surfaces of the plate. The
result, which is the displacement component in the same direction as the point
load, on the top surface, and 152.4 mm away from the source, can be observed
in Figure 6.2 showing a good agreement with the analytical solution. The first
wave packet in the time window shown is the fundamental symmetric mode S0,
and the second envelope traveling at a lower speed is the fundamental antisym-
metric mode. Note that the small discrepancy in the two plots, which was also
observed by Ha and Chang [2010], may be attributed to the finite size of the
model in the numerical simulation.

6.5 Case Study I: A 3D Aluminum Beam-like

Structure

The accuracy and convergence properties of the WSFEM are discussed in this
section. An aluminum bar with length, width, and thickness of 200, 20, and
1mm, respectively, is considered with the modulus of elasticity, Poisson’s ratio
and density of 70GPa, 0.3, and 2700kg/m3, respectively. A schematic represen-
tation of the structure, loading, boundary conditions, and the global coordinate
system is given in Figure 6.3.
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Figure 6.2: Comparison of the 3D WSFEM results with analytical results of
Lamb waves generated by a point load on a free surface of a plate structure
published by Ha and Chang [2010].
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Figure 6.3: The sample 3D structure: the structure is clamped at four points
in all degrees of freedom, and the external point load fext(t) is applied in x-
direction, as shown in the figure.
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Figure 6.4: The loading function and its frequency spectrum: the duration of
the pulse in the time domain is 50µs, and in the frequency domain nearly 50kHz.

At the excitation point located at the coordinate (−100, 0, 0)mm, the struc-
ture is subjected to a wide-banded load pulse, which is shown in Figure 6.4
along with its frequency transform. The signal has no major frequency beyond
50 KHz, and the simulation time is 200µs.

Since the problem is formulated in a transformed domain, it is of interest
to observe what the inputs and outputs, i.e. forces and displacements, look
like in the transformed domain. The transformed force, c.f. Equation (6.15), is
plotted in Figure 6.5 for the wavelet order N = 6 and 128 temporal sampling
points, i.e. L = 128. As mentioned earlier, the transformed force has both real
and imaginary components. The larger amplitude of the transformed force at
smaller wavelet points expresses the greater contribution of these wavelet points
in the system response. It is also known that each wavelet point corresponds
to a complex wavelet frequency. This correspondence, which is demonstrated
in Figure 6.6, can facilitate physical interpretation of the solution procedure,
as will be seen later in this section. As a general remark, the wavelet points
numbering can be performed differently than that of shown in Figure 6.6; the
wavelet frequencies can be viewed as the eigenvalues of some connection coeffi-
cient matrices which can be ordered in different ways, e.g. in an increasing or
decreasing order. Hence, for interpretation of the results in the transformed do-
main, consideration of the wavelet point-wavelet frequency relation, e.g. Figure
6.6, is always necessary. Moreover, it can help the reader to make analogy with
the Fourier frequency domain.

The accuracy of the WSFEM is evaluated by comparing the displacement
response of the beam-like structure at the excitation point, to the SEM equipped
with Newmark explicit time integration. In both methods, the structure is
spatially discretized to 20×2×1 spectral elements with basis functions of order
5 in x- and y-directions, and order 2 along z. The critical time step size of the
ETI is about 0.06µs, equivalent to having 3332 time steps in the 200µs window
of interest. To create a reference solution, the time step size in ETI is chosen
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Figure 6.5: The transformed load in the wavelet domain, with real and imagi-
nary components.
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Figure 6.6: The wavelet frequencies versus wavelet points.
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Figure 6.7: The displacement response of the waveguide in the length-wise di-
rection.

as nearly 15% of its critical size. The displacement response of the structure in
the x-direction at (100,0,0)mm denoted by u, is shown in Figure 6.7.

Excellent agreement between the two methods, the DWG-based scheme and
ETI, can be observed in Figure 6.7. In the DWG with order 6, only 128 time
samples are used. Depending on the desired sampling frequency, smaller values
of L are still possible. In order to quantify the difference in the two responses
shown, the root mean square (RMS) deviation is computed as:

RMS =

(

∫ tend

0
[u(t)− uref (t)]

2
dt

∫ tend

0
[uref (t)]

2
dt

)
1
2

. (6.31)

In the example shown (Figure 6.7), the RMS deviation of the WSFEM from the
reference solution is 0.0012, i.e. almost identical to the reference solution, as the
similarity is equal to 1-RMS, i.e. the responses are 99.88% similar. Note that the
integrals in Equation (6.31) were computed numerically using the trapezoidal
rule.

The convergence of the DWG-based SEM was evaluated, and for each dis-
cretization scheme, the deviation of the response from the reference solution was
computed in the RMS sense. A similar analysis on the same spatial grid was
also performed for ETI, and the results are shown in Figure 6.8.

Superior convergence of the DWG-based SEM can be observed in Figure 6.8.
The solution parameters are similar to the previous example. Unlike the DWG,
the ETI suffers from conditional stability, thus, the ETI-based solution diverges
if the time step size is larger than 1µs. The difference in the required number of
sampling points between the DWG and the ETI becomes drastic for fine meshes
as shown in Figure 6.9. This can make the present formulation of the WSFEM
advantageous for larger numbers of degrees of freedom. Note that the FE mesh
in Figure 6.9 is uniformly refined, i.e. the aspect ratio of the elements is kept
constant in the mesh refinement process.
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Figure 6.10: The real and imaginary components of the transformed displace-
ment response in the length-wise direction. The displacement amplitudes are in
agreement with the transformed applied force amplitudes in Figure 6.5.

The transformed-domain displacement response of the structure in the x-
direction at (100,0,0)mm for L=128 is demonstrated in Figure 6.10. As ex-
pected, the response in the transformed domain is complex. The imaginary
component of the response however, vanishes when it is transformed back to
time (Figure 6.7), i.e. the inverse DWG weights the transformed-domain re-
sponses in such a way that the imaginary components cancel out, and create a
real-valued response in time.

To better illustrate the transformed-domain response, three wavelet points
0, 64, and 127 are considered (L=128). The displacement of the upper surface
of the structure in the y-directions denoted by v, is plotted in Figure 6.11. The
magnitudes of the real and imaginary components are shown separately. It can
be clearly seen that at the first wavelet point, i.e. j = 0, the structure present a
low frequency response (Figure 6.11-a). A higher frequency response is captured
at j = 64, as shown in Figure 6.11-b. By looking at the amplitudes however,
this response does not seem to contribute as much as the response at j = 0 in
the time-domain solution. At the last wavelet point, i.e. j = 127, the response
is completely dominated by smaller wavelengths corresponding to the highest
frequency which is captured by the considered discretization (Figure 6.11-c).
It will be shown later in this section that elimination of the responses at the
wavelet points 64 and 127 in the response reconstruction in time does not visibly
influence the results.

The reconstructed time-domain response can be obtained by certain reshuf-
fling of the solutions in the transformed domain, i.e. a weighted superposition
in accordance with the DWG. The reconstructed response at 46.8µs and 156µs
are demonstrated in Figure 6.12. Similar to the previous example, the contour
plots show the magnitude of the displacement of the top surface of the structure
in the x- and y-directions. Due to the relatively high frequency content of the
excitation pulse, elastic waves propagate throughout the structure.
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(a)

(b)

(c)

Figure 6.11: The transformed displacement response at the upper surface at
three wavelet points; (a) j = 0, (b) j = 64, and (c) j = 127.

(a)

(b)

Figure 6.12: The time-domain displacement response at the upper surface; (a)
t = 46.8µs, and (b) t = 156µs.
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Figure 6.13: Effect of thresholding. The thresholding is based on neglecting the
response at the wavelet points in which the transformed applied force has no
major component, c.f. Figure 6.5.

The question to be answered yet is that how many of the responses in the
transformed domain are required for reconstruction of the response in time,
since the contribution of the responses does not appear to be equal. Using a
thresholding scheme, the influence of the responses with small amplitudes in
the response reconstruction is studied. As shown in Figure 6.5, four differ-
ent threshold levels (T1 to T4) are considered for the transformed input load.
Contribution of the responses at the wavelet points (wavelet frequencies) the
transformed load component of which is below the threshold limit is thus ne-
glected. This means that only a subset of the equations shown in Figure 6.1
need to be solved, while the rest of the responses are formally set to zero. This
investigation is demonstrated in Figure 6.13.

According to Figure 6.13, the thresholding can save a substantial computa-
tional power by reducing the number of equations to be solved. Using threshold
levels T4 and T3, which result in solving nearly 40% and 30% of the entire 128
SLEs respectively, the reconstructed solution reproduces the solution of the full
system perfectly. Threshold level T2 however, which solves approximately 20%
of the SLEs, undergoes minor deviations from the full solution. This is certainly
a substantial saving as such a transient problem is solved at only 24 points. By
further reducing the solution points in number, the threshold T1 filters out some
important information about the system and hence, results in an imperfect re-
construction of the response in time. It has to be noted that the choice of an
appropriate threshold is a subjective task and needs to be done in accordance
with the structural properties, loading conditions, maximum frequency to be
captured, and the desired accuracy.
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6.6 Possible Techniques for Speeding up the Pro-

cedure

In addition to the use of thresholding, with which a substantial savings in the
computational power can be achieved, certain techniques may be adopted to
reduce the computational time of the WSFEM. In the presented approach based
on SEM for spatial discretization, since the mass matrix is diagonal, by means
of a fixed reordering of the dynamic stiffness matrix at all solution steps, c.f.
Equation (6.26), using column count, or minimum degree methods [Strang,
2007], the solution can be made faster to some extent. It is however, believed
that considerable computational time can be still saved in the WSFEM, if the
dynamic stiffness matrix at each step is factorized effectively as the summation
of a fixed positive definite stiffness matrix K and a fixed diagonal mass matrix
M, according to Equation (6.26). This study however, is beyond the scope of
this dissertation due to time constraints. Note that in any case, the solution
time of the WSFEM is inversely proportional to the number of available parallel
processors, excluding the data transfer time.

Even in the absence of parallel computation facilities, since the presented
method is essentially different from the explicit Newmark time integration, no
general conclusion can be drawn on the total simulation time without consider-
ing all influential solution parameters in the two schemes. For special cases such
as structures having frequency-independent proportional damping with β̄j = 0,
c.f. Equation (6.27), since the mass matrix of SEM is diagonal, the solution at
each time step is very efficient in the ETI. In more general cases however, such
as frequency dependent damping models in which the damping matrix is a linear
combination of the mass and the stiffness matrices, the ETI requires to factorize
a matrix being as sparse as the stiffness matrix, at each time step. Since the
solution at each step takes exactly the same time in the ETI and the DWG,
the latter that needs substantially fewer number of sampling points is preferable
even in the absence of parallel computation facilities. Also for structures having
a very large number of degrees of freedom, storing the factorized matrices for
ETI may not be justified and iterative solutions may have to be employed. In
this scenario also, the presented formulation is inherently advantageous.

6.7 Case Study II: A Multilayer Composite Struc-

ture

The next case study is devoted to 3D simulation of wave propagation in a thick
composite plate. The specimen was a graphite epoxy panel as shown in Figure
6.14, with the ply stacking sequence [04, 904, 904, 04] with 0◦ in the x-direction,
and length, width and thickness of 200mm, 200mm, and 4mm, respectively. The
material properties were as given in Section 2.2.3. At point M located at the
mid-point of the top surface, the plate was subjected to two point loads with
the profile shown in Figure 5.4-b, along x- and z-directions. The structure was
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Figure 6.14: The model of the composite plate: (a) the 3D view and the coor-
dinate system, (b) the view of the top surface of the plate, and (c) the left view
of the specimen.

constrained at 4 points in all translational degrees of freedom along x, y, and
z, respectively denoted by u, v, and w. The total simulation time was 150µs
and discretized at 50 points, i.e. L = 50. For the temporal discretization, the
wavelet-Galerkin method with the Daubechies wavelet order N = 6 was utilized.

For the spatial discretization, SEM was employed. The thickness-wise direc-
tion y of the plate, which is composed of four homogenous regions of 0 or 90◦

fibers, was discretized into 4 sub-domains with interpolation order Ny = 3. The
x − z plane was also discretized into 6 × 6 subdomains each of which having
interpolation order Nx = Nz = 5. As a results, the finite element model was
constructed with 6×4×6 = 144 3D SEM elements each of which had 144 nodes,
and each node had 3 DOFs. The selection of the current mesh is based on con-
sidering at least 6 nodes per wavelength of the SH0 waves in the waveguide, at
50kHz as the upper limit of the driving frequency4.

The displacement response components, i.e. u, v, and w, of the structure at
points A, B, C, and D, as the mid-points of the edges of the top surface of the
plate, is illustrated in Figure 6.15. The components of the displacement u and
w appear to be dominated by the fundamental P, i.e. S0, and the fundamental
SH waves, i.e. SH0, whereas v takes place mostly as a result of the propagation
of the fundamental shear vertical waves, i.e. A0. For example, the displacement
components u at point A and w at point B indicate that SH0 waves are the
dominant waves received at these points. From the component u at point B and
w at point A, dominance of the S0 waves can be observed. Note that the group
speed curves for the Lamb wave modes for this analysis can be extracted from
the formulation presented in Chapter 2.

The through-the-thickness distribution of the displacement field at the loca-

4Although the wavelength of A0 waves is generally smaller than the wavelength of SH0
waves and hence, should be the basis of the calculations for the minimum number of grid
points per wavelength, the response to the used wide-banded excitation is dominated by the
lower frequency components having larger wavelengths.
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Figure 6.15: The displacement response of the composite plate at points A, B,
C, and D as the mid-points of the edges of the top surface of the plate, see
Figure 6.14.
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Figure 6.16: Distribution of the displacement components of the composite plate
along the trajectory P-P′ (see Figure 6.14) at time 33µs.

tion P-P′ is demonstrated in Figure 6.16. Some facts can be extracted from the
shown plots. The symmetry of w at t = 33µs reveals that the fundamental P
waves, i.e. S0, have reached point P before this time. The displacement compo-
nent u however, was very small, meaning that the SH waves, which have a lower
group speed, either did not arrive yet, or just arrived. The antisymmetry of
the displacement component v shows that the plate contracts in the thickness-
wise direction. This happens since the laminate is relatively thick, which makes
the product of the laminate thickness and excitation frequency fairly large and
further activates the thickness contraction mode. The discussions in Chapter 4
of this dissertation can facilitate interpretation of identification of these effects
from the displacement field obtained.

The resulting stress and strain fields at any arbitrary time can be recov-
ered from the formulations. Once the nodal displacements are obtained at an
arbitrary instant, the strain values at the element level denoted by ǫ

e can be
directly computed from:

ǫ (Ωe) = Be (Ωe)q
e, (6.32)

where Be is given in Equation (6.25). At t = 33µs, the strain field was computed
at point P, as illustrated in Figure 6.17. As a consequence of the C0 continuity
of the through-the-thickness displacement distribution due to inhomogeneity in
y−direction, some strain components, e.g. ǫy, are discontinuous. For further
insight into the through-the-thickness effects, the stress field was also obtained
as shown in Figure 6.17. The stress field can be readily retrieved from the strain
field using the constitutive matrix C.

By looking at the stress distribution, it can be observed that at t = 33µs,
both of the two existing modes passing through the trajectory P-P′ were funda-
mental symmetric ones, the dominant mode of which was the S0 wave charac-
terized by σz. The SH0 waves, which were characterized by σxz, were not zero,
but had small values, thus just arrived.

Similar studies were performed next for t = 58µs. The displacement field,
which is demonstrated in Figure 6.19, showed that at this instant, the SH waves
characterized by the displacement component u appear in their fundamental
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Figure 6.17: Distribution of the strain components of the composite plate along
the trajectory P-P′ (see Figure 6.14) at time 33µs. All the units are nm/m.

symmetric mode. The displacement component w however, illuminated a com-
bination of the fundamental symmetric, i.e. S0, and the fundamental antisym-
metric, i.e. A0, modes. At time t = 58µs, no significant contraction effect was
observed from the displacement component v.

In the strain field at t = 58µs shown in Figure 6.20, there were significant
changes compared to the strain field at t = 33µs. The most important ones
were the growth of the shear strains ǫxz and ǫxy, which lead to increase in the
corresponding shear stresses. This can be seen in Figure 6.20, in which the
stress distribution at t = 58µs along P-P′ is demonstrated.

From the distribution of stress at t = 58µs, it can be observed that the
dominant mode was antisymmetric, which was characterized by σz. The other
propagating antisymmetric mode is a shear horizontal wave, i.e. SH1, associated
with σxz. In addition to these two modes, there are two symmetric modes
characterized by the stress components σyz and σxy.

Although not studied in this chapter, a delamination changes the stress dis-
tribution in a composite structure, which depending on its severity and the type
of the diagnostic waves, may act as an obstacle reflecting a part of the incom-
ing wave packet. Study of the behavior of composite materials as waveguides
in ultrasonic regimes can improve interpretation of the reflected and refracted
waves for identification of the extent, and the through-the-thickness positioning
of delaminations.
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Figure 6.18: Distribution of the stress components of the composite plate along
the trajectory P-P′ (see Figure 6.14) at time 33µs. The symmetric and anti-
symmetric waves can be distinguished in the figure.
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Figure 6.19: Distribution of the displacement components of the composite plate
along the trajectory P-P′ (see Figure 6.14) at time 58µs.

108



6.8. Concluding Remarks

−1 0 1 2 3
0

1

2

3

4

 ε
x 

 y
  (

m
m

)

−40 −20 0 20
0

1

2

3

4

 ε
y 

 y
  (

m
m

)
−50 0 50 100
0

1

2

3

4

 ε
z 

 y
  (

m
m

)

−6 −4 −2 0 2
0

1

2

3

4

 ε
yz

 y
  (

m
m

)

−30 −20 −10 0 10
0

1

2

3

4

 ε
xz

 y
  (

m
m

)

−100 −90 −80 −70
0

1

2

3

4

 ε
xy

 y
  (

m
m

)

Figure 6.20: Distribution of the strain components of the composite plate along
the trajectory P-P′ (see Figure 6.14) at time 58µs. All the units are nm/m.

6.8 Concluding Remarks

The generalization of the wavelet-based spectral formulation of the finite ele-
ment method for 3D elastic wave propagation problems was demonstrated. The
approach combines the standard finite element method for spatial discretiza-
tion of the governing wave equations, with a wavelet-based spectral analysis
for the temporal discretization, on the basis of their complementary merits.
By employing the wavelet-Galerkin method, the variational principle of virtual
work was temporally discretized and expressed in a transformed domain. The
variational problem was further reduced to a set of temporally independent
problems, which can be solved in parallel. A higher-order pseudo-spectral finite
element method, i.e. spectral element method (SEM), with hp-refinement ca-
pabilities was adopted for the spatial discretization to achieve the possibility of
dealing with complex 3D geometries, anisotropy, and heterogeneity. The numer-
ical investigations carried out suggest that the approach is stable with respect
to the temporal discretization, and the temporal sampling rate is hence, only
dependent on the highest frequency of interest to be captured. Through 3D
numerical examples, the functionality of the approach was studied. Also the su-
perior convergence properties of the WSFEM were shown. Possible approaches
for improving the solution time of the WSFEM were also discussed.
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Figure 6.21: Distribution of the stress components of the composite plate along
the trajectory P-P′ (see Figure 6.14) at time 58µs. The symmetric and anti-
symmetric waves can be distinguished in the figure.
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Chapter 7

SHM Based on Guided

Ultrasonic Waves

In chapters 2 to 6, some analytical and numerical tools for understanding the
underlying physics, and simulation of wave propagation in thin-walled structures
were developed. The key question however, has not yet been answered: how
can one use this knowledge in an autonomous fashion to monitor structural
integrity?

As discussed in Chapter 1, every structural health monitoring (SHM) system
is composed of a number of major components including the hardware, signal
processing tools, forward modeling, and inverse solution. Intensive research has
been carried out on these issues, see for example Inman et al. [2004], Staszewski
et al. [2004], Balageas et al. [2006], Giurgiutiu [2008] and Boller et al. [2009].
A concise review of the commonly-employed SHM methods was provided in
Chapter 1, and ultrasonic wave propagation-based SHM was selected for the
applications of interest. Forward modeling was investigated in detail in chap-
ters 2 to 6, by providing background knowledge about structures as waveguides
and propagation of ultrasonic waves in structures, along with improved tech-
niques for simulation of elastic wave propagation in 1D, 2D, and 3D metallic
and composite structures.

An exploration of the relation between the above-mentioned components in
wave propagation-based SHM approaches, and some of their challenging aspects
are discussed in the present chapter. A number of signal processing tools for fea-
ture extraction, denoising, and signal windowing, which are generally required
for SHM approaches and are used in the subsequent sections of this chapter, are
briefly outlined. Next, SHM is discussed as an intrinsically ill-posed problem,
and some major challenges in implementation of a SHM system are highlighted.
To avoid dealing with SHM as an inverse problem with stability and uniqueness
issues, the time reversal (TR) approach developed by Fink [1992] is introduced.
The TR approach is a focusing technique for detection of disturbance sources
in ultrasonic wave fields. The TR method is implemented in a passive model-
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based fashion to construct a baseline-free framework, which is, contrary to most
conventional SHM methods as discussed in Chapter 1, robust against changes in
the environmental and operational conditions. The passive TR has limitations
in dealing with non-local defects, or the damage types which do not cause signif-
icant structural discontinuity, e.g. corrosion. Such limitations however, do not
apply to most typical damage types in composite materials, e.g. delamination,
as they are intrinsically discontinuities in the waveguide and often localized in
nature.

Possible applications of the TR in SHM are discussed next, and a roadmap
for implementation of a TR-based SHM approach for practical applications is
drawn. The chapter ends with two case studies that are used to demonstrate
the outlined TR approach and the use of the signal processing tools. The fist
case study deals with the load source identification in a real composite plate.
The second example is devoted to delamination identification in a composite
beam the response of which is simulated using the 3D wavelet-based spectral
finite element method (WSFEM) formulated in Chapter 6. The TR-based ap-
proach, the concept of which is schematically illustrated in Figure 7.1, performs
successfully in both cases, and detects the location of the external load and the
defect with an acceptable accuracy.

7.1 Signal Processing for Feature Extraction and

Denoising

Before implementing a SHM system, the major components that are not ad-
dressed in the previous chapters of this dissertation, need to be introduced.
Signal processing, as mentioned earlier in this chapter, is one of the substantial
elements of SHM systems. In GUW-based SHM, the diagnostic waves propagat-
ing through a structure carry information about the structural integrity. These
signals are, when reordered at a specific sensor location, mostly in the form of
one-dimensional arrays. One needs somehow to translate these arrays, in order
to extract physically-sound information for SHM. In case where damage exists
for instance, proper algorithms may be required to remove noise, capture the
scattered and reflected wave packets, compute the arrival time, i.e. time of flight
(TOF)1, extract the amplitudes, and find the possible phase shift for detection
of the damage fingerprint [Staszewski et al., 2004]. This process is generally

1Various techniques exist to calculate the TOF of a wave envelop, such as the signal energy-
based onset time picking [Moll et al., 2010], the threshold-based double peak technique [Seydel
and Chang, 2001], the cross-correlation between the actuator and the sensor signals [Seale
et al., 1998], and time-frequency methods [Staszewski et al., 2004]. Among these methods,
the cross-correlation seems to be the most extensively-used technique. The cross-correlation
of two 1D arrays f and g is defined as:

(f ⋆ g) [n] =
∞
∑

m=−∞

f∗[m]g[n+m]

where n is the lag, and * denotes the complex conjugate.
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Experiment 

Forward model 

Signal Processing 

Iden7fica7on scheme 
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wavelet-based denoising 

windowing 

the processed signal 

The WSFEM, 1D, 2D, or 3D  

(chapters 4,5, and 6) 

(chapters 3 and 7) 

The passive TR (Chapter 7) 

the time-reversed signal 

Figure 7.1: The flowchart of the TR-based approach. The signals gathered
from the hardware are processed, i.e. denoised and windowed, time-reversed,
and fed into a simulation tool. As demonstrated in this chapter, the transmitted
time-reversed waves focus on the discontinuity, e.g. damage, location.
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referred to as feature extraction. Since the focus of this research is mainly on
identifying the location of possible defects, for more information regarding the
features used in estimation of the damage type and severity, the reader is refered
to Staszewski et al. [2004] and Boller et al. [2009].

To determine the location of localized defects in homogeneous and isotropic
waveguides, e.g. fatigue cracks, after removing the unwanted features from the
signals, a triangulation scheme is often employed. In the triangulation pro-
cess, the arrival time of reflected wave packets can be readily mapped onto a
distance space by using the dispersion curves of the waveguide, to determine
the location of a structural discontinuity. The amplitudes of the wave packet
together with the phase shift may provide information about the damage type
and severity, when compared to a numerically- or experimentally-constructed
damage fingerprint. In anisotropic waveguides, as demonstrated in Chapter 2,
the wave-fronts are generally not circular, and the waves are mainly dragged
in the direction of the fibers. In an extreme case where the structure is non-
homogeneous and anisotropic, e.g. advanced composite structures, the propa-
gation speeds and frontiers may also change throughout the structure, making
the traditional triangulation-based methods inefficient in finding the defects.

7.1.1 Multiresolution Wavelet Analysis for Signal Denois-

ing

Another significant application of signal processing in SHM is in signal denois-
ing. Irrespective of the SHM method used, signals gathered from experiments
are contaminated with noise. The noise due to the test hardware, environmen-
tal conditions, imperfect boundary conditions, not-exactly-known material and
structural properties, etc., is usually mingled with the structural integrity in-
formation carried by the guided waves. Among several denoising algorithms
developed over the past decades, the wavelets multiresolution scheme has gar-
nered significant attention in the SHM community [Rizzo and di Scalea, 2006a,
Staszewski et al., 2004, Giurgiutiu, 2008, Abbate et al., 1997]. The wavelets
MRA the theory and features of which was presented in Chapter 3, will be used
in this dissertation for noise removal purposes.

To eliminate the noise at the desired frequency band, standard operations of
thresholding and pruning are utilized in the wavelets multiresolution analysis,
[Rizzo et al., 2005]. As explained in Chapter 3, the discrete wavelet transform
represents the signal at different frequency bands, see Figure 3.1 and Equation
3.18. Pruning refers to the direct removal of unwanted frequency bands from the
signal, by setting the detail coefficients at the corresponding resolution levels,
i.e. frequency band, to zero, i.e.:

Prj (f,m) =
∑

k

cj,kϕj,k +
∑

i=m

∑

k

di,kϕi,k ; ∀k ∈ Z. (7.1)

where cj,k and dj,k respectively denote the approximation coefficients and the
detail coefficients of the wavelet transform at resolution level j, and m denotes
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the pruning level(s). Note that Equation (7.1) has essentially been derived from
Equation (3.18) in Chapter 3.

Pruning of a signal requires caution since some significant information may
be discarded if it is misinterpreted as noise. Depending on the noise level and
frequency, and also the frequencies of interest, different scales of wavelet decom-
position may be required. For more elaborate discussions on this matter, the
reader is referred to Rizzo and di Scalea [2006a].

Thresholding, as a complementary operation, deals with the elimination of
some selected components in the wavelet transformed signal that pertain to
noise. The basic assumption in thresholding is that at each wavelet resolution
level, which is identified as a main frequency band, the detail coefficients smaller
than a prescribed value represent noise, i.e.:

Tr (dj,n, tr) =

{

0 if dj,n < tr ×max
k∈Z

(dj,k)

dj,n if otherwise
(7.2)

where tr is the threshold level. The threshold values can be assigned inde-
pendently to different resolution levels, i.e. frequency bands, to optimize the
denoising scheme. In other words, at some frequency ranges of interest only
the amplitudes larger than an acceptable signal-to-noise ratio are kept using
thresholding while the other frequency bands are removed using pruning. It
should be noted that optimization of the pruning and thresholding parameters
is, to some extent, an empirical procedure and the optimum values may vary
with working conditions, i.e. the type of the noise source(s) and the frequency
spectrum of the noise. It is apparent that if the frequency range of the noise
is completely unknown, all denosing schemes including the wavelet multiresolu-
tion analysis may remove some important information about the system or the
possible defect.

7.1.2 Signal Windowing

The signals collected from the actual hardware carry information which may be
only partially useful. For example, it is very difficult to interpret the wave pack-
ets, after interaction with the structure boundaries. It is therefore important
to focus on a specific part of the signal under investigation, and eliminate the
rest of the signal. A Gaussian multiplicative window is used in this dissertation,
which is defined by:

Wg(t) =























0 if t < t1 − Tg
e−(t−t1)

2/2σ2

if t1 − Tg ≤ t < t1
1 if t1 ≤ t < t2

e−(t−t2)
2/2σ2

if t2 ≤ t < t2 + Tg
0 if t > t2 + Tg

(7.3)

where t1 and t2 are the beginning and the end time of the window, Tg is the
length of the window transition, and σ is the coefficient controlling the width of
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the Gauss function. Note that although a rectangle function can also be used
for windowing, it may bring spike signals with a high frequency content that
adversely affect the accuracy of the analysis.

7.2 SHM as an Inverse Problem

Structural health monitoring is intrinsically an inverse problem. Inverse meth-
ods in structural integrity evaluation combine a mathematical model of the
structure and the measured data to update the model based on certain assump-
tions for the damage model [Friswell, 2007]. There are often challenges in dealing
with inverse problems, since they are ill-posed in a general sense [Uhl, 2007]. In
SHM, this issue is intensified by the limited temporal and spatial measurements
gathered from the structure under evaluation. In other words, the structural
response can, in practice, only be obtained at certain locations in which the
sensors are installed, with a certain sampling rate determined by the type of the
sensors and the data-acquisition system. Due to the dispersive, multimodal and
direction-dependent nature of the GUW in an anisotropic thin-walled structure
(discussed in Chapter 2), these signals are often very complicated to analyze
and interpret using time-delay techniques.

If the SHM problem is interpreted as identification of a black-box, the re-
sponse of which is known only to a limited number of inputs, the problem can be
ill-posed, i.e. a solution may not exist, may not be unique, or may be unstable
due to oversensitivity to noise. Appropriate strategies are required to cope with
the ill-posedness in SHM problems. The inverse SHM problem can be treated
as an optimization problem in which the structural properties at each spatial
point are the design variables, and the discrepancy between the response at
the sensor locations and the predicated model is to be minimized. Although
employing regularization technique [Busby and Trujillo, 1997] may improve the
solution, this is still not feasible within the SHM framework due to the required
computation time and power. For a review of the inverse problem approaches
exploited for structural damage detection so far, the reader is referred to Inoue
et al. [2001].

In addition to the complexity of the optimization problem to be solved, an
inverse problem approach makes the SHM scheme highly dependent on the base-
line response. An investigation by Sohn [2007] revealed that baseline-dependent
SHM cannot be reliably used in practical applications, unless the environmen-
tal and operational conditions, e.g. temperature and loading conditions, are
explicitly accounted for in the SHM system. Apart from the added uncertainty
and complexity, incorporation of these effects, even using low-order approximate
models, can substantially increase the costs of making the computations.

Although not presented here, a baseline-dependent approach for identifica-
tion of fatigue cracks in 1D metallic structures based on minimization of the
differential response at the sensor locations was investigated during the present
research. The investigations were performed for fixed environmental and load-
ing conditions. Some results are demonstrated in Appendix E. As explained
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Figure 7.2: The TRM and the two operation steps of the TR scheme [Fink,
1999]. The left figure shows a source which emanates acoustic waves propagating
throughout the cavity. The right figure shows that even in the presence of
heterogeneity, the time reversed wave field focuses on the source.

above, the limited applications of the procedure to specific damage types, sen-
sitivity to noise, and computational costs, however, led the researcher towards
looking for a more efficient baseline-free technique based on the time reversal
(TR) principle for more complex waveguides, e.g. multi-layered composites. Via
this approach, the ill-conditioned nature of the wavefield inversion is converted
into a well-conditioned forward problem by removing the determinism of the
problem. The theory of TR accompanied by two case studies is explained in the
following sections of this chapter.

7.3 Time Reversal of Ultrasonic Fields

The TR method introduced by Fink [1992] is a focusing method for sonic and
ultrasonic targets in adiabatic processes2. The waves generated by an external
disturbance propagate throughout an anisotropic non-homogenous waveguide
at a spatially-varying speed. As intuitively shown in Figure 7.2, the TR method
reverts the recorded wavefield in time, and the back-propagated field focuses
on the disturbance sources. The TR method is capable of retracing multipaths
[Fink, 1992, Chen and Yuan, 2010], and is hence appropriate for complex waveg-
uides such as fiber-reinforced polymer structures.

To explain the theory of the TR, consider a linear heterogeneous anisotropic
medium characterized by the equation of motion:

Lu+ J ü = 0 in Ω (7.4)

where L is a spatial linear continuous differential operator that reflects the elastic
properties of the medium, J is a matrix containing the inertial properties of

2An adiabatic process is a thermodynamic process in which the net heat transfer to or
from the working material is zero. Such a process can occur if the system has thermally-
insulated boundaries, or the process time is extremely short, so that there is no opportunity
for significant heat exchange.
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 regular mirror phase conjugate mirror

Figure 7.3: Regular mirror versus phase conjugate mirror: contrary to a regular
mirror, a phase conjugate mirror only flips the chronological order of events.

the medium, Ω is the physical region of interest, and u denotes the vector of
the dependent variables, e.g. displacements. The spatial operator L satisfies
the spatial reciprocity, meaning that interchanging the source and the receiver
does not alter the resulting wavefields.

For the development of the TR theory, Fink [1992] took advantage of the
special behavior of the linear lossless wavefields with respect to the temporal
variable; the temporal operator contains only the second-order derivatives. The
principle of the TR, i.e. invariance under the time reversal, states that if the
dependent variables u(x, t) with x ∈ Ω being the spatial coordinate are the
solution to the governing equations of a waveguide, u(x,−t) also satisfies the
equations.

The TR scheme can be viewed as an extended version of phase conjugate
mirrors (PCMs) for monochromatic signals [Fink, 1992], in which the time re-
versal mirrors (TRMs) are placed at the sensors locations. As shown in Figure
7.3, a PCM, contrary to a regular mirror, only reverts the chronological order
of events. When a number of PCMs are considered, based on the time invari-
ance of the TR concept, the back-propagated wavefield converges to the source
location, thereby recovering the disturbance.

7.4 Time Reversal-based SHM Systems

Two major approaches can be followed for SHM systems working based on the
TR principle; active time reversal and the passive time reversal, as described
below.

7.4.1 Active Time Reversal

The active time reversal approach employs both the time invariance and the
spatial reciprocity characteristics of the TR by actually transmitting the time-
reversed signals obtained by the sensors from the actuators. If the structure
behaves linearly, the TR signals should look exactly the same as the original
signal, i.e. the diagnostic wave packet. If damage has occurred however, the
structure may start behaving non-linearly and hence, the time reversal principle
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no longer holds. The existence of the damage in this scheme may hence be
detected by studying the deviation of the output signal from the input signal.

It has to be noted that if one does not use spatial reciprocity, the time-
reversed signals have to be transmitted from the sensor locations, instead of
the actuator locations. The approach in this case is called non-reciprocity-based
time reversal. The spatial reciprocity substantially facilitates implementation
of the TR in a practical situation, since there is no need to switch the sensors
and the actuators.

The active TR presents the advantages of having a straight-forward imple-
mentation, and being free from theoretical models; hence, it can be appealing for
many practical applications in which the mathematical model of the specimen
is difficult to construct. Besides these merits however, the studies by Gangad-
haran et al. [2009a,b] have shown that, if the damage does not break the time
reversibility, e.g. a notch in a metallic plate, the TR-based damage detection
deteriorates. The application of the active TR can hence, be limited by the
following two major issues.

1. Since the maximum amplitudes in the displacement fields are very small,
i.e. orders of magnitude smaller than the waveguide thickness, even the
presence of damage may not lead to significant nonlinear behavior in the
response.

2. The amplitudes of the signals are not always reliable for detection of pos-
sible damage, since the couplings between the sensors/actuators and the
structure are never ideal and can change with environmental conditions.

In such cases, the output signal resembles the input signal but only with ampli-
tude loss. In addition, such active TR-based SHM methods do not address the
location of the damage, which in some applications, may be a crucial issue.

7.4.2 Passive Time Reversal

This passive TR is a model-based approach, the applications of which are grow-
ing rapidly in different areas [Ciampa and Meo, 2012, Wang and Yuan, 2009,
Chen and Yuan, 2010, Mota et al., 2011]. In passive time reversal, the time-
reversed recorded wavefield is not sent to actual hardware, but is fed to a numer-
ical simulation tool. In accordance with the TR principle, the back-propagated
waves focus on the source location(s) in the numerical simulation. The concept
can be clearly understood from Figure 7.2. The passive TR, which does not
use the spatial reciprocity property, is also regarded as a non-reciprocity-based
approach. In comparison with the active TR, the passive TR has the advantage
of being applicable to both linear and nonlinear systems. In addition, since the
focusing of the time-reversed waves can also be captured by the simulation, a
final image can be provided using the passive TR to pinpoint the disturbance
sources, either active, i.e. external excitation or passive, i.e. reflective e.g.
damage. Implementation of the passive TR however, requires reliable and com-
putationally efficient tools to simulate the propagation of the ultrasonic waves.
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Once the challenges of modeling anisotropic heterogeneous layered waveguides
are understood, a passive TR can be a promising baseline-free tool for SHM of
engineering structures.

The link between the previous chapters and the present chapter of this dis-
sertation can be understood from the description of the passive TR provided
above. On the basis of the merits of the passive TR, the methods developed in
chapters 4, 5, and 6 for modeling wave propagation will be utilized in a passive
TR scheme. The connection between the different processing steps of the ap-
proach was presented in Figure 7.1. It should be added that although the theory
of the TR is well-established, there are still challenges in the practical imple-
mentation of the method, which need to be carefully dealt with. The rest of this
chapter is devoted to addressing some of these issues by means of studying the
external force localization and damage identification in composite structures.

7.4.3 Considerations in Using the Passive TR

The passive TR method, from a mathematical point of view, requires the wave-
field to be recorded on an enclosed area, see Figure 7.2, and fulfil the sampling
requirements to avoid aliasing. In many SHM applications, in particular for
aerospace structures, fulfilment of this requirement is not feasible due to the
associated hardware cost and weight. The consequence of not recording the
complete wavefield can be (i) underestimation of the energy released from or
reflected by the sources, and (ii) finding multiple solutions, i.e. multiple focus-
ing points. The first issue arises from not incorporating the energy released
by the source in all directions in the TR model. This issue however, may be
addressed using a correction scheme in another phase subsequent to the source
localization, provided that the amplitudes of the recordings are accurate. The
correction scheme may find the actual amplitude at the source such that the
error at the sensor locations is minimized.

The issue of multiple focusing points is expected to appear due to the pres-
ence of other structural discontinuities, accompanied by an inefficient position-
ing of the sensors. If there are additional structural discontinuities, e.g. free
boundaries, the reflections from the discontinuities also interact in the time-
reversed model and may lead to additional focusing points, that reflect no actual
scattering source. In some applications, such issues may be alleviated to a large
extent using an optimized layout for the sensors, and also using signal processing
techniques to window out the wave packets bounced off the boundaries.

Another important limitation of the passive TR to note is finding continuous
damage types, e.g. corrosion. The passive TR is only efficient in detection of
localized effects, i.e. external forces and discontinuities, since it tends to map
the recorded field to highly localized regions. This limitation however, is not
an obstacle in utilizing the passive TR for SHM of composites as the typical
damage types, e.g. delamination, are essentially structural discontinuities.
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Figure 7.4: The hardware and the test setup [Melo Mota, 2011].

7.4.4 Case Study I: Source Identification Using Passive

Time Reversal

In order to demonstrate the concept of the passive TR, and better illustrate
the application of the presented components of a GUW-based SHM system in
practice, a 200 × 200 × 1 mm3 graphite-epoxy panel with stacking sequence
[0/90/0/90]s was tested in the lab. The results were subsequently used in the
TR-based method, to identify the location of the applied external disturbance
on the panel.

The specimen and the test apparatus which are shown in Figure 7.4 were
the same as those discussed in Section 2.2.3. The structure was freely placed
on four rubber supports at its corners, and thus regarded as not-clamped in
the numerical model. One actuator denoted by a1, and three sensors s1, s2,
and s3, were placed at the locations shown in Figure 7.5. In this experiment,
a1 was a Honda Electronics actuator, and was connected to a signal generator
to create a short pulse. The actuation mechanism is exerting a shearing force
on the structure surface, hence, it predominantly generates the fundamental
symmetric waves, as examined in Section 2.2.3. There was however, no control
over the shape of the signal applied by a1 in this test, i.e. the loading history is
unknown. Sensors s1, s2 and s3 were PICO HF-1.2 PZTs3, and were connected
to the surface of the plate using ultrasonic gel as couplant. A PicoScope 6000
was also used for data acquisition. More detailed information about the test
setup and the verifications performed can be found in Melo Mota [2011].

It is known from chapters 2 and 6 that the wave-fronts in a non-isotropic
waveguide are not circular. The unknown external load pulse, i.e. disturbance,
generated by a1 in this experiment, thus, propagated at different speeds in
different directions, and was recorded by the sensors. The signals gathered
however, were contaminated with noise.

3Lead zirconate titanate material.
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Figure 7.5: Configuration of the sensors and the actuator.
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Figure 7.6: MRA for denoising the signal from sensor s1.
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Figure 7.7: MRA for denoising the signal from sensor s2.

Using the wavelet MRA described in Section7.1.1, the normalized signals
obtained by sensors s1, s2, and s3, were denoised as shown in figures 7.6, 7.7, and
7.8, respectively. In the denosing scheme, the pruning and the threshold levels
are 5 and 0.25. This selection was to filter out very high and very low frequencies
in the signals, which present noise and structural vibrations, respectively. Note
that since the sensors were attached to the structure surface using ultrasonic
gel, the amplitudes obtained by the sensors were not accurate, hence the signals
were normalized and only the TOFs were considered.

The detail coefficients of the multiresolution wavelet analysis, i.e. dk, j for
j = 1 to 5 are demonstrated in figures 7.6, 7.7, and 7.8. Based on the discussions
in Section 7.1.1, only the detail coefficients at the resolution level 5 were kept
in this example. From these coefficients, the thresholding discarded the ones
which were smaller than 25% of the maximum value of d5,k. The signal recon-
struction is thus performed using the remaining detail coefficients, i.e. Pr(d5,k),
together with the approximation coefficients a5,k. In figures 7.6, 7.7, and 7.8,
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Figure 7.8: MRA for denoising the signal from sensor s3.

the normalized signal is denoted by f/f0, and the denoised normalized signal is
denoted by fdenoised/f0.

The signals were expected to be sensed by s1 and s3 at about the same
time, according to the geometry of the plate and the placement of the sensors.
It appears from Figure 7.8 however, that s3 is influenced by some unknown
source of noise such that even after denoising, there is a wave packet around the
sampling point 250. This will be effectively dealt with in the windowing process
later in this section. The fact that sensor s2, although it is further from the
source, receives the signal earlier than s1 and s3 originates from the anisotropy
of the laminate. As demonstrated in Section 2.2.3, the largest propagation speed
of the fundamental symmetric waves occurs along the direction of the fibers, i.e.
0 or 90◦ in this case, depending on the ply. This will be seen later in this section
when the passive TR scheme is applied.

The denoised signals at each sensor location were subsequently windowed.
The beginning of the time window for all three sensors was the same, as it
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Figure 7.9: The passive TR simulation: the time reversed wave field focuses on
the disturbance source.

showed the time origin. The end time of the window however, was different
for each measured signal, and was determined based on the amplitude of the
incoming waves being 35% of the maximum measured amplitude at that mea-
surement point. This selection was empirical and based on detecting the main
wave envelop received at each sensor location, however, slightly higher or lower
values may be also used. Consequent to this selection, the sampling numbers
corresponding to the end of the window for s1, s2, and s3 are 489, 362, and 488,
respectively. Since the signals are time reversed in the TR scheme, the data
samples beyond 489 can be discarded in all signals.

In accordance with the roadmap in Figure 7.1, the resulting signals were
time-reversed and fed into the 2D wavelet-based spectral finite element method
(WSFEM) simulation tool developed in Chapter 5. The mesh pattern in the
WSFEM was 32× 32, the total simulation time was 30µs, the number of tem-
poral sampling points in the wavelet-Galerkin discretization scheme, i.e. L,
was 150. The back-propagated waves with non-circular fronts converged to the
location (0.190,0.114)m at time 29.9µs, shown in Figure 7.9. The indicated
location by the TR scheme, when compared to the actual location of the source
(0.178,0.114)m, shows a promising deviation of about 6.7%. Note that although
less carefully-chosen windowing or denoising parameters may further increase
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this error, the source location may be still narrowed down with certain accuracy.
Similar analyses, not shown, with different disturbance locations were also per-
formed by Melo Mota [2011] with similar success in identifying the disturbance
location.

Some remarks about the example shown above are necessary. As discussed
above, although s2 was fired the last, it reaches the disturbance source at the
same time as the signals sent from s1 and s3, since the waves propagate faster
along the direction of the fibers. It can also be observed from Figure 7.9 that
there is another focusing point at about 14µs at the location (0.095, 0.12), which
may be misinterpreted as a disturbance source. Such issues, as discussed earlier
in this chapter, mainly arise from (i) the reflections from the boundaries in
the numerical model, and/or (ii) the sensors being placed at non-optimized
locations. If for example, there had been a fourth sensor at the right half
of the plate, it would have sensed the incoming waves earlier than the other
sensors, since it would have been closer to the source. With the TR scheme, the
hypothetic sensor would have fired last, even after 14µs, resulting in a unique
focusing point. This reveals the importance of the appropriate placement of
the sensors required for operational SHM systems. To further improve the TR
image, absorbing boundaries can be used in the numerical model so that the
interactions with the reflected waves are eliminated.

7.5 Extension of the Passive TR to Damage Iden-

tification

An external force applied to a structure can be viewed as a disturbance the
location and possibly the intensity of which can be determined using a TR-based
approach. A defect, when GUW are used, can be interpreted as a secondary, i.e.
reflective, disturbance source that only reflects and scatters the incoming waves.
Detection of damage using a passive TR approach often needs an extra step to
prevent focusing of the back-propagated wavefield on the main source, i.e. the
location of the GUW actuator. The mechanism of this prevention is removing
the direct waves from the actuator to the sensors, which may be performed in a
single step of windowing out some parts of the signal [Wang and Yuan, 2009], or
a series of successive sub-steps that keep subtracting the components focusing on
the primary source until the secondary source is found [Levine et al., 2011]. The
former is more aligned with the objectives and constraints of SHM of composites
in this research, due to its superior computational aspects. Note that defining
the windowing functions requires determination of the arrival times of the direct
waves from the actuator to the sensors before back-propagating the wavefield,
which needs to be done only once for a specific structure using a forward model
of the structure.

Another important remark about the passive TR in the view of this thesis
is on the severity of the damage. In a traditional NDT system for which time
is not as crucial as in an on-line SHM system, a number of steps subsequent
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to the damage localization may be thought of, to more accurately estimate the
extent of the damage. It is believed that in most aerospace applications of
SHM systems, in which the processing time, cost, and safety are highly coupled,
the extra steps beyond a certain resolution may not be justified. To determine
if there are defects larger than a certain size, the frequency content of the
diagnostic waves may be tuned such that the waves interact with all the defects
larger than half of their wavelength. Any secondary source, which is found
by the SHM system can hence, be ascribed to a defect larger than the critical
detection size. This approach can provide an adjustable resolution for the SHM
system, that depending on the situation, can vary from faster processing-lower
sensitivity to slower processing-higher sensitivity, i.e. resolution.

7.5.1 Case Study II: Delamination Identification in a Com-

posite Beam

A numerical example is presented in this section to demonstrate how the pas-
sive time reversal may be employed to detect discontinuities, e.g. damage, as
reflective targets. The passive TR-based approach is utilized for SHM of a de-
laminated composite beam, the response of which is simulated using the 3D
WSFEM. As the numerical simulation tool required for the passive TR, the 1D
WSFEM formulated in Chapter 4, which is fast and computationally efficient,
is employed.

Consider a 10×1×600 mm3 beam-like composite structure made of graphite-
epoxy used in Case Study I, and ply stacking sequence of [0, 0, 90, 90]s, where
the 0◦ angle is along the length-wise direction z. As shown in the schematic
view of the structure in Figure 7.10, a delamination is assumed between layers
2 and 3 of the laminate, which is located at the area:

{5mm < x < 10mm, 330mm < z < 360mm}.

To model the structure, the 3D WSFEM, based on the wavelet-Galerkin dis-
cretization of time, and the higher order pseudo-spectral finite element method
(SEM) for discretization of space, were employed, the details of which were out-
lined in Chapter 6. In the 3D SEM elements, Nx = 5, Ny = 3, and Nz = 7,
where Ni for i = x, y, z, denotes the order of the polynomial basis in the i-
direction. Using such elements, the structure was discretized with nx = 2,
ny = 4, and nz = 20, where ni, denotes the number of elements along the i-
direction. As a result, the finite element model had 20163 nodes, each of which
had three translational displacement degrees of freedom u, v, and w along x,
y, and z directions. The model therefore, includes 60489 spatial degrees of
freedom.

To generate diagnostic guided waves in the structure, a narrow-banded 3-
cycle Hanning windowed sinusoidal pulse, as shown in Figure 7.11, was used
to excite the structure. Symmetric waves were chosen for this example for
which both the upper and the lower surfaces of the structure should be excited
simultaneously. Indeed the tuning techniques for guided waves discussed in
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y

x

z

S2

S1

delamination

Figure 7.10: The composite beam-like structure with a delamination. The struc-
ture is not clamped, i.e. free-free, and sensors s1 and s2 are placed on the top
surface of the beam at the two ends.

Chapter 2 can also be used to generate a single wave mode from a single surface.
In this case, the signal in Figure 7.11 was applied as a distributed line load on
{z = 30mm, y = 0} and {z = 30mm, y = 10mm} along z-direction.

The displacement response of the structure, in the presence and absence
of the delamination, has been obtained for four points on the top surface of
the beam, i.e. y = 1 mm: A(5,1,30)mm, B(0,1,300)mm, C(10,1,300)mm, and
D(5,1,570)mm. The displacement components u, v, w for the undamaged case,
i.e. the beam without delamination, and the damaged case can be observed in
Figure 7.12 and Figure 7.13, respectively.

In the undamaged case, the displacement field at points A and D had no
component along x, i.e. u = 0, which happened due to symmetry in the geome-
try and loading. For the same reasons, at points B and C, these displacements
were non-zero and equal in magnitude, i.e. |u|B = |u|C . The largest wave
packet arriving at 50 µs were S0 waves, which were followed by SH0 waves with
maximum amplitude at about 75 µs. In the damaged case, the delamination
has broken the symmetry with respect to the plane x = 5 mm. This effect
can be seen at points B and C, with inherently different x-components of the
displacement, i.e. u. Also the displacement along x, i.e. u in the damaged case
is non-zero. The y-component of the displacement response, i.e. v, appeared
to be very sensitive to the presence of the delamination. Substantial difference
in v at points B and C can be observed in the figures. The most important
change due to the delamination however, is the additional wave packet at point
D, which appeared about 80 µs after excitation. The incoming symmetric waves
passing through the delaminated area experienced a mode conversion as a part
of the diagnostic wave packet turned into antisymmetric waves dominated by
an out-of-plane displacement. This mode conversion will be used later in this
example, to identify the delamination location. Finally, the z-component of the
displacement response, i.e. w, was influenced the least by the delamination.
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Figure 7.11: The narrow-banded excitation pulse with a central frequency of
200kHz.
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Figure 7.12: The displacement response of the undamaged beam-like structure:
the displacement components u, v, and w are shown at four points A(5,1,30)mm,
B(0,1,300)mm, C(10,1,300)mm, and D(5,1,570)mm.
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Figure 7.13: The displacement response of the delaminated beam-like structure:
the displacement components u, v, and w are shown at four points A(5,1,30)mm,
B(0,1,300)mm, C(10,1,300)mm, and D(5,1,570)mm.

The waveguide, which is split into two sub-waveguides by the delamination did
not significantly affect the fundamental symmetric waves dominated by w.

The y-component of the response of the delaminated beam to the high-
frequency load pulse, i.e. v, at points A(5,1,30)mm and D(5,1,570)mm as the
assumed measurement points was stored in a file and used in the passive-TR
scheme for SHM. It should be noted that for this illustrative example, one may
be able to use more basic time-delay techniques for finding the delamination lo-
cation. As mentioned before however, such techniques are not readily applicable
to anisotropic or heterogeneous structures in general.

In order to identify the location of the delamination using the simulated
data and the passive TR method, the parts of the response signals which con-
tain unnecessary information for the damage identification scheme and are thus
distracting should be truncated out of the signals. Windowing, as the mecha-
nism for this task in this dissertation, was applied to the normalized response
signals at points A and D, as shown in Figure 7.14 and Figure 7.15. The win-
dowing process was performed based on removing the boundary reflections, and
the wave packets travelling slower than the fastest waves recognized at the mea-
surement points. Although there is some freedom in selection of the windowing
function, an inappropriate choice of the window, as discussed in Section 7.1.2,
may result in deviation from the actual delamination location, or in the worst
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Figure 7.14: Windowing of the normalized signal obtained at the location of
sensor s1.
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Figure 7.15: Windowing of the normalized signal obtained at the location of
sensor s2.

case scenario, resulting in false indication of the damage.

The normalized windowed signals are next, in accordance with the passive-
TR method, time-reversed and fed in form of nodal forces into the 1D WSFEM
developed in Chapter 4. Note that although the 1D WSFEM, as concluded
in Chapter 4, may not be as accurate as the 3D model at high frequencies, it
requires the minimum possible number of elements to capture the structural
response and is computationally efficient. In this example, only one finite ele-
ment was used for the spatial discretization. The temporal discretization was
performed with 500 temporal sampling points, i.e. L = 500, and the time step
size of ∆t = 0.5µs. The total simulation time L × ∆t = 250µs is increased
for 100µs with respect to the forward simulations to ensure that the back-
propagated waves cover the entire spatial domain, as will be seen later in this
section.
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z

Figure 7.16: The normalized displacement response of the structure to the time-
reversed windowed signals applied from the location of sensor s1.

z

Figure 7.17: The normalized displacement response of the structure to the time-
reversed windowed signals applied from the location of sensor s2.

The response of the structure to the time-reversed windowed signals exerted
from the locations of s1 and s2, cf. Figure 7.10, were obtained separately as the
resulting wavefield is demonstrated in Figure 7.17 and Figure 7.18, respectively.
The windowed signal which has arrived first, after the time reversal process, is
sent back the last. In addition, the sensor locations were chosen to be 3 cm
distant from the beam ends to illustrate one of the challenges that one may
encounter in a real SHM system: there are second branches starting at z = 0
and z = 0.6 m with the same slope as the main wave packet which start at
z = 0.03 m and z = 0.57 mm in Figure 7.17 and Figure 7.18, which are the
reflections of the main packets from the left and the right ends of the beam.
Note also from the figures that the selected 250µs time window allows each time
reversed wave packet to reach almost the opposite end of the beam.

Superposition of the responses shown in Figure 7.17 and Figure 7.18 is shown
in Figure 7.18. It demonstrates how the passive time reversal scheme converged
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z

Figure 7.18: Superposition of the time reversal responses shown in Figure 7.17
and Figure 7.18. The center-point of actual delamination is located at z =
0.345m and shown by the white solid line.

and pin-pointed the delamination location at the point z = 0.325m and t =
200µs, which deviates only 5.8% from the center-point of the delamination.
There are however, more intersection points in the figure due to the reflected
waves by the beam ends, as discussed above. Using absorbing boundaries which
prevent the secondary reflected wave packets, one can remove these incorrect
intersection points. Dealing with this issue however, may be required for some
practical SHM systems, and is not within the scope of the present dissertation.

7.6 A Remark on Using the Passive TR for Com-

plex Structures

It is worthwhile here to discuss the performance of the approach when applied to
more complex structures. As shown in the previous section, anisotropy can be
readily dealt with using the presented passive TR approach. Heterogeneity also,
when the variation of the structural and material properties is smooth, does not
require extra caution. Local heterogeneity however, e.g. discontinuities, may
require more attention. When for example, a structure with a cut-out or a panel
with a number of rivets or bolts is investigated, there will be an extra step in
the damage or impact load identification. Similar to the approach employed
for a damaged structure in this section, such discontinuities do not need to
be modeled in the numerical simulator used in the passive TR scheme. As
a consequence of this simplified modeling, when damaged regions exist, the
passive TR scheme focuses on multiple points some of which are the structural
discontinuities, e.g. rivets, and the rest are the damaged areas. Interpretation
of the TR image for extraction of the damaged areas in this case, thus requires
a prior knowledge about all structural entities and their general characteristics.
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Note again that this TR-based approach only detects the existence and the
location of disturbance sources and provides no explicit information about the
type of the defect.

7.7 Concluding Remarks

The passive time reversal scheme, as a model-based SHM methodology, was pre-
sented in this chapter, which allows identification of the external load on, and
damage in heterogeneous and anisotropic structures. Having briefly presented
a number of major required mathematical tools to develop a SHM system, they
were combined with the WSFEM formulated in chapters 4 and 5 for 1D and
2D waveguides. The implemented passive TR method was successfully used for
load source identification in a graphite-epoxy laminate based on its experimen-
tally obtained response. The methodology was also applied to identification of
delamination location in a composite beam-like structure, the response of which
was simulated using the 3D WSFEM formulated in Chapter 6.
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Chapter 8

Conclusion and

Recommendations for

Future Research

In the present dissertation, it was attempted to contribute to the research field
structural health monitoring (SHM) of thin-walled composite structures, by
improving on certain aspects of analysis and modeling guided ultrasonic waves
(GUWs). The motivation of using GUWs, as discussed in Chapter 1, mainly
came from some of their important features, e.g. low implementation costs,
repeatability, ability to inspect a large structure in a short time, sensitivity to
small damage, low energy consumption, and ability to detect both surface and
internal damage.

Some background information on GUWs-based SHM, which was necessary
for description of the consequent chapters, was presented in Chapter 2. A
higher-order shell theory was also implemented in this chapter, which can be
used for extraction of the dispersion properties and wave curves of GUWs in flat
and cylindrical shells. Having reviewed some of most commonly-used simula-
tion tools for GUWs, and discussing their merits and limitations, the WSFEM
was introduced in chapters 3 to 6. Addressing the mathematical foundation of
wavelets and the wavelet-Galerkin method in Chapter 3, the 1D, 2D, and 3D
formulations of the WSFEM were presented in chapters 4, 5, and 6, respectively.
A model-based SHM technique for detection of load/damage location with the
minimum number of measurement points was finally introduced in Chapter 7.

8.1 Conclusions

The following conclusions can be made from this work.

1. The wavelet-Galerkin method (WGM) can be effectively used for temporal
discretization of linear initial-boundary-value problems (chapters 3 to 6).
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2. The edge effects of the wavelet transform can be completely eliminated
for zero initial conditions, if a finite interval equal to the time window of
the problem of interest is considered for computation of the connection
coefficients of wavelets (Chapter 3).

3. Using the edge effect removal scheme proposed by this dissertation, about
50% reduction in the number of sampling points in time was achieved com-
pared to the conventional method based on wavelet-extrapolation tech-
nique (Chapter 3).

4. The WGM can be implemented such that the equations at different so-
lution steps become independent. This makes the scheme suitable for
parallel implementation (Chapter 3).

5. In formulation of the decoupled wavelet-Galerkin method (DWG), complex-
valued wavelet frequencies were introduced at which the system responses
are computed independently, and superposed in a way that the final re-
sponse in time is constructed (Chapter 3).

6. Using the decoupled wavelet-Galerkin scheme, one-dimensional problems
can be solved exactly in the spatial domain. Accordingly, if the finite
element shape functions are constructed based on the exact free-space
solution of the wave equation, the minimum number of elements is required
to model wave propagation (Chapter 4).

7. The accuracy of the one-dimensional problems is associated with the wave
modes which can be captured by the model at the frequency range of ex-
citation. At higher frequencies, a 1D model becomes less accurate, and
the frequency range at which a 1D model is sufficiently accurate can be
expanded by incorporating more wave modes in the assumed displacement
field and the interpolation functions. An improved 1D wavelet-based spec-
tral finite element model was formulated in Chapter 4.

8. A novel formulation of 2D wavelet-based spectral finite element method
(WSFEM) was developed, which utilizes the waveguide characteristics of
structures in derivation of the shape functions of the finite element spatial
discretization (Chapter 5).

9. The 2D WSFEM can save up to 50% in spatial degrees of freedom for the
same accuracy as the FEM with quadratic basis functions equipped with
an explicit time integration scheme (Chapter 5).

10. A substantial reduction in the number of temporal sampling points can
be achieved using the WSFEM compared to the explicit Newmark time
integration scheme. The solution times however, cannot be explicitly com-
pared as the two methods are essentially different. One of the most influ-
ential parameters in solution time of the WSFEM is the number of CPUs
available (chapters 5 and 6).
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11. A novel formulation of the WSFEM for 3D waveguides was presented.
It was demonstrated that standard FEM discretization schemes can be
adopted in theWSFEM formulation to cope with complex problems (Chap-
ter 6).

12. The so-called spectral element method, i.e. FEM with higher-order poly-
nomial basis functions on the Gauss-Lobatto-Legendre grid, which has su-
perior convergence properties and the ability of more accurately capturing
complex geometries compared to conventional FEM, can be combined with
the DWG to achieve spectral convergence in both temporal and spatial
discretization (Chapter 6).

13. A computational time saving scheme can be utilized to reduce the number
of equations in the DWG. Using the procedure suggested in Chapter 6,
a substantial savings can be achieved by neglecting the response of the
system at the wavelet frequencies which do not significantly contribute to
the dynamic response of the structure.

14. The developed WSFEM can be employed in a model-based SHM system
for detection of load and damage location. For this purpose, the passive
time reversal (TR) approach was formulated in Chapter 7, which operates
based on time invariance of linear elastodynamic equations. Using the
passive TR scheme, the problem of load and damage detection, which is
essentially an inverse problem, may be solved in form of a forward problem,
without encountering uniqueness and stability issues (Chapter 7).

15. The location of the external applied load on a graphite epoxy panel was
successfully detected using the TR-based SHM system with less than 7%
relative error. The loading location, which was found by the SHM sys-
tem, matched very well with the actual location of the actuator in the
experiments (Chapter 7).

16. The extension of the TR-based system for impact location to delamination
detection in composites was demonstrated using a numerical example, in
which the response of the delaminated composite beam was simulated us-
ing the 3D WSFEM. The SHM system was equipped with the 1D WSFEM
to accurately and quickly process the input data (Chapter 7).

8.2 Recommendations for Future Research

Some recommendations for continuation of this research are listed below.

1. The developed WSFEM can be employed for modeling sensors and ac-
tuators in SHM systems. In case of piezoelectric sensors and actuators
for example, the decoupling of the equations in the transformed domain
can be advantageous, since the governing equations of the piezoelectric
material and the wave motion appear uncoupled in the same space.
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2. For simulation of wave propagation in geometrically complex waveguides,
the WSFEM can be combined with an isogeometric spatial discretization
to take advantage of both an accurate representation of the geometry and
a parallelized solution.

3. More experiments can be conducted to evaluate the performance of the
passive TR-based SHM system.

4. In the structural design process of composite structures, an optimized per-
formance of the GUWs-based SHM system can be considered: a waveguide
may be designed to improve the information transmission for possible dam-
age, carried out by ultrasonic diagnostic waves.

5. The passive TR-based scheme can be used to identify damage in non-
conventional composite structures, e.g. variable-stiffness composites, APP-
PLY composites.
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Appendix A

Continuous and Discrete

Fourier Transform

The Fourier transform is the most extensively used transform method in signal
processing due to its computational superiority and the ease of implementation
of its direct and inverse algorithms. In this appendix, the continuous Fourier
transform (CFT) and discrete Fourier transform (DFT) are presented in brief.

The continuous Fourier transform pair of the absolutely integrable function
f(t) on (−∞,+∞) can be expressed by the following relations.

f̂(ω) =

∫ +∞

−∞

f(t)e−iωtdt (A.1)

f(t) =
1

2π

∫ +∞

−∞

f̄(ω)e+iωtdω (A.2)

Since the CFT requires the signals to be known analytically, the discrete form,
i.e. DFT, is predominantly used in engineering applications.

The DFT of a signal assumes periodicity in the time domain T . For non-
periodic signals, the approximation error may be minimized under certain cir-
cumstances, mainly if the signal has a large duration of zero amplitude and the
analysis assumes it repeats itself on a period which is very large compared to
the time of interest. By uniformly discretizing the time domain intoM intervals
with length ∆T and the frequency domain into N constant segments, there exist
ωn = 2nπ

T and tm = m∆T , where n = 0, · · · , N − 1 and m = 0, · · · ,M − 1. The
DFT and its inverse read,

f̂n = f̂(ωn) = ∆T

N−1
∑

m=0

fme
−iωntm = ∆T

N−1
∑

m=0

fme
−i2πnm/N (A.3)

fm = f(tm) =
1

T

N−1
∑

n=0

f̂ne
+iωntm =

1

T

N−1
∑

n=0

f̂ne
+i2πnm/N (A.4)
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The above equations are the foundation of the DFT and the fast Fourier trans-
form (FFT) algorithm, the details of which can be found in [Strang, 2007].
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Appendix B

Computation of the

Derivatives and Integrals of

Daubechies Wavelets

A brief description of the algorithms required for exact evaluation of finite in-
tegrals, whose integrands involve products of Daubechies compactly supported
wavelets, is provided in this appendix. The method outlined here has minor
modifications to the work done by Chen and Hwang [1996].

B.1 Evaluation of the Scaling Function and Its

Derivatives

Evaluation of the scaling function of an arbitrary-order Daubechies wavelet is
not only necessary for calculation of the approximation coefficients, but also
needed, together with its derivatives, for computation of the exact values of
connection coefficients. The same algorithm for calculation of derivatives at
integer points can be used for evaluation of the scaling function values as well,
when the differentiation order is zero.

The derivatives of the scaling function up to order N/2 − 1 exist [Beylkin,
1992]. Taking the nth derivative of both sides of the two-scale relation 3.19
gives

ϕ(n)(τ) = 2n
N−1
∑

k=0

akϕ
(n)(2τ − k). (B.1)

In order to obtain the values of ϕ(n)(τ) at integer points, τ = 1, 2, · · · , N −2
are substituted in the above two-scale relation. Points 0 and N − 1 are not
required to be calculated, since their values are zero for Daubechies wavelets.
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Therefore,

2−nχ = Pχ;χ = [ ϕ(n)(1) ϕ(n)(2) · · · ϕ(n)(N − 2) ]T (B.2)

where P is the matrix of the filter coefficients. To determine the vector χ, a
normalizing equation is required [Chen and Hwang, 1996]:

N−2
∑

k=1

(−k)nϕ(n)(k) = n!. (B.3)

B.2 Calculation of Multiple Integrals of the Scal-

ing Function

The n-tuple integrals of the scaling function are defined as:

θn (τ) =

∫ τ

0

∫ ξn

0

· · ·
∫ ξ2

0

ϕ (ξ1) dξ1 · · · dξn−1dξn =

∫ τ

0

θn−1 (ξ) dξ. (B.4)

Note that the above integral is not explicitly used in computation of the
scaling or connection coefficients. In the coming sections however, it will be
used in calculation of moments of the scaling function required for evaluation
of connection coefficients of Daubechies wavelets. Application of the two-scale
relation (B.1) to Equation (B.4) results in another two-scale relation, but with
respect to θn:

θn (τ) = 2−n
N−1
∑

k=0

akθn(2τ − k). (B.5)

Since the values of θn(τ) for τ ≥ N − 1 do not vanish, the procedure of
computing these values is different than what presented before for ϕ. The
details of these calculations can be found in [Chen and Hwang, 1996]. For the
completeness sake, only the key equations are shown here. As the first step,
consider the following relation for τ ≥ N − 1,

θn (τ) =

N−1
∑

k=0

(τ −N + 1)
k

k!
θn−k(N − 1) (B.6)

where θn(N−1) = 1. Utilization of this equation requires the values of θn−k(N−
1); ∀k = 0, 1, · · · , n−2 to be determined. From the two-scale relation (B.1), the
following recursive formula for n = 2, 3, · · · can be extracted [Chen and Hwang,
1996].

θn (N − 1) =
1

2n − 2

n−1
∑

j=1

(

N−1
∑

k=0

(N − 1− k)
j

j!

)

θn−j(N − 1). (B.7)

Having obtained θn(τ) for τ ≥ N−1, the values of θn(τ) for τ = 1, 2, · · · , N−
2 can be computed via Equation (B.5). Matrix representation of the equations
facilitates the computation procedure.
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B.3 Moments of the Scaling Function

The moments of a wavelet scaling function over a bounded interval are given
by:

Mm
k (τ) =

∫ τ

0

ξmϕ (ξ − k) dξ. (B.8)

Performing integration by parts of the above integral successively m times
results in [Chen and Hwang, 1996]:

Mm
k (τ) = τmθ1 (τ − k)−m

∫ τ−k

−k
(ξ + k)

m−1
ϕ (ξ) dξ

...

=
m
∑

l=0

(−1)
j m!

(m−i)!τ
m−iθi+1 (τ − k) + (−1)

m+1
m!θm+1 (−k) .

(B.9)

The integral (B.8) can therefore, be computed exactly over a bounded inter-
val. The reason for the exact evaluation of the integral is that the compactly-
supported wavelets are highly oscillatory, hence, it is difficult and unstable to
numerically compute these coefficients [Chen and Hwang, 1996].

B.4 Evaluation of the Connection Coefficients

The inner product of the scaling function and its nth order derivative are de-
noted by:

Γn
k (τ) =

∫ τ

0

ϕ(n)(ξ − k)ϕ(ξ)dξ, (B.10)

whose exact evaluation is a key element of the wavelet-Galerkin method. The
following properties of the connection coefficients were presented by Chen and
Hwang [1996]:

Γn
k (τ) = Γn

k (N − 1); ∀τ ≥ N − 1 (B.11)

Γn
k (τ) = 0; ∀ |k| ≥ N − 1, or,τ ≤ 0, or,τ ≤ k (B.12)

Γn
−k(N − 1) = (−1)nΓn

k (N − 1); ∀k ≥ 0 (B.13)

Γn
−k(τ) = (−1)nΓn

k (N − 1); ∀τ+k ≥ N − 1. (B.14)

Relations (B.11) and (B.12) are extracted from the fact that the support of
ϕ(ξ) is [0, N −1], which does not overlap with that of ϕn(ξ−k) for |k| > N −1.
Properties (B.13) and (B.14) are derived from Equation (B.10) by performing
integration by parts n times. Applying the two-scale relation (B.1) to (B.10)
results in

Γn
k (τ) = 2n−1

N−1
∑

i=0

N−1
∑

j=0

aiajΓ
n
2k+i−j(2τ − j). (B.15)
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For evaluation of Γn
k (τ) at τ = 1, 2, , N − 1, the values of Γn

k (N − 1) need to
be predetermined. Using equations (B.11) and (B.15), it can be extracted that

Γn
k (N − 1) = 2n−1

N−1
∑

i=0

N−1
∑

j=0

aiajΓ
n
2k+i−j(N − 1). (B.16)

The introduced relation for calculation of Γn
k (N − 1) can be then arranged

in a matrix-vector form. To derive the additionally-imposed constraint for nor-
malizing the resulting vector of Γn

k (N − 1) for k = 0, 1, · · · , N − 2, Chen and
Hwang [1996] utilized the following relation:

+∞
∑

k=−∞

knϕ(n)(τ − k) = n!. (B.17)

Considering properties (B.12) and (B.13), multiplication of both sides of the
above equation by ϕ and integrating over (−∞,∞) reads

N−2
∑

k=1

knΓ
(n)
k (N − 1) =

n!

2
. (B.18)

Once the values of Γn
k (N − 1) are determined, the values of Γn

k (τ) for τ =
0, 1, , N − 2 and |τ | ≥ N − 2 can be obtained via Equation (B.15). For this
purpose, only (N−2)2 independent components in the following set are needed:

{Γn
k (τ); τ = 1, 2, . . . , N − 2; τ −N + 2 ≤ k ≤ τ − 1} . (B.19)

In matrix-vector notation, it can be written as

(

21−nI−H
)

G = d (B.20)

where G is the vector of all independent members. The system above does not
require any normalization for n = 0. For n > 0 however, the matrix

(

21−nI−H
)

is singular with the rank deficiency n. The procedure for removing the rank
deficiency is outlined in Chen and Hwang [1996]. Finally, the values of Γn

k (τ)
can be determined for integer values of n, k, and τ .

From the formulation presented, the connection coefficients in Equation

(3.37), i.e.
〈

ϕ
(n)
k , ϕj

〉

, being equivalent to:

∫ τ

0

ϕ(n)(ξ − k)ϕ(ξ − j)dξ, (B.21)

can be readily computed by the change of variables z = ξ − j. This results in:

∫ τ−j

−j

ϕ(n)(z − [k − j])ϕ(z)dz = Γn
k−j(τ). (B.22)
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B.4. Evaluation of the Connection Coefficients

Equation (B.22), in which the integral bounds are updated according to the
new variable z, can be split into two parts by subdividing the integration domain
as follows.

Γn
k−j(τ) = −

∫

−j

0

ϕ(n)(z − [k − j])ϕ(z)dz +

∫ τ−j

0

ϕ(n)(z − [k − j])ϕ(z)dz.

(B.23)
The first term in the equation above is zero in accordance with Equation

(B.12), hence,

Γn
k−j(τ) =

∫ τ−j

0

ϕ(n)(z − [k − j])ϕ(z)dz, (B.24)

which can be calculated using the procedure outlined above.
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Appendix C

Numerical Dispersion of the

WSFEM

As mentioned in Chapter 6 Section 6.3, the spectral nature of the formulated
wavelet-based spectral finite element method (WSFEM) circumvents numerical
dispersion issues in the approach. This feature of spectral methods is also
reported in the literature, see for example Gazdag [1981], Fornberg [1987]. To
demonstrate this with a numerical example, a 2D aluminium plate under the
plane-stress condition is considered in this section. The plate dimensions were
considered to be 2000 × 1000 × 1mm3, to be large enough to avoid reflections
in the time window of interest. For the spatial discretization, the order of SEM
was 5 in both directions. The source, which was a 5-cycle Hanning-windowed
sinusoidal pulse, was placed 800 mm from the receiver. In Figure C.1, L shows
the number of sampling points in time, the horizontal axis shows the spatial
discretization, i.e. the number of nodes in SEM per wavelength of P waves at
the central frequency of excitation, and the vertical axis is the normalized wave
speed. Very little numerical dispersion was observed: the arrival time of the
simulated waves is hardly influenced by the spatial discretization. Although
not shown here, similar analyses were also performed for shear-horizontal and
Rayleigh waves, which all resulted similarly.
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Figure C.1: Numerical dispersion of the WSFEM.
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Appendix D

Parallelization Scalability of

the WSFEM

The straight-forward parallelization of the wavelet-based spectral finite element
method (WSFEM) can be advantageous in many computationally-intensive ap-
plications. As discussed earlier Chapter 6, the solution at different wavelet
points can be done independently using different processors or CPU cores. For
the 2D problem in Appendix C, the relation between the solution time and the
number of available CPU cores was investigated on two systems: one a desktop
with 16 GB internal memory and an Intel i5-2400 CPU, and the other one, i.e.
System 2, a Dell Precision T7500 workstation with 96 GB internal memory,
which, at the time of this study, was in use by some other simulation programs
as well. As can be observed in Figure D.1, the solution time-number of cores
relation is almost linear up to 2 cores, i.e. the solution time when using two
cores is nearly half of the base case solution which uses a single core. As the
number of cores increases, however, the efficiency of parallelization drops. The
nonlinear relation of the number of cores and the solution time is attributed
to the memory bandwidth as mentioned in Chapter 6. It can be seen that the
parallelization of the same problem works more efficiently on the machine with
a higher memory and CPU cache. When using 4 cores for example, System
2 exhibits about 22% improvement compared to System 1, as the normalized
solution time for systems 1 and 2 are respectively 0.26 and 0.33.
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Figure D.1: Scalability of the WSFEM in Parallelization.
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Appendix E

Inverse Problem of Crack

Identification in Beam

Structures

To identify cracks in beam structures exhibiting the characteristics of a 1D
waveguide, an inverse solution approach based on the wavelet-based spectral
finite element method (WSFEM) was employed. In order to reduce the compu-
tational cost of of the inverse problem, fracture mechanics formulas were used
with which the damage was parametrized and translated into the numerical so-
lution parameters. Such an approach was formulated in the present research
for 1D structures with non-propagating open-edge cracks. In this model, which
has been used formerly in Krawczuk et al. [2006] and Ostachowicz [2008], the
crack model is considered as a dimensionless massless elastic hinge as depicted
in Figure E.1. The crack flexibility is calculated using the Castiglianos theo-
rem, the stress intensity factor for the first mode of the crack formation, and
the equations of motion, see Krawczuk et al. [2006] for the details. If the crack
type is as considered, the flexibility coefficient of the crack and its location are
adequate to describe the defect.

Figure E.1: The model of a rod member with a transverse open and non-
propagating crack.

151



Appendix E. Inverse Problem of Crack Identification in Beam Structures

Figure E.2: The condensed wavelet-based finite element with an open-edge
crack.

The forward model of the waveguide can be constructed by using two undam-
aged wavelet-based finite elements as presented in Chapter 4 of this dissertation,
connected using a dimensionless spring representing the crack. To further im-
prove the computational efficiency, a node-condensation scheme was applied
by imposition of the compatibility conditions at the crack location. This was
essentially developing a two-noded cracked element as shown in Figure E.2.

This forward model was used as the kernel of the inverse problem of crack
identification. Given the excitation and the properties of the undamaged struc-
ture, i.g. geometry and material properties, the inverse solver attempts to find
the crack parameters such that the error of the weak-form of the governing
equations in the wavelet-transformed domain is minimized.

As demonstrated in chapters 3 to 6, the WSFEM decomposes the solution
into the responses at different frequencies. For each of these frequencies, the
inverse problem results in some new values of the crack location and flexibility.

To evaluate the accuracy and the stability of the scheme, a number of prob-
lems were solved including single and multiple cracks, in the presence of different
random noise levels. As an example, the results of an aluminium bar with di-
mensions 500×25×6mm3 is illustrated in this appendix. The bar has two cracks
at x = 100mm and x = 300mm with depth of 4mm and 3mm, respectively. For
convenience, a crack index is defined the relation of which with the crack depth
is shown in Figure E.3. At the left end, i.e. x = 0, the bar is subjected to a 5-
cycle Hanning-windowed sinusoidal pulse with the central frequency of 100kHz.
The results were simulated with a time domain finite element scheme and stored
locally. The results of the inverse solution for 0, 1%, and 10 % random noise
are shown in Figure E.4, Figure E.5, and Figure E.6, respectively.

Since the number of sampling points in the inverse WSFEM was 400, the
total number of results sets are also 400. The sensitivity of the scheme to the
crack location is significantly higher than to the crack index, hence, a stronger
convergence can be observed for the crack index estimation. From the figures
shown, when the amount of noise increases, less solutions converge to the ac-
tual location and index of the cracks. At 1% noise, the identification was still
successful. At 10% noise however, the inverse scheme did not identify the cracks.
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Figure E.3: The condensed wavelet-based finite element with an open-edge
crack.
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Figure E.4: The histogram of the solution for the indices and the locations of
the cracks in the absence of random noise.
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Figure E.5: The histogram of the solution for the indices and the locations of
the cracks at 1% random noise.
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Figure E.6: The histogram of the solution for the indices and the locations of
the cracks at 10% random noise.
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