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Abstract. A mechanical wave is propagation of vibration with transfer of energy and momentum. Understand-

ing the spectral energy characteristics of a propagating wave through disordered granular media can assist in

understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study

of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospect-

ing) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a

pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granu-

lar chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal

P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster

attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a dis-

ordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long

time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used,

however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to

loss of information, indicating the need for a different framework for micro-macro averaging.

1 Introduction

Disorder in granular materials (like soil) can manifest in

many ways (contact disorder, geometrical disorder, as-

phericity, layering, etc.) from grain level to system level.

All may have an effect on the mechanical wave transmis-

sion through the granular material in it’s own unique way

(for instance, contact disorder due to tiny polydispersity

can reduce the mechanical wave speed [9]). Knowing

this effect can aid us in numerous ways for subsurface

exploration or for non-destructive testing. Thus, there is

a need to study the effects of disorder individually and

hence the focus in this article will only be on mass dis-

order, for which 1D granular chain has been chosen so

that the P-wave mode is isolated from shear or rotational

modes. A mechanical wave propagating through this 1D

granular chain is bound to suffer from multiple scattering.

However, regardless of scattering, linear waves preserve

some coherence and that manifests as intensity correla-

tions ([8]). The results obtained from the chain also rep-

resent attributes of both longitudinal P-waves (compres-

sional) and S-waves (shear) in a 3D system as stated in

[10]; The frequency filtering effects are similar to those in

a 3D system, as observed in [9]. All the more reason to

study energy content and spectral energy response of the

propagating wave.
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Figure 1. Chain of granular elements during dynamic wave

propagation with length scaled by the characteristic equilibrium

distance Δ̃o.

2 Micromechanical model of 1d chain

A one dimensional granular chain of mass disordered

mesoscopic particles is modeled using only a repulsive in-

teraction force,

F(i,i+1) = κ(i,i+1)δ(i,i+1) = κ(i,i+1)(Δ(i,i+1) − (u(i) − u(i+1))) (1)

The granular chain has a high pre-confining force which

does not allow opening and closing of contacts (no oc-

currence of Nesterenko’s sonic vacuum [2, 11]). Hence,

a linear contact model is valid to compute the repulsive
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Table 1. Dimensional, scaling and hence, the

non-dimensionalized parameters.

Dimensional Scaling Non-dimensional

m̃(i) m̃o b(i) = m̃(i)/m̃o

κ̃(i, j) κ̃o κ(i, j) = κ̃(i, j)/κ̃o
Δ̃(i, j) Δ̃o Δ(i, j) = Δ̃(i, j)/Δ̃o

interaction forces from the overlap (δ(i,i+1)) [4] for small

amplitudes. Table 1 contains the scaling parameters re-

quired to arrive at the non-dimensional equation of motion

of particle i. b(i) is the non-dimensional mass of particle i
and m̃o is the average mass of the particles. κ(i, j) and Δ(i, j)

are the non-dimensionalized stiffness and overlap between

particles i and j, respectively, scaled by the characteristic

stiffness (κ̃o) and the corresponding characteristic overlap

(Δ̃o). Time (t) is scaled by
√

m̃o
κ̃o

(natural frequency of the

chain) to give non-dimensional time (τ). The equation of

motion of a general particle i is given by,

F(i)(τ) = b(i) d2u(i)

dτ2
= κ(i−1,i)

[
Δ(i−1,i) − (u(i) − u(i−1))

]

− κ(i,i+1)

[
Δ(i,i+1) − (u(i+1) − u(i))

]

= −
[
2u(i) − u(i−1) − u(i+1)

]
. (2)

where u(i) is the non-dimensionalized displacement of par-

ticle i, scaled by characteristic overlap (Δ̃o). Since, the

focus of the analyses here has been only on the effects of

mass disorder, it makes us take all interparticle stiffnesses

equal to the characteristic stiffness (κ̃o) which makes the

non-dimensionalized interparticle stiffness, κ(i, j) = 1 and

implicitly the interparticle overlap at rest becomes, Δ(i, j) =

1. Using κ(i, j) = 1, Δ(i, j) = 1 and assembling equations (2)

in the granular chain, we arrive at a matrix form of these

equations given by,

M
d2u
dτ2
= Ku, (3)

where M is a diagonal matrix containing b(1), b(2), .... b(N)

(masses of the particles) along the diagonal. K contains

-2 along the diagonal, +1 along sub-diagonal and super-

diagonal elements and 0 elsewhere. Defining A = M−1K
and assuming normal mode motion of particles, equation

(3) becomes Au = ω2u with ω2
( j) as eigenvalues of the

matrix A and ω( j) as eigenfrequencies. Defining (N × N)

matrix S, containing eigenvectors of A, s( j) as the columns

and arranged in increasing order with respect to their cor-

responding eigenfrequencies. S is further orthonormalized

to satisfy the relation STMS = I (Identity matrix). Using

initial conditions vo = [v0 0 0 ... 0] (initial velocity) and

uo = 0 (initial displacement) as impulse boundary con-

ditions, we get the displacement and velocity history of

particles as,

u(p)(τ) = vo

N∑
j=1

S p jS 1 j sin(ω( j)τ)

ω( j)
,

v(p)(τ) = vo

N∑
j=1

S p jS 1 j cos(ω( j)τ). (4)

2.1 Mass disorder and disorder parameter

The diagonal elements of the mass matrix M, b(1), b(2),

.... b(N) (masses of the particles) have been selected from

a normal distribution f (n)(b) = 1

ξ
√

2π
e−

(b−1)2

2ξ2 whose stan-
dard deviation (ξ) quantifies the disorder of the granular

chain. The scaled average of the distribution is 1. The

aforementioned model has been used previously in [10]

for a frequency filtering study of the displacement wave

(mass disorder dependent frequency filtering and attenua-

tion) and to show that the shape of disorder probability (bi-

nary, uniform, normal or any other distribution) produce

quantitatively similar frequency filtering, up to a certain

strength of disorder.

2.2 Total energy signal from displacement and
velocity histories

We go one step further and determine the total energy sig-

nal per particle which is given by,

E(p)(τ) =
1

2
b(p)(v(p)(τ))2

︸�����������︷︷�����������︸
Kinetic Energy

− 1

2
F(p)(τ)

(
u(p)(τ)

)
︸���������������︷︷���������������︸

Potential Energy

. (5)

The position of the center of total energy in the granular

chain is given by [5],

R(τ) =
1

Etot

N∑
p=1

pE(p)(τ), with, Etot =

N∑
p=1

E(p)(τ). (6)

The squared width of the propagating pulse is,

r2(τ) =
1

Etot

N∑
p=1

(p − R(τ))2E(p)(τ), (7)

2.3 Model system and 〈ensemble〉 averaging

A 256 element long granular chain has been used with dis-

order parameters ξ = 0.0, ξ = 0.1, ξ = 0.2, ξ = 0.35,

ξ = 0.5 and ξ = 0.8 for the mass distribution of the chain.

The time duration for the computation was 256 (time du-

ration till which the pulse has propagated to about the last

particle in the granular chain) and the time step utilized

for the data output was 0.032. 500 ensembles/realizations

of granular chains have been utilized and displacement,

velocity, force and hence, total energy histories were ob-

tained and ensemble averaged for different disorder pa-

rameters. From here onwards angular brackets (〈〉) will

denote ensemble averaging.

3 Results

〈R(τ)〉, 〈r2(τ)〉, 〈E(p)(τ)〉 and the Fourier transform of

〈E(p)(τ)〉 (〈E(p)(ω)〉) are discussed in this Section.
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Figure 2. Propagation of center of energy 〈R(τ)〉 in different

disordered granular chains with the arrow indicating increasing

disorder.

3.1 Propagation of center of energy

In order to monitor the propagation of the center of en-

ergy during propagation of a pulse in a disordered granu-

lar chain. R(τ) from equation (6) has been computed. In

Figure 2, the center of energy of propagating pulses for

500 realizations is plotted against time for different disor-

ders. Initially the center of energy does not propagate (as

shown in the inset figure), this is the time during which

the initial high frequency impulse is self-demodulated [6]

by the granular chain (in contrast to a Gaussian pulse [5])

and after this short time interval, for a short time, the cen-

ter of energy propagates with the same speed for different

disorder parameters. ξ = 0.0 has linear (ballistic) propa-

gation of center of energy whereas, ξ > 0 displays non-

linear propagation of the center of energy with propaga-

tion speed decreasing with increasing time. Stronger dis-

orders have stronger decrease in propagation speed with

increase in time. Unlike ξ = 0.0, higher ξ have the center

of energy becoming confined in a finite space and this con-

finement space is smaller for stronger disorder. Such con-

finement of energy of mechanical waves has often been at-

tributed to Anderson’s localization [5], when elastic waves

get trapped in a confined space due to the disorder in the

medium [1] which also becomes more enhanced with in-

crease in disorder.

3.2 Squared width of propagating pulse

The ensemble averaged, squared width of the pulse ob-

tained from equation (7) has been plotted in Figure 3

against time in log-log scale to see whether the energy

dispersion is diffusive in nature. It is observed that for

an impulse response, after the self-demodulation time in-

terval (recognized from the inset in Figure 2), the energy

propagation is slightly superballistic for low disorder pa-

rameters (eg. ξ = 0.1) and gets nonlinear towards diffusive

for high disorder parameters (eg. ξ = 0.8).
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Figure 3. Squared width of the pulse with respect to time (after

self-demodulation) for different parameters in log-log scale. Line

is a guide to the eye. Arrows indicates the trend for ξ > 0.
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Figure 4. Averaged Energy history of 50th particle in a 256 par-

ticles long granular chain for different disorder parameters.

3.3 Spectral energy analysis

The ensemble averaged total energy signal (E(p)(τ)) for the

50th particle in a 256 long chain for different disorder pa-

rameters is plotted in Figure 4. We can observe that the

initial coherent wavefront is attenuating faster in stronger

disordered media as indicated in [10], the peak of this co-

herent wavefront gives the maximum peak energy (EP) at-

tained by the particle during wave propagation which has

been plotted in Figure 5(a) for different disorder param-

eters (ξ). Due to ensemble averaging, the multiply scat-

tered incoherent part [7] has attained a constant value (with

very minor fluctuations) giving the residual energy (ER)

contained in the particle after the initial pulse has passed

across the particle, this residual energy at τ = 256 has also

been plotted in Figure 5(a) for different ξ, it shows that the

residual energy contained in the particle decreases with in-

creasing disorder. The ratio between the residual energy

and the peak energy shows an increasing trend as shown
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Figure 5. (a) Peak energy & Residual energy and (b) their ratio

at the 50th particle for different ξ.
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Figure 6. Ensemble averaged spectral energy response of (a)

20th, 50th and 120th particle for ξ = 0.2 and (b) ξ = 0.1, 0.2 and

0.5 for 50th particle in log-log scale. The FFT-time window is 0

to 256 time units and time step is Δt = 0.0313.

in 5(b). However, the spectral energy response for any

particular particle remains qualitatively the same (Figure

6 (b)) irrespective of disorder, exhibiting only decrease in

amplitude of the Fourier spectra and a slight shift towards

lower frequency, resulting in loss of information contained

in the multiple scattering part.

This suggests adoption of an alternative ap-

proach/model for the micro-macro transition rather

than relying only on ensemble averaging. Distance and

disorder (Figure 6(a) and Figure 6(b)) have no effect on

this power law relationship, only the amplitude decreases

with the position of the particle and disorder of the

granular chain. This ω−1 power-law observation is not

new as a similar relationship was observed with in Ref.

[3].

4 Conclusion

It was observed in Section 3.1 that an ordered granular

chain system has ballistic wave propagation of center of

energy and a disordered system has a diffusive like prop-

agation at larger times, when the energy becomes local-

ized in space. For stronger disorder, this effect is en-

hanced. Figures 4 and 5 confirm, as mentioned in [10], that

stronger disorder causes faster attenuation of signals. The

spectral energy response exhibits a power-law relationship

(Figure 6). A main cause of concern is that ensemble av-

eraging causes the spectral energy response (E(p)(ω)) to

become qualitatively similar for a particular particle irre-

spective of disorder. This results from the fact that averag-

ing causes the multiply scattered part of the signal to can-
cel itself as it is not self-averaging hence, leading to loss of

information. Therefore, a different micro-macro transition

procedure needs to be developed.
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