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SUMMARY 

Wave radiation and diffraction by a submerged sphere is analysed based on the linearized 
velocity potential theory. The solution is obtained based on the multipole expansion which 
satisfies the boundary conditions on the free surface, at infinity and on side walls. The 
coefficients in the expansion are obtained by imposing the body surface boundary condition. 
Results are obtained for the added mass, the damping coefficient, the exciting force and the 
drift force. Some of the results have been compared with those obtained from alternative 
equations and they are all in excellent agreement. The effect of the trapped mode is also 
discussed. It is found that this effect becomes evident when the sphere is close to the free 
surface and the channel is very narrow. 

1. Introduction 

THERE ARE a considerable number of publications concerning the hydrodynamic 
problem of a body in a channel. Eatock Taylor and Hung (l), for example, calculated 
the drift force on an articulated cylinder in a regular wave. Their work was based 

on the assumption that the problem associated with a cylinder in the channel can be 
approximated by an array of cylinders in the open sea, which is formed by treating 
the side walls as mirrors. They found from the numerical results that the force 
will converge as the number of cylinders used increases. The method they adopted 
can deal with not only an array of cylinders formed by the mirror images but also 
other formations of the multi-cylinder problem. But the technique is not particularly 
efficient for the channel flow problem. The reason for this is that the flow around 
each cylinder is ,different because of the ‘end effect’. The unknowns will increase 
linearly with the number of cylinders. 

The end effect will disappear only when an infinite number of cylinders is used. 
When the cylinder is placed at the centre of the channel the unknowns corresponding 
to each cylinder become identical and they can be taken out of the summation over 
the cylinders. These unknowns can then be obtained by imposing the boundary 
condition on one cylinder. This procedure is adopted by Yeung and Sphaier (2). 
Although for practical computational purposes the number of cylinders has to be 
truncated at a finite value, the technique allows a large number of cylinders to be used 
because the number of unknowns does not depend on the number of cylinders. This 
means that the features associated with the channel can be captured more accurately, 
such as the spikes of the hydrodynamic forces at resonance. 

As pointed out by Linton and Evans (3) the above methods are in fact trying to use 
a group of circular waves to model the waves in a channel. These methods may give 
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satisfactory results for hydrodynamic force on the cylinder and for the flow near the 
cylinder, but they cannot model the waves in the channel far away from the cylinder. 
Linton and Evans (3) used a different method. They considered a vertical circular 
cylinder. The solution is written in terms of an infinite series. Each term in the series 
satisfies the governing equation and all the boundary conditions apart from that on 
the body surface. In particular, because each term satisfies the boundary condition on 
the side walls, it produces typical channel waves at infinity rather than circular waves. 
The technique has been found to be efficient for this type of problem. In particular, 
it can capture the trapped modes (4) effectively. The principle of this technique has 
been subsequently used in many other publications (5,6,7,S). 

In this paper, we shall consider wave radiation and diffraction by a submerged 
sphere in the channel. There is a substantial body of work on the submerged sphere in 
the open sea. Gray (9), Srokosz (10) and Wang (11) for example considered a sphere 
in an infinite water depth, while Linton (12) and Wu et al. (13) considered a sphere in 
finite water depth. Further work on a sphere in the open sea includes the multi-body 
problem (14), a body undergoing large amplitude motion (15), wave diffraction and 
radiation by a sphere at forward speed (16,17) and a sphere moving in a circular path 
(18). All these publications start by expanding the solution in the spherical system 
in terms of the Legendre function. Because the free surface boundary condition can 
be imposed more easily in the Cartesian system while the body surface boundary 
condition is easier to impose in the spherical system, the method requires some 
transformation between the two systems. Although this sometimes leads to a quite 
long analysis, nowadays it has become a standard procedure. 

For the channel problem, it becomes less straightforward. In addition to those 
mentioned above, the condition on the side walls also has to be satisfied. One way 
to do that is to adopt the technique used by Linton and Evans (3). The side wall 
condition can be satisfied by introducing an additional term in the integral form. 
Ursell(19) has obtained the result for the case of a sphere at the centre of the channel. 
The equation is in a rather compact and elegant form, but it is problematic from a 
computational point of view, because the numerical integration has to be performed 
in a complex plane. Here we adopt a procedure similar to but different from that of 
Yeung and Sphaier (2). We first consider an array of an infinite number of sources 
formed by the mirror images. The total potential is equal to the sum of that due to 
each source in the open sea. The infinite series is then transformed into a different 
one based on the wave component in the channel (20). The potential obtained in 
this way clearly satisfies the boundary condition on the side walls. The multipole 
expansion (21) for the sphere can then be obtained by taking the derivatives with the 
position of the source. The result has no restriction on the position of the sphere. 
The calculation can be made by truncating the series at a finite number. But this is 
different from the truncation in Yeung and Sphaier (2). The truncation here specifies 
the number of wave components in the channel while in Yeung and Sphaier (2) it 
specifies the number of bodies. Therefore the typical wave pattern in the channel 
flow can be captured accurately here, even in the far field. For this reason, the present 
work is also similar to that of Linton and Evans (3). The difference is that in their 
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case the boundary condition on the side walls is satisfied in an integral form while 
here the same condition is satisfied in a series form. 

The practical relevance of work in this area has been highlighted in many 
publications (for example, (3)). Some important features associated with the channel 
flow are well understood, such as the effects of the resonance and the trapped mode 
which corresponds to a free oscillation of finite energy. This work does not seem 
to offer any new features associated with these effects. What is surprising, however, 
is that the effect of the trapped mode on the sphere is not as evident as expected. 
The principal reason for this is due to the fact that the trapped mode is too close to 
the resonant frequency in many cases. Their difference becomes visible only when 
the sphere is very close to the free surface and the tank is very narrow. The real 
significance of this work is that a method similar to, but not the same as, existing ones 
has been developed to deal with a sphere in a confined fluid domain. The success of 
the analysis also means that we may be able to consider the sphere in other confined 
domains. The problem in a circular tank for example is particularly relevant to ship 
manoeuvring. 

Calculations have been made in this paper for various cases. Results are obtained 
for the added mass and the damping coefficient, the exciting force and the drift force 
by integrating the pressure over the body surface. It is found that these results satisfy 
various known mathematical identities and they are in excellent agreement with the 
results obtained from alternative equations. Some results related to the trapped mode 
are also provided. 

2. Governing equations 

We consider the problem of a submerged sphere of radius a in a channel of width 
2d. We define a Cartesian coordinate system Oxyz so that the origin is located on 
the undisturbed free surface, x points in the longitudinal direction of the channel and 
z points upwards. We also define a spherical coordinate system (r, 8, /Y) so the origin 
is located at the mean position of the centre of the sphere. These two systems are 
related by the following equations: 

x = rsinBcosfi +x0, 

Y = r sin 0 sin p + yo, 

2 = rcose + 20, 

(1 1 a 

(Ib) 

(1 > C 

where (~0, yo, ~0) are the coordinates of the mean position of the centre of the sphere 
in the Cartesian system. 

The total potential @ in a regular wave of frequency o may be expanded as 

@(x9 y, z, 0 = WW, y, zPwfl = Reb70($0 + ~7>e’“fl 
6 

+ Re ~i~~j#j(x, Y, z)eiwt , 

j=l 1 (2) 
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where #j (j = 1, . . . . 6) are radiation potentials corresponding to six degree-of- 
freedom oscillations of the body; qj (j = 1, . . . . 6) are corresponding motion 
amplitudes; 40 and 4 are the potentials due to the incident and diffracted waves 
respectively; and ~0 is the incoming wave amplitude. Based on the ass umptions of 
the linearized theory, the components of the potential satisfy the followin .g equations: 

2 
V@ i =0 (3) 

in the fluid domain; 

on the free surface SF or z = 0, where v = w2/g; 

w z j 
an 

=nj, j=l,..., 6, 

w . 
a@o ‘=7 ---- 

a,’ - at-2 ’ J ’ 

on the body surface SO, where 

with X denoting the position vector of a point on SO relative to the 
On the side walls of the channel we have 

(4) 

(5 ) a 

m 

0% n2, n3) = (nx, ny, n,), (6 > a 

@4, n5, n6) = x x n, VW 

w -- 
a y’ - 

0, y = Itd. 

centre of the body. 

The radiation condition requires the wave to propagate outwards. 

3. The multipole expansion 

For a single source, the potential can be written as (15, 22) 

4nG= F [~-~]+~~~scoscx,(d-y)cosa,(d-yo) 
S=--00 s=o 

X s te’(Z+zo) cos[y(x - x0)] 

(t 

dt 9 
L - v>v 

where E.~ = 1 when s = 0 and Ed = 2 when s > 0, and 

(7) 

(8) 

rs= x [( - xo)2 + (y - 2sd - (-1)“r0)~ + (z - ZO)~]~, (9 ) a 

r; = [(x - ~0)~ + (y - 2sd - (-- l>“ycJ2 + (z + ZO)~]~ 7 cw 

y = (t2 - a$, (9 > C 

as = sn/2d. (W 
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The integration route L is from a, to oo and it passes over the singularity at t = v 
when v > a,. 

Applying the operator 

(D,)“’ (--g” = (& dJ (--fJ (10) 

to equation (8) and using the result provided to the author by Ursell through a private 
communication: 

1 

(n - m)! 
w,)” (jy ($) =o”‘(n lrn)! 

( 

a 
x $y F i(-l)S 

iy (k)n-m (i) 

= (-l)“‘exp[F(-l)“imB,] 
Pn” (cos 03) 

n+l 
9 (11) 

r&S 

where the spherical system (us, 8,, /IT) is similar to (r, 6, /I) but with the centre at 
(x0,2sd + (-l)“yo, ZO), we have 

a 
(G,); = ;l;(-l$?; (D,)” azo 

n-m 

G - . ( > 
00 Pn”‘(cos OS) - - 

a 
eqJ[~~-vimp.~l n+l 

.s=-00 h 

-(-1y-n’ exp[H- wm~.;l 
Pn” (cos e,‘> 

tn+l 
r .s 

+ “‘-‘~), (D,)” 2 E.~ cosq(d - y) ( 
d(n 

- . s =o 

s 

p-m+ 1 et (Z+ZO) COS[Y(X - x0)1 
X dt . 

L (t - V)Y 

To calculate the derivative in the above equation, we write 

u&Y” cosbs(d - YOM COS[Y(X - x0)1 

J 

(12) 

= i(D,)m(exp[ia,(d - yo)] + exp[-ia,(d - yo)l)(exp[iy(x - x0)1 

+ expi-iy(x - x0)3) 

= $ (D,)” {exp[ia, (d - yo) + i y (x - x0)] + exp[ia, (d - yo) - i y (x - x0)1 

+ exp[-&(d - yo) + i y(x - x0)] + exp[-ia,(d - yo) - i y (x - ~o)lI 

= $1(--v k ia,)“[exp[ia,(d - yo) + iy(x - x0)1 

+(y k iQrn exp[ia,(d - yo> - iy@ - ~011 

+(-y F iQrn exp[--&Cd - yo) + iy(x - ~011 

+(y F Wn* exp[-icr,@ - y0) - iY(x - xo>l). (1% 
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If we define 

sin II/ = as/t, cos@ = y/t, 

we have 

(y &a$)” = tmefim? 

(14) 

(15) 

Equation (13) then becomes 

(&Y cosbs@ - Yo)l COS[Y(X - x0)1 

- - yrn { (- l)m,iW-xo) cosbs@ - Yo> F WI 

+e -iy(x-xo) cos[a,(d - yo) 4~ mlC/]}. 

(16) 

Substituting this equation into (12), we have 

00 
(G,),” = 

c( 
exp[H- lYim/%l 

Pn” (cos 93) 
n+l 

s=-00 h 
P” (cos 0;) 

m+l 
TS 

E, cos a, (d - y) 

p+l ,t(z+zo)+iy(n-x0) 

@ 

- yd F m@,& 

p+l et(Z+ZO)-iy(X-Xo) 

+ 
s (t 

cosbdd - yd * m,ddt 

- V)Y 
. (17) 

L 

If we use (23) 

exp[v(cos 0 'f i sin 0 cos(a + j3>1 =F &&ki)q $& P,4(cos 0) cos ~(CX + /?) 
p=o q=o . 

and (24) 

exPww% > 
P” (cos 8s) 

n+l 
TY 

= 2 2 (--l)P+q :“n z pm;; -,“:; 
- 

p=o q=-p . . 

1 
X -P nm++p4 (cos 8,o)e s # 0, ww 

r n+p+l 
Fi(m+9)BsOr P pi4 (cos e)efi9B, 

so 
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where (Y,o, 8,0, /$o) are the spherical coordinates of the centre of the sphere in system 

(I-, , &, /J), equation (14) becomes 

&I,” 
pn; (COS e) 

= exp(m-$9 rn+l 

P 

+ 2 2 c (-I)i’+ly;(; -44:/~P~~(cose.~o~ - 
= -m p=o q=-p 

. . 
S so 

S#O 

,e~(-l)~~cm+q,BsOrPP-q(COS (y)e*(-*)Siqp 
P 

- 5 2 f: (-l)~+~+~+~~+~~~~q4:/~P~~(cosH:o) 
SC- 00 p=o q=-p 

. . 
SO 

,e~(-l)Si(m+q)AorPp-q(COS @e*(-l)Siqp 
P 

+ e-i)” fgycq c-oq 

2&--m)! s 0 = p oq 0 = = (p+4Y 

x 

1 
(- i)mP~(~-yW P; (COS e) 

s 

tn+p+l e2tzo 

X 
CO~bs(~ - yo> =F 44 cos q(@ + p> & 

L (t - 4Y 

+(-l)“e 
-Wd-Yo)yP p;(cose> 

s 

tn+p+l e2tzo 

X 
coskm - Yol =F WJV cosq(+ - p>,, 

L (t - V)Y 

+(- l)W+yo)yp P; (cos e) 

s 

tn+p+l e2fZO 

X 
cosbs(d - Yo> h me1 cosq(* - p>,, 

L (t - V)Y 

+(--l)“e 
-icr,(d-Yo)yPp;(COS@ 

tn+p+l e2tZO 

X 
s 

cosbs(d - yo) h WI cosq(@ + p>,, 
(t I 

. 
L - V)Y 

(1% 

The potential can then be written as 

[A;(G-); + B,“(G+);]l. (20) 
n=l m=O 

Since (G-)i = (G+)i in this equation, we may take Bi = 0 without loss of 
generality. 

For yo = 0, Callan (25) has also derived the multipole expansion for the sphere in 
the channel following a different procedure. But no solution is offered in his work. 
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4. The solution procedure 

The coefficients in (20) can be obtained by imposing the boundary condition on 
the body surface. It is evident that @i = 0 when j = 4,5,6. When j = 1,2,3, we 
have on r = a 

Wl w2 w3 

ar 
= sin8cos/3, ar = sinesinB, ar = c0se. 

Since the incident potential is 

ig . 
$0 = -evZ--rvx 

cc) 

_ s vzo-ivxo 00 ’ - e 
0 

~~Eyiq~P;(c0sB)c0sqp 
p=o q=o . 

(22) 

we have 

a+7 l vzo-ivxo 00 ’ -- 

ar - --Iwe 
~~Eqiq$)~~,: P,4(cosO)cosq/3 
p=l q=o . 

(2% 

atr = a for the diffraction potential. 
Substituting equations (19) and (20) into (21) and (23), we have 

n+l 
-A;--- 

a 

+ E z 2 A;f(-l)n-+-~~H(ms) tn’ + ’ - m’ + ms)!nan’+n 
S = -m n’=l m’=O W - m’)!(n + m)!rn’+“+’ so 

s #O 

+ 2 2 2 B~‘(-l)n+mJ(ms) Cn’ +’ - m’ - mS)!nan’+n 

S = -00 n’= 1 m’=() W - m’)!(n + m)!rn’+“+’ so 
S#O 

x Pn.y;nm-y @OS &ok i(m:+m)Bd) 
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n+l 
-B,“f--- 

a 

- p z 2 A~(-l)“+m+n’+m’J(ms)(~~,fnmj)~~~mm;)l!~ 
s=--00 n’=l m’=O . . so 

+ F 2 & B$(-~)n+mH(ms)(~~,~nm~~~~~~,! g 
S -00 n’=l m’=O . . = so 

S#O 

x P;;-mS @OS 8,o)e 
i(ml --m Ms0 

- F 2 k B~‘(-L)n~m+n’+m’H(ms)(~,~“mT,~~~~f,!& 
s=--00 n’=l m’=O . . so 

x ‘n’+n 
m’-m ccos go)eiCm+OP~o 

1 O” 
+ ; >: 8s 2 & AIf’ (n:rz,), ,n”u;~;, I#, It, It’, m, m’) 

s=o n’=l m’=O . . 

+ f & 2 2 B$ (ntyL,), (~~~;, I&, n, d, m, m’) = gj(n, m), 
s=o n’=l m’=O 

. . 

where 
m, = (-l)“m, rni = (-l)m', (25a) 

H(m) 1, ms 2 0, 1, = 
(-l)ms, m, < 0, 

Jh> = 
ms ’ ” (25b) 

(-l)“s, m, > 0, 

I1 (s, n, n’, m, m’) = s p’+n+ 1 e2tz~ 

L 0 - w  
x { (- 1)“’ cos[cxs(d - yo) - m’+] cos[a,(d - yo) - me] 

+(--I)” cos[cr,(d - y0) + m’@l cos[a,(d - ~0) + m+Wt, (2W 

124, n, It’, m, m’) = 
s 

p’+n+ 1 &ZO 

L 0 - v)v 
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~((-1)~ cos[q&f - yo) + m’@] cos[a,y(d - yo) - me] 

+(--I)” cos[a,(d - yo) - m’+l cosb,(d - y0) + m+lW, (254 

flh 4 = -$S1,61rn9 f2h m) = 
1 

~s’n61” 9 . f3Cn9 m> = 61fz&h9 Wa) 

gih m> = -$J1n61rn, g2(n, m> = 
1 

-zSlr26lrn, g3h 4 = 0, . (26W 

fT(n,m) = g7(n,m) = -~inl+l~vZO-ivxO n(va)n-l 

(n+m)!’ 
(2w 

It should be understood that in these equations Bi = 0 and those lines 
corresponding to m = 0 in equation (24b) should be deleted. 

5. Hydrodynamic forces 

Once the solutions of equations (24) have been found, the added mass p/j, the 
damping coefficient hlj and the exciting force Fj can be obtained from the following 
equations: 

where p is the density of the fluid. Following the derivation of Wu (14) (noting that 
An, and Brim in that paper should be replaced by A: + BT and -i A: + i B,“’ when 
m # 0, and replaced by A: and 0 when m = 0), we have 

Ml - iw-‘hll = 4 gPna2[#(I) -I-a.fi(l, 1) + 3B:(l) +agl(l, l)], (28a) 

tw2 - iw-‘hl2 = 4 ~Pna~i[--#(l) -afi(l, 1) +38:(l)+ agi(l, l)], (28b) 

P13 - iw-‘hlj = --$na2#(l) + afr(L 0) + 3By(l) + agl(l, 0)], (28~) 

F, = -+iqo~a2[A; (7) + B; (7)], (W 

F2 = 4p~ona~[-A,‘(7) + B; (7)], w-0 

F3 = 4piqwa2[A~(7) + B:(7)], (2w 

where I in A: (I) and Br (I) indicates that the coefficients correspond to &. 
It is well known that the exciting force can be obtained from the radiation potential. 

Following the derivation of Wu (22), we have 

00 n 

Fj = - 4p~2~O~a2~v~O-‘VX0 x x in1 
( va)n-l 

(n - m)! 
CA,“‘(j) + B~(j)l. (30) 

n=l m=O 



WAVE RADIATION AND DIFFRACTION 657 

The damping coefficients can be obtained from a far-field equation 

where SW are two vertical planes at x = &oo and the asterisk indicates the complex 
conjugate. The far-field expansion of the potential at x = &W can be obtained from 
equation (17). Noting that the integration route L passes over the singularity and 

s cxl 
2dk = firrei@Xf(p), pv 
f(k) 

s 

00 
f(k) e -ikx 

Pv 
(I k--P k-P 

dk = Filre-i”xf(p), 
Q 

x--+*00, p>a, 

(32) 

where pv indicates the principal value integration, we have 

( -i)nz+l 

(n - m)! x 2 cos[as (d - y)] (ua)‘+’ e”(z+zo) 
s=o Ys 

{A: cos[u,T(d - yo) + m@J + Bq cos[&d - yo) - m@J)e-i~~(X-XO), 

X 
x -+ ocl, 

by coe%(d - yo) - m&l + B,” cos[a,(d - yo) + m~s]}(-l)nzei~~(X-~~), 

x+-00, 

(33) 

ys = 
2 (u -c&i, ks = tan-’ (a.&). (34) 

The upper limit of the summation over s in equation (33) is determined by a, c u. 
Substituting (33) into (31) we have 

x ((A:(0 cosbs Cd - YO) + mhl + B: (0 cosb, (d - yo) - m&l} 

x {A$*(j) cos[a,&f - yo) + m’@.J + B,“:‘*(j) cos[a,(d - yo) - m’&]} 

+( - 1y+n~ &v) cosbs(d - yo> - mhl + B,“‘(l) cosh(d - y0) + m*J} 
x (A$*( j) cos[a,(d - yo) - m’hl + B;‘*(j) cos[a,(d - yo) + m’&]})= 

(35) 

This equation is similar to that derived by Linton and Evans (4). 
Once the solutions of equations (24) have been found, we can also obtain the 
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z 

FIG. 1. (a) Surge added mass, (b) sway added mass 
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0 C 

O-6 

-y()=o 
----yo=4a 

-*-**** yo = 8a 
--- Open water 

o-2' I I I I I 

0 4 8 12 16 20 
z 

FIG. 1. (c) Heave added mass 

steady drift force F’j . It can be shown (14) that 

00 n-2 

+2pn >: y--; L 

n=2 m=O Em 

(n + m)! 

(n -m -2)! 

n+l 
-Re(Az+, - 

n 
A;* + B,m_+,‘B”*), Wa) 

& = 2pn 2 2 -!- (n(zri)p,! ~Re(-B~~‘A,* + An”+i’B,“*) 
n=l m=O Em . 

where 

3 3 

A; = Q)A~(7)+i~~rljA~Cj), B,” =~0B~(7)+iw):~B~(j). (37) 
j=l j=l 

The drift force in the x-direction can also be obtained from a far-field equation 
which can be written as 

(38) 
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FIG. 2. (a Surge damping coefficient, (b) sway damping coefficient 
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0 C 

-y*=o 
---- y()=4a 

**--**- yo = 8a 
--- Open water 

0 
I I I 

0 4 8 12 16 20 
z 

FIG. 2. (c) Heave damping coefficient 

where $ is given in equation (2). Substituting (22) and (33) into (38), we obtain 

2p7r2va2 2 - 
d 

e vZO 

s=o n=l m=()n’=l m’=O 

x({Ar cos[a,(d - y01 + qhl+ B,” cosb,@ - YO> - J+WJ 

x {A$* cos[cr,(d - yo) + m’llr,] + BT’* cos[a,(d - yo) - m’*J} 

-(-l)“+“‘{A; cos[a,(d - yo) - m&l + B,m cos[a,(d - y0) + mkd 

x{A$* cosCa,(d - yo) - rn$bs] + BT’* cos[a,(d - yo) + m’lCr,l}). (39) 

where A: and B,” are defined in equation (37). Once again it is important to 
understand that in all these equations (from (28) to (39)), Bt = 0. The results below 
are obtained from equations (28), (29) and (36), while equations (30), (35) and (39) 
are used for comparison and excellent agreement has been found. 

6. Numerical results 

We consider a sphere submerged at ~0 = -2a in a channel with d = 10a. The 
calculation has been made by truncating the infinite series in equations (24) at n = 5. 
Further increase of n gives graphically indistinguishable results in the figures given 
here. All results have been obtained by direct integration of the pressure over the 
body surface. Alternative equations have been used for comparison and excellent 
agreement has been found. Figures 1 and 2 give the added mass and the damping 
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FIG. 3. (a) Surge exciting force, (b) heave exciting force 



WAVE RADIATION AND DIFFRACTION 663 

( > a 

(b) 

- 

F3 

045 

0.12 

0.09 

O-06 

0.03 

0 
0 0 

30- 30- 

24 - 24 - 

18 - 18 - 

12 - 12 - 

6- 6- 

0 0 
0 0 

-y*=o 
---- y*=4a 

*****-- yo = 8a 
--- Open water 

i 

0 

0 

I I  

I t  :  

I I  
.  
.  

I I  
.  
.  

I I  
.  
.  :  

.  * . .  

12 12 16 16 20 20 
z z 

--- --- Open Open water water 

I I I I I I 

12 12 16 16 20 20 
z z 

FIG. 4. (a) Surge drift force, (b) heave drift force 



664 G. X. WU 

60 

0 

-20 

- d =r/2a 
. . . . . . . d=3a 

- - d=Sa 

1XKI 1.05 1.10 

z 

FIG. 5. Sway added mass near the trapped mode 

coefficients for the sphere being placed at yo = 0,4a, 8a. The added mass has been 
non-dimensionalized by p4na3/3 and the damping coefficient by pw4na3/3. The 
results have been plotted against t (= u2d/7r). When t is an integer yt, it corresponds 
to a natural frequency of the channel. Consequently, the results near these frequencies 
change sharply. This is similar to the cases mentioned in the Introduction. When 

Yo = 0, the surge and heave motions become symmetric about y = 0 while the 
sway motion becomes antisymmetric. Correspondingly, the spikes occur only at even 
modes (t an even integer) and at odd modes (t an odd integer). The calculation near 
the natural frequency is made up to t = yt & 0.05. The results at t = n - O=OS 
and t = rt + 0.05 are linked for the purpose of plotting. It does not suggest that the 
results between t = it - 0.05 and t = it + 0.05 behave in that way. In fact it should 
be pointed out that the results at resonant frequencies may not be meaningful, as the 
linearized theory is not valid at these frequencies. 

Figures 3 gives the exciting force non-dimensionalized by pguqo4na3/3. When 

Yo = 0, the sway exciting force is zero because of symmetry. Although the sway 

exciting force is not zero when yo = 4a, 8a, the result has been found to be very 
small and it is therefore not shown in the figure. Figures 3 shows that the side walls 
of the channel have little effect on the exciting force. The results in all cases are very 
close to those obtained in the open sea. 

Figures 4 gives the drift force on a stationary sphere. The result has been non- 
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2 dimensionalized by pg (v ~0) e 2vzo4na3/3 . Figure 4a shows that the surge drift force 
oscillates about the corresponding result for the open sea and changes sharply near 
the natural frequencies. The side walls, however, have little effect on the heave drift 
force as shown in Fig. 4b. The sway drift force has been ignored because it is either 
zero or very small. 

One of the remarkable features of the channel problem is that the trapped modes 
(26) may exist. In the above results, however, no visible spikes occur apart from at 
resonant frequencies of the channel. The missing trapped-mode effect may be due 

to the fact that the trapped-mode frequency, estimated from the equation derived by 
McIver (27), is too close to the natural frequency of the channel. In fact McIver’s 

equation can be written as 

t= l/(1 + A6e-2hf /4)f, WV 

where h = na/d, f = -zo/a. The equation is derived based on the assumptions 
that a << 1~01, a << d, and therefore it is an approximation. For the present case, the 
equation gives t x 0*99996X The effect of the trapped mode may therefore have 
been overshadowed by the effect due to the natural frequency at t = 1. We may use 
equation (40) to estimate the trapped mode in other cases. For a given submergence, 
when h = 3/f the equation will give the smallest possible trapped mode at 

t = l/(1 + (3/f )%-6/4>1. (41) 

Thus for the case f = 2 considered in the previous figures, equation (4 1) will give 
z z 009964892 which is still very close to the resonant frequency. If we choose 
f = 15, equation (4 1) gives z = 0*9807509 and the corresponding channel width 
becomes d = na/2. Figure 5 gives the sway added mass in this case for a sphere 
on the channel centre-line. It is found that the result changes from ~22 e 53 at 
t = 0.970 to ~22 x -458 at t = 0.97 1. This suggests that the trapped mode 
may exist between t = 0.970 and t = Oe971, which is a little different from the 
approximation z = 0*9807509. In the same figure, we have also given the sway 
added mass for the same sphere in the channel with d = 3a and d = 5a. It is found 
that the trapped mode may exist between t = 0.992 and t = Oe993 in the first case, 
and between z = 0.998 and t = 0.999 in the second case. These results show that 
the effect of the trapped mode becomes evident only for a sphere close to the free 
surface and in a very narrow channel. 

7. Conclusions 

The linearized hydrodynamic problem of a submerged sphere in a channel has 
been solved based on the multipole expansion. The results obtained show the classic 
behaviour of a body in a channel, as observed in the publications mentioned in 
the Introduction. The added mass and the damping coefficients have been found to 
change sharply near the natural frequency. For the case d = 10a presented in the 
paper, the side walls have little effect on the exciting force. The effect on the vertical 
drift force is small, but it is significant on the surge drift force. The effect of the 
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trapped mode 
sphere is close 

is not evident in many cases. It becomes significant 
to the free surface and the channel is very narrow. 

only when the 
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