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De voorspellende waarde van een (dynamische) bezwijkanalyse met een klassiek
strain softening model is van nul en generlei waarde.

Het gebruik van een scheurenergiemodel (of scheurbandbreedtemodel), voorgesteld
door BaZant en Oh (1983), kan leiden tot resultaten die onafhankelijk zijn van de
fijnheid van het gekozen elementennet. Echter, de resultaten zijn wel afhankelijk van
de richting van de lijnen in het elementennet (mesh alignment), waardoor het
bezwijkmechanisme en dus ook de bezwijkbelasting nog steeds discretisatie
afhankelijk zijn.

Een adequate continuiimformulering voor strain softening moet tenminste leiden tot (i)
een goed gesteld mathematisch probleem, (ii) de incorporatie van een lengteschaal en
(iii) een dispersieve golfvoortplanting in de lokalisatiezone.

Het toevoegen van reksnelheidsafhankelijkheid of afhankelijkheid van een tweede-
orde rekgradient aan de constitutieve relatie voor een strain softening continuiim leidt
tot resultaten die invariant zijn met betrekking tot de fijnheid en de ori€ntatie van de
eindige elementen configuratie.

Een micro-polaire (Cosserat) formulering van het strain softening continuiim leidt bij
verfijning van het elementennet tot convergentie naar een lokalisatiezone met een
eindige breedte als afschuiving (mode-II lokalisatie) en niet decohesie (mode-I
lokalisatie) het dominante bezwijkmechanisme is.

In analyses waarin golfvoortplanting en lokalisatie worden beschouwd geeft het
gebruik van een consistente massamatrix nauwkeurigere resultaten dan een lumped
massamatrix, onafhankelijk van de toegepaste tijdsintegratiemethode.

Waar de lokalisatie van deformatie vaak de inleiding is tot het bezwijken van een
constructie is de lokalisatie van populatie vaak de inleiding tot het bezwijken van een
beschaving.
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De parallellen tussen lokalisatietheorieén in de vaste stoffen mechanica en
grenslaagtheorieén in de vloeistofmechanica zijn voor de civiel ingenieur moeilijk te
bepalen door de ontkoppeling van "droge" en "natte” mechanica in een vroeg stadium
van de studie.

De oorzaak van het niet overeenstemmen van experiment en numerieke simulatie
wordt ten onrechte altijd gezocht bij de laatste.

Het uitvoeren van een evaluerende opdracht in de afstudeerfase is niet bevorderlijk
voor het cre€ren, dan wel aanscherpen, van een kritische houding ten opzichte van het
eigen werk.,

Universitair onderzoek moet ten dienste staan aan de hoofdtaak van de universiteit,
namelijk het onderwijs. Het onderwijs is meer gebaat bij fundamenteel onderzoek dan
bij technologieontwikkeling, terwijl subsidiérende instanties van universitair
onderzoek juist de voorkeur geven aan technologieontwikkeling met een hoog
utiliteitsgehalte.

Het vergroten van de gebruikersvriendelijkheid van eindige elementen methode
programmatuur vereist minder kennis van de gebruiker en vergroot de kans op
onoordeelkundig gebruik.

Het samenkomen in de bekende vakantiecentra en het beperkte vermogen zich aan te
passen aan lokale eet-en leefgewoonten toont al enigszins de hypocriete houding van
Nederlanders ten opzichte van integratie van allochtonen.

Het argument dat het legaliseren van dopinggebruik in de sport de gelijke kansen
bevordert is onjuist omdat de kapitaalkrachtige landen de betere atleten kunnen gaan
bouwen.
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1. INTRODUCTION

1.1 AIMS AND SCOPE OF THE STUDY

Dynamic problems are generally classified depending on the spectral characteristics of the
excitation. We deal with wave propagation problems if the high-frequency modes of the load-
ing pulse dominate the response of the structure. In the wave-like solution the behaviour at
the wave front and wave reflection are important phenomena. Problems that fall into this cate-
gory are shock responses from explosive or impact loadings. On the other hand, propagating
waves are negligible if a relatively small number of low frequencies govern the response.
Examples of these problems, commonly called structural dynamics problems, are seismic
responses and responses to machine vibrations. In this thesis we confine the attention to the
response in wave propagation problems under impact loadings.

A large number of engineering materials including metals, polymers, soils, concrete and
rock are classified as softening materials. These materials show a reduction of the load-carry-
ing capacity accompanied by increasing localised deformations after reaching the limit load,
i.e. the load-displacement characteristic exhibits a descending branch. For a continuum
description of this type of structural behaviour the standard procedure to derive stress-strain
relations, which consists of an affine mapping from the measured load-displacement relation
onto a stress-strain diagram, i.e. stress and strain are computed as the quotients of the force
and the virgin load-carrying cross-section, and of the displacement and the length of the speci-
men, respectively, then leads to a negative slope of the stress-strain diagram. This is com-
monly called strain softening.

Beyond a critical load level softening causes all further deformation to localise in small
bands, which are often a precursor to failure. We can observe two types of localisation.
Firstly, if the cohesive properties of the material are more critical than the frictional properties
localisation of deformation takes place in fracture zones (mode-I localisation). However, in
the opposite case localisation becomes manifest along shear bands (mode-II localisation).
Although the mode of failure differs, fracture and shear banding are treated along the same
lines in this thesis.

Localisation of deformation is subject to an intense debate. For instance, at a micro level
the materials scientists study the internal damage processes that drive the abrupt change of a
smooth displacement pattern into a failure mode of highly localised deformations. At the
same time at a macro or phenomenological level numerical research is carried out to arrive at
a proper modelling of strain softening in a mathematical sense. This study belongs to the lat-
ter category and focuses on a correct representation of strain softening to obtain a well-posed
nonlinear initial value problem.

The straightforward use of the strain-softening model in a classical continuum generally
does not result in a well-posed problem. The field equations that describe the motion of the
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body lose hyperbolicity and become elliptic as soon as strain softening occurs. In fact, the
domain is split up into an elliptic part, in which the waves have imaginary wave speeds and
are not able to propagate (standing waves), and into a hyperbolic part with propagating waves.
The initial value problem becomes ill-posed and can no longer be a proper description of the
underlying physical problem. Because of the inability of the standing waves to propagate,
localisation zones stay confined to a line with zero thickness (or a discrete plane in a three-
dimensional continuum). Spurious wave reflections occur on these localisation zones with
zero thickness and the energy consumed in the failure zones is zero. These results are in con-
tradiction with experimental data, which for mode-I as well as for mode-1II localisation show
finite widths of the localisation zone and finite values for the energy consumption and the
wave reflection. The finite element solution tries to capture the localisation zone of zero thick-
ness which results in a mesh sensitivity. A clear description of the fundamental problems of
classical strain-softening models is a first objective of this study.

For proper failure analyses the above observations are unacceptable and we must therefore
rephrase our continuum description of the softening solid such that it is able to capture zones
of highly localised deformation. The main goal of the present study is to scrutinise
approaches which may remedy the deficiencies. For a proper mathematical modelling of the
softening solid extra or higher-order derivative terms are necessary in the continuum descrip-
tion. Such enriched, or higher-order continua do not necessarily lose hyperbolicity at the
onset of strain softening and admit a solution with real wave speeds. In this thesis we suggest
three so-called regularisation techniques to solve mesh sensitivity, namely (i) the addition of
viscous, or higher-order time derivatives, (ii) the addition of higher-order deformation gradi-
ents, and (iii) the use of a micro-polar (Cosserat) continuum. A proper modelling of the soft-
ening solid is obtained if the numerical results converge to a finite size of the localisation zone
upon mesh refinement with unique properties with respect to energy consumption and wave
reflection. Below a certain discretisation level at which accuracy of the results is obtained a
refinement of the mesh as well as a change of orientation of the mesh lines should not affect
the numerical outcome.

The use of higher-order continuum models should not be considered as a further sophisti-
cation of the strain-softening solid but as a necessity to carry out failure analyses with a local-
ised failure pattern. The models have been defined as simple as possible in order to be able to
extend the models to composite softening materials as (fibre-)reinforced concrete. Further-
more, it is noted that the models are in a preliminary stage and tuning of the results to experi-
mental data has not been done extensively. So far, the prime aim was not the exact simulation
of the experimentally measured response, rather it was the purpose to model the softening
solid properly in a mathematical sense.
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1.2 OUTLINE OF THE THESIS

Chapter 2 starts with the basic equilibrium, constitutive and kinematic equations for the
motion of an inelastic body. By means of the finite element representation of the virtual work
equation the semi-discrete nonlinear set of equations will be derived. Finally, the implicit time
integration is carried out to arrive at a fully discretised wave propagation problem.

In Chapter 3 the problem is stated and the fundamental notions softening, strain softening
and localisation are explained. An analytical and numerical treatment of a strain-softening bar
(Example 1) shows the physically meaningless solution for the localisation zone. The non-
dispersive behaviour of waves and the absence of an internal length scale are the basic defi-
ciencies of the classical strain-softening model. Consequently, we observe a pathological
mesh sensitivity for mode-I localisation (fracture in a tensile test - Example 2) and mode-II
localisation (shear banding in a biaxial test - Example 3). Mesh sensitivity is demonstrated for
the fineness of the discretisation and for the orientation of the mesh lines (mesh alignment).

In the next chapters the regularisation techniques will be discussed. In Chapter 4 and
Chapter 5 we focus on failure by decohesion (mode-I localisation) and in Chapter 5 we focus
attention on failure by frictional slip (mode-II localisation) which will also be treated in the
Chapters 6 and 7.

In Chapter 4 we discuss a rate-dependent smeared crack model as a first method to regular-
ise the initial value problem. It will be shown that inclusion of a first-order time derivative
term in the constitutive equations prevents the field equations from becoming elliptic. Disper-
sive waves and the presence of an implicit length scale makes it possible for the rate-depen-
dent continuum to capture localisation of deformation in a proper manner. Examples 1 and 2
(mode-I localisation problems) will be used to assess the performance of the model.

In Chapter 5 the enrichment of the continuum with higher-order spatial derivatives of the
inelastic state variables is proposed. We use a model in which the second-order gradient of the
equivalert plastic strain is incorporated in the yield function. The dispersive character of
wave propagation in a gradient-dependent continuum is demonstrated, resulting in an expres-
sion for the width of the localisation zone. Numerical results will be presented for mode-I
localisation (Example 1) as well as for mode-II localisation (Example 3).

In Chapter 6 the inclusion of rate-effects in plasticity models (viscoplastic models) is con-
sidered in order to carry out mode-II localisation analyses. As an extension to Chapter 4, in
which the mathematical well-posedness is demonstrated, the viscoplastic theories according to
Perzyna and to Duvaut and Lions will be analysed. In the numerical analyses the attention is
focused on the sensitivity of the discretisation of the biaxial test (Example 3) with respect to
fineness and orientation of the finite elements.

The third method, treated in Chapter 7, is the use of a micro-polar or Cosserat continuum
model. The model is based on the idea that a macro-structure consists of micro-elements with
a finite length, which implies the introduction of a length scale parameter. The regularising
effect comes from the introduction of couple stresses and micro-curvatures, so that extra
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rotational degrees-of-freedom are defined. In the numerical analyses shear banding has been
analysed for a simple one-dimensional shear layer and for the biaxial test (Example 3).

In Chapter 8 the three methods will be compared and the merits and limitations of each of
the proposed approaches will be summarised.

1.3 NOTATION

In this study we will use the matrix-vector notation. Only for a few equations in Chapter 7 we
make use of the tensor notation to obtain a more compact format. Matrices and vectors can be
distinguished by bold-faced characters. A list of symbols is not included separately because
some symbols have more than one meaning. To avoid confusion the symbols are defined
when they first appear in the text.




CHAPTER 2 PAGE 5

2. FORMULATION OF THE INITIAL VALUE PROBLEM

In this chapter the equations of motion of the inelastic body will be derived. In the derivation
a restriction is made to small displacement gradients. We use the finite element representation
of the virtual work equation to derive the semi-discrete initial value problem (IVP). A full
discretisation is obtained if the time integration has been carried out. The treatment is applied
to the special case of wave propagation in the softening solid.

2.1 PRELIMINARY EQUATIONS

In a general three-dimensional continuum the equations of motion of an elementary volume V
without damping can be written as

LTo+p=Rii, @D

in which o is a vector containing the stress components (Oy,,Oyy, Oy, Oy, Oyz,02x), While in the
vector u the displacement components are assembled (u,,uy,u,). A superimposed dot denotes
differentiation with respect to time and a superimposed double dot implies that a quantity is
differentiated twice, which means that u is the acceleration vector. The density matrix R is
equal to diag[p,p,p] with density p. In the vector p the body forces are assembled. The
kinematic equations

e=Lu, (2.2)

set the relations between the strain components (Exx>Eyy+€47, 284y, 2€y;,2€,5), assembled in the
vector € and the displacement components. In eq.(2.1) and (2.2) the differential operator
matrix L is defined as

1

a.
% 0 0
9
0 g 0
P
0 0 e
L=|3 2 | 23)
dy ox
o o
0 -5;8_);
0 o
% °

and the superscript T is the transpose symbol. The constitutive equations can be given in the
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general rate format

6=D.E, 2.4
with matrix D, containing the tangent stiffness moduli. In the nonlinear calculations treated
in this thesis, we apply a decomposition of the total strain rate £ into the elastic strain rate &,
and the inelastic strain rate €; according to

E=§&, +E; . (2.5)
The stress rate must satisfy

6=D,g,, (2.6)
with matrix D, containing the elastic stiffness moduli according to
2ua; 2ua,; 2pa; 0 0 017
2ua, 2ua; 2pua, 0 0 O
2ua, 2uas 2pa; 0 0 O
D=l 0o 0o o0 2zu0 of @7)

0 0 0 020
0 0 0 0 02p

with a; = (1-v)/(1-2v), a3 =Vv/(1-2v) and shear modulus p = E/(2(1 +V)), in which v Pois-
son’s ratio and E Young’s modulus. Substitution of €q.(2.5) into (2.6) leads to

6=D,(E~¢), @8

which can be used for the derivation of the tangent stiffness matrix. If the inelastic strain rate
£; can be written in an explicit format substitution into €q.(2.8) yields the matrix D,. At the
boundary $ of the body it is required that either

t—-on=0, 2.9)
with t the boundary traction and it the outward normal to the surface of the body, or
ug =ug, (2.10)

with ug the displacements at the boundary and ug the prescribed displacements.
2.2 WEAK FORMULATION OF THE IVP

While eq.(2.1) describes the motion of the body in a strong sense, a weak form of these equa-
tions is obtained by setting
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JsuT[LTo - Rii + p]dV =0, (2.11)
14

in which 8 denoting the variation of a quantity. With aid of Green’s theorem

JouTLTo] av = [8eTo av + [suT[on)ds , 2.12)
v \'4 S

eq.(2.11) can be transformed into

[suT[Rii]dV + [5eToaV = [suTpdv + [suTtds (2.13)
|4 v |4 S

in which €q.(2.9) has been substituted. Note that in the derivation of eq.(2.13) no assumptions
have been made with regard to the material behaviour.
If eq.(2.13) is considered to be valid at time ¢ + Az the evolution of the stress follows from

t+At

vt gty [ Gar. 2.14)
t

o]

If the constitutive relation (2.4) is substituted in eq.(2.14) we can rewrite the virtual work
equation (2.13) into

t+AL
JouT[Rii*1av + [5eT [ D.édrav = [suTp 4 av + [ouTe* as - [seTot av . (2.15)
14 v 3 |4 S |4

2.3 DISCRETISATION OF THE IVP

We shall consider the finite element representation of the virtual work equation (2.15) for the
dynamic motion of the inelastic body. First, we will discuss the spatial discretisation of the
problem and then the time integration is treated. The body can be divided into a finite number
of elements. For each element the continuous displacement field u can be interpolated by

u=Ha, (2.16)
and the continuous acceleration field by
u=Ha, 2.17)

in which the matrix H contains the interpolation polynomials and a and a the nodal displace-
ments and nodal accelerations, respectively. Combining eqs.(2.2) and (2.16) and introducing
the strain-nodal displacement matrix

B=LH, (2.18)

the relation between the strains and the nodal displacements is obtained as



PAGE 8 CHAPTER 2

e=Ba, (2.19)
or in rate format as
€=Ba. 2.20)

We can now substitute egs.(2.16), (2.17), (2.19) and (2.20) into the virtual work expression
(2.15), which yields

1+AL
8aT [HTRHA"™ av + 82T | BTD Badrav =
\4 Ve
8aT [HTp"* qv + 5aT [HT ¢4 g5 — §aT [BTo’ av . 221)
\' N 14

Here, we consider eq.(2.21) on a structural level and the solution method for the nonlinear set
of algebraic equations determines the time integral. In this study we use the incremental itera-
tive Newton-Raphson solution method and an Euler forward method is used for the determina-
tion of |BTD_ Badt. In the zero-th iteration we start from the stress-strain matrix at time ¢, i.e.
D%. Furthermore, we define the incremental nodal displacement vector as

1+AL
Aa=a""¥_a'= | adz. (2.22)

Since we assume that identity (2.21) must hold for any admissible da we obtain for the zero-th
iteration at time ¢+At

[HTRHE 4V + [BTD!BAa gV = [HTp"* av + [HTt+8 45 — [BT6* av . (2.23)
vV \ 4 14 S 14

If we introduce the notations

M = [HTRH &V | (2.24)
|4

for the mass matrix,

K’ = [BTD!B 4V (2.25)
|4

for the stiffness matrix,

- J'HTpHAt dv + J'HTtHAt ds (2.26)
\4 N

for the external load vector and
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ffn: =IBTthV 2.27)
Vv

for the internal force vector, we can rewrite eq.(2.23) into
Ma + KlAa ="+ _fL, (2.28)

Eq.(2.28) represents the semi-discrete nonlinear equation of motion governing the response of
a system of finite elements. After the spatial integration of the virtual work equation we apply
the direct time integration method to obtain a full discrete equation of motion.

In the above derivation we have tacitly assumed that the equation of motion is satisfied at
time ¢ + At which corresponds to an implicit time integration of the field equations. If we
would consider the equation of motion at time ¢t we speak of an explicit time integration
scheme. An explicit time integration scheme can have major advantages in reducing the com-
putational effort per time step. The explicit scheme does not require factorisation of the stiff-
ness matrix and storage of the system matrices is not necessary if a lumped mass matrix is
used. Two shortcomings of the use of an explicit time integration scheme are the time step
restriction and the absence of knowledge whether the exact path of dynamic "equilibrium" has
been traced. The first problem concerns the stability of the solution. For linear problems a
critical time step can be calculated, which is dependent on the smallest period in a system
(Bathe 1982, Hughes 1987). For time steps larger than this critical value the initial conditions
are amplified artificially in the course of time which makes the calculation meaningless. For
nonlinear problems with softening a critical time step cannot be obtained and it is not even
clear whether a stable time step exists for explicit time integration. More important is the sec-
ond issue concerning the accuracy of the solution. Strong nonlinearities during a time step are
not taken into account for the determination of the state variables at time ¢ + At. Therefore,
small solution errors arise which are not corrected but, on the contrary, can accumulate in sig-
nificant solution errors. In this study the implicit time integration method is applied for two
reasons. Firstly, we can obtain an unconditionally stable scheme and we avoid time step
restrictions (only if the time integration of the nonlinear constitutive equations is also done
implicitly). Secondly, iterations within a time step can be used to assure dynamic "equilib-
rium” and improve the solution accuracy.

One of the popular classes of implicit time integrators is the Newmark family. The main
assumption is that the acceleration varies linearly over the time step. Therefore we use the
formulae

éx+A, - ég T [(1 —'Y) 5! + ,Y51+Al] At (2.29)
and
a"*Y =a' +d'Ar + [(o-P)a’ + B A2 (2.30)

Eqs.(2.29) and (2.30) with the semi-discrete equation of motion (2.28) result in a system of
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equations with the unknown variables a, a and a at time ¢ + Az, so that the problem is deter-
mined if the boundary and initial conditions are known. The parameters 3 and y determine the
stability and accuracy of the method. We can rewrite eq.(2.30) into

At =coAa—cia' —cod', (2.31)

where the coefficients are given by

co:ﬁ,ﬁ:ﬁ,cz:%_l, (2:32)
and substitute the result into eq.(2.28) which yields

KAa=f, (233)
where

K=K'+coM (2.34)

f=F 4 M(c1a" +coi) —fhy . (2.35)

The matrix K and vector f are called the dynamic tangent matrix and the effective load
vector, respectively. As mentioned above we make use of Newton’s method to solve the non-
linear set of algebraic equations in order to obtain dynamic "equilibrium". If we substitute
O gttt = =Dgt+at | OAAG into eq.(2.13), with AAG as a delta-incremental stress field, and
proceed in a similar manner the semi-discrete equation of motion for the i-th iteration
becomes

M([)§l+At + (i-l)Kt+At (i)AAa — ft+At _ (i"l)ff,’{,A' . v (2.36)

in which M and f*** are as defined above. The delta-incremental displacement field AAa is
defined as

DAAa = Dgt+hs _ (-gi+ar (2.37)
which implies that

D!+t — gt 4+ (-DAg + DAAa . (2.38)
By means of eq.(2.38) we can rewrite eq.(2.31) now into

OF = 0o OAAa + coFDAa—c a’ — ¢, (2.39)
which is equivalent to

OFA = o DAA + CDZHA (2.40)

Finally, the discretised equation of motion for iteration i is obtained by substitution of
€q.(2.40) into eq.(2.36) which yields
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Box 2.1 : Summary of algorithm for Newmark time integration scheme.
1. Calculate constants :
co=1/(BAL2), ¢ =1/(BAL), c3 =1/2B) -1, c3 =(1 —Y)AL, cq4=YA?
2. Initialise : af, éO, al
3. Compute: K=K+ coM
f=F40 4 M(c, " +cpd) — fly
4. Solve for incremental displacements :
KAa=f
5. i=1,YAa=2a
6. Compute:  G-Dg* = (-DAg ¢ a’ — ¢ d'
K= (-DK 4 coM
;-___ £+ _ M (i-1)ﬁt+At _ (i—l)ffLAt
7. Solve for delta-incremental displacements :
K @AAa=f
8. Compute: OAa= -Daa + DAAa
9. Check convergence criterion. If not converged :
i=i+1,g0t06.
10. Calculate new accelerations, velocities and displacements :
A =coAa—cia' —cod
A sy C3iit + C45I+At
a"*¥ =a' + Aa
11. Next step, go to 3.
KOAAa=f, (2.41)

where
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K = -DK!* 4 0oM (2.42)
f= 8 MODEA D (2.43)

This scheme corresponds to a full Newton-Raphson scheme, while a modified Newton itera-
tion is obtained if K’ is not updated during iteration. In Box 2.1 the algorithm for implicit
integration of the semi-discrete equation of motion is outlined.

The Newmark method can be made unconditionally stable (Bathe 1982, Hughes 1987) if

v2Y, and B2Valy+Yp)?. (2.44)

A most prominent member of the Newmark family that satisfies the abovementioned require-
ment is the constant or average acceleration method, which is obtained by setting B =14 and
v=1, (trapezoidal rule). This method will be used for the wave propagation analyses in this
thesis. Other well-known members of the Newmark family are the linear acceleration method
(B =Yg and Y= 1) and the Fox-Goodwin method (B = 117 and y= 1), which are both condi-
tionally stable. It may occur that higher-order frequencies are introduced by the semi-discreti-
sation of the equation of motion, which are not present in the governing partial differential
equations. Sometimes it may be necessary to have a form of algorithmic damping in the time
integration scheme to exclude these artificial higher-order frequencies. By taking Y21/,
(Hughes 1987) it is possible to filter out this spurious high-frequent response. However, by
introducing numerical damping in the Newmark scheme the accuracy deteriorates.

For an unconditionally stable scheme there is no restriction to the size of the time step for
reasons of stability. However, stability of the time integration does not ensure sufficient accu-
racy of the solution. To obtain an accurate solution Az should be selected corresponding to the
smallest period (highest frequency) in the loading pulse. Such a criterion is used for modal
analyses but can hardly be used for a direct time integration analysis of a wave propagation
problem, in which a large number of frequencies are excited. Instead, the time step can be
adjusted to the size of the finite elements. If the size of the elements is chosen corresponding
to the wave lengths present in the loading pulse a critical time step can be derived. For
instance, for a linear two-noded line element under uniaxial tension or compression it can be
derived (Hughes 1987) for the critical time step size that

At < —11"— , (2.45)
Ce

in which [, is the element length and ¢, = \/ETp is the longitudinal wave velocity in the ele-
ment. In fact, this is the time required to traverse one element. Hughes (1987) derived for
some elements the critical time step size, depending on the size of the element, the mass distri-
bution (lumped, consistent), and the interpolation polynomials. Finally, it is noted that, for
linear systems, the solution becomes less accurate also when the time step is taken smaller
than the critical time step, because we converge to the exact solution of the spatially discre-
tised system (eq.(2.28)) instead of to the exact solution (Hughes 1987). So, for linear
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calculations the most accurate solution is obtained if the time step is chosen equal to the criti-
cal time step, although in nonlinear calculations this critical value can be overruled by stronger
requirements on the time step because of the dependence on the integration of the nonlinear
constitutive equations.

With respect to the mass distribution in an element we consider a lumped and a consistent
mass matrix, although higher-order mass matrices can also be used. Lumped and consistent
matrices both represent approximations of the exact solution. By taking a consistent mass
matrix a higher frequency with a smaller period is calculated in comparison with the exact
solution. It turns out that the use of a consistent mass matrix yields an upper bound value for
the frequency. A lumped mass matrix tends to behave in the opposite direction (Hughes
1987). Moreover, the time integration method also creates errors with respect to the exact
solution. If we use an implicit (explicit) scheme we obtain a lower (upper) bound value for
the frequency. This means that if we combine the implicit (explicit) time integrator with a
consistent (lumped) mass matrix errors in the solution will be neutralised partially. This holds
true for linear as well as for nonlinear analyses. To examine this we have used a lumped and a
consistent mass matrix in a nonlinear problem solved with the Newmark time integrator
(B =14, y=12). We consider a shear layer, treated in section 7.4.1 (Figure 7.7), which is
loaded at both sides of the layer. If the two shear waves meet in the middle of the layer, the
elasticity limit is exceeded and a zone of highly localised deformations emerges. The devel-
opment of the shear band, which is represented by a cosine-shaped shear strain profile, is
simulated more accurately for the consistent mass matrix (Figure 2.1 - left) than for the
lumped mass matrix (Figure 2.1 - right).

Finally, some promising numerical techniques are discussed which can be advantageous if
they are used in analyses involving wave propagation and localisation, in which a large part of
the structure behaves linearly elastic and only a small zone is responsible for the inelastic
deformations. In many cases the small localisation zone puts a very severe restriction to the
time step, which is not necessary for the rest of the structure. A technique to overcome this
problem is subcycling, in which a part of the mesh is integrated with a smaller time step
(Belytschko et al. 1984). Such an algorithm avoids the update of the entire mesh with a time
step determined by the local nonlinearities. A second development is the use of implicit-expli-
cit integration methods (Hughes 1983), which can be done for assemblies with a relatively
stiff part (implicit integrator) and a relatively soft part (explicit integrator). In localisation cal-
culations including softening the method can work in an opposite way. For the nonlinear soft
part we require unconditionally stability (implicit integrator), which is not necessary for the
remaining linear elastic hard part (explicit integrator). A third numerical tool is the use of a
variable time step (Thomas and Gladwell 1988). When a structure is still linearly elastic
larger time steps can be used than in the failure phase. Therefore, a time step control algo-
rithm should be used which has similarities with the arc-length control method in static analy-
ses (Riks 1979). Finally, advanced implicit time integration schemes have been developed, for
instance the Hilber-Hughes-Taylor o-method and the ®;-method (Hoff, Hughes, Hulbert and
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Figure 2.1  Stroboscopic development of a localisation band with consistent mass

matrix (left) and lumped mass matrix (right).

Pahl 1989), which may result in more accurate nonlinear dynamic analyses.
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3. STRAIN SOFTENING AND LOCALISATION OF
DEFORMATION - PROBLEM STATEMENT

In this chapter the essential problems of the incorporation of strain softening in conventional
continuum models will be discussed. For boundary value problems the numerical simulation
of failure, initiated by strain softening, exhibits an excessive mesh dependence, which has
been discussed by a number of authors including Bazant (1976), Crisfield (1982) and de Borst
(1986). Here, it will be shown that this deficiency not only appears under static loading condi-
tions but also under dynamic loading conditions. The character of the solution for wave prop-
agation in softening solids will be investigated in a mathematical, mechanical and numerical
sense.

The chapter is organised as follows. First, the translation of the discontinuous softening
behaviour observed in experiments to a continuous strain-softening model will be discussed.
Attention is paid to the necessity to model the contribution due to the softening effect and to
the question whether softening originates from material or structural behaviour. Next, the
mathematical consequences of the inclusion of strain softening are treated. In contrast to the
boundary value problem, that loses ellipticity, the initial value problem loses hyperbolicity
when the descending softening branch in the stress-strain diagram is entered. As a conse-
quence of strain softening wave speeds become imaginary which leads to a physically non
realistic solution for a wave propagation problem. This will be demonstrated by means of an
analytical solution of a one-dimensional strain-softening bar. The absence of an internal
length scale, for the setting of the width of the localisation zone, and the non-dispersive
behaviour of waves are the basic deficiencies of classical strain-softening models. The
observed pathological mesh dependence is a consequence thereof. Strain-softening models
will be treated for mode-I and mode-II localisation processes : crack models for brittle mode-I
dominated processes under tension and plasticity models for ductile (metals) or brittle (con-
crete,rock) mode-II dominated processes under compressive principal stresses. The strain-
softening models are used for three wave propagation problems : the simple one-dimensional
bar in pure tension (Example 1), the impact tensile test on a double-notched specimen
(Example 2) and the impact biaxial test (Example 3).

3.1 SOFTENING AND A TRANSLATION TO STRAIN SOFTENING

Tensile tests on concrete show that the specimen does not collapse abruptly when the maxi-
mum stress is reached but show a gradual decline of stress at increasing deformation. This
phenomenon is called softening and can be observed under deformation controlled loading
(see Figure 3.1). First the load increases approximately linearly with the displacement up to
about 60 % of the maximum attainable load. Then cracks arise at the interface between aggre-
gate and mortar (bond cracks) and the displacement starts to increase more than proportionally
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Figure 3.1  Characteristic load-displacement curve for a softening material.

with respect to the load. At a higher load level also cracks in the mortar (mortar cracks) arise.
When the load reaches the maximum both types of cracks start to interact and microcracks
develop in the concrete. A steep drop in load occurs with increasing displacement and a
descending branch in the diagram appears. In fact, micro-cracking typically leads to a local
reduction in the effective cross-sectional area available for transmitting the force. If softening
occurs it is a precursor to failure and all deformation localises in small fracture zones (mode-I
localisation). Fracture under tension with a post-peak softening behaviour is not only
observed for concrete but also in other materials as rocks, alloys and plastics. Although the
mechanisms at a micro-level, which drive the softening behaviour, may differ in these materi-
als a comparable softening characteristic is measured at a macro-level. Softening not only
occurs under tensile loadings but is also observed under compressive loadings, e.g. in geologi-
cal materials as soils and rocks and in concrete. Moreover, in ductile materials as structural
steels softening is observed in the final stage of failure independent of the loading conditions.
However, the failure mode may differ. In case of mode-I localisation the cohesive properties
of the material are more critical than the frictional properties, however, in the opposite case
localisation becomes manifest along shear bands (mode-II localisation).

Mode-I and mode-II localisation of deformation are subject to an intense debate. For
instance, at a micro-level the materials scientists study the micro-structural internal damage
processes taking place in the cracked zone or in the shear band. In this thesis we follow a
phenomenological approach in order to deal with localisation of deformation. The macros-
copically observed softening behaviour will be described by a macroscopic set of parameters.

An important experimental result is that localisation regions at a macro-scale have a finite
size. The width of the localisation zone w is determined experimentally, for instance for con-
crete w = 2.7 d,, in which d, is the maximum aggregate size (BaZant and Pijaudier-Cabot
1989) and for sands w = 10d, ~204,, in which d, is the mean grain size diameter (Miihlhaus
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and Vardoulakis 1987). The scale of the localisation phenomenon may differ by some order
of magnitude. In metals the localisation band width is less than a millimeter, while in rocks it
can be several meters. Not only the width of the localisation zone has a finite value, but also
the consumption of energy in the softening zones is finite. Moreover, in wave propagation
problems a partial reflection and a partial transmission of waves on softening or localisation
zones can be observed. It is essential that these features are recovered in numerical simula-
tions of the localisation processes.

Softening occurs under static as well as under dynamic loading conditions. Under tran-
sient loading conditions inertia carries a part of the load and therefore the load of initiation of
softening increases. A number of researchers have observed the dependence of the dynamic
tensile strength on the stress rate (see Kormeling 1986 for a summary). Interpretation of
experimental data must be done very carefully because the contribution of inertia effects in the
structure should not be attributed to the material properties. Therefore the numerical simula-
tion is an important tool to separate the true contribution of the changed material parameters
and the inertia effects in the structure. About the influence of transient conditions on the soft-
ening behaviour not much experimental data is yet known. For concrete fracture Kormeling
(1986) observed an increase of the fracture energy Gy related to the area under the load-dis-
placement curve, when a total specimen is considered in which multiple crack zones occur.
However, Weerheijm (1991), considering only one crack zone, observed a different shape of
the softening curve but similarity between the static and dynamic value for the fracture energy
in his test series on double-notched concrete specimens. So, more experimental research is
necessary for a determination of the influence of rate effects on the softening response.
Research should focus not only on the determination of the fracture energy but also on the
number of crack planes in a specimen and the width of the localised crack zones. Not only the
global response but also the local response gives useful information for the derivation of a
phenomenological model for softening.

Under tension in brittle materials the occurrence of softening is an experimentally esta-
blished fact and it is interesting from an economical viewpoint to make use of the redistribu-
tion of forces caused by softening. Under compression, however, in ductile materials soften-
ing may occur after an excursion in the plastic range and may be a precursor to progressive
failure, which is not predicted by an elasto-plastic modelling of a material. So, under tension
as well as under compression softening plays a dominating role in the failure process. More-
over, sometimes information about the failure mode of a structure is needed which is only pos-
sible when the softening effect is taken into account. The influence on the maximum load, the
maximum attainable deformation and the failure mode of a structure show the significant role
that softening plays. With the aid of accurate numerical schemes and more powerful comput-
ers the nonlinear static or dynamic analysis of softening materials is no longer impossible. For
this reason a proper modelling of softening becomes more and more important.

There is no consensus (Read and Hegemier 1984, Sandler 1984) on the question whether
strain softening is a true material property and can thus be used in the stress-strain relations.
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For application in the finite element method softening is always attributed to the material and
has been incorporated in the constitutive equations (strain-softening model). However, the
descending branch in the stress-deformation curve in Figure 3.1 is a result of non-homogene-
ous deformation on a smaller scale and is also dependent on geometry and boundary condi-
tions of the structure. Softening cannot simply be attributed to a continuum and is both depen-
dent on structure and material. Nonlinear finite element software enables us to quantify the
influence of the experimental set-up and the geometry of a specimen on the response. There-
fore, semi-inverse modelling techniques should be used to derive a proper material model with
reliable parameters for strain softening. In this way Rots (1988) studied softening with a
numerical simulation of a specimeri in pure tension. With a proper set of strain-softening
material parameters he obtained a proper description of the non-homogeneous deformation.
However, usually the strain-softening parameters are not derived from a semi-inverse tech-
nique but from a straightforward mapping of measured load-displacement data onto stress-
strain relations. The stress-strain relation is obtained by means of

e=u/L 3.1
and
6=F/A, (3.2)

in which A and L are the original undeformed cross-sectional area and length of the specimen.
F is the load and u is the deformation of the specimen. This translation leads to a negative
slope in the stress-strain curve. The deformations are considered to be distributed homogene-
ously over the specimen. In section 3.5.2 this homogenisation technique will be used for the
material modelling of the impact tensile test.

3.2 MATHEMATICS OF STRAIN-SOFTENING CONTINUUM

Recent studies (Read and Hegemier 1984, Sandler 1984, Lasry and Belytschko 1988) have
treated the mathematical consequences of the inclusion of strain softening. If the initial value
problem is considered in one spatial direction the governing equations for motion (cf. eq.(2.1))
and continuity (cf. eq.(2.2)) can be stated in a rate format as

oc v

Fralew ¢
and

=2, (3.4)

in which velocity v =u. In addition to these equations the constitutive equations must be
specified. A classical strain-softening model with strain decomposition of the total strain € in
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an elastic strain €, and an inelastic strain €;, as used in the strain-softening models in section
3.4, is of a general form

c=f(&), (3.5)
or in a rate form
6=1'¢ . 3.6)

Softening occurs if f’ <0, in which the superimposed prime denote differentiation with
respect to the inelastic strain g;. Combination of eq.(3.4) and (3.6), taking € =€—¢, and
£, = 6/E and differentiation of the result with respect to x yields

96 _ f'E %

o T EAf ot e

If we substitute eq.(3.7) in (3.3) we obtain the wave equation for a one-dimensional strain-
softening element

E+f’ o ., v

T 38

in which ¢, = W is the linear elastic, longitudinal wave velocity (so-called bar wave veloc-
ity). This second-order partial differential equation is linear if f” is constant (linear strain soft-
ening) and quasi-linear if f” is a function of €; (nonlinear strain softening). The type of solu-
tion of eq.(3.8) can be investigated by means of the characteristics. Characteristics represent
the directions along which the solution develops. In case of the wave equation these directions
lie in the x —r plane. For a linear or a quasi-linear differential equation we can calculate the
characteristics as follows. We consider the variation of the first derivatives of velocity v with
respect to 7 and X

v |_ % v
ov 9%y 0%v
d(a}w ot dt + _3—;2— dx . (3.10)

Combination of eq.(3.9) and (3.10) with the wave equation for the classical strain-softening
bar (eq.(3.8)) yields a system of three second-order differential equations with the characteris-
tic determinant
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E+f")cs O —f
D= dt  dx 0 |=(E+f)c2dx?~fde?. (3.11)
0 dt dx

If D 0 a unique solution in the u —x — 1 space can be determined. However, if D =0 the sys-
tem of equations is dependent and a curve in the u —x —1 plane coincides with the characteris-
tic directions

dx _ f
= —ice'\/E_‘_f, . (3.12)

For a wave equation the characteristics (+ dx/dt) coincide with the wave speeds (£ ¢). If we
have softening (f* < 0) and consider the case of snap-through (f’> — E) the characteristics and
therefore the wave speeds will be imaginary. So, the wave equation loses hyperbolicity and
becomes elliptic whenever strain softening is introduced. In fact, a domain is split up into an
elliptic part, in which waves do not have the ability to propagate (standing waves), and into an
hyperbolic part with propagating waves. Spatial interaction between the two domains is
impossible. The loss of hyperbolicity means that the problem becomes ill-posed as an initial
value problem. An ill-posed problem can no longer be a successful description of the underly-
ing physical problem.

The concept of well-posedness has been discussed thoroughly by Benallal et al. (1991).
The hyperbolicity of the field equations is one of the three conditions that are necessary for the
well-posedness of the initial value problem. The boundary complementing condition, govern-
ing instabilities at the boundary due to the emergence of stationary surface waves (Rayleigh
waves), and the interfacial complementing condition, governing instabilities at interfaces due
to the emergence of stationary interfacial waves (Stonely waves), are the other two conditions.

The occurrence of strain softening causes the violation of the local stability criterion (Hill
1958)

£T6>0. (3.13)

A negative inner product of stress rate G and strain rate € implies a material instability, which
is the driving force behind localisation of deformation. In classical rate-independent continua,
as shown above via £ f¢; < 0, this material instability can cause loss of hyperbolicity and thus
loss of well-posedness. However, if a proper continuum description for strain softening is
used a material instability may not imply the loss of hyperbolicity.

A material instability can lead to a structural instability. In that case the second-order
work 82W (which is related to the second derivative of the potential energy U with respect to
1) is negative, which can be written as
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W =1, [§T6av <0. (3.14)
v
This corresponds with the loss of positive-definiteness of the structural tangential stiffness
matrix K (eq.(2.25)) (see de Borst et al. (1992)).

Dispersion is the observation that harmonic waves, with a different frequency, propagate
with different velocities. Because a travelling wave is composed of harmonic waves the shape
of a travelling wave is altered when the components have mutually different wave speeds.
The ability to transform the shape of waves seems a necessary condition for continua to cap-
ture localisation phenomena. Waves that propagate through a classical strain-softening
medium are not dispersive, i.e. the continuum is not able to transform waves into stationary
localisation waves. For a dispersion investigation we assume a single linear harmonic wave
propagating through a one-dimensional continuum with a velocity field of the form

v (x,t) = Agtkr - | (3.15)

in which @ is the angular frequency and £ is the wave number counting the number of wave
lengths A in the bar over 2%

o

5
A dispersion relation can be obtained if eq.(3.15) is substituted in the wave equation (eq.(3.8)),
which yields

N e
o=\ Fr7 k- (3.17)

Waves are called dispersive if the phase velocity ¢y = w/k is.a function of wave number . For
the classical strain-softening bar from eq.(3.17) it becomes clear that c; is independent of &
and therefore waves are non-dispersive (Whitham 1974). For this reason a classical strain-
softening bar is not able to change the shape of an arbitrary loading wave into a stationary
wave representing the localisation zone. It is noted that in a dispersive continuum a difference
can exist between the phase velocity ¢y, which is the velocity of propagation of a single har-
monic wave and the group velocity ¢, which is the velocity at which the energy travels. For
the classical strain-softening medium the phase velocity equals the group velocity and are both
imaginary. However, in the treatment of the non-classical strain-softening models in the
Chapters 4, 5, 6 and 7 a difference between phase and group velocity arises and will be dis-
cussed in more detail.

k (3.16)

3.3 ANALYTICAL SOLUTION OF A CLASSICAL STRAIN-SOFTENING BAR

To investigate the consequences in a mechanical sense of the mathematical statements of ill-
posedness and imaginary wave speeds, we will derive the analytical solution of a bar which is
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initial conditions :
u@x0=0
— X A v(x,0)=0
boundary conditions :
fi strain-softening function : u@0,n)=0 t=20
\»h\ o=f,+he; € <—filh ol,t)=0 t<0
g o=0 & 2—filh c(L,t)y=qg 120

4

Figure 3.2  One-dimensional bar problem in tension (analytical problem).

fixed at one side and is loaded by a dynamic tensile force at the other side (cf. BaZant and
Belytschko (1985), who found an exact analytical solution for a one-dimensional strain-soft-
ening bar with prescribed velocity at both sides of the bar). This longitudinal wave propaga-
tion problem is given in Figure 3.2 and will be investigated numerically in section 3.5. We use
a linear strain-softening model and a step load, which does not narrow the results of this analy-
sis. The transient wave propagates through the bar and reflects at the left boundary. If
Yo f; <qo < fi, with f; the tensile strength, the tensile strength is exceeded after reflection and a
localised softening zone w emerges.

First, we assume that the bar behaves in a linearly elastic manner. The classical one-
dimensional wave equation (cf. eq.(3.8)) reads

1 ouw oum_, (3.18)

A solution of this equation, the d’ Alembert solution, consists of two waves f and g propagat-
ing in the characteristic directions

uxt)=f(x—c.t)+gx+cet). (3.19)
For the problem under consideration we use, after a change of variables,

u@EnD=f@—L-x)c,)+gt—(L+x)lc.), (3.20)
in which fis the wave propagating to the left and g is the reflected wave. The solution for f

for the given initial and boundary conditions reads

H@-L-x)c,) 1 ~E7re

fe-L-x)c,)= o o

F(t)dt= (3.21)
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H(t—(L—-x)lc,
PCe

in which H is the Heaviside step function, which is equal to 1 if # >0 and equal to 0 if H <0.
A similar solution for g completes the solution for the displacement field

—(L- H@—-(L +x)c,
u (x,1)= f(L%)ici)--qo (t—(L-x)ece)~ —(-t—%c—)—c—)qo (t—(L+x)lc,). (3.22)

The strain field via € = du/dx becomes
qoH(@—(L-x)lc,) L H@—(L +x)/c.)

E E )
When the stress field ¢ (x,t) =E € (x,¢) is determined the energy consumption (potential
energy) in the elastic bar can be calculated via

e(xt)= (3.23)

L 24 L
A
U (t)="hA|cedr = %’E— JHE-@=x)c.) +3HE— (L +x)/c,)) dx (3.24)
0 0
which after integration leads to
qdAc,
U (1) = ==t +20-LIc)H(E~Llc,)) for 0<t<2Llc, . (3.25)

If strain softening occurs after reflection of the wave the inelastic behaviour of the strain-
softening zone w is determined by eq.(3.8) with f’=#h (linear strain softening). Eq.(3.8)
becomes elliptic, which means that interaction over finite distances is immediate. This means
that the localisation zone does not extend and remains infinitely small (w —0). Therefore we
postulate a solution and verify that it is a solution to the initial value problem and we claim no
uniqueness. We define a constant strain field €, in an infinitely small localisation zone

U@xt)=gyx forO<x<w, (3.26)

and for the remaining elastic part of the bar we have
H@—-(L-x)lc,
uxt)= —-——p—c—— qo(—(L—x)c)+g(t—(L+x)c,) forw<x<L, (327
e
in which the reflected wave g is unknown yet. Then the strain field becomes
qoH@-L-x)ce 1 dg
E ¢, d@—(L +x)c.)

€)= for w<x<L. (3.28)
Now the displacement field and the strain field are defined inside as well as outside the locali-
sation zone. Interface conditions must be used to solve the system of equations. First, using
€gs.(3.26) and (3.27) and assuming displacement continuity at the interface (x = w) yields an
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expression for the strain in the localisation zone

o = ( 90t (L-x)ic,) +5 (L +x)/ce)]. (3.29)
w | pc.

Because w — 0 the strain in the localisation zone &;,. becomes infinite. It is now proved, fol-
lowing BaZant and Belytschko (1985), that the velocity of the interface v; is zero. If the inter-
face would move to the right the stress outside the zone 6, (w) would be equal to f;, whereas
the stress inside the zone 61 (w) must be smaller than f;. At the same time the strain inside the
zone €, (w) is larger (> f,/E) than the strain outside the zone €;(w) (< f;/E). Thus the jump
equation over the interface, derived from the rate of linear momentum,

[ol=pville]l or o©-—0;=pvi(e;—¢€1), (3.30)

in which the brackets denote difference, can only be satisfied if v; =0 and consequently
0, = 0, and stress continuity over the interface is guaranteed. If we use the softening function
O = f; + hg; for the inelastic part of the bar and 6 = E¢ for the elastic part, the continuity of
stresses can be given by means of eq.(3.28)

dg

W= da— T +x)le))

fi + hegpe . , (3.31)
Because g, —o the stress in the localisation zone and consequently the right-hand-side of
€q.(3.31) vanishes because 6 =0 if g;,, = — fi/h (see Figure 3.2). We can derive the expression
for the reflected wave g by integration of eq.(3.31)

g = (- (L +x)lce) , (332)
PCe
which can be substituted in eq.(3.27) to complete the solution
H(@—(L-x)c H(t—(L +x)/c
u@xn= HG-C-xce) qo (t—(L—-x)c.) + —(—(——)—e)qo - +x)lc,) . (3.33)

Pce Pce
A discontinuity appears at x = 0, at which a jump of displacement, equal to (2q¢/pc.)(#z—L/c,)
occurs after reflection at ¢t =L/c,. For this reason the strain in the localisation zone can be
expressed by means of a Dirac delta function 8(x), namely

2 w
0 ¢ _Lic,)8@x) if [edx =20

e 0 e

£=

(t-L/c,.) . (3.34)

The complete strain field is obtained if we differentiate the displacement (eq.(3.33)) with
respect to x and superpose the solution for the localisation zone
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Figure 3.3 Analytical solution for elastic bar (left) and strain-softening bar (right) for
displacements, strains, stresses (at ¢ =3/, L/c,) and consumption of energy.
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: 2
£ (n1) = EEP— (H—L—x)lc,) — H(t —(L +x)ic,)) + pqc" (t—Lic,) 8(x) (3.35)
e
and the stress field becomes
ox)=qo(H@—(L-x)c,)—H@—(L+x)/c,)) . (3.36)
If stresses and strains are known the energy consumption in the bar can be calculated with
84 't
ORE JHE =L -x)co) -~ HG- L +x)lc,)) dx (337)
0
and integration of eq.(3.37) yiclds
2
qbAc,
U@)= 2E (¢—-2(@-Llc,)H(t—Llc.)) for O<t<2Lic, . (3.38)

The solution of this longitudinal wave propagation problem is fully determined via egs.(3.33),
(3.35), (3.36) and (3.38) for the displacements, strains, stresses and energy, respectively. The
results of the analytical solution of the strain-softening bar have been plotted in Figure 3.3, in
which a comparison is made with a purely elastic bar. The spurious character of the solution is
obvious, the strain reaches infinity after reflection in a localisation zone of zero length. In fact,
the solution of the elliptic equation is a standing wave, described by a Dirac delta function,
which does not have the ability to extend. The stress drops to zero instantly and the wave
reflects on the softening zone as on a free boundary. As already stated in the previous section
spatial interaction between the elliptic and the hyperbolic system is no longer possible. The
tensile wave returns as a pressure wave instead of a superposition of tensile waves which is
usual after reflection on a fixed boundary. Furthermore, it is obvious that from ¢ = L/c, after
reflection the bar is unable to consume a further amount of energy.

A remarkable result is that the solution is independent of the slope of the softening func-
tion h. So the restriction to a linear strain-softening function is no limitation. A discontinuity
arises when 4 =0. When # is slightly smaller than zero the abovementioned solution is valid,
however, if i = 0 (perfect plasticity) an entirely different solution of the problem is found.

3.4 CONSTITUTIVE EQUATIONS FOR STRAIN SOFTENING

As mentioned in section 3.1, softening can be modelled using a phenomenological approach or
a micromechanical approach. For the micromechanical approach exact knowledge about the
microstructural changes in the softening zone is necessary. For instance, for concrete fracture
data about particles, matrix and interface should be described in force-displacement relations.
A big disadvantage of the microstructural simulation of softening is the extreme demand for
computer time. Especially for large scale structures there is a need for models at a macro level
and for this reason the phenomenological approach is followed here. Because stresses and
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strains are averaged quantities constitutive relations must be formulated empirically and if
necessary via semi-inverse modelling techniques. Examples of phenomenological strain-soft-
ening models are crack models, based on a total or a decomposed strain concept, plasticity
models with yield limit degradation and continuous damage models, based on a degradation of
the stiffness determined by a damage parameter. Here, we will first treat the smeared crack
model and next a softening plasticity model.

3.4.1 Smeared crack model

For the continuum approach of fracture a crack model can be defined in the framework of the
fixed smeared crack concept (de Borst and Nauta 1985, Rots 1988). In this concept a cracked
zone is conceived to be a continuum which permits a description in terms of stress-strain rela-
tions. We apply a decomposition of total strain rate into the elastic strain rate €, and the crack
strain rate £,

€=¢,+E, . (3.39)

When incorporating crack stress - crack strain laws it is convenient to set up a local n,t-coordi-
nate system in a two-dimensional configuration, which is aligned with the crack. This necessi-
tates a transformation between the crack strain rate €., in the global x,y,z-coordinates and the
crack strain rate €., in the local coordinates. The crack strain rate in the local coordinate sys-
tem is defined as

écr =L » 26017, (3.40)

where e, is the mode-I crack normal strain rate and é,; is the mode-II crack shear strain rate.
The relation between local and global strain rates reads

£, =Né,, (3.41)

where N is the transformation matrix given by

cos2a,- —sinQy; cos;
- .2 :
N= sin“oy; sing; coso; |, (3.42)
2sinoy; cosoy; cosZoy; —sin® o

with ¢; the inclination angle of the normal of the crack » with the x-axis. The angle is deter-
mined by the principal stress direction at the onset of cracking. An essential feature of the
model is that N is fixed upon crack formation so that the concept belongs to the class of fixed
crack concepts.

In a similar way we can define a crack stress rate vector
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ter = [tnn st 1T, (3.43)

in which i,m is the mode-I normal crack stress rate and #,, is the mode-II shear crack stress
rate. The relation between the stress rate in the global coordinate system and the local stress
rate can be derived to be

t,=NTG. (3.44)

To complete the system of equations we need a constitutive model for the intact concrete and
for the smeared cracks. For the concrete between the cracks it is assumed that

6=D,¢, . (3.45)

The relation between the local crack strain rate and the local crack stress rate is

icr =D € . (3.46)

with D, =diag[h,B,}], in which & is the mode-I softening modulus (4 < 0), which has been
assumed to be a constant for the sake of simplicity. The shear stiffness in the crack is obtained
by a multiplication of the elastic shear stiffness | with a shear reduction factor Bs. Coupling
effects between the two modes are not considered. In this model fracture is assumed to be ini-
tiated in mode-I and mode-1I effects enter upon rotation of the principal stresses.

Now, the overall stress-strain relation of the model with respect to the global coordinate
system can be developed. Combining eqs.(3.39) and (3.45) and subsequent substitution of
eq.(3.41) yields

6=D,[&-Né,]. (3.47)

Premultiplying this equation by NT and substituting eqgs.(3.44) and (3.46) yields the relation
between the local crack strain rate and the global strain rate

é,=[D, +NTD,N]1' N'D,¢. (3.48)

The overall relation between global stress rate and global strain rate is obtained by substituting
€q.(3.48) into (3.47)

6=[D,-D,N[D,, +NTD,N]-! NTD, ] &. (3.49)

In this derivation only one crack is considered, but it is possible that due to the rotation of
principal stresses new cracks arise. The crack strain is then decomposed into separate contri-
butions from the multi-directional cracks (de Borst and Nauta 1985, Rots 1988).

The integration of eq.(3.49) can be done by a one-step forward scheme which is exact if
the matrices D, and D, remain constant during the time step. When, for instance, D, is non-
constant a predictor-corrector method can be used in a inner iteration loop to determine the
incremental stresses (Rots 1988).
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3.4.2 Softening plasticity model

The plastic response of a material becomes manifest as soon as a combination of the stress
components reaches a characteristic value. For isotropic hardening or softening plasticity this
characteristic value is governed by a yield function of the form

f(6,09=0, (3.50)

in which x is a scalar valued hardening or softening parameter which is dependent on the
strain history. In rate-independent plasticity inelastic deformations occur if the stress point is
on the yield surface. Stress states outside the yield contour are not possible. For this reason,
the stress point must remain on the yield contour during plastic flow. This leads to a second
condition for plastic deformation

fe.9=0, (3.51)

which is commonly referred to as Prager’s consistency condition. In plasticity theory the
strain rate vector is decomposed into an elastic €, and a plastic £, part according to

£=¢€, + ép . (3.52)
Therefore the stress-strain relation can be written in a rate form as
6‘=De(é—ép). (3.53)

The plastic strain rate vector is written as the product of a non-negative scalar A and a vector
m, representing the magnitude and the direction of the plastic flow, respectively

& =im. (3.54)
The vector m is often assumed to be the gradient of the plastic potential function &
ogp
== 3.55
m=-—= (3.55)

The plastic potential function g, is equal to the the yield function f in case of associative flow.
The consistency equation can be elaborated as

T Of o
n' G+ aKK—O, (3.56)

in which the vector n is the gradient to the yield surface

-9
a=3L. (3.57)

If we define the softening modulus 4 as
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__lof, (3.58)
YL
an explicit expression for the magnitude of the plastic flow can be derived by premultiplying
eq.(3.53) by n'. Combination with egs.(3.54), (3.56) and (3.58) then yields

n'D,é

= (3.59
h +nTDem )

We can now obtain the relation between stress rate and strain rate by substitution of eq.(3.59)
in eq.(3.53)

: D,mn'D, |
6=|D— ———|€&. (3.60)
h+n D,m

The expression between brackets is called the continuum tangent stiffness matrix. The inte-
gration of this rate equation can be done explicitly via an Euler forward scheme. Then the
quantities m, n and h are evaluated at the beginning of the time step. A more accurate scheme
can be obtained by evaluating m, n and A at time ¢ + A¢, which is referred to as an Euler back-
ward scheme. Therefore an iterative procedure must be set up at integration point level.
Explicit as well as implicit schemes for the integration of €q.(3.60) are commonly called
return mapping schemes. First a trial stress is calculated as an elastic predictor after which the
trial stress is mapped back on the yield surface via a plastic corrector. Two return mapping
algorithms are used in this thesis, namely the tangent cutting plane method (Chapter 5) and the
Euler backward method (Chapter 3, 6 and 7) (Ortiz and Simo 1986, de Borst and Feenstra
1990). It is noted that with the use of a return mapping algorithm we obtain a total stress-
strain relation within a finite time step as in deformation plasticity theories. From this relation
another tangential matrix can be derived, the so-called consistent tangent stiffness matrix,
which ensures a quadratic convergence when the nonlinear set of equations is solved by the
Newton-Raphson iteration scheme.

The hardening/softening parameter x is typically dependent on the strain history. In the
calculations in this thesis we assume strain-hardening/softening in which the evolution of the
hardening/softening parameter is postulated to be equal to

k=\E)TE, (3.61)

which is basically the second invariant of the plastic strain vector (Note that €, =

(Epxx-€pyy»€pzz+Epay s€pyz-E€pzx)). The hardening/softening parameter can be integrated in time
via

x=Jkdr. (3.62)

Because the yield function f is dependent on a scalar x, the yield surface can only expand
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(hardening) or shrink (softening), which means that the theory is limited to isotropic type of
hardening/softening.

The abovementioned derivation is general and can be elaborated for a specific choice of
the yield function f(o,x). In this thesis we will treat three different yield functions. Firstly,
we shall use the pressure-independent criterion of von Mises

f(6,0) =37 -5(x), (3.63)
in which
T2 ="y (s} +55 +5}) (3.64)

is the second invariant of the deviatoric stresses s; =0; —p, with p =1/3(0; + 0, +63) the
hydrostatic pressure. G is the yield stress which is a function of the softening parameter. Typ-
ically, metals and normally-consolidated clays under relatively rapid loading conditions
(undrained behaviour) satisfy the pressure-insensitive criterion of von Mises. The second cri-
terion which we shall use is the Drucker-Prager yield function which includes a dependence
on the hydrostatic pressure p. The Drucker-Prager yield function is defined by

fle,x) =37, +op -k, (3.65)
with oo and & constants given by
_ 6sing _ Gsiny
*= 3 5ine [“‘*’ = 3_siny ] (3.66)
and

k= 6c(K)cosd

© 3-sing (3.67)

in which ¢ signifies the internal friction angle and ¢ the cohesion of a material. In our calcula-
tions the cohesion ¢ is made a function of the softening parameter. We can invoke the concept
of non-associative flow by defining the plastic potential function g, equal to f but with the
dilatancy angle y substituted for the friction angle ¢. The Drucker-Prager criterion is well
suited to describe the inelastic behaviour of sands, drained clays, rocks and concrete under
compressive loading. The yield functions of von Mises and Drucker-Prager can be used for a
mode-II dominated failure pattern. On the other hand, the principal stress yield criterion of
Rankine is suited to predict a mode-I failure pattern. The yield function according to Rankine
is defined as

f(o,%) =0; - 5(x) , (3.68)

in which ¢; =max(0y,0,,03). This model can be used to model fracture of brittle materials
with a plasticity model instead of a smeared crack, discrete crack or damage model.
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3.5 NUMERICAL ANALYSES

For an investigation of the dynamic response in localisation problems the conventional strain-
softening models are used first. In section 3.3 the mechanical consequences of the loss of
hyperbolicity of the field equations has been discussed. Here, the numerical consequence of
the ill-posedness of problem is demonstrated by a mesh-sensitivity analysis. With Example 1
we treat the uniaxial bar problem in tension for which the analytical solution has been given in
section 3.3. Examples 2 and 3 are two-dimensional localisation problems. The analysis of the
impact tensile test (Example 2) is focused on mode-I localisation and the analysis of the
impact biaxial test (Example 3) shows a mode-II localisation process. The three examples will
also be used in the following chapters for assessment of the strain-softening model under con-
sideration. The time integration of the field equations in the three example calculations has
been done with the Newmark scheme (B = Y4, v=1/3, see section 2.3). For the time step we
take Az = 5-107 s for Example 1, Ar = 1:107 s for Example 2 and Az = 1.5-107% s for Example
3. A consistent mass matrix has been used for all analyses with the conventional models.

3.5.1 Example 1 : One-dimensional bar problem in tension

The problem of mesh-sensitivity can be demonstrated clearly by means of the one-dimen-
sional case. The same problem of a bar under uniaxial dynamic tension, which has been con-
sidered analytically in section 3.3, will be investigated numerically. For the softening material
of the bar the smeared crack model from section 3.4.1 is used. Attention is focused on the
influence of mesh spacing on the strain localisation in the bar, the wave reflection on cracked
zones and the consumption of energy in the cracked bar. The bar problem is sketched in Fig-
ure 3.4, including geometry, loading and material data. Use of these parameters yields a linear
elastic wave speed ¢, = 1000 m/s. We consider a block wave with a vertical stress front which

geometry :
L L =100 mm

ad
—

T

A =1mm?
F (1)

—_— loading :

A q0=0.75f
F@) o t;=00s

material :

qoA e E =20000 N/mm?
h p =210~ Ns?/mm*

t - €, f; =2 N/mm?

la =-1000 N/mm?

Figure 3.4 Example 1 : One-dimensional bar problem in tension.
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Figure 3.5 Mesh-dependent results with classical strain-softening model :
Top : Displacements along the bar at t =3, L/c, =0.15107 s,
Bottom : Strain localisation along the bar at r =3, L/c, = 0.15:1073s.

corresponds to t; =0s. The bar is divided into 10, 20, 40 and 80 elements, respectively. Use
has been made of eight-noded elements with a nine-point Gauss integration scheme. The
response of the bar is linearly elastic until the loading wave reaches the left boundary. The
doubling in stress (2 =32 f;) due to reflection of the tensile wave causes the initiation of
cracking. The material enters the softening regime and a localisation zone of intense straining
emerges.

In Figure 3.5 the displacements and the strains for the different meshes are plotted at
t=%L/c, =0.15107 s, that is when the wave has reflected at the left boundary and has
returned to x =1 L. Mesh sensitivity is obvious : strain localisation and, consequently, the
jump in displacement occur in only one vertical row of three integration points which is the



PAGE 34 CHAPTER 3
o [N/mm?]
80 elements
209 0 elements "\
104d.... .~ .
analytical solution eq.(3.36)
0.0 v Xx [mm]
0 100
20 U [Nmm]
10 elements
124 ..
0 e T
0 : 1 ¢ [x1073 §]

0.1

Figure 3.6 Mesh-dependent results with classical strain-softening model :
Top : Stress profiles along the bar at t =%, L/c, =0.15:107 s.
Bottom : Energy consumption of the bar.

smallest possible zone. Hence, the width of the localisation zone w decreases when more ele-
ments are used. After reflection the strain localises in one vertical row of integration points at
the left boundary and extension of the zone is not possible. This is in agreement with the ana-
lytical findings in section 3.2. It is obvious that the analytical solution from section 3.3 is
approached when the mesh is refined. The results for the discretisation with 80 elements has
not been plotted because at £ =0.15-1073 s the bar has already failed. In Figure 3.6 the stress
profiles after reflection show that the amount of wave reflection depends on the mesh : for
more elements there is a larger reduction in stress of the reflected wave. When the mesh is
finer the stress in the softening zone drops to zero more rapidly which determines the amount
of reflection. As soon as the stress has become zero one vertical row of integration points start
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to act as a free boundary on which the tensile wave reflects as a pressure wave. Summation of
a tensile wave propagating to the left and a pressure wave propagating to the right yields a
zero stress situation. Moreover, the development of the consumption of energy U in the bar
depends on the number of elements in the mesh as can be seen from Figure 3.6. The increase
of the sum of elastic and inelastic energy after reflection (¢ > L/c,) is smaller when the locali-
sation zone is smaller. In the limiting analytical case failure occurs at ¢t =L/c, without any
further energy consumption in the strain-softening zone of the bar. The stress drops to zero
instantly and the wave reflects as a pressure wave. The elastic energy gradually vanishes in
the bar with the returning pressure wave.

It turns out that under mesh refinement the spurious analytical solution treated in section
3.3 is recovered. The strain in the localisation zone approaches an infinite value, the jump in
displacements at the boundary becomes discontinuous, the stress drops to zero in an infinitesi-
mal time interval and the consumption of energy becomes zero because the volume of the
strain-softening zone becomes zero.

The same one-dimensional analysis can be carried out for a mode-II localisation problem
considering the propagation of a shear wave instead of a longitudinal wave. If we consider a
shear layer the use of a softening plasticity model (von Mises) leads to a shear band failure
pattern at the left boundary. The width of the shear band, the shear stress reflection on the
shear band and the consumption of energy in the shear banding zone are identically dependent
on the mesh as in the uniaxial case under tension.

3.5.2 Example 2 : Impact tensile test on a double-notched specimen

In the Stevin Laboratory of Delft University of Technology impact tensile tests have been car-
ried out on double-notched, prismatic concrete specimens (Figure 3.7). A specimen with
notches makes it possible to predetermine the failure zone and to measure the deformation
inside as well as outside the fracture zone. The tests have been performed with a Split-Hop-
kinson bar apparatus by Weerheijm (Weerheijm and Reinhardt 1989, Weerheijm 1991). The
specimen is kept between an upper bar (6.7 m) and a lower bar (3.5 m) and the tensile pulse is
applied at the bottom of the experimental set-up. The main observations that have been
reported are : the ultimate strength and the deformations inside and outside the fracture zone.
The loading rate has been measured after the pulse had passed the specimen and is affected by
the failure process and the geometry of the specimen.

The response measured in the experiments is influenced by structural effects as the geome-
try of the specimen and the stiffness of the experimental set-up. For this reason material
parameters which determine the post-peak response cannot be derived directly from the exper-
iment. However, the combination of experimental and numerical data, as discussed in section
3.1, makes it possible to separate the structural from the material response, provided that a
proper material model is used and that the geometry and boundary conditions have been
modelled correctly. Because the classical model for softening results in mesh sensitivity, this
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geometry :
50 x 80 x 100 mm
(specimen)
5X6 mm
(notch)
loading :
-t GA =34.56:10° N/s
(net cross-section)
p (A =40x 80 mm)
material :
fi E = 40700 N/mm?
h v=0.2
p =2350 kg/m’
f; =4.9 N/mm?
€r  h=-490 N/mm?
Bs=0

F@

GA/l

F ()

Figure 3.7 Example 2 : Impact tensile test on a double-notched specimen.

model is not appropriate for a semi-inverse determination of the material parameters. Here,
the numerical description of the impact tensile test is only given to show the mesh dependence
of the results.

For the numerical modelling of the specimen and the Split-Hopkinson bar we assume a
plane-stress condition. The upper and lower bar of the Split-Hopkinson bar are very long to
avoid reflections of stress waves, which would result in a disturbed response. So, in the
numerical simulation the set-up cannot be omitted but must be modelled for a proper calcula-
tion of the response without undesirable reflections. However, the element size in the numeri-
cal modelling of the set-up is limited to the length traversed in one time step by the longitudi-
nal elastic wave. Use of a larger element size would disturb the shape of the impact loading
wave. A straightforward discretisation of the total Split-Hopkinson bar is therefore too
expensive. A configuration with less elements can be obtained if we make use of the acoustic
impedance

Z=AEp (3.69)

of the material, in which A is the cross-sectional area of the adapter. If Z is kept constant no
reflections occur on an interface of materials with different properties. In this way the wave
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Figure 3.8  Numerical model of experimental set-up (top) with stress (centre) and
displacement response (bottom) in upper (right) and lower (left) adapter.
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mesh 1 mesh 2 mesh 3
Figure 3.9  Finite element configurations for notched specimen.

speed can be slowed down by an increase of the density p and a decrease of Young’s modulus
E. Several zones are applied to gradually slow down the wave speed. The numerical model
with the boundary elements is given in Figure 3.8. The strain and the displacement response
in the upper and the lower adapter show the slowing down of the loading wave in the bound-
ary elements.

The applied load is doubled because half of the load propagates to the specimen as a ten-
sile wave and the other half propagates to the boundary elements as a pressure wave, which is
clearly shown from the stress response in Figure 3.8. The numerical model of the set-up leads
to different boundary conditions than the conditions in the test. The upper and lower bar of
the set-up have been modelled with quadrilateral eight-noded elements with a four points
Gauss integration and with triangular six-noded elements with a three points Gauss integra-
tion. To avoid reflections at the transition of the specimen and the set-up the same material
parameters for the test set-up are chosen as for the specimen.

For the specimen three finite element discretisations have been used (Figure 3.9). For the
different meshes we use one, two and four rows of elements in the notched section, respec-
tively. The elements are eight-noded quadrilaterals but with a nine-point Gauss integration.
The elastic and inelastic properties are given in Figure 3.7. The parameters are derived by a
straightforward translation of experimental data. Because a notched specimen yields a lower
value for the impact tensile strength the dynamic value for f; is taken from empirical relations
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derived in former programmes (Zielinski 1982). A simple linear strain-softening model is
used and in a classical way, using a homogenisation technique, the constant softening modulus
h was derived from the ultimate deformation measured in the experiment according to

8, 006 fi 49

=—=0. =—— =7 =_490 N/mm? , :
i < 0.01 and h e 001 /mm (3.70)

g, =

in which g, is the ultimate crack strain and d,. is the notch height. In the numerical analy-
ses a section of 5x6 mm in front of the left notch was given a material imperfection in the
sense that the tensile strength was reduced by 20 %. By inserting an imperfection the possibil-
ity is offered of computing an asymmetric component of the solution.

The results of the analyses show again mesh dependence as a consequence of an ill-posed
continuum description for softening. Cracks start to propagate in one row of elements from
the two notches to the centre of the specimen. In Figure 3.10 it is shown that the deformation
(plotted with a multiplication factor FA = 500) localises along the crack in one single row of
integration points for each of the three meshes. Here, a second problem appears which is
caused by the ill-posedness of the problem, namely the mesh alignment of the results, i.e. the
cracks or the localisation of deformation have a preferential direction of propagation which is
aligned with the mesh lines. Mesh alignment is related to multiple equilibrium states which
exist after the passing of spurious bifurcation points (de Borst 1986). During crack propaga-
tion the lowest equilibrium path is followed which often belongs to a propagation in the direc-
tion of the mesh lines. However, for finer meshes equilibrium states belonging to a propaga-
tion of cracks in directions not aligned with the mesh can be accessed more easily. This occurs
in the mesh 3 analysis, in which the localisation band jumps between different rows of ele-
ments. In the impact tensile test the problem of mesh alignment has only a minor influence on
the overall response because the crack propagation length is small and the mesh lines almost
coincide with the direction of propagation of the cracks. A more convincing example of mesh
alignment will be discussed in the next section.

The mesh dependence is shown for the total displacements in Figure 3.10 and for the axial
strains in a vertical cross-section in Figure 3.11. Not only the classical strain-softening model-
ling of the material but also the singularity in the geometry of the specimen causes mesh
dependence. The singularity at the notch forces the initiation of cracks at an earlier time stage
for mesh 3 than for mesh 1. If a material is brittle this effect cannot be smooth out and crack
propagation occurs more rapidly and failure is accelerated. Already from the one-dimensional
analysis it is observed that, using a classical strain-softening model, a finer mesh is equivalent
to a more brittle material model (a faster stress drop after the initiation of softening). Hence,
mesh sensitivity due to a stress singularity in the elastic solution and due to a classical strain-
softening modelling amplify each other and at ¢ =0.50:1073 s the total displacements are much
larger for the mesh 3 calculation than for the mesh 2 calculation, in which the stress peak at
the notch is smoothed out partially by a redistribution of stresses.
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Figure 3.10 Displacement patterns at t = 0.50-107 s (FA = 500).
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Figure 3.11 Total axial strains in centre section (x =25 mm) of the specimen
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Figure 3.12 Stress-deformation curve inside the fracture zone.
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Figure 3.13 Stress-time curve of the transmitted loading pulse.
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The numerical results can be compared with experimental data (Weerheijm 1991). The
stress-deformation curves for the numerical analyses as well as for the experiment are plotted
in Figure 3.12 in which 3,4, represents the mean deformation over the left and the right
notch and o represents the vertical stress at the top of the specimen. Upon mesh refinement
the behaviour becomes more brittle and the area under the curve is not an objective measure
for the fracture energy. Mesh dependence starts already in the pre-peak regime, when the
cracks propagate from the notch to the centre of the specimen. This results in a lower peak
stress for the finest mesh. In Figure 3.13 the transmitted loading pulse is plotted as a function
of time. Once again the influence of the mesh spacing results in a meaningless analysis.
Experimental data can be fitted by an adaptation of the mesh.

The stress rate is measured in the test after the passing of the failure zone. These data have
been used as input for the numerical analysis, which results in a difference between experi-
mentally and numerically observed stress rates. The geometry of the specimen as well as the
failure process influence the loading rate to such an extent that, in fact, a semi-inverse determi-
nation of the applied loading rate should have been used.

The imperfection forces asymmetric crack propagation before reaching the peak load.
When the two cracks have met, which occurs roughly at peak load, the deformation patterns
are mainly symmetric. It is noted that for the finer (i.e. more brittle) mesh more rotation of the
specimen is observed.

3.5.3 Example 3 : Impact biaxial test

The third example of an impact biaxial test is a mode-II localisation problem. A sample is
subjected to a dynamic pressure load, which forces a shear band failure pattern for a von Mises
softening plasticity model. The biaxial test problem is sketched in Figure 3.14, including
geometry, material and loading data. At the top of the sample a dynamic pressure load is
applied. In addition a small horizontal load, which is 10% of the maximum vertical load, has
been applied at the upper edge of the specimen. This load is static and forces the emergence
of an asymmetric failure mode. The boundary conditions along the vertical sides are traction-
free, while the bottom of the sample is rigid (4, =0 and %, =0). To ensure that all vertical dis-
placements at the top of the sample displaced the same amount linear constraint equations
have been used. The material parameter set is used in combination with a von Mises softening
plasticity model (eq.(3.63)), as given in Figure 3.14 with Gy the uniaxial yield stress. Figure
3.15 shows that three discretisations have been used, namely a 3x6-mesh, a 6x12-mesh and a
12x24-mesh, where for the mesh-sensitivity analysis with a classical strain-softening model
each quadrilateral is composed of four quadratic, crossed triangular elements. This element
lay-out has been used because of the satisfaction of the incompressibility constraint in iso-
choric plasticity and because of the alignment of the element boundaries with the expected
direction of the shear band on the basis of analytical expressions (see Appendix 3A). Here, it
is recalled that mesh dependence is not only observed for the width of the shear band but also
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Figure 3.14 Example 3 : Impact biaxial test.

with respect to the orientation of the mesh lines (mesh alignment). For the plane-strain condi-
tion of the sample with a von Mises yield function and v =0.49 a shear band occurs with an
inclination angle of 45.0° (eq.(3A.21)), so that the intrinsical bias of these element meshes is
minimised and mesh-alignment problems are avoided. However, if the plane-stress condition
is considered for the same meshes a spurious numerical result will be obtained because the
inclination angle of the shear band is then 35.3° (eq.(3A.20)) which is not aligned with the
mesh. To avoid mesh-alignment problems for classical strain-softening models a search algo-
rithm, based on the characteristic tangent matrix Q. from Appendix 3A (Larsson 1990),
should be implemented to determine the inclination angle of the shear band. Next, mesh adap-
tation techniques are necessary to minimise the intrinsical bias of the mesh. This issue will be
taken up again in the Chapters 5, 6 and 7.

The longitudinal pressure wave propagates in a linear-elastic manner through the speci-
men. After reflection at the lower boundary the returning wave causes softening over the total
width of the specimen. The specimen starts to bulge for a short time after reflection. Next, a
gradual development of the shear band occurs and all deformation is trapped in the shear band.

Again, for the classical continuum model the width of the shear band is determined by the
element size as can be seen from the displacements in Figure 3.16. All deformation is
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Figure 3.15 Finite element configurations for biaxial test.
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Figure 3.16 Total displacement patterns (3 x 6-mesh: 7 =0.165:1072 5 ; 6 x 12-mesh :
1=0.150-10" 5 ; 12x24-mesh : 1 =0.1275-1073 5, FA = 15).
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Figure 3.18 Energy consumption in the sample.



PAGE 46

CHAPTER 3

120

100

120 120

100} 100
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localised along a line of integration points with an orientation angle of 45°. Mesh dependence
is also obvious from the equivalent plastic strain profiles plotted in Figure 3.17 for the vertical
centre cross-section of the specimen. In one integration point almost the total deformation of
the cross-section is consumed. The behaviour becomes more brittle upon mesh refinement,
which can also be observed from Figure 3.18 in which the energy consumption in the sample
is plotted as a function of time. The energy consumption approaches zero (purely brittle)
when the number of elements increases. So, the results for a mode-II localisation problem
show the same mesh-sensitive behaviour as the mode-I localisation problems (Examples 1 and
2).

For the mesh-sensitivity analyses in the Figures 3.16 to 3.18 we have taken biased meshes
with quadrilaterals, subdivided into four triangular elements. To investigate the influence of
the direction of the mesh lines on the results we have discretised the sample into a mesh with
288 quadratic quadrilaterals (3 x 3 integration), a biased mesh with 576 quadratic triangular
elements and an unbiased mesh with the same number of elements, of which the mesh lines lie
in a direction perpendicular to the forced shear band. For the mesh-refinement analyses we
observed that an increase of the number of integration points reduces the width of the shear
band and causes the difference in the results. While the number of integration points for the
three meshes, used to assess the influence of the orientation of the mesh lines, is almost the
same (2592,2304,2304) the response is completely different. In Figure 3.19 the problem of
mesh alignment is demonstrated by means of the deformed meshes and the contour plots of
the equivalent plastic strains. For the mesh with quadrilateral elements the integration points
lie on a line under 45° and a reasonable response is obtained. On the other hand, the analysis
with the biased mesh show a much smaller localisation band because of the "cooperation” of
the mesh lines with the shear band. The third analysis with the unbiased mesh offers results
which are in contradiction with a physically realistic solution, namely driven by the mesh lines
a dominant shear band develops perpendicular to the expected one. So, in conclusion, a
proper solution technique must not only be aimed on an objective prediction of the width of
the localisation zone, but must also yields results which are invariant to the direction of the
mesh lines.

3.6 SOLUTION TECHNIQUES

As the classical continuum framework does not recognise any characteristic dimensions, it is
impossible to capture the localisation phenomenon properly. The absence of such a length
scale parameter leaves the width of the localisation band unspecified. Furthermore, in section
3.2 from a dynamic point of view propagating waves have been proven to be non-dispersive,
i.e. the classical continuum is not able to transform arbitrarily shaped waves into stationary
localisation waves as observed in experiments. To introduce an internal length scale, and
accordingly, to make wave propagation dispersive, extra terms are necessary in the continuum
formulation. At the same time the inclusion of these terms can cause the field equations to
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remain well-posed after the onset of localisation. In the literature a few solution techniques
have been suggested. Here, four methods will be discussed. The first method is a heuristic
approach, while the methods two, three and four are rooted in a firm fundamental mathemati-
cal basis.

1) Fracture energy model

This solution technique is developed for mode-I fracture but can also be used for a mode-II
shear band problem. The model is based on the assumption that the area under the softening
curve can be regarded as a material parameter (BaZant and Oh 1983, Willam 1984). This area
represents the fracture energy defined per unit area as

Gr=[odu=Joeds. 3.71)

In the Examples 1 to 3 we have seen that localisation occurs in one row of integration points
(for quadratic elements). To guarantee a mesh-objective consumption of energy the softening
modulus should be made a function of the element size. If we have linear strain softening and
integrate €q.(3.71) under the assumption that the strain is constant in the localisation zone the
softening modulus is given by

wfi

- , 72
h=-3G, (3.72)

in which w is a function of the element size. Rots (1988) has given an overview for the crack
band w for different types of elements.

A disadvantage of the fracture energy approach is that the numerical description of the
strain-softening material is changed while the mathematical description is left unchanged. So,
the underlying continuum description is still ill-posed, so that a dependence of the results on
the finite element discretisation is still present. With the fracture energy model we can obtain
mesh-objective results with regard to the energy consumption but we are not able to exclude
the influence through mesh alignment. In fact, the method should be used in combination with
a search algorithm to determine the orientation of localisation bands. By means of mesh adap-
tation the influence of mesh alignment can be minimised. Of course, this procedure is only
possible when analytical solutions for the orientation of localisation bands can be found, or at
least the failure mode can be predicted.

Another problem is the occurrence of multiple localisation zones (e.g. multiple cracking),
which cannot be analysed properly with the fracture energy model. Moreover; the dependence
of w on the element size limits the maximum size of the element in order to prevent snap back
behaviour at a local, integration point level,
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2) Rate-dependent model

An entirely different approach is the inclusion of rate dependence in the constitutive equations
(Wu and Freund 1984, Needleman 1988, Loret and Prevost 1990). Extra higher-order time
derivative terms prevent the field equations from becoming elliptic and keep the problem well-
posed. Dispersive waves and an implicit length scale enables the rate-dependent continuum to
capture localisation of deformation. For mode-I fracture this method is discussed in Chapter
4, while mode-II shear banding is analysed by means of viscoplastic models in Chapter 6.

3) Gradient model

The continuum description can also be enriched by inclusion of higher-order gradient terms.
Spatial derivatives of the inelastic state variables enter the constitutive equations. This can be
done by means of integral expressions of the inelastic state variables. BaZant et al. (1984)
have proposed a non-local strain model and recently Pijaudier-Cabot and BaZant (1987) have
reported about a non-local damage model. Here, we do not use the integral expression but we
define a dependence of the yield function on the second-order gradient of the equivalent plas-
tic strain (Miihlhaus and Aifantis 1991, de Borst and Miihlhaus 1992). The system of equa-
tions remains well-posed with real wave speeds. In Chapter 5 this model is used for mode-I as
well as for mode-II localisation problems.

4) Cosserat continuum model

The micro-polar (Cosserat) continuum model is based on the idea of a macro-structure subdi-
vided into micro-elements (Cosserat and Cosserat 1909, Giinther 1958, Schaefer 1962, Mind-
lin 1963 and 1964, Miihlhaus and Vardoulakis 1987). This model closely connects to the het-
erogeneous character of softening materials as sands, rock and concrete. A length scale is
introduced by a finite size of the micro-elements. The regularisation effect comes from the
introduction of couple-stresses and micro-rotations, so that extra rotational degrees-of-free-
dom are defined. The Cosserat continuum model will be discussed in Chapter 7 and it will be
shown that mode-II localisation problems can be analysed properly.
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APPENDIX 3A : SHEAR BAND INCLINATION IN BIAXIAL TEST

Analytical results for the inclination of the shear band have been obtained by a number of
authors, including Rudnicki and Rice (1975), Larsson (1990) and Runesson et al. (1991). For
the classical continuum modelling of strain softening information about the orientation angle
of the shear band is very important in order to align the element mesh along the shear band.
For continuum models with extra or higher-order terms mesh alignment may not affect the
results and analytical data are used for validation of the models.

In classical rate-independent continua the shear band is considered as a surface discon-
tinuity. When the material model includes strain softening and/or non-associated plastic flow
a continuous field v; can abruptly change in a discontinuous solution with the primary field v,
and a bifurcated field v,. Across the characteristic surface C the velocity field is discontinu-
ous. However, the difference [v]] = v5 ~ v, is constant along C which may be expressed as

dpvy =D 4y o, (A1)
ox

where x is the position vector and dx is the tangent vector of C. If we define the unit vector fi
normal to C in the xy-plane we have ndx =0. The general solution of eq.(3A.1) is (Rice 1976,
Runesson et al. 1991)

vl .-
ox =&,

in which § is an arbitrary vector. If we write eq.(2.2) in rate and tensor format we obtain

(3A2)

0D = Y2 (v, ;1 + [1V;,:]) - (3A3)
The jump of strain rate across C is obtained by combination of eq.(3A.2) and (3A3) as

€] = Y2 (En + k) . (3A.4)
Balance of linear momentum across the surface discontinuity C requires (see also section 3.3)

feln=0, (3A.5)
which may be combined with eq.(2.4) to give

[D.£1Aa=0, (3A.6)

in which the assumption of a plastic response at both sides of C is made. Combination of
€q.(3A.4) and (3A.6) leads to

Q5=0, (A7)

in which Q. is the characteristic tangent stiffness matrix that is defined as
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Q. =nD.h. (3A.8)

Eq.(3A.7) is Hill’s bifurcation criterion (Hill 1962) for a discontinuous velocity field with a
velocity gradient. A non-trivial solution of eq.(3A.7) is possible when Q. is singular which
implies

det(Q.)=0. (BA9)
The elasto-plastic tangent stiffness matrix D, follows from eq.(3.60)
D, =D, - De—m;.'ill‘; . (3A.10)
h+n D,m

The characteristic tangent stiffness matrix Q, differs for the plane-strain and the plane-stress
condition because the elastic stiffness matrix D, differs and the vectors m and n differ in the
number of components.

It is noted that for this analysis the extra or higher-order terms in the constitutive model,
which are necessary to regularise the mesh-dependence problem as described in the Chapters
4-6, have been neglected. This seems reasonable because at the onset of softening and initia-
tion of the shear band these terms have no contribution yet. The higher-order terms act as a
singular perturbation of the conventional plasticity model. Only the micro-polar effects in the
Cosserat model (Chapter 7) are present in the elastic phase, which results in a different elastic
stiffness matrix D, (eq.(7.12)).

We consider the orientation of the shear band in the interior of the specimen and neglect
the change of shear band orientation at free surfaces, due to stationary Rayleigh waves, and at
interfaces, due to stationary Stonely waves (Benallal et al. 1991, Needleman and Ortiz 1991).
If we elaborate eq.(3A.9) according to Runesson et al. (1991) expressions for the critical hard-
ening/softening modulus A,,; are obtained of the following format

hcr'

2u
If we introduce the constraint Z% =1- ﬁ% for the unit normal vector, an extreme value for A.,;
can be obtained by differentiating eq.(3A.11) to the direction component 7

d(hcri/zp')
———=0
d(ny)

=f(@,n,m,\v). (3A.11)

(BA.12)

Because dz(hc,,»/Zu)/d(r'n% )2 < 0 a maximum value for h,,; is obtained. From eq.(3A.12) we
solve 71% and because
2 71
tan“® = —-, (3A.13)

Z
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in which © is the angle between y-axis and the normal vector i, general expressions for the
inclination angle can be derived for plane-stress conditions as

ni(my-my)+my(ny —ny)

2
O=-— 3A.14
an na(my —mz) +my(ny —ny) Ga.14)
and for plane-strain conditions as
ni(my —my) +my(ny —ng) +v(na(m, —my) +ms(ny —n
1an20 = 1(m1—m3) +my(ny — n3) +V(nz(my —m3z) + m3(ny —ny)) (3A.15)

na(my—ma) +my(ny —na) +v(na(my —my) + ms(n; —ny))

The von Mises yield criterion is given by the egs.(3.63) and (3.64) and because of associa-
tive flow we have n; = m;. For a plane-stress condition we derive from eq.(3A.14)
51

tan?@ =— — , (3A.16)
$2

and similar for a plane-strain condition we obtain from eq.(3A.15)
(1-V)s; —vsy
2
O=-— 3A.17
vsy — (1 =V)sy ( )

The Drucker-Prager yield criterion is defined by the eqs.(3.65)-(3.67). Substitution of »;
and m; into the eqs.(3A.14) and (3A.15) yields for plane-stress conditions

20 _ 9s1+\/3.12(a+oc,,,)
tan“@ =— (3A.18)
959 +\/312 (o + Oy)
and for plane-strain conditions
(s +vs3)+(1+ V)3 (e + o
an60 = (51 +Vvs3) + (1 + V)37, ( w) (3A.19)

9(s2 +Vs3) + (1 +V\3J; (o + Q) '

Two cases have been treated in this thesis in which proper numerical results, i.e. in accor-
dance with the analytical solutions for the orientation of the material instability, have been
obtained because of the use of enriched continuum models for strain softening.

Case 1 : Biaxial test with von Mises model (configuration in section 3.5.3)

In Figure 3.14 the biaxial test problem is given with a vertical pressure load and a small hori-
zontal load, which forces the occurrence of one shear band, starting in the bottom right corner
of the specimen. With Poisson’s ratio v = 0.49 and a vertical stress 6, =— G we obtain

plane stress :
01=0;6,=—0-5;=0.3330;5, =-0.6670:
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Figure 3A.1 Shear band inclination for plane-stress (left) and plane-strain (right) with
a von Mises yield criterion.

tan’®=0.5 > ©=35.3". (3A.20)

plane strain :
01=0;0,=-0;03=V(0] +03)=0496 = 51 =0.4970; 5, =—0.5030 :

tan’®=1.0-50=450". (3A.21)
The analytical values for ® have been plotted in Figure 3A.1.

Case 2 : Biaxial test with Drucker-Prager model (configuration in section 54.3)

A different configuration has been used for the analysis with the Drucker-Prager model, in
which asymmetry is not incorporated via the loads but via the boundary conditions. The ori-
entation of the shear band depends on the stress state in the specimen and the material proper-
ties. From the numerical simulations we observe that for ¢ = 20° the shear band initiates in the
bottom right corner because h,;/2 is larger and therefore more critical for this shear band,
while for ¢ = 30° the situation is the other way round. We consider the plane-strain situation
and withv=0.2and y=0° (a\,, =0) we obtain
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Figure 3A.2 Shear band inclination for friction angle ¢ =20° (left ) and ¢ = 30° (right)
with a Drucker-Prager yield criterion.

¢ =20° (initiation bottom right) :

01=0;0,=-0;03=-V0 55 =040;5, =-0.60; 53 =026 ;3/;, =0.920:
tan’@=1.15-0=470". (3A.22)

¢ =30° (initiation bottom left) :

01 =—V0 ;02 =-0;03 =-V0 =51 =02670; 5, =-0.5330; 53 =0.2670; \/312 =0.80:
tan’@ =127 > ©=484". (3A.23)

The analytical values for © have been plotted in Figure 3A.2.
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4. RATE-DEPENDENT CRACK MODEL

The inclusion of strain rate dependence in the constitutive modelling of materials seems natu-
ral under transient loading conditions. However, also under quasi-static conditions final failure
is accompanied by high strain rates. So, from a physical point of view the inclusion of rate
effects is an important feature for a proper modelling of fracture. However, in this chapter we
will pay more attention to the mathematical arguments for the inclusion of viscous or higher-
order time derivative terms. The use of rate-dependent models in the context of mesh sensitiv-
ity has been reported earlier by Wu and Freund (1984), Needleman (1988), Loret and Prevost
(1990) and Sluys and de Borst (1991,1992).

Rate dependence is introduced to prevent the character of the set of equations that
describes the dynamic motion of the softening solid from becoming elliptic. In the rate-
dependent, strain-softening continuum we obtain a wave-like solution with real wave speeds.
Well-posedness of the initial value problem is preserved and meaningful results can be
obtained for localised zones of intense straining. It is essential for the solution of the mesh-
sensitivity problem that rate dependence naturally introduces an internal length scale into the
initial value problem, although the constitutive equations do not explicitly contain a parameter
with the dimension of length.

In this chapter a rate-dependent smeared crack model will be treated, including the algo-
rithmic aspects necessary for numerical application. The existence of the length scale is
proven from an analysis of dispersive waves. The one-dimensional bar in tension (Example 1)
and the impact tensile test on a double-notched specimen (Example 2), treated in Chapter 3,
will be analysed for the rate-dependent model to assess the performance with respect to mesh
refinement. Finally, a comparison is made with a rate-dependent power law model, which has
been used by Needleman (1988).

4.1 FORMULATION OF A RATE-DEPENDENT CRACK MODEL

The strain-softening model of section 3.2 only shows a dependence of the stress on the inelas-
tic strain (0 = f(g;)). Here, we propose an enhanced model that exhibits a dependence of the
stress on the inelastic or crack strain as well as on the crack strain rate, written in the rate for-
mat

0E,,
ar ’
where €., denotes the crack strain rate and m is a rate-sensitivity parameter. Note that rate

dependence is chosen as a function of the crack strain €., and not of the total strain. When a
linear strain-softening function is utilised as in this study

G=f"6, +m (4.1)
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Figure 4.1 Rate-dependent crack model :
Left : Stress-strain curves for different imposed strain rates.
Top right : Schematic representation of the model.
Bottom right : Imposed strain rates.

fE€,)=fi+he, for O<e, <-fi/h “4.2)
then eq.(4.1) becomes

écr
ot
In eqs.(4.2) and (4.3) f; is the initial tensile strength under static loading conditions. For
unloading a secant modulus without rate dependence is used.

In Figure 4.1 computed stress-strain curves are shown for various imposed strain rates.
For these curves the material data set from Figure 3.4 for the one-dimensional bar in tension
(Example 1) is used with & =-5000 N/mm? and m =0.2 Ns/mm?. The curves show an
increase of the tensile strength under dynamic loading, which is also observed in several
experiments summarised by Kormeling (1986). In these experiments the increase of tensile
strength is measured as a function of a constant strain rate. However, these test series and the
numerical simulations described in the subsequent section show that the strain rate not only
varies in time but also displays large gradients along the localisation zone. It is therefore diffi-
cult to derive the material rate sensitivity parameter m from experimental data and semi-
inverse modelling techniques are needed. As regards the increase of fracture energy per unit
area and the ultimate strain less experimental support exists at present (cf. section 3.1).

S=hé, +m (4.3)
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The rate-dependent model has been implemented in the fixed smeared crack concept dis-
cussed in section 3.4.1. Now, in the crack not only a crack stress t.,. but also a rate-dependent
stress t,4 is transmitted in the crack. We define the rate-dependent stress rate as

l‘:rd = Mécr > 4.4)

in which M =diag [m,0], so that only mode-I rate effects are considered. The relation
between local and global stress rate now becomes (cf. eq.(3.44))

ic,. + i,-d = NT6 . 4.5)
If we substitute the eqgs.(3.46) and (4.4) into eq.(4.5) we obtain
D ¢, + Mé,, =NTG . (4.6)

Again, premultiplying eq.(3.47) by NT and combining the result with eq.(4.6) yields the rela-
tion between the local crack strain rate and the global strain rate

é., =(NTD,N+D,_,) I [NTD,£-ME,,]. .7
This equation can be substituted in eq.(3.47), which gives the global constitutive equation
6=D,[I-N(N"D,N +D,.,)"'NTD,] & + D.N[NTD,N + D, ] 'M&,, . (4.8)

For sake of simplicity only one crack has been considered in this derivation, but it is possible
that due to the rotation of principal stresses new cracks arise. The rate-dependent crack strain
is then decomposed into separate contributions from the multi-directional cracks.

4.2 WAVE PROPAGATION IN A RATE-DEPENDENT BAR

We investigate wave propagation by considering the set of equations for a one-dimensional
rate-dependent bar. If we combine the constitutive equation, given by eq.(4.3), with the
kinematic equation eq.(3.4), take €., =€—¢€, and €, = 6/E and differentiate the results with
respect to x we obtain

- 2
9 [ﬂ 906  Exh 6]:3— (hv+ma—vJ. 49)

o |E ot " E

If we use the equation of motion eq.(3.3) we obtain the third-order differential equation for the
one-dimensional rate-dependent strain-softening bar

1 v v E+h 3% %y
—_— _ + —_h—=0. 4.10
[c% o’ axZa:] cZ2 o ox? @19

If m—0 the classical rate-independent wave equation (3.8) is recovered with imaginary
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characteristics and imaginary wave speeds (cf. section 3.2). We can investigate the type of the
wave equation by means of its characteristics. Therefore we consider the variation of two sec-
ond-order derivative terms of v

%y v 3y
d— |=—dt + dx 4.11
[aﬂ] o3 dxor? @11
o%v 3y v
d = dr + dx . 4.12
(axa:) dxor? x2ot @1

Combination of eq.(4.11) and (4.12) and the wave equation for the rate-dependent bar
€q.(4.10) yields a system of three third-order differential equations with a characteristic deter-
minant

micz2 0 —m
D=| dr dx 0 |=m((l/c2)dx? —di?). (4.13)
0 dr dx

With D =0 the characteristics are equal to the elastic bar velocity ¢, and remain real when
strain softening occurs. This means that the wave equation remains hyperbolic and the initial
value problem is well-posed. The characteristics no longer equal the physical wave speed in
the rate-dependent bar. This is only the case if the second-order terms in eq.(4.10) are absent
(m — o). Then the wave speed exactly equals the elastic wave velocity ¢, as will be proved
below by a dispersion analysis. So, the suggestion in literature (Needleman 1988, Loret and
Prevost 1990) that in a rate-dependent continuum disturbances due to inelastic effects travel
with the elastic wave speed is correct for the limiting case.

To investigate the dispersive character of wave propagation in the rate-dependent, soften-
ing continuum a general solution for a single linear harmonic wave with angular frequency ®
and wave number £ is assumed to be of a form given by eq.(3.15). The dispersion relation in a
non-explicit notation can be obtained by substitution of eq.(3.15) into eq.(4.10)

(pmw® —mEk2 )i — p(E +h)w? + hEk2 =0 . (4.14)

If we consider w and £ to be real no solution is possible. Eq.(4.14) can only be satisfied if £ is
complex and therefore & is set equal to &, + ai. This complex value for £ means that the har-
monic wave is attenuated exponentially as it proceeds through the bar and the expression for
v(x,t) may now be written as

v (x,1) = Ae~ ' BF -9 (4.15)

If we equate real and imaginary parts of eq.(4.14) we obtain respectively
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Figure 4.2  Dispersion relation ®—k, for a rate-dependent bar.
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In the Figures 4.2, 4.3 and 4.4 the results for the dispersive wave propagation are plotted for
the parameter set of Example 1 in section 4.4.1. In Figure 4.2 the dispersion relation w = f (k,)
shows that waves in a rate-dependent softening continuum behave nearly similar to waves in a
linear elastic continuum. If k, approaches zero, i.c. for waves of a very low frequency, the
slope of the dispersion curve becomes infinite for softening (h < 0). This means that the quo-
tient w/k, — oo for a static response. In the rate-dependent, strain-softening bar wave propaga-
tion is dispersive because the phase velocity ¢y = w/k, is a function of ® (Figure 4.3), in con-
trast to the classical strain-softening bar in which c; is independent of k (cf. section 3.2). The
dispersion property implies that the rate-dependent strain-softening continuum is able to trans-
form the shape of travelling waves because the harmonic components have different phase
velocities. In localisation analyses this has the advantageous effect that arbitrarily shaped
waves can be transformed in the localisation zone.
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Figure 43  Phase and group velocity as a function of ® for a rate-dependent bar.

The physical velocity of propagation of a pulse is not determined by the phase velocity ¢
of an individual wave but by a superposition of harmonic waves. The speed of a group of har-
monic waves is called the group velocity and can be determined by considering two harmonic
waves with a mutual difference in wave number Ak and in angular frequency Aw®. Superposi-
tion of the two waves produces an envelope wave which travels with velocity Aw/Ak (Achen-
bach 1973, Eringen and Suhubi 1975). The limiting value of the quotient is then the group
velocity ¢

. Aw _ dw

[4 —A}klinoxk- = —67 . (418)
In Figure 4.3 the phase and group velocity are plotted as a function of ® and it can be seen that
the velocities become infinite for @ — 0. In this case the damper element plays no role any
more and a non-physical situation arises in which the energy travels with an infinite velocity.
Thus for very low frequencies, i.e. quasi-static loading conditions, the regularisation effect by
the viscous terms vanishes. For higher frequencies a positive wave speed is obtained which
approaches the linear elastic velocity c, if 0 — oo,

In Figure 4.4 the damping coefficient o is plotted as a function of ® according to €q.(4.17).
The limit of o with respect to @ reads
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Figure 4.4 Damping coefficient o as a function of ® for a rate-dependent bar.
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The parameter / sets the internal length scale of this rate-dependent crack model. High fre-
quencies are attenuated exponentially in the space domain to an extent which is determined by
the length scale /. The implicit presence of an internal length scale is essential for the solution
of the mesh-sensitivity problem.

In case of nonlinear softening (h # const.) or nonlinear damping (m # const.) an initial
perturbation of the velocity field dv(x,t) provides the same results for dispersion in the rate-
dependent, strain-softening bar.

A complete analytical solution of a rate-dependent, strain-softening bar is not known and
the analytical treatment here is limited to the derivation of the dispersion relationships for a
single mode. For the total solution of a one-dimensional bar problem we have to rely entirely
on numerical techniques.

4.3 ALGORITHMIC ASPECTS
Using the rate equations for the rate-dependent crack model we can develop an algorithm that

determines the stress increment in a finite time step At. Therefore we consider the stress-strain
equation (3.47) in its incremental form
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Ac =D, (Ae—-NAe,,), (4.20)

in which we define Ao, Ag and Ae,, as the increments in a time interval ¢ <1<t +At. Denot-
ing the crack strain rate at the beginning of the time step by ¢!, and that at the end of the time

- 1+AL . . .
step by ec:A the incremental crack strain is chosen according to

Ae., =((1-0) &, + @&y Ar, (4.21)

where © is an interpolation parameter, 0<©®<1. For ® =0 we obtain the fully explicit Euler
scheme. On the other hand © =1 gives a scheme that is fully implicit and the case in which
© =1/, represents an implicit scheme according to the trapezoidal rule. At the beginning of
the time interval the crack strain rate reads

e = M7 (-t (4.22)

in which t%, =D,el, and ¢’ is the sum of rate-dependent stress t:; and crack stress ti,. The
crack strain rate at the end of the time interval is expressed in a limited Taylor series expansion

as
de ¢ oé l‘ ot !
- t+AL X1 cr cr cr
e =e,. + At + Ae, N 423
cr cr [ ot :| t [ atcr |:a . :| cr ( )

which can be rewritten in
e el IMI™! (At—D,Ae,,) . (4.24)

By substitution of At =NT Ao into €q.(4.24) and combination of the eqs.(4.20), (4.21) and
(4.24) we obtain an explicit relation for the incremental crack strain

Ae., = (NTD,N +D,, + (1/(@A)) M)~ [NTD,Ae + (1/©) M &L, ] . (4.25)

This equation can be substituted in eq.(4.20) to obtain the incremental constitutive relation at
time ¢ + At

Ac=D.Ae-Aq, (4.26)
where

D, =D,[I-N(NTD,N +D,, + (1/(®A))M)"'NTD,] 4.27)
and

Aq = (1/@)D,N[NTD,N + D,, + (1/(@A)M] ML, . (4.28)

Matrix D, is determined not only by material parameters since the time integration parameters
At and © also enter the expression. The stress-strain relation can be substituted in the virtual
work expression eq.(2.15) in section 2.2. The spatial discretisation of the initial value problem
(see section 2.3) leads to a modified set of discretised equations of motion
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M"Y + K'Aa = £ + Af,y — £y, (4.29)
in which the extra pseudo-nodal force vector is
Af,q = |BTAqaV . (4.30)
v
4.4 NUMERICAL ANALYSES

To investigate the performance of the rate-dependent crack model numerical simulations have
been carried out for the one-dimensional bar in tension (Example 1) and the impact tensile test
on a double-notched specimen (Example 2). For the time integration of the field equations we
again use the Newmark scheme (B =14, y=13, see section 2.3). For the coarse meshes in
Example 1 we use a time step At = 51077 s and for the 80 elements mesh A7 = 2.5:107 s. For
the impact tests a time step At =5-107 s has been taken. For all analyses © = Y5 and a consis-
tent mass matrix has been used.

4.4.1 Example 1 : One-dimensional bar problem in tension

The one-dimensional bar problem has been discussed in section 3.5.1 and has been outlined in
Figure 3.4. A slight modification of the parameter set is applied by taking a steeper softening
branch A =—5000 N/mm?. This modification does not necessarily increase the brittleness of
the material because the viscosity of the material also "carries" a part of the load. The material
rate-sensitivity parameter m =0.2 Ns/mm?, which results in a length scale parameter
{ =20 mm (eq.(4.19)).

In the first analysis the same loading pulse as in the rate-independent analysis in section
3.5.1 with ¢; =0 is applied. In Figure 4.6 a comparison between different meshes is made, at a
time that the loading pulse has returned at the point of loading. The exponential decrease in
strain after reflection as derived in the analytical consideration in section 4.2 comes out nicely.
The strain pattern of the coarse mesh (10 elements) still deviates somewhat but the finer
meshes give identical results. So, for the rate-dependent bar a localisation zone emerges that
converges to a finite, constant band width upon mesh refinement. In Figure 4.6 also the stro-
boscopic development of the total strain along the bar is plotted with a time interval of
1-107 s for the case of 80 elements. It is observed that the width of the localisation zone
remains constant whereas the loading wave propagates. Mesh independence is not only
obtained in the sense that the band width is constant upon mesh refinement but also that the
wave reflection pattern is objective with respect to the mesh as can be seen from the stress pro-
files (Figure 4.7 - top) of the reflected wave. We observe a partial reflection on the localisation
zone, which is constant upon mesh refinement. In the bottom picture of Figure 4.7 the energy
in the bar is plotted as a function of time. After reflection (r =0.1-10~> s) we observe a
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Figure 4.6  Rate-dependent crack model with 7, =0. s :
Top : Strain localisation along the bar at ¢ = 0.2:107 s.
Bottom : Development of the localisation band (80 elements).

positive first derivative term (dU/dt > 0) but a negative second derivative term (d2U/ds? < 0),
which corresponds with a structural instability (see section 3.2. eq.(3.14)). Despite this, the
energy consumption remains finite during the loading cycle.

A second analysis has been carried out for a different loading pulse. In the time-load dia-
gram the time span #; is now chosen as 50-10°s. So, the loading pulse firstly increases lin-
early in time before it becomes constant. Again the effect of the inclusion of the length scale
can be observed from the strain localisation plots for different meshes (Figure 4.8 - top) and at
different times (Figure 4.8 - bottom). Convergence to a solution with a finite width of the
localisation zone characterises the mesh independence. It is noted that the strain distribution
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Figure 47 Rate-dependent crack model withz; =0.s:
Top : Stress profiles along the bar at ¢ = 0.2:107 5.
Bottom : Energy consumption of the bar.

in the localisation zone has a different shape for this loading case. In the previous analysis a
sharp peak in the strain occurs at the left boundary, whereas in this analysis the strain profile is
more uniformly distributed and has a lower peak value. This is due to the strain rate profiles
in the bar at the moment of cracking. In the previous analysis cracking is initiated in one point
at the left boundary from which the exponential decay started. In this analysis the static ten-
sile strength is exceeded over a zone with a fixed length (16.7 mm). At the edge of this zone
(x =16.7 mm) the attenuation of the loading wave starts exponentially and at this point a
bending point in the strain profile occurs (see Figure 4.8).
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Figure 4.8 Rate-dependent model with z; = 50-107 s :

Top : Strain localisation along the bar at t =0.25-1073 s.
Bottom : Development of the localisation band (80 elements).

Finally, the width of the localisation band has been analysed. Firstly, the influence of the
length scale parameter on the observed localisation width was investigated in an analysis with
t4 =0 by using three different values for /, namely 15, 20 and 25 mm. From the upper plot of
Figure 4.9 it appears that the width of the localised zone is a function of the length scale
parameter. These results agree with the observation that the localisation zone should vanish
when the length scale parameter approaches zero. A comparison of the results shown in the
Figures 4.6 and 4.8 had already made it clear that the shape of the loading wave influences the
strain rate distribution in the localisation zone and therefore also the localisation band width.
This effect is shown more clearly in the bottom plot of Figure 4.9 by taking three different
values for the time span t, in which the load is increased from zero to its maximum value.
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Figure 4.9 Top : Variation of the length scale parameter (¢ = 0.2-107 s).

Bottom : Variation of the loading rate (r = 0.2:107> s).

4.4.2 Example 2 : Impact tensile test on a double-notched specimen

X [mm]

x [mm]

The numerical simulations of the impact tensile tests with the Split-Hopkinson bar, discussed
in section 3.5.2, show the poor performance of a classical rate-independent fracture model. A
similarity for the global response between experiment and numerical calculation can be
obtained by an adaptation of the mesh. Of course, such a result reduces the predictable value

of a numerical simulation to zero.

The impact tensile test has also been analysed using a fracture energy model (solution
technique 1 in section 3.6). This model guarantees a mesh-objective fracture energy dissipa-
tion if one crack is considered. Indeed, these analyses for the impact tensile test provide a




PAGE 68 CHAPTER 4

0

J
| 11
¥
"
I
J
]
|
!
J

Figure 4.10 Crack patterns at £ = 0.45-10~> s for the rate-dependent model.

reasonable prediction of the ultimate load and the post-peak behaviour (Sluys 1989). How-
ever, because of the disadvantages of a fracture energy model with respect to multiple crack-
ing and mesh-alignment problems, discussed in section 3.6, this solution technique is consid-
ered to be inferior and will not be discussed here.

For the analyses with the rate-dependent crack model we apply a slight modification of the
parameter set from Figure 3.7. In the classical strain-softening model the increase of tensile
strength due to dynamic effects must be incorporated entirely in the strain-softening function,
whereas in the rate-dependent crack model strain softening can occur before the ultimate stress
is reached (see Figure 4.1). Already in the pre-peak regime we model at a constitutive level
some damage through strain softening while viscous effects cause the further increase of the
stress. For this reason a redistribution of stresses is possible already in the pre-peak regime.
In this analysis we assume that the stress at which strain softening starts is 80 % of the
dynamic tensile strength of the concrete (4.9 N/mm?). In experiments it is observed that at
this stress level micro-cracks start to develop. Furthermore, we take the strain-softening mod-
ulus 4 =—2500 N/mm? and the material rate sensitivity m = 0.1 Ns/mm?. In combination
with the parameter set from Figure 3.7 this results in a length scale parameter / =20.5 mm
(eq.(4.19)).

The computational results differ markedly from the results obtained with the rate-indepen-
dent crack model. Now, a localisation band occurs that is independent of the choice of the
finite element discretisation. At the notches the very local stress concentrations keep the band
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small but the width of the localisation band increases when the crack propagates to the centre
of the specimen. This can be seen from the crack patterns in Figure 4.10 for the three meshes
at a time when the failure zone has developed completely. The deformation patterns for the
three meshes, plotted in Figure 4.11, not only show the mesh independence but also the
misalignment of the localised deformations with the mesh. In contrast to the calculations with
the rate-independent model in which the deformation localises along the horizontal mesh
lines, the cracks branch off and the deformation band becomes wider independent of the align-
ment of the mesh. In Figure 4.12 the total axial strains are plotted for a vertical cross-section
in the centre of the specimen. The strain profiles coincide more or less and show the division
of the strain localisation band into two separate zones. The development of the localisation
band can be investigated in more detail if we consider the axial strains in a relevant part of the
specimen, shown as the zone enclosed by the dashed lines in Figure 4.13. Cracking starts in
the singular points at the upper and lower corner of the two notches. Both cracks at the left
notch first join and at a later stage split up into two separate localisation bands. So there
remains an almost unstretched zone in the middle of the specimen. The same crack propaga-
tion process occurs at the right notch. A small mesh dependence appears in the results due to
the presence of singularities in the elastic solution at the notches of the specimen. The inclu-
sion of rate dependence apparently solves the problems caused by the singularity in the consti-
tutive equation but does not affect the singularities in the geometry.

Again, the numerical results have been compared with the experimental data (Weerheijm
1991). The stress-deformation curves for the numerical analyses as well as for the experiment
are plotted in Figure 4.14. We observe not only mesh independence, but also a reasonable
similarity between numerical analysis and experiment. The calculated maximum tensile stress
is slightly smaller and the application of a linear strain-softening model prevents the proper
simulation of a nonlinear softening branch, which is measured in the experiment. Another
comparison between experiment and calculation is made in Figure 4.15 for the loading pulse
which is transmitted by the fracture zone. The results for the three meshes are identical but
differ slightly from the measured pulse which shows a different loading rate for reasons as dis-
cussed in section 3.5.2. The rate-dependent crack model is a very simple model and it was not
the prime aim of this study to exactly simulate the experiments. Rather it was meant to pro-
vide a solution technique for mesh sensitivity. The second step is now to calibrate the model
to experiments, for instance these impact tensile tests. It is expected that numerical results can
be obtained which are in a better agreement with the experimental data. If we use a nonlinear
strain-softening function the response will be steeper immediately after cracking and more flat
in the final softening stage. Also, a nonlinear function for the material rate sensitivity can
improve the numerical results with respect to the experiment. If we take a larger value for m
only in the first regime of the strain-softening function a larger value for the ultimate stress
can be calculated.



PAGE 70 CHAPTER 4

N N Y H us
mEN 2
pay Ml i : éﬁj :
TN ’ Nﬂ g \x
A \ \
ngpe [ aQya [ ] [ 1]
Figure 4.11 Incremental displacement patterns at 7 = 0.45-107 s.
e[x107]
0.6 L
. mesh 1
mesh 3
mesh 2
04 e SO
o2 ... NN
0.0 i : 5 ? y [mm]
0 100

Figure 4.12 Total axial strains in centre section (x = 25 mm) of the specimen
(t=0.45-1073 s).
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Figure 4.14 Stress-deformation curve inside the fracture zone.
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Figure 4.15 Stress-time curve of the transmitted loading pulse.
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Figure 4.16 Comparison of axial strain for different values for / -
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Finally, the length scale parameter / has been varied through a variation of the material
rate-sensitivity parameter m. In Figure 4.16 the axial strain profiles in the centre section of the
specimen show the dependence of the localisation zone on /. An increase of / by a factor 2
provides a wider and smoother localisation zone, whereas a division of / by 2 yields sharper
peaks in a smaller localisation zone for the strain response. In the stress-deformation curve in
Figure 4.17 the influence of the parameter / is also clear : a smaller value for / leads to a
steeper drop in the curve and to a more brittle behaviour, whereas an increase of [ yields a
more ductile response, although the maximum stress is predicted more accurately. Hence, [ is
a parameter which has an influence similar to that of the fracture energy Gy. Because the
length scale parameter also determines the width of the band, brittleness of a material and the
width of the localisation zone are related phenomena. In Figure 4.18 the influence of [ on the
shape of the loading pulse, which passes the crack plane, is also shown. A larger value for /
slows down the failure process and enables the cross-section to redistribute the stress, which
leads to a larger maximum stress value. It turns out that the behaviour close to the peak load is
very important and determines the crack propagation speed and the extent of redistribution of
stresses.

Now the role of the imperfection adjacent to the left notch, which has been applied in
order to trigger an asymmetric failure mode, will be discussed. The rotation during failure
which is observed in the test is found to be less pronounced in the numerical simulations. The
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Figure 4.18 Stress-time curve of the transmitted loading pulse for
different values for the length scale parameter /.
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analysis with / =41.0 mm shows a purely symmetric response, / =20.5 mm leads to a slight
rotation of the specimen and only / = 10.25 mm offers the possibility to simulate rotation of
the crack plane. However, the latter analysis gives a worse prediction of the global response
as observed in the Figures 4.17 and 4.18. A remarkable result is that in the experiment as well
as in the numerical simulation (/ =10.25 mm) the entire rotation occurs in the pre-peak
regime. Rotation starts when the first cracks appear at the left notch and reaches its maximum
when the crack pattern is complete and the ultimate stress is reached. As discussed earlier the
response is influenced not only by material behaviour but also by structural effects. It is plaus-
ible that the experimental set-up has an influence on at least a part of the rotation of the speci-
men. In the numerical simulation the set-up differs from the real set-up as has been described
in section 3.5.2, which can be a cause of the poor prediction of the rotation of the specimen. A
second point of consideration is the plane-stress modelling of an experiment in which three-
dimensional effects are present. This can also contribute to an asymmetric response. A third
possible cause for the discrepancy is the linear softening branch that has been utilised.

4.5 POWER LAW MODEL
4.5.1 Model formulation

Another rate-dependent model has been used by Needleman (1988) and Asaro (1983).
Needleman has used the power law formulation in a plasticity model for the investigation of
shear band formation in structural metals. Here, we use it within the framework of a principal
stress criterion model for the description of fracture zones in brittle materials. In the one-
dimensional formulation of the model the crack strain rate is chosen according to a power law
function

%E:—;L = (oig)N 431)
where @ is a material parameter of dimension 1/s and g is a hardness parameter which depends
on the crack strain. The parameter N depends on the strain rate sensitivity of the material.
The distinction between this model and the rate-dependent crack model of section 4.1 is that
the strain rate is a function of the total stress (6) and not of a part of the stress (6 — G,,).
Instead of a parallel softening-damper element (see Figure 4.1) now we only have a nonlinear
damper element with a power law characteristic (see Figure 4.19 - N = 1),
For the parameter g a bilinear diagram is used with an evolution law according to
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with g(0)=f; and €, the transition strain between hardening (g, <€) and softening
(€cr > €crm)- In Figure 4.19 computed stress-strain curves are plotted for different strain rates.
Additional to the parameters used in Figure 4.1 we have chosen : a=4.01/s, N =50,
Ecrm = Y2 f/E, h1 =2500 N/mm? and h, =—250 N/mm?. It is difficult to give a physical
explanation for the choice of parameters because, so far, application of the model has only
been done for structural metals. The implicit length scale parameter / is defined by (Needle-
man 1988)

l=—, 4.33)
which can be considered as the distance an elastic wave travels in a characteristic time 1/a.

If we take N =1 and consider the case of softening (h, <0) the wave equation for the
power law model reads
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g1 v Pv | Fv_h ¥ [Py 1 P
[cﬁ o oxar ) Pz q ot . (4.34)

The same third-order terms as in the wave equation for the rate-dependent bar (eq.4.10)
appear, multiplied with a softening term g/a. These third-order terms, which determine the
well-posedness of the solution (cf. section 4.2) gradually vanish when strain softening occurs
(g(e.r) > 0). Therefore, the solution approaches the solution of the classical rate-independent
problem from Chapter 3 and if g =0 mesh dependence is obtained again. It is obvious that the
initial value problem quickly becomes ill-posed for steep softening branches, as, for instance,
in concrete. This means that proper results can only be obtained for ductile strain-softening
models, as will be shown in section 4.5.3.

4.5.2 Algorithmic aspects

For the one-dimensional case a simple algorithm is used. Again, we use the incremental
stress-strain equation

Ac =E(Ae - Ag,,) . (4.35)
The incremental crack strain Ag,, can be estimated via an Euler forward scheme
e AN
Mgy =—LAt=a|2-| Ar. (4.36)
ot g'

Substitution of (4.36) in eq.(4.35) offers a first approximation for the stress ¢ and the hardness
g at time ¢ +At. It is now possible to estimate the crack strain rate at ¢ + Az and with the linear
interpolation formula (cf. eq.(4.21)) we are able to calculate an improved approximation for
the incremental crack strain. This completes the data set required for the incremental constitu-
tive equation

Ac=EAe-Aq, 4.37)
with
. 0" N o.t+At N
Aq=aE|(1-0)| —| +0|=—r| |Ar. (4.38)
g g

When choosing © =1 this procedure corresponds to an implicit Heun integration scheme.
The total inelastic response is transferred via the Ag, from which the pseudo-nodal force Af,,
can be deduced.
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4.5.3 Numerical results

We have also used the one-dimensional bar problem in tension (Example 1) for a mesh-sensi-
tivity analysis of the power law model with the parameters used in Figure 4.19. Mesh inde-
pendence has been obtained only for an analysis with a rather small negative slope
(hy =—250 N/mm?) and a small loading rate corresponding to a time span t; = 50-10%s. In
Figure 4.20 it is shown that the width of the localisation zone at ¢ = 0.25:107 s is more or less
constant, independent of the discretisation of the bar. However, it appeared that at a higher

e[x1073)
0.4 - TS PPN PRI
. 10 elements
0.3 : :
: 20, 40 an(_i 80 elements
0.1
0.0
X [mm]
0 100
e[x1073]
0.4 -
\
0.3—
0.2 = ‘
0.1 \\\\\i\‘\\%\\\\ = E
0.0 —— —
' : ' x [mm)
0 100

Figure 420 Power law model with 15 = 50107 s :
Top : Strain localisation along the bar at ¢ =0.25:107 s.
Bottom : Development of the localisation band (40 elements).
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strain level, when the stabilising viscous effect gradually disappears, localisation again
becomes mesh dependent. This type of behaviour becomes worse when a strain-softening
model with a steeper branch is used or when the loading rate is increased. This is in agree-
ment with the observations made in section 4.5.1 with respect to the role of the factor g/a in
the differential equation that governs the response of the bar using the power law model. In
brittle materials we deal with strain-softening models that show a relatively rapid stress drop
after cracking which suggests that viscous regularisation via the power law model is less
appropriate for modelling of brittle materials. From the bottom picture of Figure 4.20 we
observe that the localisation zone increases in thickness in the course of time due to the small
hardening region in the model.
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5. GRADIENT-DEPENDENT MODEL

From Chapter 3 it appeared that micro-structural modifications, which occur in a localisation
zone, cause discontinuous deformation processes which cannot be described with classical
continuum models. Therefore, enrichment of the continuum has been proposed to avoid a
spurious solution for the localisation zone. In Chapter 4 a higher-order time derivative term
was included in the material description to overcome the problems. Another type of regulari-
sation methods is based on the inclusion of higher-order spatial derivatives in the constitutive
equations (Schreyer and Chen 1986, Lasry and Belytschko 1988, Zbib and Aifantis 1988,
Miihlhaus and Aifantis 1991, de Borst and Miihlhaus 1991 and 1992) or the averaging of
strains, the so-called non-local models (BaZzant et al. 1984, Pijaudier-Cabot and BaZant 1987).
In the approach followed in this chapter we assume the presence of second-order strain gradi-
ent terms in the stress-strain law. Miihlhaus and Aifantis (1991) and de Borst and Miihlhaus
(1991) have shown that such a gradient-dependent model can be derived from non-local mod-
els. Gradient models as well as non-local models reflect the fact that the interaction between
micro-structural deformations in the localisation zone is non-local.

The use of a higher-order gradient model can result in a well-posed set of partial differen-
tial equations. Furthermore, the gradient model explicitly incorporates an internal length
scale. From a dispersion analysis it becomes clear that the wave speeds remain real under
strain-softening conditions and that the continuum is capable of transforming a travelling
wave into a stationary localisation wave. As a consequence of the well-posedness of the math-
ematical problem numerical results do not suffer from the pathological mesh dependence.

This chapter is organised as follows. First, a description is given of the gradient model, in
which the yield function not only depends on the stress and a hardening/softening parameter
but also on the Laplacian of the latter quantity. We investigate wave propagation in a bar of
gradient-dependent material by means of a dispersion analysis. This study leads to an exact
prediction of the width of the localisation zone. Next, the algorithmic difficulties caused by
the incorporation of the gradient effect are discussed. Results of numerical analyses are
presented for the uniaxial bar problem in tension (Example 1) and the impact biaxial test
(Example 3). Using a gradient model convergence of the results upon refinement of the
discretisation can be obtained for mode-I and mode-II localisation problems.

5.1 FORMULATION OF A GRADIENT-DEPENDENT PLASTICITY MODEL

In the gradient-plasticity model the yield strength does not only depend upon the equivalent
plastic strain x, but also upon the Laplacian thereof. So, we consider the following yield con-
dition

f(o,x,V2K)=0. (5.1)
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As in classical plasticity (see section 3.4.2) the stress point must remain on the yield surface
during plastic deformation, which yields for the consistency condition for continuing plastic
flow

A ey U
3 o+ ™ K+ Vin V-x=0. ‘ (5.2)

If we use the gradient to the yield surface n and the hardening/softening modulus % as defined
in the eqs.(3.57) and (3.58) and assume the dependence of fupon V2 to be a constant

- _ of
= R (5.3)
oVik
the consistency equation can be rewritten in
n'G-hA+EV2k=0. (5.4)

A further assumption is made that the relationship between the plastic multiplier A and the
hardening/softening rate k can be established of the form

k=1A, (5.5)

with M a constant. This assumption seems a limitation of the model but large classes of hard-
ening/softening hypotheses and yield functions satisfy eq.(5.5). In this thesis we apply the
strain-hardening/softening hypothesis (eq.(3.61)). In combination with the used yield criteria
we obtain

n=1 for von Mises and Rankine (5.6)
and
n=V1+%0a? for Drucker—Prager, (5.7)

if we assume the cohesion parameter ¢ dependent on the hardening/softening parameter in the
Drucker-Prager yield function. If we use ¢, =1 eq.(5.4) can be written as
0TG- hh+EyV2A=0. (5.8)

So, for gradient-dependent plasticity the consistency condition results in a differential equa-
tion for A and an explicit expression for A at a local (integration point) level (cf. eq.(3.59))
cannot be obtained.

5.2 WAVE PROPAGATION IN A ONE-DIMENSIONAL GRADIENT-
DEPENDENT BAR

In a one-dimensional analysis the equivalent plastic strain (cf. eq.(3.54)) equals the axial plas-
tic strain, so that for a stress point on the yield surface (f =0) we obtain the one-dimensional
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form of eq.(5.1), written in rate format

(5.9

in which a linear softening function is utilised (h = const.). Combining the constitutive equa-
tion (5.9) with the kinematic equation (3.4), taking &, = € — €, and &, = 6/E and differentiating
the result with respect to x yields

= A2 2 2
_3_[_0 906  Eth ¢]= 9 [hv_a-a—lj. (5.10)

ox | E ax?2 E ox?

If we use the equation of motion eq.(3.3) we obtain a fourth-order differential equation for the
one-dimensional gradient-dependent, strain-softening bar

4 4 2 2
E{av L _ov ] Exh 0y 9V g (5.11)

axt  ¢% ox2or? cz2  or? ox?

If ¢ — 0, again, the wave equation for the classical strain-softening bar (eq.(3.8)) is recovered
with imaginary characteristics and imaginary wave speeds. The condition of eq.(5.11) can be
investigated by means of its characteristics. To this end we consider the variation of two third-
order derivative terms of v

3y o*v otv
d[ax3 J: it (5.12)
v v v
d = dt + dx . 5.13
(axzat ] ox2o¢? ox3or ©-13)

Combination of eq.(5.12) and (5.13) and the wave equation for the gradient-dependent bar
€q.(5.11) yields a system of three fourth-order differential equations with a characteristic
determinant

¢ 0 —Clck
D=|dcdr 0 |=¢d?-(/ck)ydx?). (5.14)
0 dx dt

With D =0 the characteristics are equal to the elastic bar velocity ¢, and remain real when
strain softening occurs. So, the wave equation remains hyperbolic and the initial value prob-
lem is well-posed.
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Figure 5.1  Dispersion relation for the gradient-dependent bar.

We now carry out a dispersion analysis for the gradient-dependent bar. Substitution of the
general solution (3.15) for a single harmonic wave into the wave equation (5.11) gives the dis-
persion relation for the gradient-dependent bar

Tk —CIct k2 0? —(E+h)ict @ + hk2 =0 (5.15)
Considering the positive root for @ -
0= /ﬂ k, (5.16)
E+h+Ck?

it becomes clear that the classical non-dispersive equation (3.17) is recovered when ¢ — 0.
The dispersion relation is plotted in Figure 5.1 for the one-dimensional reference problem
(Example 1), treated in section 5.4.1. The phase velocity ¢ = w/k of the harmonic wave reads

cr=c h+ck
7=\ Evhrck?

Equation (5.17) is plotted in Figure 5.2. The phase speed ¢y depends on the wave number &
and, consequently, wave propagation is dispersive for the gradient-dependent bar (Whitham
1974). Owing to the fact that different harmonic waves propagate with different velocities the

5.17)
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Figure 5.2  Phase velocity - wave number curve for gradient-dependent model.

shape of a pulse is altered and, similar to the rate-dependent medium in Chapter 4, a loading
wave can be transformed into a stationary localisation wave in the gradient-dependent
medium. For a gradient-dependent model it turns out that the phase speed not necessarily
becomes imaginary at the onset of softening as in a classical model. From eq.(5.17) it follows
that the phase velocity remains real if

k2A[-= andthus A<2nl ,with /= —%. (5.18)

c

The parameter / is now the internal length scale in the gradient-dependent model. If k < /™! or
wave length A > 21/ we recover the situation in which a disturbance dv is unbounded and sta-
bility in the sense of Lyapunov is lost (i.e. a small disturbance of boundary data results in large
changes of the response). However, strain-softening regions remain small and no wave
lengths larger than 2w/ can occur because they do not fit within the strain-softening region.
Consequently, all phase velocities remain real because the first-order wave with the lowest
wave number (largest wave length) has a wave number which is larger than the critical value
in eq.(5.18). In the numerical analyses in the next paragraph we will see that all higher fre-
quencies which are present in a loading wave vanish under the influence of nonlinear material
behaviour and we obtain a stationary harmonic localisation wave with a width equal to the
maximum wave length A =w =2xl.
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5.3 ALGORITHMIC ASPECTS
In Chapter 3 we have derived a weak form of the initial value problem at ¢ + Ar according to
t+AL
JouT[Rii** av+[5eT | Gdrdv = [ouTe+4 ds - [seTot av , (5.19)
v

14 t N 14

in which the body forces p have been neglected. Because we cannot satisfy the yield function
at a local level we assume satisfaction in a distributed sense. A weak form of eq.(5.1) is given
by

[o0 f(ott i Wity gy =0 (5.20)
\'4

The yield function at t+A¢ can be written as

t+At
FotB B 2t - £t ! V2D + [ flo,k, V2R dt (5.21)
t

With the consistency equation (5.8), eq.(5.20) can now be modified to

t+AL
for | mTé-hh+2,V2hIdeav =[50 f(a" !, V2 dV . (5.22)
\'’4 t Vv

Substitution of g, = Am into the stress rate-strain rate equation (3.53) leads to

6=D,(&-Am) (5.23)

If we substitute this relationship in the eqs.(5.19) and (5.22) we obtain
t+AL

[ouT[RiE*A v + [5€T | D, (& —Am)drav = [suTt as - [seTo? av =0, (5.24)

\ |4 t S \%4
and

t+AL . .
[ox | In™D,&—(h +0TD,mYi+ 2, V2R drdV =[S f(a" K", V2K dV | (5.25)
\'’4 t |4

It is emphasized that in contrast to the conventional approach in computational plasticity, the
plastic multiplier is taken as an independent variable. While this approach is, in principle, also
possible in gradient-independent plasticity it does not seem to entail major advantages when
compared with the return-mapping algorithms (Ortiz'and Simo 1986, de Borst and Feenstra
1990). For gradient plasticity, i.e. when .y #0 in eq.(5.25), however the discretisation of A
seems natural and automatically gives satisfaction of the consistency condition in a distributed
sense (Simo 1989). Other alternatives of dealing with the extra partial differential equation
have been discussed by de Borst and Miihlhaus (1991).
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The discretisation of strain and displacement field has already been discussed in Chapter 2.
We can discretise the plastic multiplier A in a similar fashion by

A=hTA, (5.26)

with vector h containing the shape functions Ay, ......... , h, for the interpolation of the plastic
multiplier and A denoting the vector of additional nodal degrees-of-freedom. Eq.(5.26) in a
rate form yields

A=hTA. (52D

Since the Laplacian operator of A must also be computed, the differential operator vector p is
introduced

ViA=pTA, (5.28)
in which p is defined by
p=[V2hy, ... V2R, 7. (5.29)

Generally, the vector h will not contain the same interpolation polynomials as H. While the
interpolation of the displacement degrees-of-freedom requires only C-continuity, the fact that
second derivatives of A enter the weak form of the consistency condition makes it necessary to
select C!-continuous shape functions for the interpolation of A. For instance, for the one-
dimensional examples that will be treated in a subsequent section, a Hermitian interpolation is
employed for A and linear interpolation is used for u,, quite similar to beam-column elements
where the interpolation of the transverse displacements is usually also achieved through Her-
rnitian shape functions and the axial displacements are interpolated linearly.

Next we substitute egs.(2.16), (2.17), (2.19), (2.20), (5.26) and (5.27) in eqs.(5.24) and
(5.25). The result is

t+At
daT [HTRH*Y +8aT[ | (BTD,Ba—BTD,mhTA]dtav =
|4

Vi

SaT JHTt*% 45 — 5aT [BTo! av (5.30)

N v
and
1+AL . .
SAT‘]; | (~hn™D,Ba + (4 +nTD,m)hh" A~z hpT Al drdV =
t

8AT [f(6", k!, V2K )hdV . (5.31)

vV

As in Chapter 2 we assume Euler forward predictions for the time integrals in eqs.(5.30) and
(5.31). Therefore in the zero-th iteration of a Newton-Raphson scheme we take n, m and 4 at
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time ¢z. Furthermore, similar to the definition of Aa in Chapter 2 we define

t+AL .
AA= | Adt. (5.32)

t

Since the identities (5.30) and (5.31) must hold for any admissible 8a and dA the following set
of algebraic equations ensues

JIHTRHEY av + [[BTD,BAa—BTD,m'hTAA] 4V = [HTt*2 a5 — [BTo'dv,  (5.33)
14 14 N Vv

and

fl-h@"TD,BAa + (»* +(@®")TD,m")hhTAA -, hpTAA) dv =[f(c* %",V xcHh dV. (5.34)
v v

Eqgs.(5.33) and (5.34) can be written in a compact fashion as

Maa 0 5‘+N Kaa Ka}» Aa ft+m_f§m
0 Of| A2 |* [Kua K [|AA|T] 15 | (5.35)
where
M,,=JHTRHaV , (5.36)
\'4
K..=/B"D,Bav , (5.37)
1’4
Ka.=— /BTD,m'nT av , (5.38)
1’4
Kia =— [n(n")TD,Bav (5.39)
|4
K = J[(#* + (0")TD,m)hhT -z, hpT1dV (5.40)
1’4
and
I CR AL TS (5.41)
vV

while f**4 and f%, satisfy the definitions in Chapter 2. In the Newton-Raphson iteration
scheme, which is used to solve the nonlinear set of algebraic equations, the values at time ¢ are
replaced by the values at time 7+A¢ for the last iteration (see section 2.3). The time integration
procedure of Chapter 2 has also been adopted for eq.(5.35). Evidently the tangent stiffness
matrix as defined in eqs.(5.35)-(5.40) is non-symmetric because of the gradient terms and the
use of a non-associative flow rule. If we assume associative plasticity (m=n and thus
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K.) =Kj,) the non-symmetry in eq.(5.40) disappears if ¢, =0. We retrieve a symmetric
operator as one would expect in classical plasticity with an associated flow rule.

For the pure rate problem the non-symmetric tangent operator defined in eqs.(5.35)-(5.40)
can be symmetrised. However, when we consider finite loading steps, this is not possible and
symmetrisation of eq.(5.40) therefore does not seem to offer much practical advantage. The
main significance is that a formulation, which sets out from a weak formulation of the evolu-
tion equation for the inelastic state variables (de Borst and Miihlhaus 1991 and 1992), can be
shown to be identical to the formulation that arises upon application of the variational princi-
ple for gradient plasticity, recently proposed by Miihlhaus and Aifantis (1991). The other
advantage is that the role of the additional boundary condition on A is elucidated. For this dis-
cussion it is sufficient to only consider the last term of eq.(5.40) in a rate format, or, more con-
veniently, eq.(5.25). Application of Green’s theorem to this term yields

[ AV aV = [, (VT (VA aV + [ 2n8A(VAY Ty dS , (5.42)

v v Sy
with ny, the outward normal at the elastic-plastic boundary S . From eq.(5.42) it follows that
the condition on A at the boundary of the plastically deforming part of the body must either be

k=0 or (VA ny =0. (5.43)

Eq.(5.43.1) is automatically satisfied at each point of the (internal) elastic-plastic boundary in
the interior of the body. When the spread of the plastic zone extends to an external boundary
of the body either of conditions (5.43) may be imposed.

With eq.(5.42) and assuming that the appropriate boundary conditions are satisfied Ky
can be rewritten as

Ka =[5 +nTDmhhT +2,qq7 14V, (5.44)
V .
where
q=[Vhy, . ,VnT . (5.45)

Comparing €q.(5.35) with M,,, K,,, K, Ky, and Kj; as defined by eqs.(5.36), (5.37),
(5.38), (5.39) and (5.44), with the tangent stiffness operator that follows from the variational
principle of Miihlhaus and Aifantis (1991), shows that both formulations yield the same result
for infinitesimally small load increments. When finitely sized loading steps are used this is no
longer the case and the non-symmetric definition of eq.(5.40) must be utilised to obtain proper
convergence characteristics in an incremental-iterative procedure.

5.4 NUMERICAL ANALYSES

To investigate the dispersive character of the gradient-dependent model and the performance
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with respect to mesh refinement dynamic analyses have been carried out for the one-dimen-
sional bar in tension (Example 1) and the impact biaxial test (Example 3). All calculations in
this chapter have been carried out with the Newmark time integration scheme (B = 4, y=1/5,
see section 2.3). For the time step we take Az =510~ for Example 1 and Ar =1.5:107% s for
Example 3. A constant mass matrix has been used in all analyses with the gradient model.

5.4.1 Example 1 : One-dimensional bar problem in tension

First, we have investigated the gradient model by means of the one-dimensional bar problem
in pure tension. This problem was already used as a reference problem in Chapters 3 and 4 for
an analytical and numerical treatment of the classical strain-softening model and a rate-depen-
dent crack model. The geometrical, material and loading data for the bar have been given in
Figure 3.4. Instead of a crack model, as used for the bar in the Chapters 3 and 4, a softening
plasticity model according to the Rankine yield function is now used. A minor difference in
the response occurs because of the different unloading behaviour between a crack model and a
plasticity model. We apply a slight modification of the parameter set by taking a steeper soft-
ening branch compared with the classical case : & =-2000 N/mm?2. This does not necessarily
increase the brittleness of the material because the gradient effect "carries" a part of the load,
in the same fashion as the viscous effect does in the rate-dependent models. The extra gradient
constant ¢y = 50000 N. The values for # and Cy imply an internal length scale parameter
[ =5 mm (eq.(5.18)). For the bar we use 20, 40, 80 and 160 line elements, respectively, with
CP-continuous shape functions for the displacement degree-of-freedom u, and C!-continuous
shape functions for the interpolation of A. Again, we consider a block wave #; =0 travelling
linearly elastic through the bar until reflection occurs and the localisation process is initiated.
Extra boundary conditions (cf. eq.(5.43)) have been applied (aiuax =0) at both sides of the
bar.

For the gradient model a localisation zone emerges the width of which converges to a
finite, constant value upon mesh refinement. In Figure 5.3 the strain profile is plotted for dif-
ferent meshes to demonstrate the uniqueness of the solution. The coarser meshes with 20 and
40 elements still deviate somewhat but the fine meshes give almost identical results. In the
same figure the development of the localisation band has been plotted at several time steps.
First, the width of the zone increases after reflection but later, the speed of extension of the
zone vanishes and a localisation band of constant width arises (/2w = 16 mm). Due to mate-
rial damping the higher-order waves are attenuated. Owing to dispersion and material damp-
ing the shape of the loading wave changes into a first-order harmonic wave with velocity ¢f
equal to zero. This corresponds to a wave number k£ = 0.2 1/mm and a harmonic wave length
A=2mn!=31.4mm (cf. egs.(5.17) and (5.18)). So, the numerical localisation band width w
equals the first order wave length A belonging to a phase velocity ¢s =0 m/s under the condi-
tion that the localisation band has developed completely. So, the localisation zone is repre-
sented by a stationary harmonic wave. In Figure 5.4 it is shown that mesh independence is not
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Figure 5.3 Gradient-dependent model with ; =0. s :
Top : Strain localisation along the bar at £ =0.2:107 s.
Bottom : Development of the localisation band (160 elements).

only obtained for the width of the localisation zone but also for the wave reflection patterns
and the energy consumption. The stress profiles (Figure 5.4 - top) are a superposition of the
loading wave travelling to the left and the reflected wave travelling to the right. The patterns
are more or less identical for the four meshes and it appears that wave reflection in a gradient-
dependent bar is not determined by the number of elements. In the bottom picture of Figure
5.4 we observe, at increasing consumption of energy U in the bar, a negative value of the sec-
ond derivative d?U/ds? after reflection (f =0.1107 5). As discussed in section 3.2 this corre-
sponds with the occurrence of a structural instability, which for the gradient model does not
result in loss of hyperbolicity. So, we can compare the results for the gradient-dependent bar
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Figure 54  Gradient-dependent crack model with 1, =0. s :
Top : Stress profiles along the bar at r =0.2:107> s.
Bottom : Energy consumption of the bar.

in the Figures 5.3 and 5.4 with the results for the classical strain-softening bar in the Figures
3.5 and 3.6. For the gradient model, in contrast to the classical modelling, the localisation
zone converges to a non-zero width and to physically realistic responses for the wave reflec-
tion on the zone and the energy consumption in the zone.

The internal length scale parameter of the gradient model has been varied by taking
/=25mm,/=50mm and [ =7.5 mm. The results in Figure 5.5 prove the analytical equa-
tion for the localisation band width (for this problem : o w =x /). Applying A=0as boundary
condition at both sides of the bar instead of 9\/dx = 0 affects the localisation process. In Fig-
ure 5.6 it is shown that the localisation band develops over the total zone w =2 !/ because
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Figure 5.5 Variation of the length scale parameter (160 elements - £ =0.17-10 s).
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Figure 5.6  Application of boundary condition A =0 at both sides of the bar.

the plastic strain is kept zero at x =0. A new stage in the localisation process is entered when
in some part of the localisation zone the strength contribution due to local softening has van-
ished, so that the load-carrying capacity is only due to gradient effects. From eq.(5.17) and
(5.18) it appears that the wave length A then starts to increase, the wave speed becomes posi-
tive and the localisation zone is no longer stationary, which in turn causes an extension of the
localisation zone. This phenomenon is plotted in the picture of Figure 5.7 for an analysis with
a slightly different parameter set Cn=100000N and A =-4000 N/mm?
(%, = Gy/h =0.5:1073).
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Figure 5.7  Extension of the localisation zone after the termination of softening.

The width of the localisation band does not depend on the loading rate. Such a depen-
dence was found for the rate-dependent softening model in the previous chapter. For the grad-
ient model a higher loading rate influences the development of the localisation zone but it does
not affect the band width. The use of an impact loading wave with a vertical stress front
(¢4 =0) implies a high stress rate and the presence of higher-order waves in the loading pulse.
Due to dissipation of energy these higher-order waves attenuate and the vertical stress front
changes into a harmonic cosine shape. When, for instance, a linearly increasing load in time
(t7 #0) is used the loading rate is smaller and higher-order waves are hardly present which
cause a more gradual development of the localisation zone, but the width of and the ultimate
strain profile in the localisation band are not affected (Sluys et al. 1991).

5.4.2 Example 3 : Impact biaxial test

For a strain-softening model without rate or gradient effects a search algorithm should be used
to determine the orientation of the shear band after which a mesh-adaptation strategy is neces-
sary to minimise the intrinsical bias. For the gradient model mesh adaptation is not necessary.
A full treatment of the mesh-alignment problem, with biased and unbiased meshes (cf. Figure
3.19), cannot yet be carried out because, at this moment, only a rectangular element with lin-
ear interpolation of the displacements and cubic interpolation of the plastic multiplier (Pamin
and de Borst 1992) is available that incorporates the gradient effect. By considering the plane-
strain and plane-stress condition for a von Mises type material and the plane-strain condition
for a Drucker-Prager material it will be shown that the direction of propagation of the shear
band complies with the analytical predicted direction and is not influenced by the mesh lines.
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The finite element configurations of Figure 3.15 have been changed somewhat, i.e. each
quadrilateral is now composed of four four-noded quadrilateral elements. As for the one-
dimensional bar extra boundary conditions should be used for the sample (cf. eq.(5.43)). At
the vertical sides of the sample 9A/dx (and consequently 92A/0xdy) is kept zero, while at the
top and bottom of the sample dA/dy (and consequently 0*\/oxdy) is zero.

- biaxial test with von Mises material (plane-strain)

For the analysis with the von Mises plasticity model the material and loading data from Figure
3.14 have been used. The additional constant employed is ¢ = 6250 N. With a softening
modulus /4 =— 1000 N/mm? we obtain for the length scale parameter / =2.5 mm (eq.(5.18)).
Again, one loading cycle is considered in which the pressure wave reflects at the bottom of the
sample and the returning wave causes bulging and finally shear banding.

In Figure 5.8 the displacement patterns are plotted with the corresponding contour plots of
the equivalent plastic strains. The inclination angle of the shear band is 45 ° (eq.(3A.21)) and
the width of the band is constant for the three meshes. We obtain a unique solution for the
properties of the localisation band. Due to dispersion and material damping the shear band
transforms into a stationary harmonic wave. This can be seen from a plot of the cosine-shaped
equivalent plastic strains in a vertical cross-section of the sample in Figure 5.9. A comparison
of the consumption of energy for the meshes in Figure 5.10 once again demonstrates the
insensitiveness of the solution for the finite element discretisation. The Figures 5.8 to 5.10
should be compared to the Figures 3.16 to 3.18 to see the differences between a strain-soften-
ing modelling with and without gradient incorporation.

- biaxial test with von Mises material (plane-stress)

The problem has also been analysed for a plane-stress condition. The parameter set is modi-
fied by taking the gradient constant ¢, =2500 N and the softening modulus 4 = —400 N/mm?.
These values result in the same length scale parameter [ =2.5 mm. It is important to demon-
strate that the inclination angle of the shear band can vary without influence of the mesh lines.
The analytical prediction of the inclination angle © =35.3° (eq.(3A.20)) comes out nicely.
This is demonstrated by means of a plot of the displacements and the equivalent plastic strains
in Figure 5.11. Also, the solution for the width of the localisation zone remains finite upon
mesh refinement for the plane-stress case.

- biaxial test with Drucker-Prager material (plane-strain)
The performance of the gradient model in combination with a Drucker-Prager yield criterion

has been investigated for a specimen of which the configuration has been changed somewhat
with respect to the specimen in Figure 3.14. We consider a quadrant of a specimen and
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Top : Total displacement patterns (r =0.165:107 s, FA = 15).

Bottom : Contour plots of the equivalent plastic strains.
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Figure 5.10 Energy consumption in the sample.
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Figure 5.11 Gradient model (Von Mises) with plane-stress elements :
Top : Total displacement patterns (£ =0.165:10" s, FA = 15).
Bottom : Contour plots of the equivalent plastic strains.
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therefore the horizontal displacement is kept zero at the left vertical side (i, =0, Uy # 0) and
the bottom of the sample is rigid and smooth (u, # 0, uy =0). Furthermore, a longer specimen
has been selected so as to admit the emergence of a shear band which now runs steeper
(according to the analytical solution in Appendix 3A). The horizontal force is omitted
because asymmetry in the boundary conditions already forces an asymmetric failure pattern.
The data set now reads (cf. Figure 3.14) : length a, = 180 mm, pressure load F,,,, = 150 kN,
Young’s modulus E =2400 N/mmz, Poisson’s ratio v =0.2 and density p = 1250 kg/ms. For
the Drucker-Prager model the following parameters have been chosen : friction angle ¢ = 30°,
dilatancy angle y =0° and cohesion ¢ = 1 N/mm?, linearly dependent on the equivalent plastic
strain with an ultimate strain ¥, =0.005. For the gradient model we take ¢, = 1800 N and if
we set h in eq.(5.18) equal to dc/dk we obtain a length scale parameter / = 3.0 mm. The addi-
tional boundary conditions listed in the analysis for the von Mises model have also been used
for this analysis.

The results of the plane-strain analysis after one cycle (z =0.24:107 s) of the pressure
wave have been plotted in Figure 5.12. Again, we observe that refinement of the mesh has no
influence on the size of the shear band. The shear band is initiated at the bottom left corner of
the specimen with an inclination angle © =50°, while analytically it was obtained that
©® =484 (eq.(3A.23)). We observe a clear mismatch in orientation between the shear band in
the interior and on the boundary of the specimen. Needleman and Ortiz (1991) have explained
this phenomenon by means of an analytical treatment of the interaction between the shear
band in the interior of the body and a stationary Rayleigh wave at the free boundary. A
remarkable result is obtained if we take the internal friction angle ¢ =20°. Figure 5.13 shows
that the shear band now starts at the bottom right corner of the specimen. This change of ori-
entation is due to the fact that a different stress state in the bottom corners of the specimen in
combination with a different angle of internal friction leads to a different location of the criti-
cal state which drives the propagation of the shear band (related to h.,;/2u in Appendix 3A).
This problem has been discussed in more detail in Appendix 3A. The numerically obtained
inclination angle for ¢ =20° equals @ = 49°, which is in reasonable accordance with the ana-
Iytical value ® =47.0° (eq.(3A.22)).
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6. VISCOPLASTIC MODELS

The inclusion of rate effects as a regularisation method for localisation problems has been dis-
cussed before in Chapter 4. It was shown that softening during the fracture process leads to a
mode-1 dominated localisation process. This is typical for brittle softening materials as con-
crete and rock under low confining pressures. However, for softening materials as metals and
soils the failure process at a macro-scale is dominated by mode-II effects and it is observed
that at incipient failure all further deformation localises in shear bands. It appears that
mode-1I localisation (shear banding) prevails over mode-I localisation (fracture) when the
frictional properties of the material are more critical than the cohesive properties. The occur-
rence of softening in shear bands is a ductile process and can be described by means of a soft-
ening plasticity model. Just as fracture, plastic deformation unambiguously is a process which
is dependent on the time and time rate effects cannot be ignored when the loading conditions
are transient. High strain rates mobilise viscous effects in a material which carry a part of the
load, so that, from a physical point of view the extension of the plasticity relations with vis-
cous terms (viscoplasticity) is evident.

As shown in Chapter 4 the inclusion of rate effects in the constitutive equations for a
smeared crack model results in an implicit introduction of an internal length scale and in
dispersive wave propagation in the rate-dependent medium. Just as the rate-dependent frac-
ture theory, viscoplasticity offers the possibility to obtain mesh-objective results with respect
to the size of the shear band, the wave reflection patterns and the dissipation of energy in shear
failure zones.

Firstly, two approaches for viscoplastic modelling will be treated, namely the Perzyna the-
ory (Perzyna 1966, Cormeau 1975, Owen and Damjani¢ 1982) and the Duvaut-Lions theory
(Duvaut and Lions 1972, Simo et al. 1988, Loret and Prevost 1990). Next, the viscoplastic
models will be tested on their capability with respect to mesh sensitivity. This is done by
means of a study on shear band formation in a one-dimensional shear layer (Example 1) and in
the biaxial test (Example 3). Special attention is paid to the influence of the orientation of the
mesh lines on the results. Finally, an overview of rate-dependent models will be given, in
which the viscoplastic models have been compared to the rate-dependent crack models treated
in Chapter 4.

6.1 CONSTITUTIVE EQUATIONS FOR VISCOPLASTICITY

In the viscoplastic theory an important distinction from the inviscid plasticity theory stems
from the fact that stress states outside the yield surface are not illegal. If the external loading
remains constant the stresses return to the yield surface as a function of time. Because of this
feature viscoplastic theories are commonly called overstress laws. Similar to the rate-indepen-
dent theory the strain rate is decomposed into an elastic and a viscoplastic strain rate
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é=ée+évp. 6.1
Eq.(2.6) then becomes
6=D,_,(é—évp). (6.2)

The two different approaches in viscoplasticity treated here, namely the Perzyna viscoplasti-
city theory and the Duvaut-Lions viscoplasticity theory, are based on a different choice for the
viscoplastic strain rate £,,.

6.1.1 Perzyna viscoplasticity

In the theory proposed by Perzyna (1966) the viscoplastic strain rate is defined in a similar
fashion as in the rate-independent plasticity theory

£, =Y<¢(H)>m. 6.3)
Now m is defined as the gradient of the viscoplastic potential function g,, (cf.eq.(3.55))
08yp
= . 6.4

Associative flow is invoked by g,, = f. In eq.(6.3) v is a fluidity parameter, which depends on
the viscosity of the material and can be constant or a function of the stress or strain rate, ¢(f) is
an arbitrary function of the flow function. The notation < ¢(f) > implies that < ¢(f) > =0 if
f<0 and that < ¢(f) > = ¢(f) if f > 0. Two choices for the function ¢(f) are

N
o) = [_L] (6.5)
Go
and
N
o) = [é] , 66)
(¢}

in which N is a constant used to fit experimental data and & = Gy + he,, is the strain-softening
function.

In the left picture of Figure 6.1 a representation of the Perzyna model is given in the stress
space. Stress states outside the yield surface are admissible and the value of the yield function
Jip determines the intensity of viscoplastic straining. If we apply eq.(6.5) with N =1 we are
able to give a simple one-dimensional representation of the model (Figure 6.1 - centre) in
which the softening element (left, active if o > Gy) is connected to the damper element in par-

allel (right). Summation of "softening stress rate" Sand "rate-dependent stress rate” G,, gives
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Figure 6.1 Representation of Perzyna type viscoplastic model.
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The response of this one-dimensional Perzyna element is given in the diagram on the right of
Figure 6.1. If we compare eq.(6.7) with eq.(4.3) of the rate-dependent crack model it is
observed that the models coincide if Go/y=m. So, for the one-dimensional case the dispersion
analysis, carried out in section 4.2 for the rate-dependent crack model, is also valid for the Per-
zyna viscoplastic model if ¢ = f/Gy. Real characteristics of the initial value problem can be
derived and wave propagation in the viscoplastic element is dispersive. In the Chapters 4 and
5 this feature has been shown to be a necessary condition for capturing localisation of defor-
mation in a proper fashion. Along the same lines as followed in section 4.2 an internal length
scale parameter can be derived for a mode-1I localisation analysis

6.7)

2(—5{)Ce
=E

However, in two- and three-dimensional continuum analyses a pure mode-I analysis cannot be
carried out. A property of almost all yield functions is that plastic straining occurs in the
directions of intermediate princjpal stresses. Only if we take a purely one-dimensional shear
problem (mode-1I) the plastic volume change can be kept zero without spoiling the one-
dimensional character of the problem. For a mode-II analysis we then obtain an internal
length scale equal to

(6.8)

_ 4(_)"0Cg
7

in which ¢, =Vp/p is the linear elastic shear wave speed.

(6.9)
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6.1.2 Duvaut-Lions viscoplasticity

A different approach, which in its elaboration connects more closely to the rate-independent
plasticity theory, has been proposed by Duvaut and Lions (1972). The theory is based on the
difference in response between the rate-independent material and the viscoplastic material.
The viscoplastic strain rate is defined as

. 1 i

&y = D) Y(o-0,) (6.10)
and in a similar fashion the hardening rate is

k=—%(x—xp). (6.11)

The vector o, can be viewed as the projection of the current stress on the yield surface and K,
is determined by the rate-independent plastic strain history. The viscosity parameter 1 repre-
sents the relaxation time of the material. Eq.(6.10) and (6.11) are valid if f(0,%) > 0 and if this
condition is not met, &,, and x are both equal to zero. Combination of €q.(6.10) and (6.2)
leads to the following first-order differential equation

.1 .1
o+—o=D,e+—0,. 6.12
n it (6.12)

In Figure 6.2 (left picture) the model representation in the stress space is shown. The
viscoplastic strain rate is determined by the difference between the total stress and the stress in
the inviscid backbone model, which is in contrast to the Perzyna model in which the value of
the dynamic yield surface £, determines the viscoplastic strain rate. This has the far-reaching
consequence that the Duvaut-Lions model can be combined with a yield surface which has an

[¢)
évp = i [I)e]-1 (o- 0.p)

Q
,‘m
— -MA—
NG L
8
.§Q

Evp 2 Op
£
f=0 f=const. Cr &
' € €y
e — |

Figure 6.2 Representation of Duvaut-Lions type viscoplastic model.
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apex (Drucker-Prager, Mohr-Coulomb) or a non-smooth surface (Mohr-Coulomb, Tresca),
which is not possible for the Perzyna model. This will be explained in section 6.2.1. The one-
dimensional discrete representation of the model (Figure 6.2 - centre) is more complicated
than that of the Perzyna model. The rate-independent plastic response causes an elastic pres-
training €,,, only after which the damper element starts to contribute. The left chain of the
model represents the rate-independent stress contribution ¢, and the right chain shows the
rate-dependent contribution ,,. Summation of the stress rates now yields

Evp
v (6.13)
Note that for the one-dimensional case o, =G (cf. €q.(6.7)). Since g, #¢,, the stress is no
longer an explicit function of the viscoplastic strain as it is in the Perzyna model. This implies
that the wave equation for a one-dimensional Duvaut-Lions element (see eq.(6.50) in section
6.4) contains two state variables (v,€,,) and a dispersion analysis, along the same lines as in
section 4.2, cannot be carried out. So, a length scale parameter cannot be derived from a dis-
persion analysis but is chosen equal to the expression for the Perzyna model (eq.(6.8) and
(6.9)) with the constraint that the third-order terms in the wave equations of both models (see
section 6.4) coincide, i.e. NE = Gy/y. This yields

0=0,+0,, =h€, +NE

[ =2nc, (mode-I) and [=%mc, (mode-II). (6.14)

6.2. ALGORITHMIC ASPECTS
6.2.1 Perzyna model

From eq.(6.2) the incremental stress-strain relation can be written as
=D.(Ae - Ag,,) . (6.15)

Again, we define the incremental values as the increment in time interval ¢t <T<t+At. By
utilising the v1scoplastlc strain rate at the beginning of the time step evp and that at the end of
the time step evp the incremental viscoplastic strain is chosen according to

Ae,, = ((1-O©)&}, + @& Ar, (6.16)

where © is the interpolation parameter for which 0<@®<1. For ®=0,0=!and ®=1 we
obtain an explicit scheme, a scheme according to the trapezoidal rule and a fully implicit
scheme, respectively. We anticipate on the use of an associative flow rule and therefore with
m = n the viscoplastic strain rate at time ¢ reads

&, =y<d'(H>n’. (6.17)
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The viscoplastic strain rate at the end of the time interval is expressed in a limited Taylor
series expansion as

98, |’ %, I'(o5 I
é:;Afzé:,p+|: ;‘:] Ao+[ a(_:] (%%J Ax. (6.18)

We now define the matrix H as

3,
doc ’

so that, under the assumption of a stress-independent fluidity parameter, substitution of
€q.(6.3) with m =n gives

_, |30 of 3 . Pf
H—y[af oL A +¢802}. (6.20)

Next, the last term of eq.(6.18) is considered. The term is zero for perfect plasticity, but is sig-
nificant in hardening/softening plasticity with steep hardening/softening diagrams. It can be
rewritten by using eq.(6.3)

%, |95 | a [fas )
t_ P e = P 48 Pl
h _[ pre } [BK]AK Y P n o Ax, (6.21)

in which the rate of hardening is assumed to be equal to

k=\% &)TE, (6.22)

and where the incremental growth of the hardening/softening parameter during the time inter-
val At is approximated by an Euler forward prediction

H=

(6.19)

Ax=¥ Ar. (6.23)

If we use the results of eqs.(6.18)-(6.23) for the determination of the incremental viscoplastic
strain we obtain

Ag,, = (&,, + OH' Ao + Oh') At . (6.24)
This equation can be substituted in the incremental stress-strain relation (6.15), which yields

Ac=D.Ae-Aq (6.25)
in which

D! = [D;l +OAr H‘]" (6.26)
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-1
Aq= [D;l +O A H’] (E1p At + © At h') (6.27)

Matrix D% is not only determined by material parameters since the time integration parameters
At and O also enter. The format of the stress-strain law (6.25) is similar to the constitutive
relation derived for the rate-dependent smeared crack model (eq.(4.26)). Again, a pseudo-
nodal force vector can be deduced according to

Af,, = [BTAqaV, (6.28)
v
which is used in the discretised equation of motion (cf. eq.(4.29)).
Elaboration for the von Mises yield function

For the calculation of the matrix H a yield function must be chosen. It is noted that for the
Perzyna viscoplastic theory the yield surface is required to be smooth with continuous deriva-
tives with respect to the stress. Only then the direction of the viscoplastic strain rate can be
defined uniquely. Moreover, combination of the Perzyna theory with the pressure-dependent,
smooth plasticity criterion of Drucker-Prager leads to a non-correct value for ¢(f) beyond the
apex. In this area the value ¢(f) should be calculated with respect to the apex, while, without
special provisions, this is done with respect to the yield cone beyond the apex. For this reason
the yield function should be redefined for a proper calculation of viscoplastic strains in the
stress space beyond the apex. Because of these two considerations the yield criterion of von
Mises (eq.(3.63)) with a smooth, pressure independent surface is considered here for the use in
the Perzyna viscoplastic theory. Using the gradient n to the von Mises yield surface the matrix
H becomes

99 [ T] Yo [ T]
H=y—|nn" |+ M-nn" |, (6.29)
ToF \37,
where
(1 —% -1, 000]
- 1 15000
Y-y 1 000
M=o 0 0 300/ (6.30)
0 0 0 030
0O 0 0 003
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Elaboration for a specific choice of ¢

The scalar values d¢/df in the matrix H and 0¢/0G in the vector h can be elaborated when a
choice for the function ¢(f) is made. We assume a yield function of the format
f(0,x) =F (0) — 6(x) as the von Mises criterion. For the flow expressions (6.5) and (6.6) we
obtain, respectively

N-1
§¢L=A’_{_f_] 6.31
of Gy LGy ©3D
and
N—1 '
9% _N|f-GC 6.32
of 6[ 5 ] 632

For the derivative of ¢ with respect to the uniaxial stress we obtain for either of the two func-
tions

N-1
9% __ N L] ~-_9% 6.33
o5 So [60 f ©33)
and
N-1
a Nf|f-6 f 06
9% __Nf =1 9 6.34
o5 3 [ G ] g of 634

Eqgs.(6.31)-(6.34) should be substituted in eqs.(6.20) and (6.21).
6.2.2 Duvaut-Lions model

The procedure to integrate eq.(6.11) and (6.12) consists of two steps. In STEP 1 the quantities
O, and K, of the rate-independent back-bone model are determined. With the outcome of
STEP 1 the viscoplastic values for the stress and hardening can be derived in STEP 2.

STEP 1 : Determination of o, and K.

The solutions for 6, and K, can be obtained with the classical rate-independent theory of sec-
tion 3.4.2. A general Euler backward algorithm (Ortiz and Simo 1986, de Borst and Feenstra
1990) is used for the return mapping of the stress on the yield surface. The return mapping
algorithm is applied for the Von Mises yield criterion and the Drucker-Prager yield criterion.
In contrast to the Perzyna theory, the Duvaut-Lions model can be combined with a linearly
pressure-dependent yield criterion, because in stress situations beyond the apex a proper visco-
plastic strain rate is calculated.



CHAPTER 6 PAGE 111

STEP 2 : Determination of ¢ and k.

The viscoplastic response is determined by the first-order differential equations (6.11) and
(6.12). A closed form solution of these equations is discussed by Simo et al. (1988). We do
not use this solution for eq.(6.12) because it does not provide a stress-strain matrix D, which
is needed for a use in the implicit time integration scheme of section 2.3.

Instead, we use the incremental stress-strain relation (6.15) and the incremental viscoplas-
tic strain according to eq.(6.16). A limited Taylor series expansion for the viscoplastic strain
rate now reads

2% ]' [aé ]‘
< IHAL _ ot vp vp
€ =€, + Ao+ | ——| Ao, . (6.35)
P P [ Jo 90, ,
Substitution of eq.(6.10) into eq.(6.35) yields
. . 1 -
&y =&, + DI (Ac-Adp). (6.36)

With this approximated value for the viscoplastic strain rate at ¢ + At we calculate the incre-
mental viscoplastic strain

Ae,, = [, + % D] (Ac-Ac,)] At (637)

which after substitution into €q.(6.15) yields

Ac=D_.Ae - Aq (6.38)
in which

D, =(n/(n+©A1)) D, (6.39)

Aq = M/(M +OAN)[D,&,,At —(OAIM)AG,] . (6.40)

Similar to the Perzyna model and the rate-dependent models treated in Chapter 4 a pseudo-
nodal force vector Af,, is deduced.

For eq.(6.11) the closed form solution of Simo et al. (1988) is used which takes the form

AL
L I | e-rraom Lo e (6.41)
p &L -
' n

in which x,, is determined by the rate-independent plastic strain history at 7 + Az. Using

1+AL 1
J' g —{t+A=Tm T K, dt=(1- e~Arm)y K, (6.42)
t

we obtain
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KO — et p— A Qa _e—Af/TI) K - (6.43)

The elastic case is recovered if At/n — 0 and the rate-independent plastic case is recovered if
At/ — oo, This is an important feature of the Duvaut-Lions model because the algorithm of
the Perzyna model does not provide such a smooth return to the yield surface. If YAt — oo sit-
uations directly inside and outside the yield surface are calculated successively which yields
an improperly converging solution.

6.3 NUMERICAL ANALYSES

With the rate-dependent smeared crack model in Chapter 4 the mode-I localisation problems
(Example 1 and 2) have been analysed. Here, we will limit the attention to mode-II localisa-
tion problems. Therefore Example 1 is transformed into a one-dimensional shear problem and
furthermore the impact biaxial test (Example 3) is considered. We use the Newmark time inte-
gration scheme (B =Yy, Y="12, see section 2.3) with a time step Az =510 s for Example 1
and Ar = 1.5:107 s for Example 3. For the calculations the consistent mass matrix is used and
the integration constant @ = 1/, in all calculations.

6.3.1. Example 1 : One-dimensional bar problem in shear

We depart from the data set given in Figure 3.4. For a comparison with the tensile bar prob-
lem in the sections 3.5.1, 4.4.1 and 5.4.1 the parameter set is modified to p = 20000 N/mm?,
Gg = 2¥3 N/mm? and h =—15000 N/mm?. We use the Perzyna model with ¢ = f/Gy (eq.(6.5)
with N = 1) and the fluidity parameter y= 60/\5 m =103 1/s, to obtain the same amount of
viscosity as in the rate-dependent crack model with m =0.2 Ns/mm? (section 4.4.1). Using
this parameter set the elastic shear wave speed ¢, = 1000 m/s and the length scale parameter
for the shear band / = 20 mm (eq.(6.9)).

First, we consider a block-shaped (f; = 0 s) shear wave travelling through the shear layer.
The shear band, developing after reflection, has a constant width for the four meshes as can be
observed from the shear strain profiles in Figure 6.3. The exponential decrease in x-direction,
analytically found in the dispersion analysis of viscous models (section 4.2), can be seen from
the stroboscopic development of the shear band in the bottom picture of Figure 6.3. If we
compare the shear strain in Figure 6.3 with the axial strain in Figure 4.6 we see the agreement
between the Perzyna viscoplastic model and the rate-dependent crack model. The slight dif-
ference is due to the fact that the rate-dependent crack model unloads according to the secant
stiffness and the viscoplastic model unloads elastically.

A second analysis has been carried out to obtain a more pronounced shear band. Taking
Y= 153 1/s and 14 =25107% s mesh objectivity is once again demonstrated by means of the
displacements at time ¢ =0.25:1073 5. The development of the shear strain in the bottom pic-
ture shows a different shape of the strain field in the localisation zone due to a different
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Figure 6.3  Perzyna viscoplastic model with 1, =0. s :
Top : Shear strain localisation along the bar at 1 =0.2:107 s.
Bottom : Development of the shear band (40 elements).

loading as discussed in section 4.4.1.

A comparison between the models is made in Figure 6.5. For the Perzyna model with
Y= 10n/3 1/s the function ¢ has been varied and the results have been compared to the
Duvaut-Lions model with a relaxation time N = 1.5107 s (I =20 mm eq.(6.14.2)). The
results for the Duvaut-Lions model and the Perzyna model with ¢ = /G, are almost identical.
We observe a slightly smaller peak strain in the shear band for the Perzyna model. By taking
N =2 for ¢ =(f/5o)" as well as for ¢ =(f/5)" the strain profiles in the localisation zone
become smoother. The shear band becomes wider and the peak strain decreases. Taking the
function ¢ = f/G instead of ¢/Gy leads to larger peak strains and a smaller localisation zone.
Furthermore, the case ¢ = (f/6)N demonstrates that mesh objectivity is not always guaranteed
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10 elements
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40 elements

Figure 6.4  Perzyna viscoplastic model with 7; =25-10 s ;
Top : Deformed meshes at ¢ =0.25:10~ s (FA = 1000).

Bottom : Development of the shear band (80 elements).
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Figure 6.5 Comparison of v1scoplastlc models
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Figure 6.6 Mesh dependence for Perzyna viscoplastic model with ¢ = (fr5)?
(t4=05,0<t<0.15-107 5, 40 elements).

by a viscoplastic modelling of the layer. In fact, for this case the stabilising viscous effect
gradually vanishes due to softening (G — 0). The cause is similar as that for the rate-depen-
dent power law model in section 4.5 : the third-order terms in the wave equation vanish and
well-posedness is lost. These effects are shown in Figure 6.6. In this calculation ¢ = (f/G)?
and we observe localisation in one row of integration points when &,, > 0.0004 and G=0.
The role of the damper element in Figure 6.1 becomes less important and when its
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Figure 6.7  Extension of the localisation zone after the termination of softening
(t4=05,0<1<0.25107 s, 40 elements).

contribution is reduced to zero the classical rate-dependent problem is recovered. On the other
hand, even when G becomes zero, use of ¢ = (f/Gg)N , ensures well-posedness and, just as in
the gradient model, the localisation zone no longer behaves stationary but starts to propagate
when the softening effect is no longer present. This is demonstrated in Figure 6.7 for an anal-
ysis with N =1,

6.3.2. Example 3 : Impact biaxial test

After the treatment of the biaxial test for a classical strain-softening model in section 3.5.3 and
the gradient strain-softening model in section 5.4.2 the viscoplastic models of Perzyna and
Duvaut-Lions will be used here. Mesh sensitivity of the results with respect to the size and the
orientation of the elements will be considered. The meshes from section 3.5.3 have been used
for analyses under plane-strain and plane-stress conditions. First, the Perzyna model is
analysed in combination with the von Mises yield function for the sample under a plane-strain
condition. Next, we treat the von Mises model in combination with Duvaut-Lions viscoplasti-
city and plane-stress elements and, finally, the Drucker-Prager yield criterion is used for a
plane-strain analysis of the sample with Duvaut-Lions viscoplasticity.

- biaxial test with von Mises - Perzyna viscoplastic model (plane-strain)

The input data set for the problem is given in Figure 3.14, in which the softening modulus A is
—3333 N/mm?. For the Perzyna model the function ¢ = f/G, is taken for reasons mentioned in
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Figure 6.8  Von Mises - Perzyna viscoplastic model with plane-strain elements :
Top : Total displacement patterns (f =0.165:107 s, FA = 15).
Bottom : Contour plots of the equivalent plastic strains.



PAGE 118 CHAPTER 6

§3><6meshé

40

; 12 x 24 mesh :
304 TN e AR s

20\

104 ...}

"1 y [mm]
0 120

Figure 6.9  Equivalent plastic strains x in centre section (x =30 mm) of the sample
(£ =0.16510"2 s).
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Figure 6.10 Energy consumption in the sample.
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Figure 6.11 Von Mises - Perzyna viscoplastic model with plane-strain elements :
Top : Total displacement patterns (¢ =0.16510"3 s, FA = 15).
Bottom : Contour plots of the equivalent plastic strains.
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the previous paragraph. The fluidity parameter y= 2000 1/s which results in an internal length
scale / = 6.1 mm (eq.(6.9)).

In Figure 6.8 the deformed meshes have been plotted with the corresponding contour plots
of the equivalent plastic strains at a time at which the pressure wave has returned at the top of
the sample. The shear band width with an inclination angle of 45° remains more or less con-
stant upon mesh refinement. In comparison with the gradient model we observe a more pro-
nounced development of the second shear band. Because of a singularity in the elastic solu- -
tion in the corners of the sample a slight mesh dependence remains present close to the cor-
ners. The plot of the equivalent plastic strains in the centre section of the sample in Figure 6.9
shows a proper similarity between the meshes. A comparison of the energy consumption in
the three analyses in Figure 6.10 shows a reasonable agreement with a slight deviation for the
12 x 24 mesh which may be due to the corner singularity.

The influence of the mesh lines can be investigated by using the meshes of Figure 3.19, in
which the direction of the mesh lines is varied. The analyses with the classical strain-soften-
ing model showed completely different failure modes (Figure 3.19). Using the viscoplastic
regularisation, the situation is remedied as shown in Figure 6.11. For the mesh with quadrilat-
eral elements (left) and the biased mesh (centre) the results coincide with the results in Figure
6.8. Only the third mesh (right) gives a slightly stiffer response and a small deviation from the
results for the first two meshes. However, if we refine the third mesh the results become
exactly similar to that from the first two analyses (Bolck 1992).

- biaxial test with von Mises - Duvaut-Lions viscoplastic model (plane-stress)

We take the relaxation time 1| = 8:107% s for the Duvaut-Lions model. This implies an internal
length scale / =9.5 mm (eq.(6.14.2)). Just as for the Perzyna model first we focus on the
objectivity of the shear band width upon mesh refinement. Next, we investigate the impact of
the presence of a bias in the discretisation on the results.

With the viscoplastic model we compute a shear band with an inclination angle of 35°
which is similar for the three meshes (see Figure 6.12) and in agreement with the analytical
expression (eq.(3A.20)). While the meshes have a bias of 45° the shear band develops in the
direction of the analytically predicted shear band.

Mesh alignment is also investigated for the plane-stress condition of the biaxial test. The
results, shown in Figure 6.13, are identical with the results of Figure 6.12 and entirely invari-
ant to the influence of the mesh lines. Even for the third mesh a shear band with a similar size
and inclination angle is obtained. So, the viscoplastic models are strong enough as a regulari-
sation method to overcome mesh-alignment problems.

- biaxial test with Drucker-Prager - Duvaut-Lions viscoplastic model (plane-strain)

The Duvaut-Lions model can also be combined with the Druckcr;Prager yield criterion. A
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Figure 6.12 Von Mises - Duvaut-Lions viscoplastic model with plane-stress elements :
Top : Total displacement patterns (f=0.165-1073 s, FA = 15).
Bottom : Contour plots of the equivalent plastic strains.
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Figure 6.13 Von Mises - Duvaut-Lions viscoplastic model with plane-stress elements :
Top : Total displacement patterns (£ =0.165:10~3 s, FA = 15).
Bottom : Contour plots of the equivalent plastic strains.
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Figure 6.14 Duvaut-Lions (Drucker-Prager) viscoplastic model with plane-strain elements
displacements (top - FA = 100) and contour plots (bottom) at ¢ = 0.30-107 s.
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Figure 6.15 Duvaut-Lions (Drucker-Prager) viscoplastic model with plane-strain
elements using friction angle ¢ = 20° (left) and ¢ = 30" (right).
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symmetric quadrant of a specimen is considered as described in the Drucker-Prager analysis of
the gradient model in section 5.4.2. The same data set is used as in section 5.4.2 with a modi-
fication for the ultimate equivalent plastic strain x, =0.0025. The relaxation time
ns= 2.5-107% s, which implies an internal length scale ! = 3.0 mm (eq.(6.14.2)).

The results for a mesh-sensitivity analysis with friction angle ¢ = 30° have been plotted in
Figure 6.14. Just as for the gradient model we observe that the shear band is initiated at the
bottom of the left corner and a change of orientation appears at the free boundary (Needleman
and Ortiz 1991). Itis shown that also for the Drucker-Prager model the viscoplastic regularis-
ing effect yields a mesh-objective solution for the shear band with respect to size and orienta-
tion. It should be said that a much smaller time step is needed (Ar/8) than that is used for the
von Mises calculations to obtain objectivity with respect to the time step. The results of an
analysis in which the friction angle has been varied are plotted in Figure 6.15. The same
change of orientation of the shear band is observed as we have seen for the gradient model
(see discussion section 5.4.2). From the equivalent plastic strains it comes out that the shear
band runs steeper than the mesh lines which are under 45°. For ¢ =30° we obtain © = 50°
with the analytical value © = 48.4° (eq.(3A.23)) and for ¢ =20° we obtain ® = 51° which devi-
ates somewhat from the analytical value © =47.0° (eq.(3A.22)).

6.4 THE BIG PICTURE : A COMPARISON OF RATE-DEPENDENT MODELS

The rate-dependent models treated in Chapter 4 can be compared to the viscoplastic models of
Perzyna and Duvaut-Lions. Therefore, we consider the one-dimensional case which makes it
possible to compare a principal stress criterion, used for the crack models, with a yield crite-
rion, used for the viscoplastic models.

The one-dimensional wave equation based on the rate-dependent crack model is given by

€q.(4.10)

1Py Py | E+h v v
¢z o ox?or

2 a2 Ew I 0. (6.44)
The highest-order terms determine the character of the solution of the wave equation. From a
dispersion analysis in section 4.2 it was proved that the wave speeds remain real which yields
a normal wave-like solution, in contrast to the spurious standing wave type solution for the
rate-independent medium. From the dispersion analysis we have also derived the internal
length scale parameter

2mc,
l=
E

(6.45)

The wave equation (eq.(4.34)) for the power law model (N=1 and in case of softening
(h2)), used in Chapter 4 for the simulation of cracking, reads
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Rate-dependent crack model
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Figure 6.16 Overview of rate-dependent models.
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The third-order terms gradually vanish when softening occurs. For this reason mesh sensitiv-
ity emerges when the power law model is used for brittle softening materials. The length scale
is chosen according to
c
I= _" . (6.47)
a
The Perzyna model is similar to the rate-dependent crack model if we set ¢ = f/Gy. We
obtain

—h—=0, 6.48
¢z or? ox? (6.48)

S [ 1 Fv Py E+h 9% %
Y |2 o  ox?or
representing the one-dimensional motion of the viscoplastic element. A dispersion analysis
along the same lines as for the rate-dependent crack model leads to the internal length scale
parameter

2(—)'062

I= JE (6.49)

If we set ¢ = f/G the stabilising effect of the third-order terms in eq.(6.51) gradually vanishes
when softening occurs. If the softening contribution has reduced to zero mesh dependence of
the results is obtained (see Figure 6.6).

The third-order wave equation for the Duvaut-Lions viscoplastic model reads

1 v v % %y 0%,

o ox? ox

Just as for the rate-dependent crack model, the stabilising third-order terms provide the regu-
larisation effect irrespective of the extent of softening. The length scale parameter is defined
as

I =2nc, . (6.51)

If the third-order terms are considered it appears that the wave equations for the four
treated models have the same character. In Figure 6.16 an overall picture of the models is
given. The rheology of the models with the one-dimensional response show the mutual differ-
ences and similarities.

Rate-dependent crack models and viscoplastic models differ from each other with respect
to unloading and reloading behaviour. The models have different criteria for unloading and
reloading, which is shown in Figure 6.17 for the one-dimensional case. In the rate-dependent
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Figure 6.17 Unloading/reloading criteria for rate-dependent crack models (left)
and viscoplastic models (right).

crack modelling unloading and reloading occur with a secant stiffness at the moment that the
crack strain rate €, < 0. The viscoplastic models, however, show elastic unloading and
reloading when the stress state has returned inside the yield contour (f < 0).
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7. COSSERAT CONTINUUM MODEL

The results of the mesh-sensitivity study, carried out in Chapter 3 for a conventional contin-
uum, have led to the unambiguous conclusion that an enriched continuum description of the
strain-softening solid is necessary. In the Chapters 4, 5 and 6 higher-order terms have been
included in the constitutive description of the strain-softening material to provide a regularisa-
tion of the governing field equations. In the Cosserat continuum theory, which is treated here,
the enrichment of the continuum emanates from extra terms in the kinematics of the strain-
softening material. In the eighty year old theory of the Cosserats (Cosserat and Cosserat 1909,
Giinther 1958, Schaefer 1962, Mindlin 1963 and 1964, Miihlhaus and Vardoulakis 1987,
Miihlhaus and Triantafyllidis 1987, Miihlhaus 1988, 1989 and 1990) a macro-structure is
assumed to consist of micro-elements with a finite length scale. The finite size of the micro-
elements implies the inclusion of an internal length scale which prevents the continuum to suf-
fer from the pathological mesh dependence. The Cosserat theory augments the three transla-
tional degrees-of-freedom in a continuum by three rotational degrees-of-freedom. Because of
the existence of the rotational degrees-of-freedom additional micro-rotation wave types arise
in the Cosserat medium and wave propagation becomes dispersive (Sluys 1990, de Borst and
Sluys 1991).

To provide a proper setting we will first give a derivation of the governing equations of a
Cosserat continuum. Then, the additional material parameters required in an elasto-plastic
Cosserat medium are discussed. Assuming a cuboidal lattice structure with micro-elements of
a finite size an explicit expression for the spin inertia is derived. Next, the additional wave
types and the dispersive character of wave propagation in Cosserat continua is examined. For
the one-dimensional problem of a purely elastic, infinitely long shear layer the governing
equations can be reduced such that an analytical solution is possible. Analytical solutions do
not seem to be possible for the softening Cosserat continuum, not even for a simple geometry
as the above-mentioned shear layer and numerical techniques are then indispensable. It will
be proven that the Cosserat theory is not a proper regularisation method for mode-I dominated
localisation problems (e.g. Example 1 and 2). However, for the shear layer and the biaxial test
(Example 3) the model warrants convergence to a unique, physically realistic solution upon
mesh refinement.

7.1 COSSERAT THEQORY

The derivation of the Cosserat theory, which forms part of the more general micro-polar the-
ory, is given for two-dimensional, planar deformations, so that each material point in a Cos-
serat continuum is assigned two translational degrees-of-freedom, namely u, and Uy, and a
rotational degree-of-freedom @;, the rotation axis of which is orthogonal to the x,y-plane. The
introduction of the rotational degree-of-freedom stems from the micro-rotation of the
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micro-element in the Cosserat medium. So, the displacement vector of the two-dimensional
Cosserat medium becomes

u={u,u,0,]. 7.1

As in a classical continuum (cf. eq.(2.2)) the normal strains are defined as

ouy
€ = o (7.2a)
and
duy
&y = R (7.2b)
The shear strains, however, are defined in a slightly different fashion
du, ‘
&y = o 0, (7.3a)
and
ou,
&y = ? +0,, (7.3b)

in which &,, and &y, can be viewed as the relative deformation between the macro-displace-
ment gradients du,/dy or du,/dx and the micro-rotation @, (see Figure 7.1).

du,

Ay

Auy

._8ux o _au,
ayx_ ay Z 8xy— ox ~-,

Figure 7.1  Kinematic relations for shear.
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In addition to normal strains and shear strains, Cosserat theory also requires the introduction
of curvatures

Jw,
Ky = e (7.4a)
and
0w,
Ky, = % (7.4b)

Let us now consider the equations of motion for a Cosserat continuum. Conservation of
linear momentum in a two-dimensional Cosserat medium results in a set of equations that are
identical for a conventional (cf. eq.(2.1)) and for a Cosserat continuum

30, 00,  0u

x oy P (7.5)
and

00,, 0doy, 82uy

p + 3 =p 7, (7.6)
in which oy, and oy, have the usual meaning of a normal stress in the x and y-directions
respectively. But in contrast to a conventional continuum the shear stresses Oy, and O, (Fig-
ure 7.2) are not necessarily equal. Because of the presence of the couple-stresses m,, and m,,
(Figure 7.2), which are energetically conjugate to the micro-curvatures X, and X,,, and the
inertia of micro-rotation per unit volume ®, conservation of angular momentum not necessar-
ily results in a symmetric stress tensor

Mz

Figure 7.2  Stress and couple-stress in a two-dimensional Cosserat-continuum.,
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om,,  omy, 0%,
S + 3 —(Oyx —Oxy) =© 2

So, for two dimensions the density matrix R can be redefined (cf.eq.(2.1)) as R = diag(p,p,©).
As will be explained in more detail in section 7.2 the value for © depends on the size of the
micro-elements and on the density p. Assembling the strain components in a vector €

a7

T
E=[E€u, €y, €z Exy» Epxs Kipl, Kppl ], (7.8)
and the stress components in a vector ¢
G =[Oy, Oyy s Oz , Oxy » Oyx » My,/1, my.,,/l]T , (7.9)

the differential operator matrix L for two dimensions can be redefined (cf. eq.(2.3)) as

p%
M 0 O
o
0 — O
dy
0O 0 O
9
L= 0 — -1 (7.10)
ox
9
— 0 1
dy *
9
0 —_
0 i F
9
| 0 0 ! 2 -
The constitutive relation for an elastic Cosserat continuum is formulated as
o=D.g, (7.11)
in which D, is the stiffness matrix that contains the elastic moduli (cf. eq.(2.7))
[2uay 2pas 2pa, 0 0 0 0]
2ua, 2p.a 1 2ua, 0 0 00
2ua, 2una, 2ua, 0 0 0 0
D,=| O 0 0 p+p, p~p, 0 0O, (7.12)
H—Hc p+p. 0 O

0
0 0 0 2u0
0

0 0
0 o0
0 o 0 0 0 2u
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with a; and a, as defined in eq.(2.7). The classical elastic stiffness matrix for a plane-strain
medium is recovered if p, =0 and if the couple stresses are not present. Apart from the usual
material parameters | and v the two additional elastic constants [, and / enter the constitutive
relation. Especially the parameter / is important since it sets the length scale in the enhanced
continuum description. To obtain a dimensional similitude of all entries in the vectors ©, €
and the matrix D,, [ has been incorporated in the vectors ¢ and € via the generalised curva-
tures Ky, /, ;. and the generalised couple-stresses my,/l, my,/l. This also has advantages for an
efficient numerical implementation (de Borst 1991). It is furthermore noted that the term 212
that sets the relation between the curvatures K, Ky, and the couple-stresses m,;, m,, respec-
tively, can be interpreted as a bending modulus (Schaefer 1962, Mindlin 1963). This interpre-
tation becomes important in the next section when the expression for the spin inertia is
derived.

For the formulation of an elasto-plastic Cosserat continuum the conventional hypothesis of
small-strain plasticity is adopted that the strain can be decomposed into an elastic contribution
€, and a plastic contribution &, (eq.(3.52)). So, the classical flow theory derived in section
3.4.2 can be used for the Cosserat continuum model. In the Cosserat model for the von Mises
and the Drucker-Prager plasticity theories the second invariant of the deviatoric stresses J5
can be generalised as (Miihlhaus and Vardoulakis 1987, Miihlhaus 1988, de Borst 1991)

T =g 18ijSij + g28ijSji + §3mymyill* (7.13)

with g 2.3 = (Y4,Y4,2) and where the summation convention with respect to repeated indices
has been adopted. An energetically conjugate expression for the hardening parameter is then
(Miihlhaus and Vardoulakis 1987, Miihlhaus 1988, de Borst 1991)

k= [h1€5e% + hyefeh + haklikbi1?)"™ (7.14)
with f1,2,3 = (Y3,%3,%) and €; the plastic deviatoric strain-rate tensor. If other values are
considered for g1 ;3 the set i 5 3 must be changed as well in order to keep the expression for
the hardening parameter energetically conjugate.

With the above definitions a plasticity theory (for von Mises and Drucker-Prager) can be
constructed for a Cosserat medium in an elegant and straightforward fashion. The integration
algorithm for this model is based on a return mapping scheme. The concept of a consistent
tangent operator is used within the framework of Newton’s method (de Borst 1991).

For the examination of the dispersive character of wave motions in Cosserat continua and
the derivation of an analytical solution in a one-dimensional, linear-elastic Cosserat medium,
which will be presented in a subsequent section, it is useful to state the governing field equa-
tions expressed in displacements and rotations of a two-dimensional, linear-elastic Cosserat
medium. Combination of the kinematic relations (7.2)-(7.4), the equations of motion
(7.5)-(7.7) and the constitutive law (7.11)-(7.12) results in
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(2ua1) Pis =+ (U(1+2a2) -1 )82u + (HHL )a2u” +24, 90, =p P (7.15)
ox? “” oxdy ¢ ‘ ay o’
(Zual) P +(u(1+2a2) —H )62 + (u+u )32u -2 o =p &uy (7.16)
(4 a a (4 axz (5 ax at2 s
i ( 8203 820) )+ 2 My o 4 AT 7.17)
| Coax Ty TP

7.2 ADDITIONAL MATERIAL PARAMETERS

Apart from the conventional, linear inertia term, also the rotational- or spin inertia is taken
into account in a Cosserat contimuum. The spin inertia is determined by the shape and the size
of the micro-elements. In the calculations described in this thesis the micro-elements have
been assumed to be cubes with edges of length 24, (Figure 7.3). In two dimensions the spin
inertia of such a cubic micro-element is

d. d,

0.= | [ pxt+y%)2d, dxay. (7.18)
4,4,

2d,

M=0d,
\wz
2d,

fe—{
24,

Figure 7.3 Micro-element (left) and momentum of spin inertia (right).

Carrying out the spatial integration with respect to x and to y results in

0. =pds. (7.19)
The spin inertia per unit volume is therefore given by |

o= %p . (7.20)

Shapes other than cubes may be physically more appealing, e.g., when the underlying material
has a granular structure like sand. In the latter case an assumption of spherically shaped
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micro-elements might be more plausible (Miihlhaus et al. 1991). However, with the latter
assumption the material cannot be composed entirely of micro-elements.

The characteristic length / introduced in the preceding section depends on the shape and
the size of the micro-elements. This will be shown for the simple case of a cube with edges of
length 2d,. parallel to the axes x and y. An elementary consideration shows that the discrete
moment M,, that acts on a single micro-element is given by

1+v

My = B gy, (.21)

For the couple stress m,, we then find
2u(1 +v)d?

My = _3C"sz . (7.22)

In consideration of eqs.(7.11) and (7.12) the relation between d,. and [ therefore reads
2__3
dz= e *. (7.23)

Substitution of this result in eq.(7.20) finally results in

= 2P 2
O= 1+Vl . (7.24)

7.3 WAVE PROPAGATION IN A COSSERAT SHEAR LAYER

Before embarking on an analysis of wave propagation and localisation in an elasto-plastic
Cosserat continuum it is instructive to first examine wave propagation in an elastic Cosserat
medium. Because of the inclusion of the micro-rotation and the spin inertia micro-rotation
waves arise, which are not found in a classical continuum. Due to the presence of micro-ele-
ments the shear wave and the micro-rotation wave behave in a dispersive manner and the
shape of a pulse is altered as it propagates through a medium. To keep the presentation rela-
tively simple the wave propagation analysis has been carried out for a one-dimensional shear
layer. For a shear layer all derivatives with respect to y vanish and the displacements in the
x-direction are zero (u, =0). These two observations effectively exclude longitudinal effects
and the field equations (7.15)-(7.17) reduce to
Bzuy 5 Jw, 32uy
(H+pe) 2 Mo TPz (7.25)

and
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o’w. ou *w
29 @ y _ - 2
2ul e +2U, o 4u.0, =0 W)

Again, we consider waves which propagate in the x-direction with wave number k and
angular frequency ® (cf. eq.(3.15)). A general solution for #, and ®, of the form

(7.26)

Uy =Ae'® -0 (7.27)
and
w, = Be' " =) (7.28)

is assumed. Substitution of this solution in the set of equations (7.25) and (7.26) then gives the
matrix-vector equation

— (R +po)k? +po? —2uik A
0, (7.29)

2u.ik 222 _4p +0w? || BT

for which a non-trivial solution exists if and only if the determinant of the matrix is zero. This
yields

POW* —[© (U+p, ) kZ +2ul%pk? +4pp, T @® + 2012 (L+p )k +4pp k=0, (7.30)

The positive roots of this equation are

012 =VN-(b/2a) V(123 —cla , (7.31)
where

a=p®, (7.32)

b=—1O(p+pc )k +2u%pk? +4pp. 1, (7.33)

¢ =22 (u+po)k* +app k2 . (7.34)

Equation (7.31) is a dispersion relation where the plus sign represents a micro-rotation wave
and the minus sign represents a shear wave. Hence, a dynamic transverse loading in a Cos-
serat medium (and also in other micro-polar continua) is composed of a shear mode and a
micro-rotation mode. The two wave types are coupled and cannot exist without each other.
The dispersion relation is plotted in Figure 7.4. For this curve the material data (l,l.,p,0,l) of
the shear layer from section 7.4.1 have been used. Clearly, for the same wave number the
micro-rotation vibrations have higher frequencies than the shear vibrations. The eigenmodes
(w,k) can be obtained when the geometry data and the boundary conditions of a structure are
applied as will be demonstrated for the shear layer in section 7.4.1.

The dispersion relation (7.31) can be reformulated as a relation between the phase velocity
¢y and the wave number k. The phase velocity is the velocity of propagation of one single
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Figure 7.4  Dispersion relation between angular frequency ® and wave number £.

harmonic wave with a constant phase kx —wr. By using o=k ¢r the phase velocity can be
expressed as

¢r1.0 = N-b/2ak?) + Vb2 /(2ak?)? —ci(ak®) . (7.35)

This relation is shown in Figure 7.5. The dependence of shear phase velocity and micro-rota-
tion phase velocity on the wave number is evident. Indirectly the phase velocity is then also
dependent on the wave length.

The parameters which determine the shear and the micro-rotation phase velocities cannot
be chosen freely. If the curves in Figure 7.5 intersect, the discriminant in eq.(7.35) becomes
negative which results in imaginary phase velocities for the harmonic shear wave as well as
for the harmonic micro-rotation wave. Consequently, for the one-dimensional transverse wave
propagation problem a consistent solution cannot be found if

12 R

C] < 2up
From the ¢;—k curve it becomes clear that every harmonic constituent of an initial distur-
bance travels with a different phase velocity and therefore the shape of the pulse wil be altered
as it travels. As discussed in section 4.2, in a dispersive medium distinction exists between the
phase velocity ¢y of the single harmonic wave and the velocity at which the energy travels, the
group velocity ¢ =dw/ok. The group velocity is plotted as a function of the wave number k in

(7.36)
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Figure 7.5  Dispersion relation between phase velocity ¢y and wave number k.

Figure 7.6. The Figures 7.5 and 7.6 reveal that for the limiting case that the wave number
approaches zero the shear group velocity as well as the shear phase velocity tends to the value
that is computed for a classical continuum. Accordingly, for A— oo, or equivalently for k— 0,
the classical wave propagation problem is recovered.

To analyse the propagation of a longitudinal wave in a one-dimensional micro-polar con-
tinuum the displacement u, and the gradients in y-direction are kept zero, so that eq.(7.15)
reduces to

%uy 0%u,
o P 3 (7.37)

Using the general solution

2ua,

Uy = Ae'l =0 (7.38)
it follows that the phase velocity ¢y as well as the longitudinal wave velocity c is given by

c=+2pa;/p =NE(1-v)p(1+v)(1-2v) , (7.39)

which is not dispersive and equal to the longitudinal wave velocity in the classical continuum
(Achenbach 1973, Eringen and Suhubi 1975). It is emphasized that this equation for the lon-
gitudinal wave speed is valid for an unbounded medium. In case of a one-dimensional stress
situation, e.g. a thin bar, the solution for the longitudinal wave velocity reduces to ¢, =VE/p
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Figure 7.6  Dispersion relation between group velocity ¢ and wave number k.

(bar velocity), which has been used in the previous chapters. In a two-dimensional bounded
medium the wave velocity is between the "unbounded" velocity and the bar velocity.

It is finally noted that in a three-dimensional Cosserat medium six different waves can be
distinguished. In addition to the longitudinal wave, the shear waves and micro-rotation waves
already encountered in the two-dimensional Cosserat continuum a longitudinal micro-rotation
wave, or micro-torsion wave, arises which acts in a plane perpendicular to its direction of
propagation. The determination of the wave velocities can be done in a similar fashion as has
been done for the one-dimensional cases.

So, the one-dimensional cases of shear and extension for the elastic Cosserat element can
be analysed by means of a dispersion analysis. However, for the one-dimensional shear prob-
lem of a strain-softening Cosserat element a dispersion analysis cannot be carried out because
the wave equations cannot be expressed in an explicit way. On the other hand, the one-dimen-
sional extension problem for the strain softening element yields the classical wave equation
€q.(3.8) derived in Chapter 3. So, the conclusions drawn from section 3.2 about mathematical
ill-posedness unfortunately also apply to a Cosserat element under mode-I loading. In pure
mode-I loading the rotational degrees-of-freedom do not become active and the micro-curva-
tures and couple stresses remain zero. Hence, if a problem is dominated by mode-I effects the
Cosserat continuum modelling is an insufficient regularisation technique to obtain a conver-
gence to a unique solution upon mesh refinement.
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7.4 NUMERICAL ANALYSES

To investigate the performance of the micro-polar plasticity model two numerical simulations
have been carried out in which mode-II failure is dominant. First, an analysis has been made
of a one-dimensional shear layer, and next, shear banding in the biaxial plane-strain test
(Example 3) has been simulated numerically. To investigate the characteristics of the micro-
polar plasticity model a mesh-refinement study has been carried out. For the numerical calcu-
lations use has been made of a six-noded triangular plane-strain element with 18
degrees-of-freedom. The time integration of the field equations has been done with the New-
mark scheme (B=Y4, Y=V, see section 2.3). For the shear layer problem a time step
At =7.5-1078 s and for the biaxial test a time step At = 1.5:107 s has been used.

7.4.1 Shear layer problem

For the Cosserat continuum a somewhat different configuration has been investigated than the
shear layer problem in Chapter 6, which is done for a comparison with the static results of the
problem (de Borst 1990). The shear layer can be taken from a semi-infinite strip with a shear
stress jump along its boundaries. The sketch of the problem is given in Figure 7.7. In the cen-

(1)
—
7 L Z

geometry :

H =100 mm

A = f(mesh)
loading :

qo= 04 60
14=1510"s
material :

i = 3500 N/mm?
v=04

2L Ll L LLLLLLL L

0 p = 500 kg/m®
F(\t) o Go = 100 N/mm?
doA 3o h =-1667 N/mm?
h Ke = 1000 N/mm?
I=5mm

ta

Figure 7.7  Shear layer problem.
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tre of the layer the horizontal displacements are prevented (u, =0) because of symmetry con-
siderations, while essential boundary conditions ®, =0 have been applied at the upper and
lower boundaries. The displacements in the x-direction are also constrained to zero. Basi-
cally, the problem is one-dimensional and the use of two-dimensional elements therefore
requires the addition of linear constraint equations. For the conventional continuum model
they only have to be applied to the displacements in the y-direction. The Cosserat continuum
also requires that constraint equations are used for the rotational degrees-of-freedom. The
elastic and inelastic material data set is given in Figure 7.7. A linear softening diagram in a
von Mises plasticity model is used with an ultimate equivalent plastic strain x, =0.06 at which
the yield strength has been reduced to zero. For the Cosserat continuum the additional mate-
rial constants are : |, = 1000 N/mm? and / =5 mm. With €q.(7.24) this results in a value for
the spin inertia © = 1.786:10~% Ns?/mm?. For the elastic solution of the shear layer we use a
lumped mass matrix, while for the localised solution of the layer we use a consistent mass
matrix in order to obtain a more accurate description of the localisation zone (see section 2.3).

- elastic solution of the shear layer

First, the wave propagation will be discussed for an elastic Cosserat medium. The dispersion
relations derived in section 7.3 and the above listed geometry data and boundary conditions of
the layer can be used to calculate the exact analytical values for the wave numbers & and the
angular frequencies ®. A full derivation can be found in Appendix 7A (see also Sluys (1990))
and results in the relation

(2’1"1)7‘ -

= kn n=1,2,3,. .. (7.40)

for the shear wave and for the micro-rotation wave. Substitution of k, in eq.(7.31)-(7.34)
yields values for @, and @,,, in which @y, represents the n-th angular frequency of the shear
wave and @, represents the n-th angular frequency of the micro-rotation wave. In Figure 7.8
these analytically derived shear modes and micro-rotation modes have been plotted in the
-k plane. The analytical results have been verified numerically with a mesh with 100 ele-
ments. An eigenvalue analysis yields the eigenmodes and angular frequencies shown in the
bottom picture of Figure 7.8. The numerical values for o, listed in the table, and for k, which
follow from the wave lengths, are in exact agreement with the analytical values. The eigen-
modes are plotted in ascending order with respect to , the 1%, 24, 3¢, 6" and 8" mode are
shear modes and the 4", 5 and 7* mode are micro-rotation modes. These modes correspond
to the modes n =1 to 5 for shear and 7 =1 to 3 for micro-rotation in the dispersion curve in
Figure 7.8.

The dispersion phenomenon cannot only be shown from an analysis of harmonic waves
but also from a study on travelling waves. We consider the propagation of one loading wave
(applied at x =—1/, H) through the Cosserat shear layer. To avoid reflection at the centre of the
layer the vertical displacement is kept zero at x = 1> H instead of at x =0. The response is
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Figure 7.8 Eigenmodes of the shear layer with analytical values (;,k;) from dispersion
analysis (top) and corresponding numerical eigenmodes k; (bottom).
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Figure 79 Wave propagation in the elastic Cosserat shear layer (0 <z < 300 A¢) :
Shear stresses (top) and micr-rotations (bottom).

plotted in Figure 7.9 by means of the shear stress 0, and the rotation degree-of-freedom @, .
The response is a coupling of shear and micro-rotation effects, which can be seen from the
shear stresses Oyy. The small response travelling ahead of the main pulse is caused by the
micro-rotation wave. This is obvious from a comparison of the maximum speed of the rota-
tion wave (Cmicro—rotation = (211 2/@)"» =3130 m/s) with the maximum speed of the shear wave
(Cshear = ((L+HC)P) ¥2 = 3000 m/s) which follow from the dispersion curve in Figure 7.6.
Finally the influence of the spin inertia on the response has been investigated. The results
plotted in Figure 7.10 show that putting © =0 the micro-rotation wave speed goes to infinity
(see also Figure 7.6). On the other hand, taking the spin inertia © equal to the critical value
©,,; derived from the condition (7.36) the shear wave speed and the micro-rotation wave
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Figure 7.10 'Wave propagation in the elastic Cosserat shear layer - variation of the
spin inertia for the shear stresses.

speed coincide and the small micro-rotation wave which travels ahead of the shear wave is no
longer present.

- localised solution of the shear layer

Now, the strain-softening behaviour of the shear layer of micro-polar material will be consid-
ered. A mesh-sensitivity study has been carried out with four different discretisations, namely
with 10, 20, 100 and 200 elements. Analyses of the classical strain-softening layer for static
(de Borst 1990) and dynamic (Sluys 1990) loading conditions prove the entire dependence of
the localisation zone data on the mesh spacing. Softening is initiated when both shear waves
meet at the centre of the layer and the shear stress intensity is doubled. Owing to the ensuing
softening behaviour localisation occurs.

For the Cosserat layer a localisation zone emerges which converges to a finite, constant
band width upon mesh refinement. This is shown in Figure 7.11 for the displacement patterns
and in Figure 7.12 for the shear strain fields &, for the different meshes. While the band
width of the localisation zone is still somewhat too wide for the coarsest meshes (10 and 20
elements) the finest meshes give identical results. Obviously the continuum is capable of
transforming the loading wave into a stationary localisation wave. The internal length scale of
the model is necessary to set the mesh-independent localisation band width. Mesh indepen-
dence is also observed from the consumption of energy in the layer during the inelastic defor-
mation. In Figure 7.13 the consumption of energy is plotted and although we have a structural
instability because the second derivative is slightly negative (d2U/dz2 < 0 see section 3.2) the
layer consumes a finite amount of energy independently of the finite element discretisation.
The development of the localisation zone is shown by means of the shear strains in Figure
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Figure 7.11 Displacement patterns at ¢ = 33.75:107% s (FA = 150).
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Figure 7.12 Strain distribution along the layer at t = 33.75:107 s.
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Figure 7.14 Stroboscopic development of the shear strains (0<¢ <33.75-1075 5).

7.14 and by means of the shear stresses in Figure 7.15. The formation of the localisation band
occurs rapidly but after a full development the width of the shear band remains constant in
time. The localisation zone is a cosine-shaped stationary shear wave. From the shear stresses
it appears that at the interface of the shear band we have stress continuity as we have assumed

earlier in section 3.3 and Appendix 3A.

The sensitivity of the solution to changes in the inelastic material data set is investigated.
First, the influence of the /-parameter on the observed width of the localisation band was
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Figure 7.17 Variation of the second invariant of the deviatoric stresses J5
(t=30.0-10"% s, except g 2.3 = (4,— Vs, ¥2) at t =25.5-107C s).

investigated by using three different values for /, namely 2.5, 5.0 and 10.0 mm. Figure 7.16
(right plot) shows an almost linear dependence of the width of the localisation band on /. For
a smaller / a more rapid failure and more brittle behaviour is obtained, while for a larger valve
of / the behaviour is more ductile. So, the value for / determines the size of the localisation
band and governs the brittleness of a structure. The slope of the strain-softening curve 4 is a
second important parameter which determines the behaviour in the localisation zone. Varia-
tion of A yields the same tendencies as obtained for variation of the length scale parameter
(Figure 7.16 - left plot). A steeper strain-softening diagram shows a brittle response and local-
isation in a small localisation zone, whereas a more ductile strain-softening curve stabilises the
failure process in a wider localisation band. Variation of the loading rate by changing the
parameter f; hardly has any effect on the formation of the band.

Finally, the plasticity model has been changed by means of a variation of J, (cf.
q.(7.13)). If we set g1,2 3 = (!/g,%s,'/2) we obtain more uniformly distributed and lower peak
strains in the localisation zone (see Figure 7.17). On the other hand, the profile of the shear
strains becomes smaller for g, 3 = (%/g,Y3,'/2) and even shows mesh dependence (localisation
in two symmetric integration points) for gy 23 =(34,—Ys,%). The latter two models are
known as the kinematic model and the static model, respectively (Vardoulakis 1989).

7.4.2 Example 3 ;: Impact biaxial test
Now, the micro-polar Cosserat model is used for an analysis of the biaxial test. A mesh-sensi-

tivity analysis to the influence of fineness and distribution of the elements is carried out with
the finite element discretisations as used in section 3.5.3. The problem has been analysed
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using the von Mises softening plasticity model. In contrast to the analyses with the gradient
model and the viscoplastic models only the plane-strain condition will be considered.

The impact biaxial test for the analysis of shear banding is a wave propagation problem in
which the pressure longitudinal wave propagates in a linear-elastic manner through the speci-
men. The transverse system of shear and micro-rotation waves, which is present in a direction
perpendicular to the direction of propagation, can hardly be observed (Sluys 1990).

- biaxial test with von Mises material (plane-strain)

For the first analysis with a von Mises softening plasticity model the material and loading data
from Figure 3.14 have been used. The additional material constants for the Cosserat medium
are : M, =2000 N/mm? and / = 1.25 mm. The value for the internal length scale parameter /
results in a spin inertia @ = 1.05:10~% Ns?/mm? (eq.(7.24)).

The effect of the inclusion of the internal length scale can be observed from the plot of the
displacement fields and the equivalent plastic strains after one loading cycle in Figure 7.18.
The width of the shear band shows a slight decrease upon mesh refinement. This is also
observed in Figure 7.19 for the equivalent plastic strains in the centre section of the sample.
We observe a larger peak strain in a smaller localisation band when we refine the mesh.
Despite this result for the width of the zone, the consumption of energy in the sample shows a
reasonable similarity for the three meshes (see Figure 7.20). The plane-strain analysis for the
Cosserat medium shows a shear band with an inclination angle which is slightly smaller than
45° (eq.(3A.21)) which is due to the micro-polar description of the material already in the
elastic stage (Steinmann and Willam 1991).

It is obvious that the results obtained with the Cosserat model remedies the spurious results
for the classical analysis of the biaxial test in the Figures 3.16 to 3.18, but not to the same
extent as obtained with the gradient model (Figures 5.8 to 5.10) and with the viscoplastic mod-
els (Figures 6.8 to 6.10). It becomes clear that, as already mentioned in section 7.3, the
mode-I pressure component in the problem partially spoils the well-posedness of the problem.
A complete insensitiveness of the solution on the discretisation can only be obtained for a pure
mode-1I problem as the shear layer in the previous section. Mesh dependence gradually
returns when mode-I components become more and more active.

Furthermore, it has been investigated to which extent the numerically observed localisa-
tion band width is influenced by the length scale parameter / and by the slope of the strain-
softening curve. If the length scale parameter is multiplied by a factor 1.5 the band width also
increases by approximately a factor 1.5. A similar increase of the width of the localisation
band is obtained by enlarging the ultimate equivalent plastic strain by a factor 1.5 (i.e.
h =—666 N/mm?). In Figure 7.21 the total displacements and the equivalent plastic strains for
these two calculations are compared with the results obtained for the reference analysis.



PAGE 150 CHAPTER 7

120 120 120

100+ 100+ 100

Figure 7.18 Cosserat continuum model with plane-strain elements :
Top : Total displacement patterns (¢ =0.165-10"3 5, FA = 15).
Bottom : Contour plots of the equivalent plastic strains.
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Figure 7.21 Total displacements (top - FA = 15) and equivalent plastic strains (bottom)
for reference set of parameters (left), for / = 1.875 mm (centre) and for
h =—666 N/mm? (right).
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Finally, the influence of mesh alignment on the results is investigated with a biased and an
unbiased mesh. The results, given in Figure 7.22, show a clear difference between the two
analyses. The results for the biased mesh are in agreement with the results for the 12x24
mesh in Figure 7.18, but the results for the unbiased mesh deviate markedly. The shear band
is substantially wider and the equivalent plastic strains are much smaller. So, for this problem
the Cosserat continuum model is too weak as a regularisation method to avoid mesh-alignment
problems. In conclusion it can be said that the micro-polar effect partially remedies mesh
dependence with respect to the width of the shear band but is not able to exclude the spurious
influence of mesh orientation.
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APPENDIX 7A : ANALYTICAL EIGENMODE ANALYSIS OF SHEAR LAYER

If we consider the two solutions belonging to the positive and negative roots for the wave
number the static part of the solution for the free response of the shear layer of section 7.4.1
reads

uy(x)=A e +A,e™ (7TA.1)
and
©,(x)=Be~* +Be™ (TA.2)

To each wave number k belongs one angular frequency ®; for shear and one angular fre-
quency o, for micro-rotation. The solution is transformed into sine and cosine functions and
if the constants C)=A+A,, Co=A3—-A,, C3=B,+B, and C4=B,~-B; are introduced
the general solution becomes

uy(x) = Ccoskx +iCsinkx (7A.3)
and
@, (x) = C3coskx +iC 4sinkx . (7A4)

The following boundary conditions of the unloaded shear layer from Figure 7.7 can be applied

) x=0 —u,=0 (TA.5)
o,
x=0 ->m,=0-> =0 (7A.6)
ox
3N x=%H > w,=0 (TAD)
ouy
4) x=Y2H -0,y =0 (u+uc)¥—2uco)z=0 (7A.8)

The boundary conditions result in the following system of equations

1 0 0 0 o}
0 0 0 ik Cy
0 0 coslp kH isinly kH Cs|™ 0, (7A9

(H+Heksino kH (+dikcosYo kH -2 costp kH 2y isintp kH || C 4
which has a non-trivial solution for C; when the determinant is equal to zero, which results in
(R+ Mok cos? o kH =0 . (7A.10)

A non-trivial solution for k can be found if cos!/ kH = 0 which yields
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Q@n-1)m _

7 kn n=1,2,3, .. (7A.11)

in which n represents the number of the eigenmode. The angular frequencies w;,, for shear
and ®,, for micro-rotation follow from egs.(7.31)-(7.34). From eq.(7A.9) it appears that
C1 =C4 =0, which yields the analytical solution for the free response of the shear layer, writ-
ten as a summation of m eigenmodes,

D) = 3 GC gsinkyx))(e O 4+ ¢'O) (TA.12)
n=1

0,00 = 3 (Cancosthyr))e " + ¢/t (7A.13)
n=1

The constants C, and C3, can be calculated from the initial conditions of the layer.
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8. CONCLUSIONS

The computational modelling of structural failure in softening materials calls for a proper
material modelling of the problem. At incipient failure softening often drives the formation of
localisation bands (cracks, shear bands). A conventional material modelling of the softening
solid is insufficient because we obtain results which are entirely determined by the finite ele-
ment discretisation. To state the problem in a clear fashion a first aim of this study was to clar-
ify the problem of mesh sensitivity, while the main goal was to scrutinise solution techniques
which remedy mesh sensitivity. We have considered wave propagation problems, which
implicitly include static problems as a limit case.

Following the phenomenological approach, a straightforward mapping of load-displace-
ment data with a descending branch beyond peak load onto stress-strain relations provides a
negative tangential stiffness in the constitutive equations (strain-softening model). The use of
a strain-softening model in the framework of a classical, rate-independent continuum can
result in loss of well-posedness of the initial value problem. In the strain-softening region of a
structure hyperbolicity of the field equations is lost which is attended by imaginary character-
istics and wave speeds. The consequences in a mechanical sense of the loss of well-posedness
have been demonstrated by means of the analytical solution of a strain-softening bar. We cal-
culate a localisation zone of zero thickness which develops instantly after the initiation of
strain softening. The localisation zone starts to act as a free boundary at which tensile waves
reflect as pressure waves. Because the area in which failure occurs is zero the energy con-
sumed in the failure zone is zero. The finite element solution tries to capture the localisation
zone of zero thickness and, as a result, strain localisation occurs in a zone which is entirely
determined by the element size. Upon mesh refinement we observe convergence to a line
crack (Examples 1 and 2) or to a shear band of zero thickness (Example 3). Mesh sensitivity
is not only demonstrated with respect to the fineness of the mesh, but it appears that the orien-
tation of the mesh lines also influences the results (mesh alignment). Therefore the severe
result is obtained that the direction of crack or shear band propagation is largely influenced by
the finite element discretisation.

The basic deficiency of the classical continuum concept is that no characteristic dimen-
sions or necessary spatial interactions in the localisation zone are present. The absence of a
length scale parameter leaves the width of the localisation zone unspecified. Secondly, from a
dispersion analysis it was demonstrated that propagating waves are non-dispersive in a classi-
cal strain-softening continuum, i.e. arbitrarily shaped waves cannot be transformed into sta-
tionary localisation waves. However, wave propagation in strain-softening media can only be
described properly if the continuum model admits dispersive waves.

To solve the mesh-sensitivity problem the initial value problem must be well-posed and
these deficiencies should be overcome to arrive at a solution for the localisation band, which is
invariant to size and orientation of the finite elements. For this reason the approach followed
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in this study is the enrichment of the softening continuum description with extra or higher-
order terms. Three solution techniques have been explored, namely the addition of rate-
dependence (RD-model), the addition of second-order strain gradients (GR-model) and the
inclusion of micro-polar effects (CO-model). The models do not necessarily lose hyperboli-
city at the onset of strain softening and admit a solution with real wave speeds. All models
incorporate a length scale parameter which has been related to the width of the localisation
band. Wave propagation is dispersive in the enriched continua and therefore transformation of
waves is possible in the localisation zone. The three models have been assessed on their
numerical performance with respect to mode-I and mode-1I failure. Furthermore, the fineness
of the mesh and the orientation of the mesh lines have been varied. The results are summar-
ised in Box 8.1.

Box 8.1 : Mesh sensitivity for different types of failure and loading.

RD-model GR-model CO-model
mode-I failure ++ ++ -
mode-II failure ++ ++ ++
static loading - ++ +
dynamic loading ++ ++ +

++ = mesh independent, + = conditionally mesh independent, - = mesh dependent

The inclusion of rate dependence in crack models (mode-I) and plasticity models
(mode-II), makes it possible to calculate a finite, unique solution for the localisation band. For
some rate-dependent models (power law model, Perzyna model with ¢ = (f/(_s)N ) mesh depen-
dence enters again during localisation because the stabilising viscous effect gradually vanishes
when the strain-softening contribution reduces to zero. For the gradient model we also
observe convergence to a unique solution for the localisation zone with respect to the size, the
wave reflection at the zone and the energy consumption in the zone. It is important that inclu-
sion of rate or gradient effects solves the mesh-alignment problem. For this reason these mod-
els differ from a fracture energy model (BaZant and Oh 1983), in which the influence of the
orientation of mesh lines on the direction of propagation of a crack or a shear band remains
present. Using a fracture energy model mesh adaptation in combination with the exact analyt-
ical solution for the orientation of the localisation zone should be used in the analysis proce-
dure, which is, if it is already possible, much more complicated.

A distinct disadvantage of the Cosserat model is that it is only effective as a regularisation
method when frictional slip is dominant (mode-II failure). Already in cases where we do not
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have pure shear, as for instance the biaxial test (Example 3), the method is weak and not
entirely mesh objective with respect to the fineness of the mesh and still shows a large influ-
ence of the direction of the mesh lines. This behaviour of the Cosserat model is explainable
because the rotational degrees-of-freedom do not become active under pure mode-I loading.

If we combine our results with the results for static analyses with the gradient model (de
Borst and Miithlhaus 1992) and with the Cosserat model (de Borst 1990) Box 8.1 can be com-
pleted. Itis trivial that the inclusion of rate dependence is not a proper solution technique for
static analyses. Although the incremental boundary value problem remains well-posed as long
as the strain rate is larger than zero, which is always true during failure because a viscous
effect is still present, the width of the localisation band approaches zero which is physically
unrealistic and contradicts experimental evidence (e.g. Miihlhaus and Vardoulakis 1987). For
very low loading rates the viscosity has to be made artificially high to obtain physically realis-
tic results.

Considering the algorithmic aspects of the three models we note that the rate-dependent
models and the Cosserat model are relatively easy to implement. The weak formulation of the
yield function for the gradient model requires a more difficult algorithm. Furthermore, a
disadvantage of the use of a gradient model or a Cosserat model is the need to define addi-
tional boundary conditions, which should be chosen with great care but for which physical rel-
evance is lacking.

This study has a fundamental character and the mathematically proper description of the
softening solid was more important than the exact simulation of experiments. For simple one-
and two-dimensional problems the performance of the enhanced models has been explored
thoroughly and the merits and limitations of each of the approaches are now known. Now,
efforts should be focused on the proper simulation of the experimentally measured response.
An example is the simulation of the impact tensile test on a double-notched specimen
(Example 2), in which the additional viscosity parameter was determined by means of the
numerical analyses. Since the additional parameters that emerge in the enriched continua
models are not direct derivable from experiments such an semi-inverse approach should be
followed.

A second topic of research for failure analyses involving localisation of deformation is the
limitation of computer time by means of a modification of the spatial discretisation and/or the
time integration scheme. The number of finite elements can be limited when the mesh is
adapted dependently of the localisation process. If so-called mesh-adaptivity techniques
(Ortiz and Quigley 1991, Huerta et al. 1992) are used a fine division of elements can be
applied in the localisation zone while keeping the discretisation of the remainder of the body
relatively coarse. Criteria for mesh adaptation can be based on the second-order strain gradi-
ent (cf. gradient model) or on the strain rate (cf. rate-dependent model). Adaptation of the
time integration scheme can also be advantageous in dynamic failure analyses. The small
localisation zone often puts a very severe restriction to the time step which is not necessary for
the elastic part of the structure and in the pre-failure phase. Therefore, a time step control
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algorithm with a variable time step (Thomas and Gladwell 1988) and/or use of subcycling
techniques (Belytschko et al. 1984), in which a part of the mesh (localisation zone) is
integrated with a smaller time step, should be employed.

A third subject of further research is the extension of the models, developed in this study,
to make them suitable for different applications. One is the extension to composite softening
materials as (fibre-)reinforced concrete and another is the modelling of propagative instabili-
ties (Liiders bands, Portevin-Le Chatelier effect) in contrast to the static instabilities (cracks,
shear band) treated in this study. '
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SUMMARY

Localisation of deformation refers to the occurrence of small regions in a structure in which
all deformation localises while the remaining part of a structure unloads. This is observed for
a wide range of engineering materials including metals, polymers, soils, concrete and rock. In
this thesis we address the fundamental issue of developing models for the softening solid that
admit localisation of deformation while preserving well-posedness of the initial value prob-
lem. This is essential for a proper computational modelling of failure without a spurious influ-
ence of the finite element discretisation. Wave propagation problems have been considered, in
which wave reflection on the localisation zone and behaviour of waves in the localisation zone
are important phenomena.

The occurrence of strain softening causes all further deformation to localise in small
bands, which are often a precursor to failure. In Chapter 3 the basic deficiencies of the use of
a strain-softening model in the framework of a classical, rate-independent continuum have
been discussed. The classical model does not result in a well-posed initial value problem
because the field equations lose hyperbolicity at the onset of localisation. Consequently, the
strain-softening region becomes elliptic, in which waves with imaginary wave speeds do not
propagate (standing waves), while in the remaining hyperbolic part of the structure waves nor-
mally propagate. An analytical and numerical solution of a strain-softening bar shows the
physically meaningless solution for the localisation zone. Analytically a solution with a local-
isation band of zero thickness with spurious wave reflection and without energy consumption
is calculated, while numerically this solution cannot be captured but is approached upon mesh
refinement. This results in a severe dependence on the finite element discretisation, which is
also observed for cracking (mode-I localisation) in an impact tensile test on a double-notched
specimen and for the formation of a shear band (mode-II localisation) in a biaxial test. In
these two-dimensional simulations another severe observation is the dependence of the direc-
tion of crack or shear band propagation on the orientation of the mesh lines (mesh alignment).
Mesh sensitivity with respect to fineness and alignment is caused by the ill-posedness of the
initial value problem. A well-posed problem for the strain-softening solid is needed, in which
a length scale parameter preserves the necessary spatial interaction in the localisation zone and
in which a dispersion property provides the ability to transform waves into stationary localisa-
tion waves.

In the remaining part of the thesis continuum descriptions of the softening solid have been
treated which satisfy the abovementioned requirements. The incorporation of extra or higher-
order terms in the continuum models conditionally solves the basic deficiencies of the classical
continuum model for strain softening,

Chapter 4 treats the inclusion of rate-effects in a smeared crack model as a first regularisa-
tion technique to properly capture zones of highly localised deformation. The incorporation
of a first-order time derivative term in the constitutive equations prevents the field equations
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from becoming elliptic. Dispersive waves are attenuated exponentially in the localisation zone
to an extent which is determined by an implicit length scale parameter. The discretisation of
the one-dimensional strain-softening bar has no influence on the numerical outcome. Further-
more, the analysis with the double-notched specimen shows a crack band in which the strain
localisation is not aligned with the mesh. The calculated response has been compared with
experimental data and the additional viscosity parameter was determined in a semi-inverse
manner.

In Chapter 5 we have discussed the enrichment of the strain-softening continuum with a
second-order gradient term of the equivalent plastic strain. Waves propagate in a dispersive
manner through the gradient-dependent medium. By means of a dispersion analysis it was
demonstrated that the travelling wave can be transformed into a stationary harmonic wave, of
which the wave length represents the width of the localisation zone. Mesh-objective results
have been obtained for mode-I localisation (one-dimensional bar) and mode-II localisation
(biaxial test). In the latter example the direction of propagation of the shear band complies
with the analytical predicted direction and is not influenced by the mesh lines.

In Chapter 6 the inclusion of rate dependence has been done for a plasticity model (visco-
plastic model) in order to simulate mode-II localisation. The viscoplastic models according to
Perzyna and to Duvaut and Lions give objective results when the fineness of the discretisation
has been varied for a one-dimensional shear layer and for the biaxial test. Mesh-alignment
problems have been demonstrated to vanish when use is made of viscoplastic regularisation.

A third approach is followed in Chapter 7 and is based on the inclusion of micro-polar
(Cosserat) effects. In a Cosserat continuum model extra terms, representing micro-rotations,
have been added to the continuum description of the softening solid. The Cosserat continuum
consists of micro-elements with a finite length, which implies the introduction of a length
scale parameter. Extra rotational degrees-of-freedom have been defined in the finite element
representation to take the micro-curvatures and couple stresses into account. In the Cosserat
medium wave propagation is dispersive and unconventional wave types emerge such as
micro-rotation waves. For an elastic shear layer the dispersive wave propagation of the shear
and the micro-rotation wave has been investigated analytically and numerically and perfect
agreement was obtained. A disadvantage of the Cosserat model is that it is only effective as a
regularisation method for mode-II failure problems, which is due to the fact that the rotational
degrees-of—frcedom do not become active under mode-I loading. For the biaxial test, in which
mode-1 components play a role, the method is too weak and a full objectivity of the results on
the discretisation cannot be obtained.
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SAMENVATTING

GOLFVOORTPLANTING, LOKALISATIE EN DISPERSIE IN SOFTENING
MATERIALEN

Lokalisatie van deformatie betekent dat in een constructie smalle zones optreden waarin alle
deformatie zich lokaliseert terwijl het overblijvende deel ontlast. Dit gedrag wordt
geconstateerd voor een brede klasse van materialen zoals metalen, polymeren, grond, beton en
rots. In dit proefschrift houden we ons bezig met de fundamentele kwestie van de modellering
van het softening materiaal, zodanig dat lokalisatie van deformatie wordt toegelaten terwijl het
beginvoorwaardeprobleem goed gesteld blijft. Dit is essentieel voor een nette numerieke
modellering van bezwijken zonder een valse invloed van de eindige elementen discretisatie.
. Golfvoortplantingsproblemen zijn beschouwd waarin golfreflectie op de lokalisatiezone en het
gedrag van golven in de lokalisatiezone belangrijke fenomenen zijn.

Het optreden van strain softening zorgt ervoor dat alle deformatie lokaliseert in smalle
banden, wat een inleiding is tot bezwijken. In Hoofdstuk 3 zijn de fundamentele
tekortkomingen van het gebruik van een strain softening model in het raamwerk van een
klassiek reksnelheidsonafhankelijk continuiim besproken. Het klassieke model resulteert niet
in een goed gesteld probleem omdat de veldvergelijkingen hyperboliciteit verliezen op het
moment dat lokalisatie optreedt. Als gevolg hiervan wordt de strain softening zone elliptisch,
waarbinnen golven met imaginaire golfsnelheden zich niet kunnen voortplanten (staande
golven), terwijl in het overblijvende hyperbolische deel van de constructie golven zich
gewoon voortplanten. Een analytische en numerieke oplossing van een strain softening staaf
laat een oplossing voor de lokalisatiezone zien die fysisch geen betekenis heeft. Analytisch
wordt een oplossing gevonden voor de lokalisatieband met een breedte nul, een valse
golfreflectie en geen energieconsumptie, terwijl numeriek deze oplossing niet kan worden
beschreven maar slechts kan worden benaderd bij verfijning van het elementennet. Dit
resulteert in een ernstige afhankelijkheid van de eindige elementen discretisatie, welke ook
wordt geconstateerd voor scheurvorming (mode-I lokalisatie) in een dynamische trekproef op
een proefstuk met een dubbele zaagsnede en voor de formatie van een afschuifband (mode-II
lokalisatie) in een biaxiaaltest. In deze twee-dimensionale simulaties is een ander ernstig
probleem de afhankelijkheid van de richting van voortplanting van de scheur of de
afschuifband van de orientatie van de mesh lijnen (mesh alignment). De gevoeligheid van de
resultaten met betrekking tot de fijnheid en de orientatie van de eindige elementen wordt
veroorzaakt door de slecht gesteldheid van het beginvoorwaardeprobleem. Een goed gesteld
probleem voor het strain softening medium is vereist waarin een lengteschaalparameter zorgt
voor de noodzakelijke ruimtelijke interactie in de lokalisatiezone en waarin de dispersie-
eigenschap de mogelijkheid biedt golven te transformeren in stationaire lokalisatiegolven.
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In de rest van het proefschrift worden continuiimbeschrijvingen van het softening medium
behandeld die voldoen aan de bovengestelde eisen. Het meenemen van extra of hogere-orde
termen in de continuiimmodellen lost voorwaardelijk de fundamentele tekortkomingen van het
klassieke continuiimmeodel voor strain softening op.

Hoofdstuk 4 behandelt het meenemen van snelheidseffecten in een uitgesmeerd
scheurenmodel als een eerste regularisatietechnick om op nette wijze zones met een sterk
gelokaliseerde deformatie te kunnen beschrijven. Door de eerste-orde tijdsafgeleide mee te
nemen in de constitutieve vergelijkingen wordt voorkomen dat de veldvergelijkingen
elliptisch worden. Dispersieve golven worden exponentieel gedempt in de lokalisatie zone in
een mate die bepaald wordt door een impliciete lengteschaalparameter. De discretisatie van de
éeén-dimensionale strain softening staaf heeft geen invloed op de numerieke uitkomst.
Bovendien laat de analyse met het proefstuk met een dubbele zaagsnede zien dat de
scheurband niet gelijkgericht is met het elementennet. De berekende respons is vergeleken
met experimentele data en de additionele viscositeitsparameter is op een semi-inverse manier
bepaald. ,

In Hoofdstuk 5 behandelen we de verrijking van het strain softening continuiim met een
term die afhankelijk is van de tweede-orde gradient van de equivalente plastische rek. Golven
planten zich op dispersieve wijze voort door het gradientafhankelijke continuiim. Met behulp
van een dispersieanalyse is aangetoond dat lopende golven kunnen worden getransformeerd in
een stationaire harmonische golf, waarvan de golflengte overeenkomt met de breedte van de
lokalisatiezone. Objectieve resultaten met betrekking tot de keuze van het elementennet zijn
verkregen voor mode-I lokalisatie (€én-dimensionale staaf) en mode-II lokalisatie
(biaxiaaltest). In het laatste voorbeeld komt de richting van voortplanting van de afschuifband
overeen met de analytisch voorspelde richting en wordt niet beinvloed door de lijnen van het
elementennet.

In Hoofdstuk 6 is het verdisconteren van snelheidsafhankelijkheid toegepast op een
plasticiteitsmodel (viskoplastisch model) om mode-II lokalisatie te simuleren. De
viskoplastische modellen volgens Perzyna en Duvaut-Lions geven objectieve resultaten
wanneer de fijnheid van de eindige elementen discretisatie wordt gevarieerd, zowel voor de
€én-dimensionale afschuifligger als voor de biaxiaaltest. Er is aangetoond dat mesh-alignment
problemen verdwijnen wanneer gebruik wordt gemaakt van viskoplastische regularisatie.

Een derde aanpak is gevolgd in Hoofdstuk 7 en is gebaseerd op het meenemen van micro-
polaire (Cosserat) effecten. In een Cosserat continuiimmodel zijn extra termen, die de micro-
rotaties voorstellen, toegevoegd aan de continuiimbeschrijving van het softening medium. Het
Cosserat continuiim bestaat uit micro-elementen met een eindige afmeting, wat de introduktie
van een lengteschaalparameter impliceert. Extra rotatievrijheidsgraden zijn gedefinieerd in de
eindige elementen beschrijving om micro-krommingen en koppel-spanningen mee te nemen.
In het Cosserat medium is golfvoortplanting dispersief en blijken zich onconventionele
golftypes voor te doen, zoals micro-rotatiegolven. Voor een elastische afschuifligger is de
dispersieve golfvoortplanting van de afschuif- en micro-rotatiegolf analytisch en numeriek
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onderzocht en is volledige overeenstemming verkregen. Een nadeel van het Cosserat model is
dat het alleen succesvol is als regularisatiemethode voor mode-II lokalisatieproblemen, wat
een gevolg is van het feit dat de rotatievrijheidsgraden niet aktief worden onder mode-I
belasting. Voor de biaxiaaltest, waarin mode-I componenten een rol spelen, is de methode te
zwak en een volledige objectiviteit van de resultaten met betrekking tot de discretisatie kan
niet worden verkregen.
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