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of this investigation is the development of a theoretical analysis to account
for this phenomenon. The results are intended for use by coastal engineers to
compare the effectiveness of alternative breakwater configurations, independent

of repetitive experimental programs.

Three breakwater configurations are considered: (a) crib-style break-
waters with vertical walls and homogeneous fill; (b) conventional trapezoidal-
shaped breakwaters with layered fill; and (c) pile-array breakwaters composed
of vertical piles placed in symmetric patterns. The two-dimensional problem
is studied. Waves are assumed to arrive at normal incidence.

The theoretical development begins with the ‘unsteady equations of motion
for flow in the voids of an arbitrary porous structure. The equations are
linearized using a technique which approximates the known turbulent damping
condition inside the structure. This yields a potential flow problem satis-
fied by an eigen-series solution. Linear wave theory is assumed to apply out-
side the structure and the excitation is provided by a monochromatic incident
wave. The reflected, transmitted, solutions at the sea-breakwater interfaces
and requiring continuity of pressure and horizontal mass flux. Inclusion of
sloping-face structures necessitates an estimation of the breaking losses
incurred on the windward slope. A semiempirical method is used to approximate

the effect of wave breaking.

An experimental program is conducted to verify the analytical models.
Theory and experiment yield the following general conclusions: (a) the
transmission coefficient decreases with decreasing wavelength, breakwater
porosity and permeability, and increasing wave height and breakwater width;

(b) the reflection coefficient decreases with increasing wavelength, breakwater
porosity and permeability, and decreasing breakwater width.

Application of the theory is limited to wave heights which exceed the
medium grain diameter. Experimental results correlate better with the
theoretical transmission coefficient than with the reflection coefficient.
This seems to be due to the sensitivity of the reflection :coefficient to

surface effects.

-

The theory provides useful design estimates for all three breakwater
water configurations and a full range of wavelengths. The proposed wave-
breaking calculation gives favorable results for the sloping-face structure
tested in this study. However, further comparison is needed to establish the

general validity of the wave-breaking analysis.
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SYMBOLS AND DEFINITIONS

integration constant

average horizontal surface area per pile within array

" constant with unit of length squared

constant with umit of length

per pore vertical projection of water surface area
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incident wave amplitude

nth mode complex reflected wave amplitude
nth node complex transmitted wave amplitude

complex amplitude of wave propagating in positive
x-direction

complex amplitude of wave propagating in negative
x-direction

nth podel complex amplitude of wave propagating in
positive x-direction

nth pode complex amplitude of wave propagatlng in
negative x-direction

integration constant

breakwater width (longitudinal extent)

horizontal projection of windward breakwater.slope
below stillwater level

trapezoidal breakwater width at stillwater level

horizontal projection of leeward breakwater slope
below stillwater level '

circular cylinder drag coefficient

turbulent friction coefficient governing high Reynolds

nunber porous media losses

linear wave theory grbup celerity

virtual mass coefficient



SYMBOLS AND DEFINITIONS--Continued
phase velocity of nth. mode
reflection coefficient
long;wavé complex reflection coefficient
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dimensionless complex amplitude of nth mode propagating
in negative x-direction

dimensionless amplitude of ficticious wave representing
wave energy remaining after breaking

Miches reflection coefficient from smooth impermeable slope
hyperbolic cosine
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dimensionless surface-roughness coefficient for breaking
wave slope

acceleration due to gravity

incident wave hQightv

deepwater incident wave height

water depth

head-loss gradient through a resistive medium
square root of minus one and incident wave subscript
unit vector in positive x-direction

integral subscript identifying pile-array row number
unit vector in lateral direction

complex wave number inside breakwater

nth node eigenvalue which is equal to the nth pode
complex wave number

permeability

non-Darcian permeability

linear wave theory progressive mode wave number

nth mode linear wave theory wave number

real value of linear wave theorf local mode wave number
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wavelength; unit of length
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subscript denoting mode number

number of rows. of piles longitudinally in pile array

10



SYMBOLS AND DEFINITIONS--Continued

Ny ~ number of rows of piles per unit width laterally in pile
array '
P pore-averaged complex pressure or subscript denoting a

prototype parameter

Ps - spatial perturbation pressure component

P temporal perturbation pressure component

p* local instantaneous pressure

PI, I, III local pressure in zones I, II, and III, respectively

Q complex local velocity vector with periodic time
dependence removed

Qr imaginary component of Q

Qr real component of Q

Qx x-component of Q

Qy y-coﬁponent of Q

q pore-averaged complex vector seepage velocity

qq discharge velocity

qp real component of q

q spatial perturbation velocity vector component

qy temporal perturbation velocity vector component

q* local instantaneous velocity vector, Eulerian

Rp drag coefficient Reynolds number = uD/v

RKp permeability Reynolds number = u/l'(—p_/T

T reflected wave subscript
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S.G. specific gravity

SWL stillwater level
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imaginary part of u
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wave surface profile

nth mode wave surface profile
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WAVE REFLECTION AND TRANSMISSION AT PERMEABLE BREAKWATERS

. by
Charles K. Sollitt and Ralph H. Cross III

I. INTRODUCTION AND REVIEW OF PREVIOUS INVESTIGATIONS

1. Introduction.

It is common practice in coastal engineering de3Tgn to account for
wave transmission past rubble-mound breakwaters by considering two pos-
sible mechanisms: (a) diffraction around the ends of a structure or
through navigation openings, and (b) overtopping across the crest of the
structure. Standard optical techniques have been modified to successfully
account for the diffraction process. The overtopping process is less well
defined; however, recent semiempirical methods (Cross and Sollitt, 1971)
have improved design capabilities.

Both procedures are based on the assumption that the structure itself
is impervious. Engineers have been compelled to make this assumption
because of inadequate design techniques for considering the alternative
condition. Field and' laboratory observations raise some doubts about the
universal applicability of this assumption. Indeed, many structures seem
to be highly pervious with respect to long-wave activity. The most graphic
example of this is presented by the interaction of tides with breakwaters.
Tidal motions are the manifestation of very low-frequency and low-steepness
waves. They propagate through permeable rubble-mound breakwaters with
little change in phase or range. In fact, the breakwater is practically
transparent with respect to motions of this scale.

Significant transmission has also been reported for wave periods in
the swell and storm wave range. Calhoun (1971) measured transmission and
reflection coefficients in excess of 40 percent for 23-second waves at
Monterey Harbor breakwater, Monterey, California. Similar observations
have been made by the U.S. Army Engineer Division, New England, for the
Isle of Shoals breakwater off the Maine-New Hampshire coast. Two-
dimensional model tests conducted in conjunction with this study have
demonstrated that some standard breakwater designs admit transmission
coefficients greater than 30 percent for intermediate range wavelengths.
In all of the above examples, no overtopping occurred.

Wave height constraints in protected high-density anchorage areas are
quite severe. The Corps of Engineers restricts wave activity in its
designs to wave heights less than 2 feet for commercial craft moorings
and less than 1 foot for recreational craft moorings. Results of this
study for standard three-layer breakwater structures indicate that trans-
mission coefficients equal to 15 percent are attainable for water depth
to wavelength ratios of 1 to 12, and wave height to wavelength ratios of
1 to 50. This yields transmitted wave heights greater than the recrea-
tional craft limit of 1 foot for a 12-second incident wave which has a
height of 7 feet in a water depth of 27 feet.
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The potential for harbor seiching in basins enclosed by permeable
breakwaters is also great. This type of basin acts as an energy trap
because any wave energy which is transmitted through the breakwater and
which subsequently reflects off interior basin surfaces is also partially
reflected off the interior breakwater slope. Initially, more wave energy
is transmitted.in through the breakwater than out. If the incident wave
excitation persists, the energy level inside the basin may increase until
equilibrium is reached between the incoming and outgoing wave energy.
Consequently, the wave activity inside the harbor may become significant

even though the transmission coefficient is small.

These few examples serve to illustrate that direct transmission
through permeable breakwaters can be an important consideration in harbor
design. Furthermore, assuming that rubble-mound breakwaters are impervious
may lead to an erroneously low estimation of the wave activity on the lee-

ward side of the breakwater.

To account for this feature in breakwater design it is necessary to
have some method to predict the behavior of a permeable breakwater inter-
acting with a surface wave train. A literature survey demonstrates that

no independent design techniques are presently available and little has
been written about the phenomenon itself. The results of this study are

intended to contribute to both of these areas.

2. Scope of the Investigation.

The analytical approach used in this study begins with the unsteady
equations of motion for flow in the pores of a coarse granular medium.
The equations are linearized by a technique-which approximates the known
turbulent damping condition inside the medium. This yields a potential
flow problem satisfied by an eigen-series solution. Linear wave theory
is assumed.to apply outside the breakwater and the excitation is provided
by a monochromatic incident wave. The solutions are matched at the sea-
breakwater interfaces by requiring continuity of horizontal mass flux and

pressure.

Three different breakwater designs are considered: (a) crib-style
breakwaters with vertical walls and homogeneous fill, (b) conventional,
trapezoidal-shaped structures with layered fill, and (c) pile-array
breakwaters composed of vertical piles placed in symmetric patterns.
Inclusion of sloping-faced structures necessitates an estimation of the
breaking losses incurred on the windward face of the breakwater. A
semiempirical method, adapted from Miche (1951), is used to approximate

the effect of wave breaking.

Experimental results are presented for crib-style and trapezoidal-
layered models which are constructed and tested as a part of this study.
Pile-array experimental data are taken from Costello (1952).

The theoretical solution is compared with experimental results and
the following general conclusions are reached: (a) The transmission
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coefficient decreases with decrea51ng wavelength, breakwater porosity
and permeability, and increasing wave height and breakwater width,

(b) the reflection coefficient decreases with increasing wavelength
breakwater porosity and permeability, and decreasing breakwater width.’
Experimental results correlate hetter with the theoretical transmission
coefficient than with the reflection coefficient. This seems to be due
to the sensitivity of the reflection coefficient to surface effects.
Application of the theoretical results is limited to wave heights which
are larger than the medium grain diameter and to'wave steepnesses which
are within the linear wave theory range. :

3. Review of Previous Investigations.

Some of the early work in permeable structures was directed toward
an understanding of the behavior of wave filters. Wave filters are very
porous structures which are placed in front of laboratory wave generators
to reduce surface ripples, higher harmonics, and secondary reflections,
in experimental wave trains. Filters are similar to breakwaters in that
they cause partial reflection and reduced transmission of the incident

wave.

Biésel (1950) developed one of the first analytical approaches to
this problem. His work identified the unsteady potential flow equations
of motion for a hypothetical wave filter which was infinitely long, 100
percent porous, and which resisted fluid motion according to Darcy's law.
The resulting boundary value problem was similar in form to that derived
in this study. However, his solution was expressed in a particular form
which incorporated some of the frequency- dependent features and the wave
‘amplitude in an undefined leading coefficient. Nevertheless, Biésel .
showed that the motion decays exponentially in the direction of wave
propagation. The decay rate and wavelength were specified by a pair of
dispersion equations which paralleled those obtained in this study. The

results were not applied to any specific examples.

Although Biésel (1950) did not actually solve the wave filter problem,
his work was significant because it identified the form of the spatial and
temporal functions which described a linearly damped, periodic, free-
surface motion.

Le Méhauté (1957) recognized that the resistance forces in large-
scale granular media were not prescribed by Darcy's law. However, to
develop an analytical solution he assumed that a resistance law could be
written which was linearly proportional to the local velocity. He antic-
ipated that a constant of proportionality could be fitted to the theoret-
ical approximation which would be subsequently evaluated by comparison
with experimental results. He further recognized that any imbalance of
pressure and resistance forces in the flow results in an acceleration of
the pore velocity rather than the local gross flow rate. This permitted
him to account for the effect of porosity in his equations of motion. He
prescribed an irrotational velocity field so the boundary value problem
became similar to Biésel (1950). Le Méhauté (1957) accepted Biésel's

17



solution to the problem without resolving the dynamic free-surface condi-
tion to find the correct combination of parameters to specify the actu§1
wave surface profile. Comparison of Le Méhauté's velocity potential with
this study or with Ijima, Eguchi, and Kobayashi (1971) makes this error
apparent. In addition, Le Méhauté's pair of dispersion equations was
presented incorrectly, as.demonstrated by comparison with Biésel's
results. These errors do not affect the outcome of Le Méhauté's study
because he ultimately abandoned the solution for the declared reason

that the equations were too cumbersome to extract answers. As an
‘alternative, he accepted the experimental results that reflection
coefficients are nearly constant to 60 percent, and he modified that

part of the theory which predicts exponential decay in the internal wave
amplitude to formulate an empirical equation for the transmission coeffi-
cient. He attempted to evaluate the constants in his empirical expression
by comparison with experiments, but the results were inconclusive. Conse-
quently, Le Méhauté (1957) concluded his study without having solved
either the wave filter or the permeable breakwater problem.

In addition to analytical studies, Le Méhauté conducted an extensive
experimental program on multilayered, sloping-faced breakwaters and homo-
geneous crib-style breakwaters. However, his results cannot be used to
verify other theories because he did not determine the hydraulic proper-
ties of the media composing the models. Section II shows that these
properties are necessary inputs to independent analytical solutions.

. The studies of Biésel (1950) and Le Méhauté (1957) were important
because they represent the first attempts to define the nature of wave
motion within a porous media. Significant advances on their work were
not made for more than a decade. During the interim many investigators
attempted approximate methods of solution by combining linear wave theory
with various energy conservation requirements. The work of the following
four investigators typifies this latter approach.

Straub and Herbich (1956) proposed an artificial viscosity theory to
account for wave damping in a filter. They combined the Navier-Stokes
laminar dissipation function with a linear progressive wave theory
velocity field to determine the power consumed by the filter. The kine-
matic viscosity was replaced by an artificial viscosity and the value of
the latter was adjusted until theory and experiment agree. The method
is not generally applicable to less permeable structures because the
linear progressive wave theory assumption is invalid inside the structure.
In addition, wave reflection is ignored and it is impossible to predict
the artificial viscosity a priori.

Goda and Ippen (1963) conducted experimental and theoretical studies
of wave filters composed of wire-mesh screens. An analysis was performed
which resolved the mesh into two sets of horizontal and vertical cylinders.
Linear wave theory was assumed to give the proper depth and temporal depen-
dence for the velocity field. The power loss was computed from well-known
drag-force relationships on circular cylinders. Partial reflection from
individual screens was ignored so that the change in energy flux across
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each screen was simply equated to the power loss at the screen. Linear
drag-force relationships on circular cylinders. Partial reflection from
individual screens was ignored so that the change in energy flux across
each screen was simply equated to the power loss at the screen. Linear
wave theory established the relationship between energy flux and wave
amplitude; the total effect of the filter was found by summing across
each screen. The theory was not completely independent since it had to
be calibrated to experimental results to determine the appropriate
unsteady drag-coefficient relationship. After this calibration was per-
formed, the correlation between experimental and theoretical transmission
coefficients was quite good. However, the method can not be applied to
less porous structures because neglecting wave reflection becomes a poor
approximation. Furthermore, linear wave theory does not adequately
describe the flow field in less permeable structures.

Keulegan (1948) also used an energy dissipation approach to analyze
wave damping in composite screen filters. Instead of superimposing the
drag force on rows and columns of cylinders to predict the effective
screen-resistance coefficient, Keulegan measured the quantity directly
in separate uniform flow tests. He used both cnoidal and linear wave
theory to relate the particle velocity to the wave amplitude between
adjacent screens. Then, assuming the local wave energy to be proportional
to the square of the local amplitude, he wrote a differential equation
which expressed the rate of change of amplitude as a function of the power
lost to filter resistance forces. The solution ultimately requires that
one or more parameters be evaluated by comparison with experimental results.
As with the previous wave filter theories, the solution cannot be applied
to less porous structures because it does not account for wave reflection.

Kamel (1969) modified Keulegan's (1948) theory for wave filters and .
applied it to idealized homogeneous crib-style breakwaters. The structures
were fabricated from vertical-walled wire baskets filled with spheres or
cubes. Experimental reflection coefficients exceeding 60 percent were
reported and yet this important process was ignored in the analysis. A
fitting parameter which was used to calibrate the theory to the experi-
ments was evaluated. The parameter should be constant for a particular
breakwater, but it varies by almost an order of magnitude. This result
tends to confirm that wave filter theories which do not account for wave
reflection simply do not model less pervious structures correctly.

Sawargi and Koichiro (1970) employed a technique similar to that of
Goda and Ippen (1963) to analyze wave transmission through, arrays of ‘
vertical cylindrical piles. They assumed that linear wave theory applied
in the region between rows of piles and solved the unsteady Bernoulli
equation for the effect of drag-force losses across the piles. Horizontal
mass continuity was also required. This second condition permitted the
investigators to solve the reflection coefficient as well as the trans-
mission coefficient. Several approximations were made to expedite the
solution: (a) the reflected and transmitted waves were assumed to be in
phase with the incident wave, (b) long-wave conditions were assumed so
that depth dependence could be ignored, and (c) the temporal functions
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were all evaluated with the arguments arbitrarily set equal to II/2.
Theoretical and experimental results were compared and the drag coeffi-
cient was evaluated to optimize correlation. Results were presented for
one- and two-row configurations and only one incident wave condition, so
general conclusions are not readily inferred. However, the three stated
approximations would seem to limit the applicability of the results.

Kondo (1970) developed an analytical approach to long-wave inter-
action with homogeneous, vertical-face breakwaters. He solved the one-
dimensional equation of motion for periodic, linearly damped free-surface™~
flow in porous media. The linear damping law approximated the known tur-
bulent damping law by requiring that the two expressions yield the same
time average resistance force at the center of the breakwater. Kondo's
general solution was similar to that developed by Lean (1967) for perme-
able absorbers. It yielded exponential decay of wave amplitude in tlie
direction of wave propagation. Linear wave theory was applied outside
the breakwater and the two. solutions were coupled by requiring continuity
of horizontal velocity and pressure at the sea-breakwater interfaces. The
boundary conditions yielded solutions to the reflected and transmitted
wave amplitudes. Experimental and theoretical transmission coefficients
were compared. Although considerable scatter was present in the result,
correlation for short-wave data was significantly better than for long-
wave data. This paradox was left unexplained but may be partially due
to Kondo's approximate method of evaluating the linear damping coeffi-
cient. The analysis cannot be applied to the general case of inter-
mediate or short-wave excitation unless the equations of motion are
rewritten to account for depth dependence. Wave interaction with con-
ventional breakwater forms was not discussed.

The work of Ijima, Eguchi, and Kobayashi (1971) was conducted simul-
taneously and independently of the investigation described herein.
Although both studies solve similar boundary value problems for homo-
geneous crib-style breakwaters, there are several important differences
which distinguish the two solutions. These investigators began with
Le Méhauté's (1957) boundary value problem and developed a solution in
terms of an- unknown linearized damping coefficient. They evaluated the
coefficient by fitting the theoretical solution to experimental data.
This fitting technique yielded empirical equations which equate the damp-
ing coefficient to functions of the incident wave properties for a parti-
cular model breakwater. The empirical equations did not include.the
effect of media properties on breakwater dimensions. They were valid
only for the conditions existing in the model which was used to generate
t:edgquations. This precluded the use of the theory independent of model
studies. :

In the present investigation, the boundary value problem is derived
from fundamental considerations. The simplifying assumptions and limit--
ing conditions are identified and discussed. A technique is defined
wh;ch permits a linearized damping law to be determined in terms of
kpown media properties and independent of model breakwater data. . An
elgen-series solution is developed for readily identified wave and
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breakwater parameters as opposed to the auxiliary variables used in the
solution by Ijima, Eguchi, and Kobayashi (1971).

Ijima, Eguchi, and Kobayashi did not investigate layered or sloping-
face structures. Nevertheless, their work verified the form of the com-
plex eigen-series solution used in this study to describe the velocity
field for idealized crib-style breakwaters. In addition, their work sub-
stantiated a prior assertion that the solutions proposed by Biésel (1950)
and Le Méhauté (1957) were incomplete in their published form.

4. Summagx. N

This brief survey summarizes the state of technology as applied to
permeable breakwater analysis. It may be concluded that presently avail-
able theories can not predict wave transmission through idealized struc-
tures for a variety of incident wave conditions unless experimental break-
water tests are conducted simultaneously. Scaling of the results to pro-
totype conditions has not been considered. Furthermore, no theories have
have been proposed to include the effect of heterogeneous layering or |
" inclined surfaces. In the following sections, each of these 1mportant
problems is considered.

ITI. THEORY

1. Introduction.

The literature review revealed a need for a theory to predict the
effect of a permeable structure interacting with a surface wave train,
The analytical part of this study is formulated to provide insights into
breakwater behavior for a variety of wave and structural conditions. The
total solution may be divided into two major parts. First, general solu-
tions are derived for the flow fields inside and outside of the permeable
structure. Second, the two general solutions are coupled with some speci-
fied excitation to yield the complete problem solution. The major effort
is employed in describing the fluid motion within the interstices of the
permeable structure.

An overview of the solution technique begins with a close look at the
flow field within the structure. Most structures of interest, e.g.,
rubble-mound breakwaters, are composed of materials which are randomly
shaped and placed so that it becomes impractical, if not impossible, to
specify the local instantaneous velocity and pressure at all interior
points. The first part of this section identifies an appropriate substi-
tute velocity and pressure field which can be evaluated. The resulting
quantities are the pore-averaged seepage velocity and pressure. The
Navier-Stokes equations are operated on to reveal the character of these
quantities and to disclose the dominant stresses which govern their behav-
ior. One of these stresses is the total stress tensor of apparent turbu-
lent friction. It is intractable in its general form and is replaced by
an established damping law which is a deterministic function of the seep-
age velocity. This leads to a set of equations which are linearized to
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permit an analytical solution. The linearized equations specify a bound-
ary value problem which is shown to be satisfied by a series of eigen
functions. The problem inside the structure is solved using standard
techniques and the important features are discussed. The internal solu-
tion is coupled to a linear wave theory solution outside the structure by
requiring continuity of velocity and pressure at the sea-structure inter-
faces. The orthogonal properties of the solution are used to reduce the
coupled expressions to simple algebraic equations for the reflected, trans-
mitted, and internal wave amplitudes. The equations are reduced further
for the case of long-wave excitation. After discussing the solution behav-
ior for vertical-faced breakwaters, an approximate method is introduced to:
apply the results to conventional breakwater forms. Finally, a solution
for pile-array breakwaters is presented.

2. Derivation of the Equations of Motion for Damped, Small-Amplitude
Water Waves in a Coarse Porous Medium.

a. A Microscopic View. A complete mathematical description of flow
through a coarse granular material requires exact information about the
shape, location, and orientation of each individual particle. If the
geometry of the sample of interest is precisely known, then one can pro-
ceed with the incompressible Navier-Stokes equations and the necessary
boundary conditions to describe the velocity and pressure distribution.
The appropriate equation of motion is:

Dg* 1 L2
hﬁ%— -5 vV (p* + Yz)l+ wo g%,
with

V.q* = 0,

where q* is the actual, instantaneous Eulerian velocity vector at any

point; p* is the corresponding pressure; <y is the fluid weight densi-
ty; p is the fluid mass density; v is the fluid kinematic viscosity;
z .is the vertical coordinate; t is time; v is the gradient operator

29,4391, ~39
1 = .__+ — —
(V=1 9x 3 3y+ k 9z
in an orthogonal coordinate system; and D/Dt is the total derivative

D ] .
G = D

Obtaining an exact geometric description of a closely packed struc-
ture of randomly placed and shaped particles would be a very difficult
and tedious task. Solving the equations of motion for such a complex
geometry would require extensive computer memory and time. A more rea-
sonable approach to the problem is to determine the important physical
and hydraulic properties of the media and then evaluate the macroscopic
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flow field in terms of these properties. This approach y1e1ds the well-
known seepage velocity concept in porpus media flow.

b. Applying the Seepage Velocity Concept to the Equations of Motion.
The seepage velocity concept assumes that pores and flow-resistance prop-
erties are uniformly distributed throughout the structure in some known
manner. The analysis attempts to evaluate velocities and pressures which
are averaged over the small but finite pore volumes. The resulting solu-
tion yields the '"seepage velocity" which ignores perturbations in the flow
field due to the presence of individual particles and pore irregularities.

The applicability of the Navier-Stokes equations has been established
historically. For the present application it is necessary to operate on
these equations and the flow variables to replace the actual velocity with
the seepage velocity. To accomplish this the local instantaneous vector
velocity, q*, is resolved into three components:

q*=q+qs+qt,

where q is'the seepage velocity, the average velocity within small
but finite and uniformly distributed void spaces; qg is a spatial
perturbation accounting for local additional velocity components due to
pore irregularities or boundary layers; and qy 1is the time perturba-
tion accounting for local transient eddy fluctuations within the pores.
q and qg are time-averaged over intervals large enough to eliminate
q, but small enough so as to not hide the overall unsteady effects
associated with the macroscopic flow field.

If a velocity probe is inserted into a pore, the total velocity q*
will be measured at any instant. However, if the total velocity is meas-
ured at a point for some small-time interval, AT, and the average veloc-
ity within that time interval is determined, then the resulting quantity
is simply the seepage velocity, q, plus the spatial perturbation, qq,
associated with that location in the pore. If several probes were able
to perform this same temporal average simultaneously at different points
throughout the pore, then the spatial average of all of the temporal aver-
ages is simply the mean velocity in the pore at that instance, q. Like-
wise, the pressure may be wrltten as:

p* = p +p +pt
Utilizing these deflnltlons, one may operate on the complete Navier-
Stokes equations to determine the effect of the transient and spatial per-

turbations on the mean flow within the pore. The time-averaging opera-
tion is defined as:

+ AT
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where T is any quantity of interest and AT is much.smaller than the
time scale of macroscopic unsteadiness. Then,

q* = (@ +q  +q) =q+a_,

because, by definition, the time average of q; is zero. Similarly, all
functions linear in q; average to zero.

The total derivative may be expanded to reveal its local and convec-
tive terms;

lba* )

* .
Do 3c (@ ok,

When this is introduced into the Navier-Stokes equation and the temporal
integration is performed, the result is: 7

3 : v —_—
— + L »
T (a + qs) + (q qs) V (q + qs) + q, Vqt

P 2
5V (PHp +y2) + vV (q+q),

with
V- (qa+ qs) = 07

The effect of spatial fluctuations within the pore may be isolated by
integrating the equations of motion over small but finite pore volumes,
AV. The volume average is defined as:

P
AV JAv

) Td¥ .

Within any particular pore there is, by definition, an equal distribution
of positive and negative qs's. Consequently, the pore-averaged (s

is zero and all functions linear in qs integrate to zero over the pore
volume if the pore volume, A¥, remains constant throughout the medium.
This last condition allows one to interchange the order of the spatial
integration and the gradient operation, Thus,

| ,
(@ +q) =a»

and the pore volume-averaged Navier-Stokes equations become:

2a —/——'

—a,

5¢ T4 Vq + q . Va  + 'qt°Vqt = - % V(p + vz) + \’qu-
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To be completely rigorous, these equations should be applied only to homo-
geneous media where the length scale of the seepage motion is much greater
than a pore diameter.

c. The Effect of the Spatial and Temporal Fluctuations. It is appar-
ent from the form of the resulting equations that the effect of the spa-
tial ‘and temporal fluctuation is to modify the seepage velocity in a man-
ner analogous to a Reynolds stress (Schlicting, 1968). However, this
stress is distinguished from the usual Reynolds stress in the turbulent
Navier-Stokes equation in that it contains a spatially derived component, .

a *"Vq_,

and a transient eddy component,

—_—t
qt- ivqto

These terms remain in the equations of motion after the two integrating
operations have been performed because of the inherent nonlinearity of
the convective acceleration terms. They may be interpreted as stresses
with respect to the mean motion because they consume momentum from the
force imbalance on the right-hand side of equation and thus prohibit this
momentum from being transferred to the mean motion. As a result of the
momentum-consumption character of these terms, it is customary to trans-
pose them to the right-hand side of the equation where they assume the
identity of a stress tensor.

d. Scaling Arguments. It is important to note that q, qg¢, and q;
may all be of the same order of magnitude. Two examples illustrate this.
At solid boundaries, the no-slip requirement imposes the restriction that

q*=q+qs+qt=05

Likewise, eddy fluctuations must vanish at solid boundaries, so:

The magnitude of the transient eddies may be argued heuristically if one
accepts the idea that some of the eddies result from vortex shedding at
abrupt protrusions in the pore. Since the velocity distribution must be
continuous from the external flow through the vortex, it is necessary that
the magnitude of the velocity near the edge of the vortex be of the same
order as external flow. Consequently, qi v 0(q). This result concurs
with the large turbulent velocity components observed in turbulent jets
and wakes (Rouse, 1959).

However, the magnitudes of the respective velocity gradients may be

entirely out of scale. Gradients in the seepage velocity occur over a
distance corresponding to a macroscopic flow-field length scale. For the
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particular problem of interest, this scale is repres?nted by a wave-
length. Gradients in the spatial and temporal velocity perturbations
occur over distances on the order of a pore diameter. For problems of
any practical importance, the wavelength is always much greater than the

pore diameter, thus,
vq << Vqs’ vqt’

and

‘ ’ -
q -Vq << quVqS + qt-Vqt .

As a result of these order of magnitude arguments, the convective accele-
ration term containing the seepage velocity will be ignored. This simpli-
fication is consistent with the small-amplitude wave assumption to be
imposed subsequently.

The small-amplitude wave assumption leads directly to linear wave
theory in the region exterior to the breakwater. In linear wave theory,
one assumes that the quadratic terms in the equation of motion may be
ignored. The quadratic terms are the velocity products in the convective
acceleration terms. Wave field velocities are proportional to the wave
amplitude divided by the wave period. Because damping causes a reduction
in wave amplitude within the breakwater, the quotient of wave amplitude
divided by wave period should be smaller inside the breakwater than out-
side. Consequently, it is consistent with linear wave theory to neglect
seepage velocity convective acceleration terms in the equation of motion.

A solution is developed later in this study for a pile-array break-
water. It will be shown that for the case of widely spaced piles, the
equations of motion are similar to the large-grain porous media problem
with an additional requirement imposed by the added mass of the pile.

This requirement introduces the virtual mass coefficient, CM, to the
local acceleration term such that 3q/3t becomes (1 + func. (Cy)) 23a/3t.
To incorporate this effect into the general derivation, a coefficient

S = (1 + func. (Cy)) is introduced as a cofactor in the local acceleration
term. It should be understood that with respect to porous media flow,

S has a value of unity.

e. Turbulent Damping Law. The spatial and temporal Reynolds stress
terms are combined with the laminar shear stress to yield the total stress
tensor of apparent turbulent friction. With the assumption of small con-
vective seepage acceleration the equation of motion becomes:

siia-lV( + z)+vV2 -(ﬁ'v + v 1
T 5 pty q q.-Va, + q.- qt)» (1)

with
V'q = Oo,
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Equation (1) represents the equation of motion for the seepage velocity
and pressure with a total stress tensor which accounts for the effect of
local spatial and temporal fluctuations.

The total stress tensor contains a laminar damping term and a turbu-
lent damping term. The laminar term is linearly proportional to a veloc-
ity and inversely proportional to the square of the gradient length scale.
The turbulent damping term is directly proportional to the square of a
velocity and inversely proportional to the gradient length scale. The
quantities q; and q; can not be evaluated directly. However, it is
possible to relate them to other deterministic quantities in a manner
which retains the essential character of the total stress tensor.

One might hypothesize from the structure of the stress tensor that
the laminar term could be replaced by an equivalent damping law,

\Y
Wg v ==,
a; {17

Similarly, using the seepage velocity to scale qg and q., the turbu-
lent term could be replaced by:

[ 2
— + -+ A(L{L} ’
(qs-Vqs‘ qt-Vqt), v

where { } refers to the units of the quantities, A; and A,. In fact,
it has been demonstrated that under steady, nonconvective flow conditions

* the pressure drop through large-grain permeable media is spec1f1ed by
(Ward, 1964; Dinoy, 1971):

! vq .C
-iy (p + yz) = 4 +:—f—_:L72 qdlqd" (2)
p K

P

©

For the conditions stated, this established the equivalency-of:

—— vg, G -
2 — - _ £f__q,]a (3
\ Woq - (o *Va_ + q.-Vq,) Xt a)a| (3)
| P

where Kp is the intrinsic permeability, a hydraulic property of the
medium with a dimension of length squared; Cf is a dimensionless turbu-
lent coeff1C1ent, and qq is the discharge velocity. The discharge
velocity is a conceptual quantity defined by distributing the seepage
velocity over the solid volume as well as the void volume. The discharge
velocity is analytically expedient in that it allows one to apply the
continuum concept to flow fields with unknown internal boundaries.
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Algebraically, the discharge velocity may be expressed as the product of
the seepage velocity and the por051ty, €

qy = €4, o (4)

where

_ void volume
B (void + solid) volume *

K, and Cg may be spatial variables and in an isentropic medium they
may be directionally sensitive. In general, tensor notation would be
appropriate for the friction term. Nevertheless, this discussion will use
vector notation. However, note that Kp and Cf assume their proper
values in the direction of q.

One important feature of this damping law is that for low Reynolds
number flows, i.e., qﬁ << Qg the equation reduces to Darcy's Law for

flow in porous media:

Vq
-}-V(p+'yz)=—q-.
P Kp

A useful consequence of the steady-state damping law expressed in equa-
tion (2) is that it facilitates the definition of a friction factor or
loss coefficient analogous to pipe flow. Specifically,

vg, ' C q|q| lq|
1 d £ 4|9 94
-2y = .
oV ptva) =g+~ x 1/2‘ (%)
P Kp
Then,
. 1
fx = Re +Cey - (6)
P P
where
|q X 1/2
R, = 14l p
K. \Y] ’
2

a permeability Reynolds number, and - fg, is the media friction factor.
Utilizing equations (5) and (6), it is possible to construct a "Moody
Diagram" for turbulent flow in porous media. Such a diagram was con-
structed by Dinoy (1971) and is shown in Figure 1; in the figure, d
represents the media grain size and d/vK 7 is a relative roughness
proposed by Dinoy. This figure ¢ unstantlates the validity of the proposed
damping law for several different materials. Experiments verify that
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damping becomes pure Darcian (11near) at low Reynolds numhers and fully
turbulent, square-law damping at high Reynolds numbers, again as in pipe
flow.

The applicability of the discharge veloc1ty ‘damping law expressed in
equation (2) has been established for steady, nonconvective flows. Other
investigators have tested this law for unsteady flows. Shuto and Hashimoto
(1970) reported, '"Resistance coefficients obtained in steady and oscilla-
tory flows show almost no difference.'" However, their study was limited
to periods of oscillation greater than 3.4 seconds. The experiments were .
performed on various size models of artificial armor-layer materials in a
large U-tube-type permeameter. Free oscillations were induced by imposing
an instantaneous head difference across the ends of the U-tube. Because
of the relatively long periods, the results have important implications
for prototype-wave excitation but may not necessarily apply to all small-
scale laboratory conditions.

The effect of acceleration in the flow is not well defined. However,
Wright (1968) found that converging flows impede turbulence and cause a
relative decrease in the resistance coefficient. -Diverging flows induce
separation from physical boundaries, thereby increasing turbulence and
the resistance coefficient. In periodic fluid motions, the flow accele-
rates and converges durlng one-half cycle while it decelerates and
diverges over the remaining one-half cycle. The two effects are partial-
ly compensating so that the total hydraulic resistance during one cycle
may approach that indicated by the steady-state resistance coefficient.

In the absence of more definitive information, it is assumed in this study
that periodic flows cause the same mean resistance to flow during one cycle
as that indicated by steady-state resistance tests. Consequently, the
permeability, and turbulent friction coefficient, Cg, obtained by
conventional metgods in steady-state tests are accepted as adequate
descriptions of the medium hydraulic properties and equation (3) becomes
the appropriate damping law for oscillatory flow. Substituting equations
“(3) and (4) into equation (1) yields:

2
. v : CE
. q _ _1 _ veq _
S 3¢ 5V (P + v2) K 1/2 ql l )
P

with
V'q = 0.

Equation (7) represents a significant improvement over equation (1).
The damping term is deterministic because the media properties e, Kp,
and Cg may be evaluated a priori from standard tests or from empirical
expressions (Dinoy, 1971). Although this term is derived from steady-
state concepts it is assumed that it accounts for the damping due to the
instantaneous velocity occurring at all phases of the wave cycle. Thus,
the linear term dominates during that phase in the cycle when velocities
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are low and the turbulent term dominates when velocities are high. The
number of unknowns has been reduced from four (q, qg5, q¢, and P) to two
(4, pP), so a unique solution to a properly posed problem is possible.

The assumptions which limit the application of this expression are that
convective accelerations be small and that the motion be periodic with
frequency low enough to maintain the validity of the damping term. Thus,

equation (7) applies when the wavelength is long with respect to wave
amplitude and media grain size.

Some linearizing is necessary to find an analytical solution to equa-
tion (7). Two approaches are evident. The analyst can perturb the equa-
tions to seek successive improvements to the linear solution or seek a
linear solution which attempts to incorporate the essential features of
the nonlinear problem. This study proceeds with the latter approach
because it yields the most information at the first-order level. Further-
more, perturbation schemes predict the existence of higher harmonics due
to the nonlinear damping term. Few investigators are properly equipped
experimentally to reduce multiple harmonics in partial standing wave

trains. This data would be necessary for the verification of the pertur-
bation solution.

f. Linearization Technique. The specific technique to be employed
is as follows. The total stress tensor in equation (7) is replaced by
an equivalent stress term linear in q, i.e.,

c 2
veq , £ + f (8)
K 1/2 q|q‘ aq,
P Kp

where o is the angular frequency of the periodic motion and f is a
dimensionless friction or damping coefficient. The coefficient, o, is
introduced to make f dimensionless and for subsequent algebraic expe-
diency. To evaluate f in terms of the known damping law it is required
that both the linear and nonlinear friction laws account for the same
amount of energy dissipation during one wave cycle. This is commonly
referred to as Lorentz's condition of equivalent work (Lorentz, 1926).

t

The stress tensor in the e%uation of motion, expressed in either form
of equation (8), represents a friction force per unit mass acting at a
point in the flow field. If this term is multiplied times the mass flux
per unit volume flowing in a direction opposed to the friction force, the
resulting quantity is the power dissipated per unit volume. If the power
dissipation per unit volume is integrated over the volume of the flow
field, V, and the wave period, T, the resulting quantity is the total
energy consumed by friction in the volume of interest during one wave
period. According to Lorentz's hypothesis, this quantity must be the
same for all legitimate damping laws describing the same process. 1In
equation form, this constraint is:

t+ T t+T o,
3[edv J foqepq dt = J edy J {%;3-+ —£§72 q‘q‘}'oq dt.
¥ t ¥ t P Kp
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Thus, a unique relationship exists between the media parameters
(e, Kp, Cg), the flow-field parameters (v, q) and the friction coeffi-
cient, £f.  With f assumed spatially independent in V¥, this rela-

tionship is:

P K

i rt + T i 9 C.e i
2 v U 3 N
Idv et (X + 572 |q| } dt
_ l' ¥ t g P _ , '
£=5 : . (9)

where q2 = q-q, the dot product, and f is considered constant within V.
The entire flow field may be divided into any number of subvolumes V¥,
.each with its own characteristic f and unique equation of motion.

Substituting the linearized damping term equation (8) into equation
(7) yields the linearized equation of motion;

'S-§—2~=—%V(p+yz)-f0q, S0
with
"Vq=0.

g. Potential Flow Field. The equation of motion is linear in both -
q and p. As a result, a simple harmonic excitation will yield a
simple harmonic solution to the equation. The excitation in this study
is assumed to be a monochromatic sea surface consistent with equation (10)
to equate the frequency of oscillation within the medium to the frequency
of the excitation, ¢, so that:

{a(x,y,2,), p(x,y,2)} eiOt,

q(x,y,z,t,), P(X,y,z,t)

and

o0 lr“ .
37 14,9} = 10 {q,p}.
Substituting into equation (10) yields:

(ics + fo) a = - %-V (p + v2).

Performing the curl operation on this equation demonstrates the irro-
tationality of the seepage velocity field, i.e.:

(1S + ) vxq=;%vxv (o +yz) = 0.
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The vector identity VxVT = 0 sets the right-hand side of the equation
equal to zero,.consequently,

Vxq=0. " (11)

The above equation is a statement of zero vorticity or irrotationality
and is a sufficient condition to establish the existence of a velocity
potential, ¢, wherein (Robertson, 1965)

q = V. v (12)

Combining equation (11) with the incompressible condition in equation
(10) yields Laplace's equation:

Veq = V-V&' = V26 = O. (13)

Equation (13) expresses Laplace's equation for the seepage velocity
potential. A similar expression may be derived for the discharge veloci-
ty. Again, the medium must be homogeneous with respect to porosity.

This may be demonstrated by substituting equation (4) into equation (11):

V x qdye =0,

Clearly, the discharge velocity is irrotational only if the porosity is
constant.

Steady-state damping laws are commonly written in terms of the dis-
charge velocity, e.g., equation (5). Unsteady motions, on the other hand,
are characterized by an imbalance in friction and pressure forces causing
the flow through the pores to accelerate at the rate of change of the
seepage velocity. Thus, the acceleration terms in porous media equations'
of motion are written in terms of the seepage velocity. As a result, the

- seepage velocity assumes greater physical significance in unsteady flows
and in all cases it represents the actual flow-field kinematics more pre-
cisely than the discharge velocity. For these reasons, this study uses
the seepage velocity potential to describe the flow field.

It may not be immediately apparent why the friction coefficient, f,
behaves like a constant. This may be explained if one recognizes that
equation (9) and (10) are not coupled equations. Instead, equation (9)
is a constraint which specifies a friction coefficient, £, which is
acceptable in equation (10). The friction coefficient is implicitly a
function of time and space, as expressed in equation (9). However, once
f has been evaluated, it assumes the character of a constant in equation
(10). Thus, £ may account for variable permeability and nonlinear damp-
ing without complicating the form of the solution to the equation of
motion.

h. The Bernoulli Equation. Equation (13) represents the irrotational,
incompressible character of the seepage flow field. To determine the

33



particular effect of damping and relate that to the pressure distribution,
it is necessary to substitute equation (12) into equation (10) to yield:

g 9 N § -
5{ Vo 5 V (p + yz) - £faVd.

Transposing and removing the gradient operator,

v{s +—(p+yz)+fo¢>}=o.

Since V is a spatial operator, the operand can be a function of time
only, and

3¢

3%+ (p + yz) + £fod = F(t).

'S

Changes in fluid motions occur due to stress gradients. Since F(t)
is constant throughout the flow field at any time, t, it has no effect
on the stress gradients. Therefore, it may be neglected or included in
the definition of ¢ without affecting the solution (Ippen, 1966). Then,

S 2+ = (p + v2) + fod = 0. (14)
This is the linearized unsteady Bernoulli equation for flow in large-
scale granular media with quasi-linear damping. Along with Laplace's
equation, it describes the flow and pressure field within the interstices
of the granular media. To completely speclfy the problem, it is necessary
to resolve the boundary conditions. .

3. Boundary Value Problem.

a. Boundary Conditions. The boundary conditions may be visualized
with the aid of the definition in Figure 2. The sketch depicts a peri-
odic flow in an unconfined, coarse-granular media. The vertical dis-
placement of the free surface above the stillwater level (SWL) is
specified by n. The vertical coordinate, 1z, is referenced to the
SWL and the impervious horizontal bottom is located at depth h below
the SWL.

Capillarity and surface tension are negligible phenomena due to the
large scale of the pores in the media of interest. Consequently, the

fluid pressure at the free surface is atmospheric pressure. Thus, at
=n, p = 0 and the Bernoulli equation reduces to:

. + I-n + fod = 0

3 p
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With yv/p = g5 the dynamic free-surface condition becomes:

n= -(S 22-+ fad)
z=7

To avoid the difficulties of a transcendental solution it is consistent
with small-amplitude waves to apply the surface boundary condition at
z = 0, thus,

n = —-(S 8®

+ fo@) (15)
Equation (15) reduces to a homogeneous boundary condition with the
aid of thg¢ following observation as shown in Figure 3. The rate at which
the water surface rises and falls about the SWL, dn/dt, is equal to the

vertical velocity component in a pore at the free surface. This pore
velocity is a seepage velocity and should not be mistaken for a discharge
velocity. In equation form this statement reads:

dn _ 20

dt ° oz z=10
But,

dt 9t  ox dt °

The convective term is of second order and may be ignored so that:

dn _an,
dt 9t
and
an _ 30 |
TR T . (16)

Equation (16) is the kinematic free-surface condition and when combined
with equation (15) yields:

_.];{S:‘fg Btb} 3?;
atz 3!:20 Bz ’
’ z=0
or
{gai+fo%%+sa§} =0. (17)
at” 2=0

According to the arguments presented in the development of equation (12),
the pressure and velocity fields are expected to have a simple harmonic
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time dependence. As a result, the velocity poténtial may be expressed as:

1
(x,y,2,t) = 0(x,y,2)’e O,

Substituting into equation (17) yields the homogeneous free-surface
boundary condition:

{g +o‘(if-S)<I>} 0=o. ' (18)

Breakwaters are commonly constructed on natural bottoms of very low

permeability (sand) or zero permeability (shale, bedrock). It is con-
sistent to regard such a foundation as being impervious. It follows that
the vertical velocity component must vanish at z = ~h, i,e.:

%% = 0; (19)
z=fh .

Two indep:ndent boundary conditions are sufficient to determine the
general forun of the solution to a.second order partial differential equa-
tion. Thus, equations (13), (18), and (19) may be combined to specify the
boundary value problem.

Throughout the domain:
)

v =0, (20)

z = 0: ‘—a’%afo(if—s)duo,, (21)
© 30

z=-h: 2 =0. ‘. (22)

These are the basic governing equations for damped small- amplltude
water waves propagating through.a coarse-granular media. Laplace's equa-
tion specifies a general irrotational, incompressible flow field while
the Bernoulli equation determines the particular effect of damping. on
the simple harmonic flow.

b. Solution by Separation of Variables. This study seeks a two- -
dimensional solution to the equations of motion. The longitudinal coordi-
nate is in the direction of wave propagation. Unless the boundary condi-
tions at the sea-breakwater interfaces are written to account for oblique
incidence and refraction, direct application of these results is limited
to excitation provided by waves of normal or nearly normal incidence.

The homogeneity of the differential equation and the boundary condi-
tions suggests that a variable separation technique will be effective in
solving the problem (Robertson, 1965). This may be achieved by replacing
the velocity potential with the product of three terms, each of which is
a function of only one of the independent variables. Thus,
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¢ (x,2,t) = X(x) 2(z) T(t),

where x is the longitudinal coordinate in a rectangular coordinate

system and T(t) is the simple harmonic function, elOt, Laplace's
equation may now be written as:

2 2
vio = 224 22 . yur 4 x2vr = 0,
2 2
ox oz
or
X" le
-z

Since X and Z are independent, the above quotients can only be equal
to constants or zero, and two equivalent expressions may be written:

X" 2
X 7K
1"

-—g =K2,

In the absence of a superimposed current, these equations have the well-
known solutions (Robertson, 1965):

Kx + -iKx

X = Ae’ Be ,

Z = ceX% 4 pe Kz,

Applying the bottom boundary condition‘requires
9%

3z

=0,

z=-h

therefore,

C = De2Kh’
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and

.- 1)(.eZKh + Kz + e—Kz) - D'eKh (eK(h + z) +ef-K(h + z)) ,

or
Z = 7De ch K(h + z),

where ch K(h + z) is the hyperbolic cosine of K(h + z). The factor
2 DeKh may be incorporated into the constants A and B, whence
= (Aein + Be—in) chK(h + z) 10t , : (53) '
Substitutihg the above expression into thé dynamic free-suffacé condi-

tion yields the constants A and B in terms of the water surface pro-
file, .
{ n‘--:v—-—(S +fo¢) 0=——(1s+f)<1>
o " |2z=0

= _% (iS + £) ch Kh (Aei(ot + Kx) * Bei(O’t - KX)) .

The x and t dependent factors have been combined to reveal that A
represents a waveform propagating in the negative x-direction and B
represents a waveform propagating in the positive x-direction. The sur-
face profile, n, may be decomposed into two components with nj
propagating towards plus infinity and n, propagating towards minus
infinity. Then the two components may be separated as:
o -

ny == E-(is + f£) ch Kh (Bei(ct Kx)),
and ' ]

: o

n, = - o (S + ) ch Kn (aet (0t + Kx)y
n; attains its maximum, ay, when the periodic function el(ot - Kx)
attains its maximum value of unity. Likewise, n, attains its maximum,
ap, when-the periodic function ei(ot + KX) attains its maximum value
of unity. Thus,

o -
it

—%(1s+ £) ch Kh (B),

and

]
]

g
9 =~ E-(iS + f? ch Kh (4),

or

a
B, A= . 1° 2 ,
“E(is+f)chl(h
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and equation (23) becomes:

® = i(ale‘in iKx, g__ ch K(h+3z) ot

toase G(S-if) _ coh Fh (24)

c. Eigenvalue Problem. Substitution of équation (24) into the com-

bined kinematic and dynamic free-surface condition expressed by equation
(21) leads directly to:

'y 'K ~1Kx iKx g ‘'sh Kh 1ot
gk (aje " + a,e™™) = E @ km ©
2 .0 _ -iKx iKx e ch Kh iot
+ o (if _ S) i (ale + ae ) o(S — if) ch Kn e =0,

where sh Kh is the hyperbolic sine of K.

Transposing and canceling
common factors yield:

(s - 1f) =gK-i2—%—=gK th Kn,

02

where th Kh is the hyperbolic tangent of Kh. This equation specifies
acceptable values of K. It is a characteristic equation and has an
infinite number of complex roots. Each root may be denoted by a different
value of the subscript n so that the equation properly appears as:

e 2 . - ‘
g (8 - if) = gKn th Knh. . (25) .

A boundary value problem consisting of a linear, homogeneous, second
order, partial differential equation with two linear, homogeneous bound-
ary conditions is called a Sturm-Liouville problem (Hildebrand, 1965).
These problems are also called eigenvalue problems where the solutions to
the characteristic equation are the eigenvalues. For each eigenvalue,
K,, there is one eigen function, &,, with its own arbitrary constants
ajpn, agn. Each eigen function is a solution to the boundary value prob-
lem. The total solution is the sum of all eigen functions. In theory,
an infinite number of eigen functions exist, but in practice it is found

that only a finite number of eigen functions need be summed to specify a
problem to a reasonable degree of accuracy.

Each eigen function may be written:

LiK «
@n = i(alne iKnx+ a eiKhx) &

ch Kh(h + z) iot
2n )

o(s - if) ch Kh € (26)

Alternatively, substituting equation (25) into the above leads to another
form for the eigen function: ‘

iK x iK %) 0 ch K (h+2) 4o

o, = ilaj e """ + a, e K Tenkh

- (27)
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The total solution to the boundary value problem is:
(=2}
=Yoo . = (28)

d. The Dispersion Equation. The behavior of the characteristic equa-
tion (25) is worthy of further discussion. In wave propagation problems
this equation is often referred to as the dispersion equation because it
accounts for the dispersive character of gravity waves, i.e., wave speed
is a function of wave frequency. Some insights into the nature of the
dispersion equation may be gained by separating the complex eigenvalue,
Kn, into real and imaginary parts:

K =T (1-i0) - (29)

where o, may be interpreted as a proportionality factor relating the
imaginary to the real part of K,. T symbolizes the real part of a com-
plex wave number. As will be shown, the negative prefix in the imaginary
term assures positive solutions to a,. Substituting equation (29) into
equation (25), using the identities:

th Th - th ialh

th Th(l - 10) = 75T v foih ’

and
th ialh

i tan olh, '

and equating real and imaginary parts, lead directly to:

2

so” _ ! - {th Th (1 + tan’aTh)
E 1 + th“Th tan“alh = ‘
~ . o tan olh (1 - chFh),, ’ 1 (30)
and
fOZ ' T 2 :
= 5 5 {oth Th (1 + tan® al'h)
8 1+ th® h tan h :

+'tan oTh (1 - th’Th), (3D

where the subscripts have been dropped from intermediate results to
simplify notation. Introducing the identities:

l ~ thzTh 1 1+ tanzafh =

2 ’ ’
ch™Th cos alh

n

sin qr'h cos alh %-sin 20Th, sh Th ch Th = %-sh 2Th,
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and regrouping terms in equation (30) yield the result:

- o sin Zuhrnh

Soz sh 2Fnh
‘E— = Fn th Ihb . (32) .
sin”" o T h
1 - ___2r_lLlL__
ch QJI

Dividing equation (31

) by equation (30) and using the above identities
lead to the results:

sin 2anrnh
£ 1+ o, sh 2' h
-§ = Q n . (33)
n o sin 20T h
1 -1 nn

sh 2T' h
n

Thus, the complex dispersion equation has produced two real equations for
the two real unknowns ap and Iy.

An important feature of the dispersion equation pair is the limiting

conditions of zero damping, i.e., £ - 0. In this case, with S = 1.0,
the equations reduce to:

2

g
e Pl th Flh with a, = o,

[H

and

o
g

~al tanolh with T = 0,
nn nn n

and

o ini >
nTn finite, n > 2.

These are simply the linear wave theory dispersion equations. The first
one represents the familiar progressive mode while the second one repre-
sents the local modes, which are discussed later. It is not surprising
that this limiting condition is attained because the theory includes a
small-amplitude assumption (negligible convective acceleration), and as

the medium takes on the properties of pure seawater,the solution should
reduce to linear wave theory.

The roots to the dispersion equation are transcendental; therefore,
it is necessary to seek eigenvalues via iteration techniques. To hasten
the iteration process, this study has employed a complex Newton-Raphson
scheme for rapid convergence (Hildebrand, 1965). The success of this
method is dependent on estimating the value of the roots within some
unspecified but reasonably close vicinity of the actual solutions.
Appendix A provides some useful guidelines for estimating the roots.
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) Appendix B demonstrates. that hoth positive and negative I are
admissible solutions to the real pair of dispersion equations but the
roots are always positive. The importance of this trait hecomes
evident when the surface profile and wave celerity are analyzed in the
following discussions.

e. The Surface Profile. Equations (15), (26), and (29) may be com-
bined to yield the surface profile for a single eigenvalue component:

: g
n =-=((is+ £y o
n & Bl z=0
- t .
= (alne iKnx + azneiy‘nx eiO
| N ’ ’
= ~a I x .i(ot = T x). a T x i(ot + T _x),
alne nn e ( nx) -+ azne n n‘ e n . (34)

This equation depitts each wave component as an exponentially damped
 sinusoid, decaying in the direction of propagation. Note that including
negative values of T, simply interchanges ajn and app without alter-

ing the problem solution.

It is apparent from the form of the exponentials that T, specifies
the spatial periodicity of the function and a,I,, specifies the amplitude
decay. Consequently, K, is simply a complex wave number with real and
imaginary parts which characterize wavelength and decay distance, respec-

tively.

f. Celerity. The concept of phase velocity or wave celerity is easy
to visualize with the expression for the surface profile, equation (34).
The phase velocity, C,;, may be interpreted as the rate at which zero
crossings propagate in the x, t plane. This is simply the rate at
which one must move in x to compensate for a temporal change in t
such that the periodic term in equation (34) remains constant. That is:

3 _d(ot ¥ T x) 3 di(ot + T x) _
0 3% © n’ + 5; e n 0,

or

g
cn.___ir_.’ (35) .

where the positive sign applles to wave propagation in the p051t1ve
x-direction, etc. ‘Thus, it is the real part of the wave ‘number, Ths
which specifies the propagation rate and it is the imagery part, ojl;,
which specifies the decay rate.

g. Depth Dependence. It is useful to substitute equation (29) into
equation (27) and look at the form of the velocity potential for a single
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eigenvalue propagating in the positive x-direction. With the subscripts
omitted to 51mp1ify notation, the velocity potential appears as:

o iga e-0l'x :
ol = 1 ch I'(ht+z)cos ol (h+z)-i sh I'(h+z)sin al (z+h) ei(ct—rx).

+x T - io) sh Th cos al'h -~ 1 ch Th =in oTh

This equation contains five complex terms including a;, which in general
contains the phase as well as the magnitude of the amplitude and is there-
fore complex. When these terms are expanded and separated they yield 16
rgal and 16 imaginary terms. Complex notation consolidates 32 terms to a
single expression and greatly simplifies subsequent algebraic manipula-
tions. The interesting feature in this equation is the depth-dependent
term. In linear wave theory, the depth dependence decays hyperbolically.
The above equation:shows that with damping, the depth dependence is a
summation of four terms, each of which is a trigonometrically modulated
hyperbolic decay term. Thus, for large a, the horizontal velocity
includes four terms, each of which exhibits a depth dependence (Fig. 4).
As the damping properties of the medium go to zero, the velocity potential
reduces to that given by linear wave theory.

4. Vertical-Wall Breakwaters.

a. Physical Description. The two-dimensional velocity potential
described by equations (26), (27), and (28) applies to media of finite
depth and arbitrary longitudinal extent. To specify the potential for a
breakwater of finite width, b, consider a crib-style breakwater, located
in a monochromatic sea environment (Fig. 5). As an incident wave encount-
ers the breakwater face, part of the wave is reflected back out to sea
while some of the wave energy is transmitted to the interior of the break-
water. This transmitted energy excites the appropriate eigen modes which
in turn propagate and decay toward the lee face of the breakwater. At the
lee face each mode experiences partial transmission out of the breakwater
where the energy excites the proper modes in the transmitted wave train.
Likewise, a part of each mode is reflected back to the interior and each
modal component continues to decay as it propagates towards the front face
of the breakwater. Again, at the front face, each modal component experi-
ences partial reflection back to the interior and partial transmission.
The energy transmitted to the windward side of the breakwater contributes
to each mode in the reflected wave train. This process continues
ad infinitum as the components which are propagating back and forth within
the breakwater become smaller and smaller with each traverse due to expo-
nential damping and partial transmission at each face.

The effect of a continuous incident wave train is to continuously
excite new components of each mode as old components decay away. A
quasi-steady-state situation is reached so that there is no net accumu-
lation of energy within the breakwater. Then all components of each
eigen mode propagating in one direction may be superimposed to yield a
single component for each mode. This superposition principle applies
equally well to the reflected and transmitted wave trains. The net result
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Figure 4. One term in the horizontal velocity distribution.

1 . II ‘ II1

‘Figure 5. Crib-style breakwater.
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of Placing a permeable breakwater in a monochromatic wave train of constant
wave height is to produce n modes in each of the following: a reflected
wave Fraln, a transnmitted wave train, and two wave trains propagating in
opposite directions in the interior of the breakwater. Since each mode
propagates with some unknown amplitude, there are, in general, 4n

unknowns and 4n boundary conditions needed to solve the problem.

b. Flow-Field Specification. The velocity potential defined by
equation (27) applies to region II in Figure 5. It is worthwhile to
redefine the phase references. The amplitude of waves propagating in the
positive x-direction are maximum at x = 0; waves propagating in the nega-
tive x-direction have maximum amplitudes at x = b. Accordingly, ajp
and a5, should be referenced to x = 0 and x = b, respectively. This
alters the form of the velocity potential in equation (27) to:

ch Kn(h+z) 1ot

-3 ~1K_x 1K (x-b)y O __n ° .
q = 12y o™ 2, @ N 1 T Kh © (36)

‘The total velocity potential in region II is the sum of the eigen functions,
that is:

The pressure field is given by equation (1),
=== -0 (is + £) 95 - 82,

Linear wave theory applies in regions I and III. As revealed earlier
in the derivation, the expressions for the velocity potential and dis-
persion equation in the granular media reduce to linear wave theory for
the limiting condition of S = 1.0, f = 0. However, it is necessary to

properly account for the phase and direction of the separate wave trains
in each zone.

With S = 1.0 and f = 0, the dispersion equation reduces to:

2 _ h
o“ = gk thkh, (37)

where the lower case wave number refers to the regions exterior to the
breakwater. The n = 1 mode is a real wave number and represents a pro-
gressive wave which propagates without decaying. The n > 2 modes have
imaginary wave numbers and represent local standing waves with spatially
decaying amplitudes. The local modes are included to satisfy irregular-

ities at the boundaries.between two regions, but have no effect far away
from the boundaries.
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~ There is, in general, one real solution to equation (37). This is
easily found using the Newton-Raphson method with any initial, real esti-
mate to ki. The function is odd so that either the negative or posi-
tive Toots will satisfy the equation. The sign of the root is chosen to
correspond to the proper direction of propagation. The imaginary roots
are easy to locate by rewriting equation (37) as:

2
o’h
gh. x
P nh th knh,
k = .-i k"
n n
2
Sh o _k'h tan k'h.
g n n

Now k  is real for n > 2. Solutions to this equation will be found
near:

kr'lh’b(h—l)II

The behavior of the local modes is apparent from the form of the
velocity potential, equation (27), which applies exterior to the break-
water if the complex wave number, Kn’ is replaced with k_. This leads

n
to the result:

chk (h+ 2)

¢ =1 (a, e ik X 4 5 elk x) & n 1%t
n 1n n 2n- ™7k sh k h

n n

But kn = - ikﬁ, n > 2, then,
4 cos k'(h + z) -
- _ ~-k'x k'xy O n iot
% >2 1 (age n” + 8% vy -sin k'h €
n> n n

Since k;, is real and positive, the x-dependent expressions show that
the local modes decay exponentially in the direction of propagation of
the progressive mode. Thus, the local modes in the reflected and trans-
mitted wave trains decay with increasing distance from the boundaries.

In region I (Fig. 5), the total velocity potential is the sum of the
incident and reflected wave potentials,

= 5 .
°I. ¢1 + @

The incident wave train is the known forcing function in the problem and
has been specified as a monochromatic sea surface. Consequently, only

the progressive mode is present, the amplitude is known, and the incident
wave velocity potential is: '
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ch k. (h + 2)
o, = ia, e-ik;x L L o1t
i O 1 < kl sh klh ¢

The reflected wave train, on the other hand, must include all modes to
account for local disturbances at the sea-breakwater interface. Thus,

r nzl¢rn,

ch kn(h + z) iot

- ik x O_
¢ =i a e n" 1 sh k& e .
n n

m m

where the a

are reflected wave anplitudes of unknown magnitude and
phase.

Note that the phase of the oscillations in region I has been
referenced to the windward breakwater face,

x = 0. The pressure field
falls directly out of equation (14) with § = 1.0, f = 0,
1

= = io¢1 - 82z,

In region III the velocity potential is simply that represented by the
transmitted wave train,

The transmitted wave train is composed of a progressive mode and an infi-
nite series of local modes,

o =790 .
tn=1tn

The phase of the oscillations is referenced to the leeward breakwater
face, x = b, and therefore appear as:

ch k (h + 2)
- 3 -ik (x - b) o n iot.
Qtn P 3n® Tn sh knh €
As in region I, the pressure field is:
P
11T _ - oz,
—p =~ 1%y - 82

C.

Interfacial Boundary Conditions. These results conclude the
specification of the velocity and pressure fields in each of the three
regions of interest. Although the structure of the expressions describ-
ing these fields has been determined, each expression contains unknown
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amplitudes which remain to be evaluated. Before proceeding with this
evaluation, it is useful to summarize the solution in each region.

Region I:
[eo]
<I>I=<I>i+ Xém,
n=1
o ch k_(h + 2) ]
= i -ik. x . 1 10’t
93 =1 a;e™ T ¢ sh k.h e (38)
1 1
h k
o =ia elkx O .i__Jlg:;tj? 1ot
™ m ok sh k_h ’
n n
P
El = - io@I - gz
02 = gx th k h
g, n
Region 'II:
(o]
oy = 10,
11 n=1 n
ch K (h + z) .,
= i -iK x + elK (x - b) _O n 10t (44
én 1(alne a a,.€ " n K s knh e 7,(39)
p
it & S (is +f) @II - 8z,
p
2 ey
c°(s - if) = gKnth Knh.
Region III:
[o 0]
%111 L %>
n=1
ch k (h + 2)
_ -ik (x - b) _O n iot
®p =3 3p® 0 K shkh e, (40)
n n
p
ITI
s ¢ s
2
g =

gkn th knh.
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These equations contain 4n unknowns, i.e., n unknowns for each
of the amplitude series apy, aj;n, asp, and agy. To evaluate these
unknowns, 4n additional boundary conditions are needed. Since the
solutions in adjacent regions must be continuous at the interface between
regions, it is apparent that the appropriate boundary conditions are con-
tinuity of pressure and horizontal mass flux at x = 0 and x = b. If these
conditions are applied at n points along each interface, then there will
be sufficient equations to specify the unknown amplitudes.

At the sea-breakwater interface, the flow must contract or expand as
it enters or exits a particular pore. Incompressible flow mass conserva-
tion requires that a constriction in the flow field be accompanied by an
acceleration such that the product of the velocity and the projected flow
area remain constant. Thus, at x = 0:

or

Although the porosity, e, is defined as the ratio of pore volume to
total volume, it is also equal to the average ratio of cross-sectional
pore area to total area. Similarly, at x = b:

Urr® T Yrmre

Note that continuity of horizontal mass flux is equivalent to continuity
of the discharege velocity. The interfacial boundary condition may now be

written as:

x=0 up = €ury

Py = Pr1-

' x=b eup = Uy,
P11 = Prir-
But u = 3%/9x, and the pressure terms are elementary functions of the

velocity potential, ;as summarized in equation§ (38), (39), and (40).
Consequently, the interfacial boundary conditions become:

AL 20
= I 11, 41
4 0 A £ T (41)
<I>I = (S - if.) QII . (42)
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0% ad

x=b e - L, (43)
(s - if) QII = QIII' (44)

Substituting the velocity potentials from equations (38), (39), and
(40) into equations (41) to (44) lead directly to:

© ch kn(h + z) © ch Kn(h + z) Kb
S ¢ - ~iK
Z S ET T %m T Lf TmmET (@, = 32 " n)
n=1 n n=1 n
chkl(h+z)
T Tenwm i (45)
i ? 1 ch kn(h + z) ]
=, k sh k h m
n=]1 n n
©° ch Kn(h + z) _—
’ I i -i
+ (8 - if) Z X shEh  Cin * 38 n)
n=]l n n
o1 ch kl(h + z) . )
kl sh klh i
© ch K (h + 2) @ ¢h k (h + 2)
- n ~iK b n =
J e (a, -a, e KDy 4+ ) ——Fe——a =0.047)
n=1 sh Knh 2n In ne1 sh knh tn
o h x (h + 2)
1 Gk i
- v iK' b
(5 -1f) ) ¢ sh K h (ajpe 7o+ oag)
n=1 n n
o +
_ 2 1 ch kn(h z) . ..
k sh k_h tn (48)
n=l n n

In the limit, these four equations must be satisfied at all =z if
one is to solve for the amplitudes of an infinite number of eigen func-
tions. This will be shown to be unnecessary, as satisfactory results
may be found for a finite upper 1limit on n. Therefore, each equation
must be satisfied at n different depths, 1z, to obtain a solution.
Solutions typically converge for n 1less than 10. Consequently, the
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problem reduces to solving a 4n by 4n complex matrix for 4n complex
amplitudes. Packaged subroutines such as SIMQ (International Business

Machines, 1968) which will solve large complex matrix problems very
efficiently.

d. Orthogonality. Although it is possible to proceed directly with
a solution to this large matrix, considerable simplification may be
gained by using the orthogonal properties of the eigen functions. The
z-dependent terms are orthogonal because they are solutions to a linear
second-order homogeneous differential equation with linear first-order
homogeneous boundary conditions (Hildebrand, 1965). Orthogonality is
. the characteristic that the integral of the -product of two eigen func-

tions vanishes over the interval specified ‘for the boundary conditions,
that is,

Io ¢ & dz =0, m ¥ n
_hmn

This property may be used to eliminate the depth dependence and reduce
the order of the matrix problem. To accomplish this, multiply equations

(45) to (48) through by ch Ky(h + z) and integrate over the full depth.
The following identities are useful:

10 ‘
'! ch Km(h + z) ch Kn(h +2)dz=0,m#n

-h
shKhchKh+Kh
- m m m
- 2K » N =M,
m
0 2 ch Khehkh
J ch K (h + z) ch k (h+2) =0 ¢ ¢ (S-if-1).
~h g Kz—k

m

If the porosity is constant throughout the full depth, then the above
operations may be performed on equations (45) to (48) to yield:

c a_ 02 ch K h ch knh
-2-1 shkh g Kz_k.?. (5-1f-1)
n= n n 1
- a' e~iK b
‘e (alm a, € Y} (sh Kmh ch Kmh + Kmh)
sh K h 2K
m m
2
ai 0" ch Kmh ch klh (49)
= — (s-if-1). 9
sh klh g K 2 K 2
m 1l
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L a o.2 ch Kmh ch k h

rn n
y —— - (S-if-1)
Wiy k snkhg sz 2

-k
n

-iK b
(altn + a, € m ) (sh Kmh ch Kmh + Kmh)

klsh klh ZKm

+ (S-1if)

ay 02 ch Kmh ch klh

-t I (s-if-1). 50
k;shkh g sz _ kl2 (50)

~-iK b
(a2m -a, € m ) (sh Kmh ch Kmh + Kmh)

sh K h 2K
m m

€

8

a . 2 ch Kmh ch knh ‘

n=1 n Km _kn

4

l &~

g
g

-iK b
(alme m + aZm) (sh R h ch K h + Kmh) '

K K shKh * 2K
1 m m m

o a,. 02 ch Kmh ch k_h

K~ -k
m n

Substitute
9—2-_ ch knh oy
8 g sh knh T "n?

into each of the above, divide throﬂgh by

(S-if—l)K1
5 7 ch Kmh,
BT
and introduce the following notation for the dimensionless amplitudes:
a a a a
rm, 1n 2n, “tn
c ,¢C c c, =-— ? ’
1n* Con’ . (53)
rn n n tn ai ai ai ai
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These steps lead directly to the result:

2 2

k K" -k
Joo 2 B L4 _( -c eikb)
el ky g2 _ kn2 (s-if-1) ““Im m

2m

: Khh
S w1+ ) = 1.0
1 &g sh Khh ch Khh

(54)

2 2

o (K - k.,7)
v C m 1 (S-1f) -ik b
m —= 5=t i) Cim t Gt )

n=1 (Km - kn )

o 2 (1+shthh Kh) ' (55)
m ’

2 2 .
(3-1f-1) ' 2m Im n 2k, K shKhchKh

2 2 - (56)
n=1 1 R™ -k

R 2 sh K h ch Kh

: (57)
K" -k
m n

This form of the equations reveals that the condition of orthogonality
permits the extraction of one mode from the series solution in region II
(Cm, C2m) in terms of the full series in regions I and III

Jc_,c
o rn’

.tn

).
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algebraic methods for solutions to simultaneous

Then, using standard
C,p may be eliminated from any two of the four

equations, Cj, and
equations to isolate Cens Ctn series as:

E Kﬁ " k1 kn € Kﬁ iK b
‘ C —— (17— + =) + e 1%
n=1 ™M g 2 _ k 2 kl S-if kl
m. n
. sz - kl2 kn € Km € Km
;] c (— - — ) = 1.0 - — L - (58) .
nel tn K 2 _ Kk 2 k1 S-if kl S-if kl
m n
2 2
; c S Tk (Eg € Eg)_keigp
el Iy 2 _ " 2 kl S-if kl
il n
2 2
) K -k k K K
m 1 n € m € m .
X C,. —5——5— (i —+5=5=7) = 1.0 + — —. (59)
L Cen Khz _ knz k; © S-if kg S-if k;

The remaining two equations yield Cjp and C,; as functions of the

Crns Ct¢n series:

o seiem Ty K sh K h ch K h
Im £ 2 2 shKhchKh+Kh
K -k m m m
m 1
2 2
K o K -k k K
{10+ —2-F ¢ B 1 n__E_ my1y (60 .
SIf kg L Cm 772 k) TSHE K
m n
¢ oS-if-1 1%y s shKhchkh
2m € 2 2shKhchKh+Kh
K~ -k m m m
m 1
; sz B k12 kn (3 K
{- c (—-— 2)>1 (61)
Ly tn sz _ kn2 k) T 5-IF K
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Equations (58) to (61) represent a significant simplification with
respect to the original form of equations (45) to (48). Specifically,
the reflected and transmitted components may be solved from equations
(58) and (59) independent of the components inside the breakwater. How-

“ever, the latter two components will be necessary for the application of
Lorentz's (1926) condition of equivalent work. They may be solved
directly from equations (60) and (61) in terms of the previously deter-
mined C,,, C¢p. Thus, a 4n by 4n matrix has been reduced to a 2n
by 2n matrix plus two linear vector equations. This condensation repre-
sents a considerable saving in the computation effort.

The actual computation requires that a 2n by 2n matrix be formed
by rewriting equations (58) and (59) n times for n different values of
K,- This matrix is solved using a method such as SIMQ and yields the
reflection and transmission coefficient series C,, and C¢,, respec-
‘tively. Then the two dimensionless amplitude series inside the break-
water, C,, and C,,, are solved by direct substitution of C,, and

C¢n into equations (60) and (61), respectively.

It is apparent from the terms appearing 'in these last four equations
that the solution ultimately depends on: (a) the structural properties
of the breakwater width and depth, b and h; (b) the media properties
of porosity and damping, € and f; and (c) the wave properties as
described by the wave numbers inside and outside the breakwater, K,
and k,. However, the dispersion equation (37) establishes the dependence
of k, for n>1lonk; and h as:

2

9h  khthkh=khthkh.
g 1 1 n n

Thus, given k; and h, all other ky's may be found. Likewise, the
dispersion equation inside the breakwater, equation (25), establishes the
dependence of K, on k;, h and £ as:

2
Oh ge ey _ _ ey
&F (5-if) = K h th K h = kjh th kph (S-if).

Therefore, k, along with h and - £ completely specify all of the wave
numbers k, and K,. Then the independent parameters are h, b, €, £,
and k. Nondimensionalizing h, b, and k; reduces the number of
parameters by one to the dimensionless form b/h, €, f, and kjh.

A detailed discussion of the solution behavior is discussed later.
Presently, the very important condition of long-wave excitation is con-
sidered. The relatively simple form of the resulting solution will reveal
the general character of the breakwater response.
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e. The Long-Wave Problem. The long-wave problem is characterized by
a wavelength which exceeds the water depth by a factor of 20, so that:

k,h 2 0.3,

v .
Y\lh < 0.3 (1 - 1).

For this limiting condition, the value of the hyperbolic tangent in the
dispersion equation is suitably described by the value of the argument

itself, that is: :

2
CB .k hthkh 2 (kh)?,
g n n n
and
o?h ~ 2
'—g— (5-1if) = Knh th Knh = (Knh) .

Each equation has two roots of equal magnitude but opposite sign. The
sign is chosen to correspond_tp the direction of propagation so that in
actuality only one mode specifies the complete solution to the long-wave
problem.  This result should be anticipated. A fundamental characteristic
of long waves is that the horizontal velocity and dynamic pressure compo-
Thus, if the boundary conditions are

nent independent of depth.
atisfied at on i i P rtical plane, they are satisfied at all

satisfied at one point 1in a ve t S at :
Consequently, the absence of local irregularities at the inter-

points. € ]
face between two solution domains precludes the existence of multiple
modes both physically and mathematically.

With the upper limit on n being equal to unity, the subscript may be
dropped from the long-wave solution, and the dispersion equations become:

2
kn? - oh
8
2
2,2
K°h® = U—g—‘l (s-1if). (62)

Substituting Kh = Th(1l - ia) into equation (62) and separating real and

imaginary parts yield:

2 —_—
1
rzhz-—fgg—hs + 71+ £278%),

and

a___/1+f2/82—1

£/s (63)
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Note that the effect of the damping coefficient, £, 1is to increase
the long-wave number inside the breakwater relative to its value outside.
This causes the wavelength to shorten, a result which is anticipated. In
general, friction inhibits wave propagation; therefore, the celerity and
wavelength should be decreased as indicated by equation (63).

Two other identities are useful for the long-wave solution:

sh Kh v kh,
ch Kh v 1.0.

Introducing the above into equations (58) to (61) leads to the result:

€ K ~i1Kb € K € K
+ £ X --E£ _2y.-3- LS
€, + 547 k ) +e Cd-siFe? = ik’
e K iKb € K € K
C,A-goFr’te GO+t ghrw) " ltsarw
_ S-if-1 kK 1 ¢ € _KkK_ __E__K
1T T e 2.2 2 Do+ - 60 -ggei) b
_ _S-if-1 kK 1 e K
! e 2.2 2% saEK )

Solving these four equations simultaneously preduces expressions for
the four unknown wave components: '

2,2 . 2,2
(1- =5 PPy 10- 55 sta ®
C, - 7 7" - 2,2 - (64
(1 By Kb (g By ~IKD o Bk o kb + 11 + £ 5 )sin 1
K K K KZ
ek ek
) b X 27X .
c, = - - ' . = 5 . (65)
(1+ 55) eiKb_(l_ Ekﬁ e—iKb 2 Ek cos Kb + 1(1 + & k )sin Kb
K K K 2
201+ 5 o (1 + 55 (cos Kb + 1 sin Kb)
. Cy = 7 5 = 2.2 - (69
(1+ £ IR EXy " ~IKb pek oo kbt 10+ EEygin kb
K K K )
-2 (1 - %) %(k‘ -1
€y = 2 2 = 22+ (67
(1+ EE) eiKb_(l_ £ e"IKb ok oo kb 1(1+ &) sin Kb
K K K KZ
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The breakwater depth and width are of the same order of magnitude so
that small Kh implies small Kb. Utilizing equation (62) and the small
argument identities:

cos Kb, sin Kb + 1.0, Kb,

the reflection and transmission coefficients become:

2

: S—-if~-g
¢, = (68)

T soifte? - 12 Jgn o

ob

c, = L (69)

£ a2 (sape?)’

¥ /gh

and the dimensionless amplitudes of the components inside the breakwater
are:

(1+~————'@)(1+£"—/s’—i’f)

c /gh
1= ) (70)
9 + %-—QB-(S-if+€2)
Ygh
. S;if
c, = . (71)
2 2412 (samed
Ygh

f. Implications of the Long-Wave Solution. These equations represent
an exact solution to the permeable breakwater problem for the specific
case of an incident wave which is very long with respect to water depth
and .breakwater width, The simple form of the equations allows one to
easily interpret the effect of various independent parameters on the
solution. Some pertinent limiting conditions are: (a) as the media takes
on the properties of pure seawater, i.e., 100 percent porosity and no
damping, transmission becomes complete and no reflection occurs (f -+ 0,
€ > 1with § = 1 yields Cy - 1, C,. > 0); (b) as the porosity approaches
zero, the breakwater assumes the characteristic of a solid vertical wall
and no transmission occurs while reflection becomes perfect (¢ =+ 0 yields
Ct - 0, Cpr » 1); (c) as the damping properties of the media become severe,
the transmission drops to zero and the reflection becomes perfect (f +
yields Cy = 0, C. ~ 1); (d) as the breakwater becomes very thin, the trans-
mission becomes nearly complete while the reflection becomes negligible
(b ~ 0 yields C, ~ 1, Cr > 0); and (e) as the wave period becomes very
long, such as a tidal oscillation, the transmission becomes complete and
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no reflection occurs (o + 0 yields C¢ =+ 1, C, > 0). These same trends

have been ‘observed in the solution to the general problem for shorter
waves as governed by equations (58) and (59).

Equation (69) verifies that increasing the friction coefficient, f,
or the product of f with the wave frequency, o, causes a relative
decrease in the long-wave transmission coefficient. This behavior also
applies to the short-wave solution. It will be useful to be able to pre-
dict the dependence of fo on the wave and breakwater characteristics.
Lorentz's (1926) condition of equivalent work, as given by equation (9),
specifies this dependence. The friction coefficient characterizes the
damping throughout the breakwater so the volume integral in equation (9)
may be replaced by a double integral on x and z with the submerged
part of the breakwater as limits of integration:

b t+T 2 3
, .. Vg  CcE lqu .
dz |dx |e { + } ac
K 172
_ _*h 0 t P D
- 0 b t+T ’ (72)
dz dx EqRZ dt
-h 0 t

‘where qr 1is the real part of the complex velocity, q. The numerator
includes a term which is proportional to the cube of the velocity whereas
the denominator is proportional to the square of the velocity. Conse-
quently, relative increases in the velocity will cause relative increases
in fo. The velocity inside the breakwater is proportional to the product
of the wave amplitude and wave frequency. The amplitude and frequency of
the wave components inside the breakwater increase monotonically with
increasing amplitude and frequency of the incident wave. Consequently,
if the wave frequency is held constant then a relative increase in the
incident amplitude will cause a relative increase in fo. Likewise, if
the amplitude is held constant, then a relative increase in the frequency,
i.e., decrease in period and wavelength, will cause an increase in fo.
Since increasing fo causes a decrease in the transmission coefficient,
it may be concluded that the transmission coefficient will decrease for
increasing wave steepness or increasing wave number.

Appendix C discusses the numerical evaluation of equation (72) and
the simplifications arising for the case of constant permeability.

This completes the formal theoretical solution to the crib-style
breakwater problem. It will be useful to review the method by which

numerical results are extracted from the theory before discussing
example solutions.

g. Numerical Procedures. The formal generation of numerical results
from the completed problem solution requires a preliminary evaluation of
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the breakwater properties and specification of the incident wave con-
ditions. The necessary breakwater properties are: . (a) depth, h,

(b) width, b, (c¢) porosity, e, (d) permeability, KP’ and (e) turbulent
damping coefficient, Cg¢. The depth is a function of the particular

site and tidal range. The width is often fixed by economic considera-.
tions but can be adjusted to yield the desired breakwater performance.
The three media properties are determined using the techniques discussed
in Section IIX, 2.

The incident wave conditions are selected as design criterion using
available forecasting techniques. The necessary properties are the dimen-
sionless wave number, k;h, and the wave steepness (or camber), H;/L.
The wave number and steepness are evaluated from the design wave period
and height using conventional linear wave theory methods. It is usually
desirable to investigate the behavior for a variety of wave conditions.

The above quantities are inputs or independent variables with respect
to the theoretical solution. One decision remains to be made: how many
eigen functions should be included in the solution? It will be demon-
strated later that five eigen functions are sufficient for k,h < 3.0,
one is sufficient for k;h < 0.5. To initiate the solution, a value for
the damping coefficient, £, 1is assumed (f = 1.0 is suitable). Then,
_the appropriate number of eigenvalues are evaluated from equation (25)
using a complex Newton-Raphson quick convergence scheme. The eigenvalues,
or equivalently the wave numbers, inside and outside the breakwater are
used to enumerate the coefficients in the matrix equations (58) and (59).
The matrix is solved using an efficient complex Gaussian reduction scheme
for the complex reflection and transmission coefficients. These are sub-
stituted into the vector equations (60) and (61) to solve for the dimen-
sionless amplitudes inside the breakwater. The seepage velocities are
solved by differentiating the velocity potential (eqs. 27 and 28) with
respect to x and z and introducing the internal wave amplitudes.

The real components of the velocities are extracted and substituted into
Lorentz's (1926) condition of equivalent work, (eq. 72), to compute f.
If the result is different from the assumed value it is necessary to
iterate and return to the step which evaluates the eigenvalues. If the
assumed and computed values of f are within 1 percent, the solution is
complete. The reflection and transmission coefficients are obtained by
taking the absolute value of Cy; and Ct;, respectively. The itera-
tion scheme typically closes after four to eight cycles.

A FORTRAN program has been written to perform these operations on a

digital computer. It is listed and described in Appendix D.
\

h. Numerical Results. The following numerical results demonstrate
the behavior of the theoretical solution as a function of the dimension-
less parameters b/h, e, £, and kjh. Equations (58) to (61) and an earlier
discussion identify these parameters as the quantities which ultimately
govern the solution to the various modal amplitudes. Only b/h, €, and
kjh  are truly independent. The damping coefficient, £, is implicitly
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a function of the media damping properties as well as the breakwater dimen-
sions and internal wave characteristics. A consequence of this dependence
is that a change in the media damping properties or the incidernt wave
height is simulated by holding b/h, e, and kj;h constant while varying f.
Henceforth, the subscript will be omitted from the incident wave number.

The dependence on f is shown in Figure 6. In this figure, the
reflection and transmission coefficients are plotted as a function of the
dimensionless wave number kh for a square breakwater which is 40 percent
porous. The breakwater shape and porosity are representative values and
their effect is investigated in subsequent figures. The reflection coef-
ficient is, by definition, equal to the absolute value of the complex
dimensionless progressive mode amplitude in the reflected wave train,

Cp = |Cr1"

Similarly, the transmission coefficient is equal to the absolute value of
the complex dimensionless progressive mode amplitude in the transmitted
wave train,

= ,cﬂ,.

The long-wave solutions are also presented in Figure 6. The reflec-
tion and transmission coefficients are found by taking the absolute values
of equations (68) and (69). The solutions are:

22 1
CR;B{, (S~-€") +f }2’ (73)
2% e/ ‘
(S + €°) + (f + o5 )
1
) {(1 + -Sbf f + tob(s + 52)} }2
2e/gh 2e/gh

The general results substantiate the behavior predicted by the long-
wave solution--the transmission coefficient decreases monotonically with
increased damping at all wave numbers. The increased damping may be a
result of decreasing the media permeability or increasing the incident
wave amplitude (steepness). In either case, the .response is the same.
Accompanying this behavior is an increase in the reflection coefficient,
It may be concluded that increased damping results in an increased resis-
tance to wave penetration and an increase in internal wave decay.

- This result is somewhat analogous to the open-channel flow response
to an abrupt increase in channel roughness. The water surface rises
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Figure 6. Reflection and transmission coefficient dependence on damping.




upstream to store potential energy in anticipation of the energy losses
through the rough section. The breakwater system responds by increasing
the potential energy of the partial standing wave and reflecting more
energy back out to sea.

Figure 6 also supports the long-wave solution trends for decrea51ng
wavelength, i.e., the reflection coefficient increases and the trans-
mission coefficient decreases. An upper limit is reached near kh = 1.0,
where the reflection coefficient attains a relative maximum. This appears
to be a resonant phenomenon controlled by the n, component, (Fig. 5).
This component reflects off the leeward breakwater face and propagates’
back through the interior of the structure and ultimately contributes in
part to the reflected wave train. As the wavelength shortens, the rela-
tive resistance inside the breakwater increases. This accentuates the
media discontinuity at the sea-breakwater interface and causes more
direct reflection of the incident wave but decreases the amount of 1,
available to the reflected wave train. Further decreases in the wave-
length cause the internal damping to become so severe that virtually
nothing is left of the n, component to contribute to the reflected

wave train. Then the reflection coefficient becomes mainly a surface
phenomenon and is controlled by the porosity of the windward breakwater
face. Note that as the absolute level of damping is increased (> f),
the resonant condition moves to even longer wavelengths (< kh). This is
probably caused by the decrease in wavelength inside the breakwater due
to increased friction.

The long-wave solution compares favorably with the general solution

up to a wave number of approximately kh ~ 0.5. For intermediate wave
numbers the long-wave solution tends to slightly underestimate the
reflection and transmission coefficients, while for high-wave numbers it
overestimates both coefficients. The reasons for this latter behavior

are easily understood. The long-wave solution yields a lower frequency
oscillation (eq. 62) for a given wave number than the general solution
(eq. 25). The low-frequency oscillations are damped less severely as
“they pass through the breakwater, thus the transmission coefficient is
greater, Similarly, the n, component propagating back through the
breakwater is damped less severely for low-frequency oscillations, and it
can contribute more to the reflected wave when it reaches the windward
face.- Thus, the long-wave solution overestimates the reflection coeffi-
cient at high-wave numbers. This also accounts for the resonant phenomenon
not appearing in the long-wave reflection coefficient. Further errors are
anticipated when the long-wave approximation is substituted into the
Lorentz equation calculation for f in actual breakwater forms. Neverthe-
less, the long-wave approximation provides a rapid solution with accepta-
ble accuracy for kh < 0.5.

These same features apply to increasing breakwater widths, as shown
in Figure 7. As in Figure 6, the reflection and trahsmission coefficients
are plotted as a function of wave number for a 40 percent porous structure.
However, the damping coefficient is held constant and is equal to unity.
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In the real case, £ 1is not constant, hut this figure still serves to
isolate the effect of changing the relative width (or depth) Increasing
widths behave like increased damping, and this results in more reflection
and less transmission.

The dependence on porosity is shown-in Figure 8. Again, the reflec-
tion and transmission coefficients are plotted versus wave numher. The
particular case depicted is a square breakwater with constant damping
coefficient equal to unity.  Most natural gravel materials have porosities
in the range 0.30 < € < 0.5. The effect of halving and doubling a mean
value of ¢ = 0.4 is given. Decreasing the porosity causes an increase in
the reflection coefficient and-a decrease in the transmission coefficient
at all wave numbers. The reflection coefficient is most sensitive to
changes in porosity and this sensitivity increases with the wave number.
This behavior is exaggerated for the case of constant f. When the same
change in porosity is applied to an actual breakwater form and f is cal-
culated from the media and wave propertles, the resulting change in the
reflection and transmission coefficients is approx1mate1y one-third that
shown in Figure 8. The long-wave solution behavior is the same as in
Figures 6 and 7. Increasing porosity accentuates the difference between
the long wave and general solutions but correlation remains excellent
below kh = 0.5,

The inertial coefficient, S, was introduced earlier to.incorporate
the effect of added mass in w1dely spaced pile-array breakwaters. The
sen5111v1ty to this coefficient is shown in Figure 9. The'.added mass
concept arises due to unsteady. converging and diverging of streamlines
around solid bodies.  This results in increased resistance to flow and
therefore causes an increase in the reflection coefficient and decrease
in the transmission coefficient . (Fig. 9).

The convergent character of the theoretical eigen-series solution is
demonstrated in Figure 10. In this figure, the reflection and transmission
coefficients are Plotted versus the reciprocal of the number of eigen
functions summed in the series solution. The results for three different
wave numbers are given for a square breakwater which is 40 percent porous
and has a damping coefficient equal to two. The results show that solu-
tion converges quickly as the number of eigen functions is increased from
one to infinity. For long waves, kh = 0.1, one eigen function yields the
same solution as the extrapolated value for an infinite series. This
congurs with the anticipated result for long waves. Intermediate wave
numbers, near kh = 1.0, require two.or three eigen functions to give the
same result as an infinite series. Shorter waves near kh = 2.0 converge
within 2 percent of their ultimate value when five eigen functions are
summed. Summing more than 10 eigen functions introduces roundout errors
into the matrix solution unless double precision is used in the computa-
tion scheme. Thus, n = 5 is used for all waves occurring outside the
deepwater range (kh < II) to combine acceptable convergence with negligible
roundout error.
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This concludes the theoretical development of the crib-style breakwater
solution. Comparison between experiment and theory is discussed in
Section IV. The application of the theory to sloping-face breakwaters
is discussed below.

5. Conventional Breakwater Schemes.

a. A Rigorous Approach.. The preceding discussion has been limited to
permeable structures of rectangular form. The inclusion of conventional
trapezoidal-shaped breakwaters greatly complicates the problem. To illus-
trate this, consider Figure 11 depicting a hypothetical breakwater scheme.
The zones identify distinct regions, each of which has its own character-
istic boundary value problem. The effects of heterogeneous layering are
assumed to be accounted for by an average linearized friction coefficient
in each region. The boundary value problem in region IV is similar to the
crib-style breakwater problem discussed previously. 'An eigen-series solu-
tion satisfies this problem with n modes propagating in both the positive
and negative longitudinal directions. The solutions in regions I and VII
can be assumed to be given by linear wave theory. This introduces
n-reflected and n-transmitted modes. The general forms of the solutions
in regions II, III, V, and VI are not known. The diagonal interface
between adjacent regions produces nonhomogeneous boundary conditions and
couples the solution in a very complicated fashion. For the present dis-
cussion it will be assumed that a periodic series solution applies in
these regions and that n terms in each series, propagating in both
directions, will specify the solution adequately. The boundary conditions
of continuity of pressure and mass flux applied at the interface between
each of the seven regions produce 12n equations which ideally could be
solved for the 12n  unknown amplitudes and series constants. It follows
that the trapezoidal-shaped breakwater produces three times as many knowns
as the rectangular-shaped breakwater problem and the effort required to
solve the equation matrix alone is proportional to the matrix size raised
to the third power.

— — —r1—S.W.L.
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|
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v
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Figure 11. Trapezoidal breakwater.
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The problem is made more difficult by the complexity of wave inter-
action with rough inclined surfaces. Breakwater faces are typically
sloped at 1.5:1 or less and this induces breaking in the incident wave.
Previous 1nvest1gators have heen frustrated with the idealized problem
of wave breaking on impermeable Slopes (Le Méhauté, 1966; Koh, 1966).
Existing methods for predicting the energy consumed in breaklng on such
slopes are semlemplrlcal at best. Consequently, the wave-breaking part
of the problem itself is a very ambitious undertaking. When one adds to
these compllcatlons the effect of heterogeneous layering, the mechanical
effort involved in attempting a rigorous analytical solution becomes very
great indeed. Even if such a solution were obtained, the complexity and
number of simultaneous equations describing the solution would probably
mask any attempt to draw general conclusions about the system behavior.
However, this last item is the single most important feature of analytical
solutions as opposed to numerical solutions. Consequently, it may be bene-
ficial to simplify the approach to the problem to amplify an overall under-
standing of thL> basic governing processes.

b. The Equivalent Rectangular Breakwater. One might attempt to
simplify the problem by applying the eigen-series solution of region IV
to regions III and V. Similarly, the linear wave theory eigen series
could be applied to regions II and VI. Then the boundary conditions of
normal mass flux and pressure continuity at the sloping interfaces could
be solved for the various unknown amplitudes. Such an approximation does
confine the damping process to the appropriate regions but does not satisfy
the free surface and impermeable bottom boundary conditions simultaneously.

To -satisfy these latter conditions, 1t.m1ght be preferable to extend
the solution of region IV midway into regions II, 'III, V, and VI. This
would require that the linear wave theory solutlon be extended.into the
outer half of these respective regions. The approach.Ls approximate
because it applies the damped solution to regions -II' and VI' (Fig. 12)
and ignores the losses due to regions III' and V'. The two approximations
should be partially compensating. Furthermore, use of the potential flow
solution requires that a constant porosity be assigned to the breakwater.
Once these approximations are made, the solutions applied throughout the

full depth and the free surface as well as the bottom boundary condition
are satisfied.

i N
7 N

+ A/ - ——— 1 —— S.W.L.

11’y \VI'

/7 N
7 : N

N
//III‘ v! \\
TS SYIER NS LN ZESNVUISNUS /\\r/{s,\ﬂ}n
x=0 _ 173
x=b—b2+ 2

Figure 12. Equivalent rectangular breakwater.
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This study uses the second approach to replace regions II through VI
(Fig. 11) with an equivalent rectangular breakwater which has the same
submerged volume as that of the trapezoidal breakwater. That is, a hypo-
thetical breakwater is formed by bisecting the slopes between regions II
and III and between V and VI with vertical planes (see Fig. 12). Within
the confine of these planes, the rectangular breakwater has the same
internal structure as the trapezoidal breakwater, and the crib-style
breakwater solution is used to describe the flow field. Exterior to these

-planes, linear wave theory is applied to describe the incident, reflected,
and transmitted wave trains. The two solutions are matched at the hypo-
thetical interfaces to satisfy continuity of. pressure and horizontal mass
flux, and thereby solve for the unknown modal amplitudes.

Lorentz's (1926) condition of equivalent work was uséd to evaluate a
linearized damping coefficient, £, which applies throughout the hypo-
thetical rectangular breakwater. However, unlike the condition derived
for the crib-style breakwater, the new equivalent work principle attempts
to account for the effect of energy dissipation due to waves breaking on
the windward slope. This is accomplished by modifying a theory attributed
to Miche (1951) which estimated the wave energy losses on impermeable
slopes. These losses are added to the frictional losses in the numerator
of equation (72) to yield a revised estimate to the damping coefficient,' f.
In this manner the surface-breaking dissipation is incorporated with the
internal-friction dissipation. Finally, that part of the theory which
satisfied the interfacial boundary conditions distributes the breaking

effect among the various modal components in the reflected and transmitted
waves.

c. Modifying Miche's Breaking Criterion. To proceed with this model,
it is necessary to evaluate the energy loss due to waves breaking on the
windward breakwater slope. Miche's (1951) technique has been shown to
give reasonable correlation between experiment and theory for smooth
impermeable slopes (Straub, 1956). Through the use of an empirical sur-
face coefficient, &, his results have been extended somewhat less suc-
cessfully to rough and permeable slopes.

Miche's breaking criterion was based on the hypothesis that the maxi-
mum water surface slope attainable without breaking on a reflecting sur-
face is equal to the slope of the reflecting surface itself. He used
linear wave theoxry to transform the maximum nearshore wave steepness to
deep water where it is then pgssible to define a critical deepwater wave
steepness. The result was:

H 1

1 L2
) = (-2-]%)2 %“—B (75)
0 crit

where B 1is the surface slope, measured from a horizontal reference in
radians, and the left-hand side of the equation is the critical deepwater
wave steepness. Miche concluded that because (H,/Lj).rjt iS the maximum

73



steepness which remains stable on the slope, any deepwater wave steepness,
HO/LO, which exceeds this will break and be reflected at the critical
steepness. The definition for a reflection coefficient follows directly
as:

c! = (Ho/Lo)crit

5= _—?ﬁ;7f;7__' (76)

Miche (1951) found that the discrepancy between his theory and experi-
mental reflection coefficients for rough and permeable slopes could be
corrected by introducing an empirical coefficient, &, which he called
the intrinsic surface-reflection coefficient. This coefficient has been
found to depend on wave steepness and wave number as well as surface char-
acteristics (Moraes, 1970). Although no method presently exists for pre-
dicting 6, it is common to experimentally evaluate this coefficient in
comparing the breaking characteristics of various slopes. The revised
reflection coefficient may be written as:

(77)

C, = &C;

S 8’
where C} is the predicted reflection coefficient for smooth slopes and
Cs 1is the corresponding coefficient for rough or permeable slopes.

This study proceeds with the assumption that Miche's technique is an
acceptable approximation to the wave-breaking process on a smooth imper-
meable surface. Furthermore, it is assumed that the effect of the slope
of the reflecting surface is separable and that this effect is properly
identified by the right-hand side of equation (75). Then & incorpo-
rates the Reynolds effect of surface roughness combined with wave pro-
perties. At this point, the theory digresses from Miche's hypothesis
that all of the energy which remains after breaking is returned in the
form of a reflected wave. Instead, it is assumed that with the proper
intrinsic reflection coefficient, Miche's equation may be used to cal-
culate that part of the incident wave energy which remains after breaking
and is available for transmission into the permeable breakwater and
reflection back out to sea. Thus, Miche's equation is used to model the
wave-breaking process rather than wave reflection, and his reflection
coefficient may be interpreted as the dimensionless amplitude of a ficti-
cious wave which accounts for that part of the incident wave energy
remaining after breaking on the windward slope.

Energy conservation requires that the power lost to breaking equal
the difference in energy propagation rates of the incident wave and the
ficticious reflected wave. According to linear wave theory the difference
in energy propagation rates is (Ippen, 1966):

* | 'Y*‘iz 2
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where E is the period-averaged power loss and Cg is the group\celerity
of the incident wave. The group celerity may be written in one of its
many forms as:

¢ = & (sh 2kh + 2kh
g O 2 )
2¢h™kh
Thus,
" ya 2
= 2
B - 21 £ ( sh gkh + 2kh o 2. (78)
2ch kh
Combining equations (76), (77), and (78):
1 2
28.2
cs = 5(HB 51n / (H /L y.

Linear wave theory provides a simple transformation for the deepwater
wave steepness, Hj/L,, to the wave steepness at any depth h, H,/L:

i

H

i ¢ 2kh + sh 2kh .2
L

5 )° th kh.
2ch"kh :

ol‘“lom

In terms of wave parameters at the breakwater site, Miche's (1951)
coefficient becomes:

[+
j=

2
2ch”kh

To ‘evaluate the power lost in breaking, it is necessary to specify
the intrinsic reflection coefficient, §&. As discussed previously, this
term is expected to be a function of the reflecting surface and wave
characteristics. The frictional losses due to flow through the permeable
"slope aré accounted for by the porous media part of the solution. Con-
sequently, & need only account for pure breaking. The exposed slopes
of most practical breakwater designs are typically steeper than 1:2.5
and, because of depth limitations, they are of relatively limited extent.
As a result, long waves experience little transformation on the slope
while short waves tend to steepen and break. It follows that ¢ should
approach unity for very long waves (no breaking) and approach zero for
very short waves (complete breaking). In addition, increasing surface
roughness and decreasing slope should accentuate the breaking process.
An empirical expression proposed by the author which incorporates this
anticipated behavior is:

§=1- é‘l/(

ooh
tan B g ) (80)
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where fg 1is a dimensionless surface-roughness coefficient, Note that:

» A
EEE + 0, long waves
§ - 1 when

£, * 0, smooth slopes

tan B » «, vertical slopes

o2h ©, short waves

§ - 0 when
f; -+ «, rough slopes

tan B + 0, horizontal slopes

Although equation (80) behaves in a intuitively agreeahle manner,

it may be argued that not much has been galned because the surface coef-
ficient, fg, remains to be evaluated. It is true that f£; is an unknown
quantity; however, by heuristic arguments its effect has been separated
from the surface slope and wavelength. It will be shown by comparison

with experimental results that fs5 behaves like a geometric property

which remains invariant during changes in the system dynamics. Further-
more, f; assumes a constant value which characterizes the armor-layer
material on the breakwater slope.

It is not possible to predict £; from previous experiments. To the
writer's knowledge, no other investigators have attempted to separate sur-
face breaking and internal losses from wave reflection on permeable slopes.
Straub (1956) measured the reflection coefficients for various permeable
slopes. He evaluated Miche's (1951) intrinsic reflection coefficient by
computing the ratio of the measured coefficient with that predicted by
equation (76). His results showed that 6 decreases with decreasing wave-
length and decreasing slope angles. This behavior is incorporated in
equation (80). In addition, his results indicated that & decreases with
decreasing wave steepness. This characteristic is accounted for by the
porous media model in this study.

To indicate the order of magnitude of f£;, one can invert equation
(80) to yield:

= tan B :
£, = : (81)
*h 10 (L
1-3

Now Straub's data can be analyzed to find an fg which incorporates the
effect of internal damping. His results include data for a wedge-shaped
absorber composed of crushed rock which passes a 3/4-inch screen_and which
is retained on a 1/4-inch screen. The structure is sloped at 22~ and is
46 percent porous. For an offshore wave steepness of 0.04 he determines
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intrinsic reflection coefficients .§ = 0.12, 0.18, and 0.25 corresponding

to czh/g = 2,32, 1.28, and 0.844, respectively. Equation (81) yields

fy = 1.40, 1.58, and 1.68. The resulting values are within 11 percent of
being constant and seem to characterize the absolute roughness of the slope.
The values are higher than those anticipated for this study because they
include the effect of internal porous media losses.

d. Combining Breaking and Internal Losses. The surface-roughness
coefficient is calibrated by comparing experiment with theory for a limited
number of conditions. Once evaluated, it can be used to extend results into
ranges which have not been explored experimentally. Ideally, this para-
meter will characterize the absolute roughness of similar slopes in other
models or prototype breakwaters.

The method used to incorporate wave breaking into the theory is to
combine the breaklng and internal losses in Lorentz's (1926) condition of
equivalent work. . This effectively increases the linear friction coef-
ficient, f, by requiring that the linearized damping law account for
the same amount of dissipation during one wave period as that caused by
turbulent internal damping and wave hreaking. Dividing equation (79)
through by p and adding the resulting quantity to the numerator of
equation (C-3) (App. C) satisfies this requirement:

0 b C 3 .
[dz de E{K 2 (QR+QI )+ =372 e._H(QR'l-Q )}+Eloss
P K
o S 0 (b — > (82)
1 2 2
dz |dx € E-(QR + QI )
-h ‘0 :
where
QR = Real (q/eiot),
QI = Imaginary (q/eiOt),

and E loss is evaluated from equations (78), (79), and (80). Finally,
equation (82) is combined with dispersion equation (25), and the inter-
facial boundary conditions, equations (58) to (61) to completely specify
the trapezoidal breakwater problem.

e. Comments on the Sloping-Face Breakwater Solution. The trapezoidal
breakwater solution is an extension of the crib-style breakwater solution
which includes a consideration for wave breaking. This approach does
greatly simplify the problem and yet it reproduces the important features
in an intuitively reasonable manner. For example, an approximate homo-
geneous damping law is assumed to apply throughout the interior of the’
breakwater so that a relatively simple velocity distribution may be found.
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After the velocity field is known, it is run through the actual hetero-
geneous internal structure of the breakwater and revised until the damping
resulting from the simplified structure is the same as that resulting from
the actual structure.

The second important feature involves wave breaking. If the slope
were impermeable, the breaking losses would simply reduce the reflected
wave modal amplitudes. However, waves breaking on permeable slopes reduce
the interior and transmitted wave components as well as the reflected wave
components. It is unnecessary to prescribe, some arbitrary method for dis-
tributing these losses among the various components if the internal and

breaking losses are combined into a single calculation for the linearized
friction coefficient, f. The new f changes the coefficient matrix in

the interfacial boundary condition equations and thereby redistributes the
effect of the losses among the modal component amplitudes. Adding break-
ing losses to the equivalent work principle increases the value of f.
This in turn increases the value of the damping exponent, ap, in equa-
tion (33) and a larger damping exponent causes the modes propagating
through the breakwater interior to decay more quickly. In addition, the

rate of exponential decay is maximum where the function itself is maximum,
that is:

=g TR = da ) x + ot}

n, n ’
and
dnn '
5% = - el {decay rate} - 1 rn {propagation rate},
'therefore,
{‘“‘T:} -l i)
maximum decay rate maximum,

and the n, are maximum at x = 0. Consequently, waves decay most rapidly
in the hypothetical rectangular breakwater in the same vicinity where
breaking occurs in the actual breakwater.

It may be concluded that the trapezoidal breakwater solution, although
relatively simple with respect to.the mathematical details, does reproduce

the important governing processes in a manner which is similar to the
actual physical phenomenon.

f. Numerical Procedures. The nonhomogeneous sloping-face breakwater
solution is identical to the crib-style breakwater solution except for
some additional requirements on Lorentz's condition of equivalent work.
Thus, the procedures discussed earlier apply with the following additions.
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The equivalent rectangular breakwater width (according to the defini-
tion in this report) is equal to the crest width at the SWL plus half the
sum of the horizontal projections of the two slopes extending below the
SWL. To apply the orthogonalized form of the interfacial boundary con-
ditions, a constant porosity must be assumed in the rectangular model.
This is equal to the depth-averaged porosity at the sea-breakwater inter-
face (x = 0). The media properties are prescribed at discrete grid points
within the confines of the equivalent rectangle. This is an input to the
numerical spatial integration of the numerator in the Lorentz (1926) equa-
tion (82). Details are presented in Appendix E. The velocities are
evaluated at each grid point and a trapezoidal rule is used to perform
the integration. The breaking loss is enumerated via equations (78),
(79), and (80). It is necessary to estimate the surface coefficient, fs,
to compute the breaking loss. To indicate the order of magnitude of this
coefficient, a value of f5 = 1/3 is found to give best correlation between
experiment and theory for the armor layer used in this study.

By following these instructions, the effect of nonhomogeneous media
and breaking losses can be included in the evaluation of the damping
coefficient, £, in equation (82). Substituting this step into the
method previously outlined (Sec. II, 4, g) completes the procedure used
to solve the conventional breakwater problem.

The gross effect of wave breaking is to increase f at all but the
smallest wave numbers. As illustrated in Figure 6, this causes the reflec-
tion coefficient to increase and the transmission coefficient to decrease.
Comparison with specific experimental results is undertaken in Section IV.

6. Pile-Array Breakwaters.

a. General Description. Pile-array breakwaters are a familiar subset
in the general category of permeable breakwaters. They are often construc-
ted to support wharves or offshore structures and their function as break-
waters may be of secondary importance. Loading requirements combined with
subocean soil conditions often prohibit dense packing of the pile founda-
tion. Model experiments on pile arrays (Costello, 1952) have demonstrated
that they are, in general, relatively transparent to wave activity. Never-
theless, in many applications it is useful to be able to predict what level
of protection they afford and how that level might be improved.

b. The Governing Equations. In most applications the piles are driven
vertically into the ocean floor with the top of the pile extending above
the design wave height elevation. The piles are typically spaced at two or
more pile diameters, center to center. In this study it will be assumed
that the spacing is great enough to apply Morison's equation to evaluate
the wave forces on individual piles. The fluid forces on the pile are
equal and opposite to the pile forces imposed on the fluid. Morison's
equation prescribes these forces analytically as:

f_P_ = C D‘.___.u'ul.;.‘c .].IQE y (83)
dz p° ¥ 2 MP T U 4
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where dF,/dz 1is the force per unit length exerted on a vertical cylin-
drical pile of diameter D due to drag and inertial forces. The drag
force is characterized by the drag coefficient, Cp (Schlicting, 1968),
and the horizontal approach velocity, u. The inertial force is char-
acterized by the virtual mass coefficient, Cy (Robertson, 1965), and
the local acceleration in the approach velocity, u.

The seepage velocity concept is used to describe the flow field in
the voids between the piles. Thus, equation (1) may be applied with S
equal to unity. The total stress tensor of apparent turbulent friction
is replaced by the pile force exerted on each unit mass of surrounding
fluid so that equation (1) becomes:

O >
%'lv%

2270+ -

3t [} . (84)

with

~

where i is the unit vector in the longitudinal x-direction. The volume
derivative of Fp is simply equal to the depth gradient in Fp (eq. 83)
divided by the average distribution of horizontal water surface area per
pile. Referring to Figure 13,
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Figure 13. Pile-array pattern.

80



p_L P (85)

where
A -°/4
g = -2 T » the array porosity. (86)
p

Combining equations (83) and (85):

1 de - CDD ulu[+ Eg, IID2 .
p d¥ €A 2 eA 4§ U
P P
But
2
/4
o -
P
thus,
dF
1 7p_ D ulul | 1-¢ .
pdv'eApcnz Gy v (87)

Substituting equation (87) into equation (84):

9 _ _ 1 T . D alu], 1-€ .
5 - " o Vip + yz) - 1 (EAp CD‘ 5t = Cy a). (88)

When the excitation is provided by a long incident wave, the vertical
velocity components become negligible so that:

. 9
i (u,0) = q, 5%-

Then the inertial force and the local acceleration may be combined on the
left-hand side of equation (88) to yield:

l-e

1 ~ D :
i(l+ c CM) at=—'5V(p+‘Yz) —_iEA—-CDg‘%}_l.
D

As an approximation to the intermediate and short-wave condition, it will
be assumed that the virtual mass has the same effect on the vertical accel-
eration component. For the case of horizontal cylinders this would be
true. It represents a convenient approximation for the vertical-pile
application and permits equation (88) to be expressed as:

% _ _ 1 -1 o '
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The inertial force is a conservative force resulting from unsteady
diverging and converging streamlines around solid bodies. It is not a
dissipative force like the drag component, and therefore it identifies
more closely with acceleration in the approach velocity than with the
drag force. The coefficient of the local acceleration term defines the
pile-array inertial coefficient S as:-

S=1+ ———1:: . (90)

The drag force is linearized using the technique in Section II, 2, £,
i.e., the nonlinear drag force is replaced by:

D uly
sAp CD 5 +foq. (91)

Lorentz's (1926) condition of equivalent work is used to evaluate f such
that foq dissipates the same amount of energy during one wave cycle as
the actual nonlinear drag relationship. Equation (91) distributes the
losses among the vertical and the horizontal velocity components, even
though the drag force is horizontal. This step is mathematically expe-
dient and yet the approximation may be better than completely ignoring
the effect of damping on the vertical motion. The physical rationale
behind this is that real fluid effects induce losses due to the vertical
velocity component interacting with the wakes and eddies produced by the
horizontal velocity components. Introducing equations (90) and (91) into
equation (89) yields the linearized equation of motion:

3q
sat

- %‘- V(p + yz) - foq, (92)

with
V-q.—.o.

c. Solving the Equation of Motion. Equation (92) is identical to the
coarse-granular media equation of motion (eq. 10). One can operate on
equation (92) to derive the same boundary value problem for the pile-array
breakwater as that derived for the rubble-fill breakwater. Thus, the gen-
eral' eigen-series solution also applies to the pile-array breakwater.
Similarly, the interfacial boundary conditions of horizontal mass flux
and pressure continuity prescribed for the crib-style rubble-fill break-
water are equally suitable for the pile-array breakwater. Consequently,
the orthogonalized boundary conditions represent a valid solution to both
problems.

The two breakwater systems differ only in their internal structure.
As a result, the character of the flow field retarding forces is unique
to each system. However, in terms of the parameters f and S which
account for these differences, the general forms of the solutions are the
same, It is only necessary to revise the method for evaluating f and S
in pile-array breakwaters.

82



The inertial coefficient is evaluated directly from equation (90).
The virtual mass coefficient for circular cylinders alined perpendlcular
to the flow is given by potential flow theory as Cy = 2.0 (Robertson, 1965).
Investigations of wave forces on piles (Ippen, 1966) have related measured
forces to predicted wave kinematics and determined virtual mass coefficients
varying from 0.93 to 2.3Q.. The.variation is due to experimental error,
approximations involved in-predicting the fluid kinematics from measured
wave height and period, and real fluid effects such as wakes, etc. In
this study, the theoretical value of Cy = 2 is accepted as a reasonable
approximation.

The damping coefficient, £, is solved .from Lorentz's condition of
equivalent work. The expression relating the energy dissipated by the
linearized law to the energy dissipated by the conventional drag law is:

1 b 0 (T 1 b 0 pt+T
jdy |dx {dz |e foq.q dt = de [dx (dz [e e ldld— su dt. (93)
0 ‘0 “-h -t 0 ‘0 “-h

The two-dimensional problem is being solved so the lateral integration on
the left-hand side of the equation is simply replaced by a unit width.
The lateral and longitudinal integration on the right-hand side of the
equatlon are combined by evaluating the energy dissipation at each pile
in the longitudinal d1rect10n, summing and multiplying times the number
of piles per unit width in the lateral direction. Thus,

t

b (0 [t+T "N (0 t4T
2 ES “pp 3
dx |dz |€ fog” de=N A ) -|az 5 Iujl dt, (94)
0 ‘-h’t =1y P
. where
Ny = number of piles per unit width per row,

the unit of horizontal surface area in the x, y
integration (Fig. 13),

g

Nx

number of .rows of piles longitudinally, and

j the incremental row number.

The drag coefficient is a function of the approach velocity Reynolds
number, and is as unsteady as the local velocity. Circular cylinder drag
coefficients have been determined experimentally at various steady-flow

Reynolds numbers (Schlicting, 1968). The results are shown in Figure 14.
It is assumed that the drag coeffigient for unsteady flows is specified by

the steady-state value corresponding to the instantaneous approach velocity
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Reynolds numbexr. To account for the spatial and temporal variability of
Cp in equation (94), an approximate empirical equation is fitted to the
data in Figure 14. The resulting equation expressing the relationship
between Cp and Rp for subcritical drag is:

10
C, = + 1.2, (95)
b~ Thy)
where
Ry = ub/v.
100 ‘W‘isll H rr‘q 1 vl |||l % TII‘T‘“] ‘l:"u
= =+ 1.2 -
10 -
»
CD S
..,"v Tve VPOl
l CRYPIY I u,,. _i
[ e
Smedodald b leds ke ercoimbaiadoned WL I Y N XY .
10 1 10 10 <10 10 10 10
RD = ubh/v

Figure 14. Drag coefficient versus Reynolds number,
circular cylinder.

The equation is also plotted in Figure 14. It would be possible to improve
the correlation by fitting more complicated equations to the data. How-
ever, even this simple relationship represents a significant improvement
‘over an attempt to guess at some appropriate average constant value for
Cp. It is interesting to note the similarity between the cylinder drag
coefficient and the friction factor for porous media or pipe flow. Lam-

inar, linear drag dominates at low Reynolds numbers and turbulent, square-
law drag dominates at high Reynolds numbers.

Substituting equation (95) into equation (94) yields:

t+T N 0 t+T

. 2 x 2 3
dx |dz |efo q"dt = N Y ldz (Svuj + 0.Gp|uj| ) dt.

j=1 .
0 -h ‘t -h ‘t
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The temporal integration is performed as in Appendix C with the following
result:

0

N 3
X
N} {Sv(U2+u) +06D (U + 05 }az
Ygrj, b R4 R
fo = b ' 0 ? (96)
dx |€ (Qg + Qi) dz
0 J-h

where Up, U = Imag.(u), Real(u) and u =,q-§.

The denominator of equation (96) is evaluated analytically as in
Appendix C. The numerator is evaluated numerically, using the trape-
zoidal rule for the depth integration.

d. Numerical Procedures and Results. Equations (90) and (96) com-
bined with dispersion equation (25) and the interfacial boundary condi-
tions (eqs. 58 to 61) specify the solution to the pile-array breakwater
problem. The numerical procedure used to solve these equations is iden-
tical to that outlined in Section II, 4, g. It is only necessary to
revise the Lorentz calculation according to equation (96).

Because of the relatively high porosities in pile-array breakwaters,
it can be anticipated from the results of Figure 8 that reflection coef-
ficients will be low and transmission coefficients high. The effect of
the virtual mass increasing the inertial coefficient is indicated in
Figure 9; the reflection coefficient increases and the transmission
coefficient decreases slightly.

One might expect that including the vertical-velocity component in
the virtual mass and linearized drag-force calculations limit the appli-
cation of the results to long-wave conditions. Comparison with available
experimental data in Section IV demonstrates that this approximation also
yields excellent results for short waves.

III. EXPERIMENTAL APPARATUS AND PROCEDURES

1. Introduction.

Many of the references cited in Sections I and II contain experi-
mental data on wave reflection from and transmission through permeable
structures of various composition and form. Only two of these references
report of an attempt to evaluate the hydraulic properties of the material
composing the experimental models. Recent studies (Dinoy, 1971) indicate
that the important media hydraulic-resistance properties are the permea-
bility and the turbulent damping coefficient identified in equation (5).
As of this study, none of the published information on wave interaction

85



with permeable structures has evaluated these latter quantities. As a
result, it was necessary to conduct additional experiments to validate
the theory proposed by this study.

A description of the experimental program may be conveniently divided
into four subtopics: (a) physical and hydraulic properties of the various
media used in the. models, (b) homogeneous rectangular breakwater models,
(c) trapezoidal-layered breakwater models, and (d) wave testing facili-
ties and procedures. Information about the apparatus and technique
associated with each of these topics follows.

2. Media Properties.

a. Material Selection. The most straightforward application of the
theory is for rubble-mound breakwaters. Hence, natural or crushed gravel
becomes a logical choice of materials for breakwater modeling. Three
different rock sizes were selected to allow some variation in the homo-
geneous rectangular model dimensions and to provide a reasonable grada-
tion of material for multilayered structures. Construction-grade gravel
was obtained from pits in the greater Boston, Massachusetts, area con-
forming to commercial sizes of 3/8, 3/4, and 1% inches. The material is
mostly igneous rock with a high percentage of fractured faces. All of
the gravel is washed and graded in the laboratory and conforms to the
specifications listed in Table 1. Representative samples of the gravel
are shown in Figure 15. :

Table 1. Media physical properties.

Commercial Sieve tolerances Equivalent mean | Specific | Porosity
size - Retained | Passing | sphere diameter | gravity
(in) (in) (in) (in) (pct)
0.375 0.25 0.50 0.325 2.70 43.0
0.75 0.50 1.0 0.774 2.67 43.9
1.5 1.0 2.0 1.37 2.68 43.4

b. Physical Properties. The gravel is sieved by hand on standard-
ized screens according to the tolerances in Table 1. Only the 2-inch
passing dimension of the large gravel was not checked in the laboratory.
This latter tolerance was assured by the supplier.

The porosity is obtained by weighing a gravel sample dry and submerged,
subtracting the two quantities to yield the weight of water occupying the
pores, and dividing the pore water weight by the weight of water occupying
the same gross volume as that of the sample. Thus, if the samples are
weighed in a container of fixed volume and Wg is the net weight of the
container filled with water, Wg is the net weight of the container filled
with dry gravel, and W is the net weight of the container filled with
gravel and water, the porpsity e, is:

86



Figure 15. Media samples.

ﬂiyh.the porosity known, the specific gravity is determined directly
by dividing the dry sample weight by the weight of water occupying the
same volume as that of the solids in the sample, i.e.,

W

8.G. = 8
(1 - sSW&'

The equivalent sphere diameter is calculated by dividing the volume
of solids by the number of particles in the sample and equating this to
the volume of a sphere of unknown diameter. This simply requires that
the equivalent sphere has the same volume as the mean particle volume.
Thus, if y is the weight density of water, N is the number of parti-
cles in the sample, then the equivalent sphere diameter, d, may be
solved from:

ﬁda ws

6 = N(S.C.)Y"

Care is taken to remove air bubbles from the pores before the submerged
weight measurements are performed. The dry weights are determined after
the sample has air dried for a few days.
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¢. Hydraulic Properties. The important media hydraulic peroperties
are the permeability, Kp, which governs low Reynolds number damping,
and the turbulent damping coefficient, Cg, which governs high Reynolds
number damping. These quantities are evaluated experimentally by measur-
ing the pressure gradient through a sample of media as a function of an
imposed discharge velocity. Then, Kp and Cg are solved via equation
(5) in terms of the measured quantities.

A large permeameter was constructed to facilitate these measurements.
The permeameter basically consists of an 8-inch vertical standpipe with a
circular weir at the top and a gradual contraction on the bottom (Fig. 16).
The device is supported on a 5-inch, 902 elbow with a structural foot.
About 4 feet of the standpipe forms the test section wherein the media
sample is contained. The sample is restrained at the bottom of the stand-
pipe by a stainless-steel screen which is held fast between the flange
gaskets. The gravel is also restrained at the top with a second stainless-
steel screen which in turn is held in place by a vertical, threaded com-
pression member. The upper screen keeps the sample consolidated over the
full range of flow rates.

The flow proceeds vertically upward through the sample. This direc-
tion is most effective for washing air bubbles out of the interstices of
the media. The supply line runs through a heat exchanger so that water
temperatures are maintained constant within #1° Fahrenheit for any experi-
mental run. The flow rate is measured on a weigh scale and temperature
corrections are included in the density as well as viscosity calculations.
Pressures are monitored at the four elevations (Fig. 16). Each pressure
reading represents a circumferential average of four taps, spaced at 90°
around the perimeter of the standpipe.

The experimental data'is given in reduced form in Appendix F, i.e.,
the pressure readings are presented as the average head gradients across
the four tap elevations, the flow rates are presented as discharge veloc-
ities, and the viscosities are adjusted to reflect temperature corrections.
All notations are as previously defined, except for -Ah/AL, which repre-
sents the gradient in the pressure head.

The specific technique used in the data reduction is adopted from
Dinoy (1971). Briefly, equation (5) is modified by dividing through by
vqq to obtain:

C
1 1 1 £
- = + yz) = =+ —=55 |a,]-
Vg P A KD vKllz I'dl
;o |2
Letting
1 _ An
5% Vip +Y¥2) = g,

the total head gradient, the above equation hecomes:
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Now let the left-hand side of the equation be referred to as Kpo, the
permeability resulting from applying Darcy's Law at any Reynolds number.
Then,

1 _ 1, % %
K K 1/2 v °?
po. P Kp

where the absolute value signs have been dropped from qq because the
flow is unidirectional in the permeameter. Cf and Kp are constants for
any particular medium; consequently, plotting 1/K po versus qd/v should
produce a straight line. The value of the 1ntercept at qd/v = 0 is
simply the reciprocal of the true permeability, Kp.

The seventh column in the tabulation of Appendix F evaluates 1/Kpo
for the various qg/v. A least-squares computer program is used to fit

a straight line through the data and extrapolate the value of 1/Kp at
qd/v = 0. The resulting value of Kp is listed at the bottom of the
eighth colum in each table. Once Kp is known, the permeability

Reynolds number may be evaluated directly from:

1/2

and the friction factor, fkp, is solved from equation (5) as:

(1/2. bh
£ _ B AL
K 2

P 4

Then equation (6) yields the turbulent damping coefficient:.

The last three columns in the tabulation of Appendix F evaluate these
qQuantities in order. The mean value of Cf, listed at the bottom of
the last column, is accepted as a representatlve value for the medium.

There is some scatter in the value of Cf, especially at low
Reynolds numbers. This is a result of experimental errors attributed
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to the difficulty of discerning small pressure losses at low flow rates.
Pressure fluctuations in the supply line compound this difficulty. These
same errors weigh heavily on the slope intercept method for evaluating Kp.
Nevertheless, the technique is sound and gives good correlation between
experiment and theory for the friction factor (Fig. 17). Note that the

damping does indeed become pure Darcian at low Reynolds numbers and fully
turbulent at high Reynolds numbers.

No corrections have been made for permeameter wall effects. Dudgeon
(1967) reports that the resulting errors are 10 percent or less, but does
not provide a satisfactory method for making numerical corrections. In

this study, the effect is accepted as within the range of experimental
and data reduction errors.

A summary of the hydraulic properties are given in Table 2.

Table 2. Media hydraulic properties.

Commercial Equivalent sphere Permeability '| Turbulent damping
size diameter coefficient
d Kp Ce
(in) (in) (£t2) (dimensionless)
0.375 - 0.325 3.74-1077 0.406
0.75 0.774 1.138-10°° 0.295
1.5 1.37 8.638:1076 0.390

Model Descriptions. Tests on two different gravel-filled structures
are presented in detail. The model dimensions are scaled in accordance
with the requireménts of a separate study on scale effects (Wilson, 1971).
As a result, the model widths, the water depths, and the gravel sizes

all bear the same ratio. The physical dimensions of the two models are
described in Table 3.

Table 3. Model dimensions.

Gravel size (d) '0.774 in 1.37 in
Breakwater width (b) 12,00 in 21.6 in
height 18.44 in 32.13 in
breadth 29.75 in 29.75 in
weight 373.2 1b 1,126.5 1b
In Situ porosity (g) 0.411 0.437
Water depth (h) 12,0 in 21,6 in
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The gravel is contained in wire-screen cribs, shaped as rectangular
parallelopipeds. The screen is constructed of 0.05-inch galvanized wire
spaced at 0.5 inch on center. The shape and structural integrity of the
crib is reinforced with 0.05-inch cross wires spaced at 3 to 4 inches on
center between the two vertical breakwater faces. The cribs are filled in
the wave tank by pouring small quantities of gravel in a random fashion.
However, the gravel level is increased uniformly and care is taken to
avoid oversized pores near corners and around cross wires.

The breadth of the models is limited by the 30-inch lateral dimension
of the wave tank. Consequently, the wire cribs are 29.75 inches across
and 1/8-inch Lucite sheets are used to fill the remaining gap between the
wave tank walls and the sides of model. The model heights are sufficient
to prevent overtopping by the highest waves. The dry gravel weights, gross
crib volumes and previously determined specific gravities (Table 1) are
combined to calculate the in situ breakwater porosities. The resulting
values are quite close to the permeameter sample porosities in Table 1.

The large and small models are placed on 1/4- and 1/8-inch-thick
plywood sheets, respectively, to prevent concentrated point loads on the
glass bottom wave tank. The wire crib and interlocking gravel combine
to make an extremely rigid structure. The rigidity and bulk weight of
the models overcome any tendency to flex or slip under the action of even
the highest waves. Photos of each model are shown in Figure 18.

4., Trapezoidal-Layered Breakwater.

Model Description. The sloping-face breakwater design optimizes the
laboratory wave-generating capabilities with the size and quantity of
available rock. The configuration is of the deepwater variety, wherein
the armor layer extends approximately two-thirds of the distance to the
toe. The design dimensions are shown in Figure 19.

The three-layered structure is composed of the gravel materials whose
properties are given in Tables 1 and 2. The 3/8-inch gravel is used for
the mat and core. The intermediate layer is constructed of 3/4-inch gra-
‘vel. The 1l%-inch gravel forms the armor layer.

The actual construction is performed by hand. Dry rock is poured in
place from a l-quart container. The layers are screeded and compacted
lightly with a 29-inch-long 2 by 4. Each layer is completed before moving
on to the next. A 1/8-inch-thick piece of masonite, 30 by 66 inches,

is placed underneath the breakwater to prevent concentrated point loadings
on the plate glass tank bottom.

In situ porosities are determined from the weight, volume, and speci-
fic gravity of each layer. The calculated porosities for 3/8-, 3/4-, and
1%-inch gravel are 0.440, 0.432, and 0.414, respectively. Note that these
results are within 2 percent of the porosities determined for the perme-
ameter samples in Table 1.
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Figure 18. Rectangular homogeneous crib-style
breakwater.
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The exterior face and each layer are sloped at 1.5:1. This is a stable
slope for the nonovertopping wave conditions imposed in this study. Photos
of the completed breakwater model are shown in Figure 20.

Figure 20. Trapezoidal-layered breakwater model.
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5. Wave ‘Tes"ting‘ ‘Facilities and Procedures.

a. General Equ;pment Descrlptlon The wave experiments were con-
ducted at the Ralph M. Parsons Laboratory for Water Resources and Hydro—
dynamics, Massachusetts Institute of Technology (MIT). The wave tank is
of rectangular cross section with glass walls and bottom supported on a
structural steel frame. The test section (Fig. 21) extends 90 feet from
the wave generator to the crest of the beach and is 30 inches wide by 34
inches deep. The plywood beach is sloped at 1:10 and is covered with 2
inches of rubberized horsehair to reduce wave reflection. A wave filter
constructed of parallel sheets of expanded aluminum lath is placed in
front of the generator to reduce surface ripples and smooth the overall
profile of the incident wave.

The wave generator is of the hinged-flap variety with a continuously
variable stoke and frequency. Power is provided by a 1.5-horsepower
Master Speedranger variable-speed drive unit. V-belts couple this umit
to a pulley and shaft. The shaft is keyed to a 12-inch diameter, %-inch-
thick steel drive wheel. Power is transmitted to the generator plate via
a 2-foot-long stainless-steel connecting rod. The rod is pinned to both
the drive wheel and the generator plate. The eccentricity of the drive-
wheel pin is continuously variable from 0 to 4 inches. The aluminum
generator plate is hinged at the bottom and measures 30 by 32 by 3/8
inches. The plate normally oscillates about a mean vertical position.
However, to generate long waves of appreciable amplitude it is necessary
to operate the plate about a mean angle of approximately 35° to the hori-
zontal. This position effectively increases the submerged surface area
of the plate and, for a given angle of rotation, the displaced volume of
fluid increases accordingly. In either position, the resulting wave pro-
files are acceptably uniform beyond the wave filter.

Wave conditions are monitored by two resistance-type wave gages
mounted on moving carriages. The gages are constructed from two 1/8-inch-
diameter uncoated stainless-steel rods separated by a distance of 1 inch
and mounted in insulating acrylic blocks. An input signal to each.gage
is provided by the oscillator section of a Sanborn Model 350-1100 C pre-
amplifier. Each gage acts as an additional variable resistor in a Wheat-
stone bridge circuit. When the gage is partially immersed in water, the
circuit is completed and the flow of current across the wires is propor-
tional to the immersed depth. The signal is returned to the Sanborn
instrument, amplified, and recorded on a twin-channel Sanborn oscillo-
graph Model 77-12 B.

b. Procedures. The gages are calibrated statically by immersing each
gage in a vertical position to a known depth and recording the immersed
depth as a function of the oscillograph pen deflection. The response is
linear within 5 percent for all sensitivity ranges used in conjunction
with this study. Wiegel (1955) conducted extensive dynamic tests on
resistance-type wave gages and concluded that the estimated error of the
wave gage and recording system is + 5 percent.
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The wave gages are hrushed clean with steel wool and wiped with a
highly volatile solvent before each day's test. The calibration is
checked at the end of each test. Recalibrations have proven to be unnec-
essary due to the stability of the Sanhorn unit.

It has been observed in this study that reflections from permeable
breakwaters result in a change in wave amplitude and phase but not fre-
quency. Consequently, the superposition of incident and reflected waves
yields a partial standing wave. The standing-wave envelope profile does
not propagate relative to a fixed reference system. It merely oscillates
in one place. If such a profile is to be measured, a wave gage must be
moved perpendicular to the crestline to record the amplitudes of the
oscillations at successive positions. Using this method, one will find
relative maxima and minima every quarter wavelength in the standing-wave
envelope. The maxima occur where the incident and reflected wave crests
superimpose to yield a surface elevation equal to the sum of the two
amplitudes. At the same point, one-half period later, the troughs super-
impose to yield a maximum surface depression. The minima occur where the
incident and reflected waves interfere, i.e., the reflected trough sub-
tracts from the incident crest to yield a minimum envelope surface eleva-
tion. Likewise, one-half period later, the incident trough subtracts from
the reflected crest to yield a minimum envelope surface depression. By
moving the wave gage, the investigator is able to locate and record these
maxima and minima and the resulting record appears as in Figure 22.
Linear wave theory allows one to solve directly for the incident and
reflected wave heights because:

H = = 2(
max (ai + ar) + (ai + ar) 2\a1 + ar),

v

Hpyp = (ai - ar) - (ar -.ai) = Z(ai - ar).
Hence,
Hmax + Hmin
By =23y = ———5——° (97)
and
2 Pnax ~ Bnin
"~ a "®_ Fu§ (98)
i max min

This same method is used to separate the transmitted wave component
from any partial reflections off the beach. The beach reflections are
typically of the order 3 to 4 percent, always less than 7 percent, and
are therefore usually ignored.

The general technique used in this study for measuring wave envelopes
is to record Hmax and Hpin at several positions along the wave tank
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and use the average values in determining the incident and reflected wave
heights. It is the usual practice to avoid the region immediately
adjacent to the breakwater where local modes disorder the free surface.

The resistance wave probes are sensitive to any highly conductive
material which interferes with the electric field near the probe. This
problem manifests itself as an imbalance in the output signal. The diffi-
culty is overcome by laying ground wires along the tank bottom centerline
and by additional grounding of the wave filter and breakwater crib.

The test section of the wave tank is moderately short so that waves
reflected off the breakwater face return to the wave generator and super-
impose with the incident wave before the measurements can be completed.
However, with each traverse of the test section the wave amplitude is
dampened and reduced as it passes through the wave filter and is further
reduced due to partial transmission into the breakwater. Consequently,
after propagating back and forth a number of times, the original ampli-
tude of any single wave component is reduced to a negligible level. Then
a steady-state situation is attained where the energy fed into the system
by the wave generator is equal to that absorbed by the filter and trans-
mitted into the breakwater. When this state has been attained, all wave
components propagating towards the breakwater superimpose to yield the
incident wave and all wave components propagating towards the wave gener-
ator superimpose to yield the reflected wave. The steady state is typi-
cally achieved after three or four traverses of the test section, and is
readily identified when the partial standing-wave envelope remains uniform.
Then the standard techniques discussed above are used to determine the
resulting incident, reflected, and transmitted wave amplitudes.

IV. EXPERIMENTAL AND THEORETICAL RESULTS

1. Introduction.

The results of the theory formulated in Section II and the experimental
program described in Section III are summarized in this section. The
behavior of the predicted and measured results are compared and evaluated.
Application of the analysis to prototype conditions is also discussed.

The governing independent dimensionless parameters have been identified
as b/h, &, kh, and f. The damping coefficient, f, evaluated via the
'equivaleht work, principle contains the dependence on wave steepness and
media properties. For a given breakwater configuration b/h, € and the
media properties are fixed. Consequently, the wave steepness, H;/L,
and the dimensionless wave number, kh, constitute the two remaining
degrees of freedom which can be varied to evaluate the breakwater per-
formance.

The reflection and transmission coefficients are presented (in figures)
as functions of the wave steepness for a range of wave numbers. Experi-
mental and theoretical results are given for four breakwater configura-
tions: two homogeneous crib-style structures, one trapezoidal-layered
structure, and one pile-array structure.
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2. Homogeneous Crib-Style Breakwaters.

a. Experimental Results. The wave reflection and transmission data
are collected using the procedures described in Section III, 5, b. All
of the data are tabulated in Wilson (1971). Small- and large-model
dimensions are given in Table 3. '

Changes in the incident wave height and wavelength in the small-model
tests are initiated by setting the drive-wheel pin at discrete eccentric-
ities and varying the generator frequency over a broad bandwidth. This
technique leads to a great variety in incident wave numbers and wave
steepness, but it precludes presentation of wave data for constant values
of the wave number. As a result, the reflection and transmission coef-
ficients are presented as functions of the wave steepness for finite
ranges in the wave number. That is, a median value of kh 1is selected
and all data w. thin * 0.25 of the value are plotted on the same graph.

Figures 23 to 27 present the experimental reflection and transmission
coefficients as a function of wave steepness for relatively constant
values of the dimensionless wave number (or relative depth). The graphs
show that the transmission coefficient is strongly dependent on the inci-
dent wave steepness. As predicted by the simple form of the long-wave
solution, the transmission coefficient tends to decrease with increasing
wave steepness. The reflection coefficient, on the other hand, is rela-
tively insensitive to changes in wave steepness. One would expect the
structure to be more impervious to steeper waves due to increased flow
resistance in the pores of the granular fill. However, the reflected
wave is also partially attenuated due to the roughness of the reflecting
surface. This latter effect appears to be sufficient to compensate for
the expected increase in the reflection coefficient.

The dependence on wave number becomes apparent when the six figures
are compared with each other. In general, there appears to be a decrease
in both the reflection and transmission coefficient for shorter wavelengths.
This behavior is clearly visible in Figure 28 where the reflection and
transmission coefficients are plotted as a function of wave number for a
constant wave steepness, Hj/L = 0.01 £ 0.002. A relative maximum in each
coefficient appears near kh = 1.0. This is probably due to a trade-off
between increasing wave height and increasing wavelength as kh decreases
and Hj/L remains constant. Increasing wavelength makes the breakwater
appear to be more transparent (thereby decreasing CR) while increasing
wave height causes the damping to be more severe (thereby decreasing Cr).
At high wave numbers, the relative roughness of the windward face reduces
the reflection coefficient and the high frequencies promote severe inter-
nal damping so that Cr decreases.

Wave conditions in the large-model tests are controlled in the reverse

order of the procedure used in the small-model tests. In particular, the
generator frequency is set at discrete values while the eccentricity of
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the drive-wheel pin is varied. This produces variable wave steepness for
constant values of the wave numbér, a desirable condition for graphical
presentation of the data. '

The large-model reflection and transmission coefficients are plotted
as a function of wave steepness for five constant wave numbers in
Figures 29 to 33. The results exhibit the same basic trends demonstrated
in the small-model tests: transmission coefficients decrease with increas-
ing wave steepness and wave number; reflection coefficients are relatively
constant with respect to wave steepness but decrease with increasing wave
number. Figure 34 shows the effect of changing wave number while main-
taining wave steepness at H;/L = 0.01. Again, relative maxima occur near

kh = 1.0, as in the small model, with decreasing reflection and trans-
mission coefficients for both large and small kh.

b. Comparison of Experimental and Theoretical Results. Theoretical
solutions are also plotted in Figures 23 to 34, and are obtained for a
five-term eigen series. The spatial integration in the numerator of the
Lorentz equation is performed numerically using a 10 by 10 grid to repre-
sent the submerged cross section of the breakwater. Appendix E shows the
computer program used to evaluate the theoretical solution. Theoretical
results are presented for the median kh occurring in each of the small-

model figures and for the specified constant kh occurring in each of
the large-model figures. :

The theoretical behavior is clear--transmission coefficients decrease
and reflection coefficients increase with increasing wave steepness. The
theory generally overestimates the transmission coefficient at all wave
steepnesses and all wave numbqrs. In addition, the theory underestimates
the reflection coefficient at low steepnesses and overestimates the
reflection coefficient at high steepnesses. These discrepancies may be
due to several factors including: (a) errors made in estimating the
permeability, (b) unsteady modification of the steady-state damping law,
(c) violation of the assumed macroscopic flow-field scale when particle
orbits become smaller than the rubble diameter, and (d) roughness of the
breakwater reflecting surface.

Errors caused by inferior estimates of the permeability are a real
possibility. The slope intercept method of measuring permeability is
very sensitive to inaccurate permeameter pressure readings at low flow
rates. If the low flow-rate readings are omitted from the permeability
analysis (also omit two high flow-rate readings which deviate from the
rest of the data; see App. F, Fig. F), the permeability and friction
factor calculations are revised (App. F, Tables F-4, F-5, and F-6). The
tabulated values of Cg display a marked decrease in scatter relative to
Tables F-1, F-2, and F-3 (App. F). This demonstrates that much of the
error is in the low Reynolds number data.

The resulting permeability and friction coefficient values are
summarized in Table 4.
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Table 4. Revised media hydraulic properties.

Commercial Equivalent sphere Permeability Turbulent damping
size diameter coefficient
d Kp Ce
(in) (in) ~(£t?) (dimensionless)
0.375 0.325 2.53-1077 0.314
0.75 0.774 7.19:10°7 0.218 ,
1.5 1.37 3.20-107° . 0.228

By comparing the properties in Table 4 with those in Table 3 it is
evident that eliminating the low Reynolds number data decreases the per-
meability and the turbulent damping coefficient. However, the ratio of
Cf/Kp? remains relatively constant. According to equation (5), this
change in hydraulic properties produces more frictional resistance at low
Reynolds numbers (where 1/K dominates) and the same resistance at high

Reynolds numbers (where Cf/Kp dominates). One might anticipate the
latter result because the same high Reynolds number data are analyzed

in both cases. The net effect of the reduced permeability is an apparent
increase in the fluid resistance of the structure; this should cause a
relative increase in the reflection coefficient and a decrease in the
transmission coefficient.

The revised theoretical solution to the small breakwater problem is
shown in Figure 35. Comparison with Figure 28 demonstrates that elimi-
nating the low Reynolds number data from the permeability analysis does
tend to improve correlation between experiment and theory. The improve-
ment is relatively small compared to the large change in the permeability.
This suggests that even in the small model, the unsteady damping is domi-
nated by the turbulent resistance forces. It also indicates that in future
studies it is probably not necessary to collect permeameter data at low
Reynolds numbers. The high Reynolds number data are easier to obtain and
seem to prescribe the media properties adequately. This certainly would
apply for prototype-scale media.

Another source of discrepancy between theory and experiment may be
that the steady-state damping law (eq. 3) is not entirely suitable for
small models which are excited by relatively high-frequency waves. It
may be necessary to add an unsteady inertial force to the resistance law
as in the pile-array analysis, represented by equation (88). The net
effect of the additional inertial force is to increase the inertial
coefficient, S, to a value greater than unity. As shown in Figure 9,
increasing S causes a corresponding increase in the reflection coeffi-
cient and decrease in the transmission coefficient. This would also tend
to improve correlation between theory and experiment in Figures 23 to 34.
One cannot predict the magnitude of the inertial coefficient in advance
because the virtual mass of densely packed fractured stone is not known.
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However, evaluation of S, may serve as a calibrating link between
theory and experiment in future studies.

Theory and experiment also tend to diverge for very small values of
the incident wave amplitude. This response is apparent at small Hj/L on
the constant kh curves, and at large kh on the constant Hj/L curves
It is hypothesized that this behavior is due to the scale of the fluid
motion becoming smaller than the aggregate scale on the breakwater surface.
As the wave amplitude becomes very small, the wave field orbit diameters
are exceeded by the individual rock diameters on the slope. Then the
waves begin interacting with individual pieces of gravel rather than a
continuous porous slope. The reflection process is modified as waves are
partially reflected directly off particle surfaces. As the relative scale
of the particle increases, the direct-refléction processes dominate and
the reflection coefficient seeks a limiting value near 50 to 60 percent.
This value is equal to the percent of solids of the porous surface.

The theory does not account for this behavior because the seepage
velocity concept assumes that fluid particle trajectories are large for
media grain size so that interaction with individual units of media can
be ignored. When the orbital trajectories are equal or less than the
grain diameter, this assumption is violated. Then the flow field begins
to function like a series of interconnected cells rather than a continuum.

The ratio of equivalent sphere diameter to water depth in both models
is approximately d/h = 0.064. For the wave height to exceed the particle
diameter, the lower limit on the wave steepness is:

H,/L % (d/h) (h/L) ~ kh/100

Although this is only an approximate guide, it is apparent in the.preced-
ing figures that correlation between theory and experiment generally
improve above this limiting steepness.

The fourth factor which influences the disparity between experiment
and theory is the damping effect of the rough reflecting surface. As the
wave heights increase, the attenuation due to surface roughness also
increases. The theory does not account for this effect and therefore
tends to overestimate the wave reflection at high steepnesses.

The experimental procedure for determining reflection coefficients
assumes that the wave profiles are simple sinusoids. This procedure tends
to underestimate the reflection coefficient when finite amplitude effects
become significant (Goda, 1968), and may contribute to experimental error
for the steep, long-wave measurements.

A scale effect in the transmission coefficient becomes apparent when

the small- and large-model results are compared in Figures 28 and 34.
This feature is discussed later in this section.
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The theoretigal results are heavily influenced by the approximation
introduced Fhrough the Lorentz equivalent work principle. This linear-
izing technique prevents the theory from predicting the occurrence of
high harmonics due to non-Darcian damping. The existence of these har-
monics is only weakly evident in the experimental long-wave records.

Nevertheless, part of the theoretical error may be attributed to the
Ilniear approximation.

In summary, it may be concluded that theory and experiment correlate
best when the incident wave height exceeds the rock diameter on the wind-
ward breakwater face. The transmission coefficient is the more useful
quantity and correlates better with the theory than does the reflection
coefficient. The theory tends to slightly overestimate the transmission
coefficient but this is a desirable condition for design application.

3. Trapezoidal-Layered Breakwater.

a. Experimental Results. Wave reflection and transmission data are

collected using the procedures described previously. The data are tabu-
lated in Appendix G.

The experiments are conducted at a stillwater depth of 14 inches.
This water level is relatively high with respect to the elevation of the
breakwater core. It is comparable to a high spring tide, a condition
which is conducive to large transmission coefficients. The wave height
and length are controlled by setting the generator frequency at predeter-
mined constant values and then varying the eccentricity of the drive-wheel

pin. This produces variable wave steepness at several constant wave
numbers .

Figures 36 to 41 present the reflection and transmission coefficients
as functions of incident wave steepness - for six values of kh. The trans-
mission coefficients behavior is similar to that observed for the homo-
geneous rectangular breakwater, i.e., transmission decreases with
increasing wave steepness. The reflection coefficient, on the other
hand, decreases with increasing wave steepness and wave number. The
dependence on wave steepness results from waves breaking on the inclined
slope. Observations during the experiments verify that steeper waves’
break more violently on the rough permeable slope.

The dependence on wave number is delineated in Figures 42 and 43. In
contrast to the homogeneous rectangular breakwater results, a relative
maximum does not appear in the reflection coefficient. The additional
effect of wave breaking seems to reduce the reflection coefficients more
abruptly and eliminates the relative maximum near kh = 1.0. However, a
definite relative minimum does appear in the reflection coefficient near
kh = 2.5 in the trapezoidal structure. A similar minimum is weakly
apparent in the rectangular structures (Figs. 29 and 34). This behavior
is interpreted as caused by the fluid-motion scale decreasing below the
aggregate scale on the breakwater surface. When the wave velocity field
orbit diameters become smaller than the aggregate diameter, the waves
begin interacting with individual pieces of rubble as in the crib-style
breakwater. Wave breaking is partially replaced by direct reflection
off rubble surfaces, and the reflection coefficient tends to increase.
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This argument can be substantiated quantitatively. The velocity
field orbit diameters are less than or equal to the wave height. For
kh = 2.5 and Hy/L = 0.02, H;/h is equal to 0.05. The ratio of the mean
particle diameter to st111water depth is equal to d/h = 0.1. Thus, the
scale of the wave motion is approximately one-half the particle diameter
when the reflection coefficient begins to increase.

b. Comparison of Experimental and Theoretical Results. The theoret-
ical solution is obtained according to the procedures in Section II, 5, f.
A five-term eigen series is chosen to specify the velocity field. The
spatial integration in the numerator of the modified Lorentz equation is
evaluated numerically using the discretization. scheme of Appendix D. The
breaking loss is evaluated with the roughness coefficient fg = 1/3. This
value is found to give best correlation between theory and experiment.

The theoretical results are presented in Figures 36 to 43. The solu-
tion behavior is similar to that of the crib-style breakwater--trans-
mission decreases with increasing wave steepness and number; reflection
increases with increasing steepness and decreasing wave number.

The transmission coefficient experimental and theoretical results
correlate very well, even better than the crib-style breakwater results.
It is likely that this is due to the inclusion of surface losses on the
inclined face of the structure, whereas such losses are ignored on the
vertical-face structure.

The reflection coefficient does not fare as well. The theory gener-
ally underestimates the experimental results at low steepnesses and over-
estimates the results at high steepnesses. 1In addition, the theory does
not account for the abrupt increase in the reflection coefficient at
kh = 2.5. The low steepness and high-wave number disparity can be attri-
buted at least partially to the wave height becoming small with respect
to the media grain diameter; this causes relative increases in the reflec-
tion coefficient. The theory does not account for this effect because it
assumes the pore sizes to be small with respect to the length scale of the
fluid motion. The inertial effect and errors in the permeability measure-
ment may also contribute to any differences between theory and experiment.

The success of the theory is dependent on the evaluation of the
surface-roughness coefficient, fg. This coefficient is not a universal
constant, but is a function of the shape of the armor-layer material.

The value fg = 1/3 determined in this study, represents an approximate
first guess for all rubble slopes which are modeled using this theory.
Tetrapods and other artificial armor material can be expected to have
their own characteristic value. Further model studies are necessary to
evaluate fg for these materials. The form of the proposed empirical
expression for Miche's intrinsic surface-reflection coefficient (eq. 80)
has provided favorable results in the application of this study. Further
comparison with other experiments is needed to verify its general appli-
cability.
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A general assessment of the theory is that it predicts the important
features of wave interaction with conventional breakwaters quite well.
The transmission coefficient is the quantity of greatest interest and it
is evaluated within the range of experimental error. The results seem to
justify the assumptions made in the equivalent rectangular breakwater
solution. Although the validity of the theory is not established by
comparison with a single set of experiments, the available results tend

to support the assertion that the important physical processes have been
accounted for.

4. Pile-Arréy Breakwaters.

Costello (1952) conducted two-dimensional model tests on pile-array
structures composed of vertical circular cylinders. Experimental data

from two of his models are presented herein and compared with the theory
in Section II, 6.

The structures are composed of 3/8-inch-diameter piles spaced 1 inch
on center in an orthogonal pattern of rows and columns. The resulting
porosity is 89 percent. The water depth is maintained at 1.5 feet and
the piles extend well above the maximum wave height. The two structures

differ only in longitudinal extent; one is 24 rows long, the other is 48
Trows long.

Incident and transmitted wave amplitudes are monitored with parallel-
wire resistance-type wave gages. No mention or record of reflection
measurements is given. The transmission coefficients are measured 3.5
feet shoreward of the test section. The incident wave characteristics
are varied between the following limits: 0.01 < H;/L <0.12; 1 g kh 5 4.

The transmission coefficients for both models are presented as func-
tions of incident wave steepness in Figure 44. The graph shows that the
transmission coefficient decreases with increasing wave steepness and

increasing breakwater width. The dependence on wave number is too weak
to positively identify.

The theoretical transmission coefficients are also plotted in Figure
44. The solution is obtained according to the procedure in Section II,
6, d. A five-term eigen series is used to describe the velocity field,

and all other conditions in the solution are specified by the geometry of
the structure.

Theoretical solutions are presented for kh = 1, 2, and 4 and 0.01
< Hj/L < 0.1. Correlation between experiment and theory is within the
range of experimental error with the exception of the kh = 2 curve on the
4-foot~long structure. Costello (1952) does not provide the wave numbers
for experimental data points on the long structure. Thus, it should not
be inferred that the theory is in error because the experimental data
simply may not apply to the kh = 2 curve.
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A relative maximum occurs in theoretical transmission coefficient

. between kh = 1 and kh = 4. This response corresponds to that observed
in the crib-style breakwater. However, the overall dependence on wave
number is much weaker. The general behavior is similar to that of wave
filters, i.e., high transmission and low reflection. The similarity is
due to the high porosity in both structures.

The theoretical reflection coefficients are also plotted for kh = 1.
Note that the reflection coefficient is greater for the short structure
at this particular kh. The apparent reason is that the ratio of incident
wavelength to the short structure length is 1:4. This causes the n,
component, which reflects off the leeward face of the structure, to
resonate. The behavior is analogous to a resonating tidal basin. The
reflection coefficients for kh = 2 and 4 are clustered near 0.03 < CR <
0.08. Experimental data are not available for comparison.

The favorable correlation between experiment and theory in Figure 44
demonstrates the utility of the theory as applied to pile-array structures.
Although the assumptions in the derivation apply rigorously only to long-
wave excitation, the results seem to justify application of the theory to
intermediate and short-wave excitation as well.

5. Scale Effects and Prototype Application.

A scale effect appears when the large- and small-model results are
compared for constant H;/L but variable kh. Figures 28 and 34 reveal
that the reflection coefficients are nearly equal while the transmission
coefficients are always greater in the large model. This shows that
essentially the same energy is being transmitted into each structure while
less is coming out of the small model. A qualitative argument can be made
for this behavior on the basis of friction factor-type internal damping.
Equation (5) gives the following relationship for the head loss per foot
through the small model:

£ 2
K u
dﬂl =_pm m 99
Am 12 g (99)
Pm

where (Ah/A%)p is the head loss per unit length through a structure
composed of rock of permeability Kpm» with friction factor fx n

defined as in equation (6), and with u, properly scaling the internal
velocity field. Likewise, in the large model:

fK u2
dh,  _ _pp P
(Al)p. K1/2 g °
PP



According to Dinoy (1971) and Ward (1964), the square root of the
permeability is girectly'proportional to the hydraulic radius of the
media. Thus, Kﬁm scales with the model length scale. Froude modeling
is assumed to govern the velocity field so the velocity-is scaled propor-
tional to the square root of the length scale. Summarizing:

(172,172
P

K'%=1/L
pm/p L/ .

2,2
u =
gm/ > Lm/Lp,

where Lp, Lp denote the length scales of the two models. Then the
ratio of the head-loss gradients is simply:

(h/82) fx

= pn | (100)
(Ah/Al)p fK

pp

The friction factors scale according to equation (6) as:

1
Kp = i;— + Cf. . (101)
p
Table 4 shows that the revised "Cf is approximately the same for the
0.774- and 1.37-inch gravel. The original estimate in Table 3 yields
a Cf for the 0.774-inch gravel which is -approximately 70 percent that
of the larger stone. Without asserting which values are correct, it can
be stated that the two values are nearly equal. The Reynolds numbers,
on the other hand, scale according to the square of the length ratio,
Because the small model operates at a considerably lower Reynolds number,
it may be assumed that it has a larger characteristic friction factor
according to equation (6). Equation (100) indicates that the head-loss
* gradient is greater in the small model, therefore damping is more severe.
Consequently, the transmission coefficient is reduced in the small model.

This result has important implications for scaling experimental
direct-transmission measurements because physical models tend to under-
estimate prototype transmission coefficients. Determining the magnitude
of the scale effect in a particular model requires that specific values
be assigned to the friction factors. The prototype friction factor may
be set equal to Cf because the damping is fully turbulent. The model
friction factor is a function of the Reynolds number and in an unsteady,
spatially variable flow field the choice of an appropriate Reynolds
number is not obvious.
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The theoretical solution overcomes this difficulty by solving the
prototype problem directly. The prototype solution requires an estima-
tion of the physical and hydraulic properties of the full-scale media.
One may determine these properties by performing the tests in Sections
I1I, 2 and III, 3 on samples of small-scale rubble which have approxi-
mately the same angularity and packing as that anticipated in the proto-
type rubble. Then, according to the results of Dinoy (1971) and Ward
(1964) , the permeability scales directly proportional to the length
ratio. The turbulent friction coefficient, Cf, and the porosity are
the same in similar materials. The surface-roughness coefficient, f5,

is assumed to be the same in model and prototype. Thus, previously
determined values for fs which characterize common armor-layer materials
may be used. With the media properties determined in this manner, the pro-
cedures of Section II are applied directly to solve the prototype problem.

V. CONCLUSION

1. Summary.

Rubble-mound breakwaters are designed to protect exposed marine areas
from excessive wave activity. Observations of breakwaters interacting
with surface waves in laboratory models and in full-scale field applica-
tions demonstrate that significant wave energy is transmitted through the
interstices of structures commonly regarded as being impervious. The
objective of this investigation is the development of a theoretical anal-
ysis to account for this phenomenon. The results are intended to be used
by coastal engineers to compare the effectiveness of alternative break-
water configurations, independent of repetitive experimental programs.

Three different breakwater designs are considered: (a) crib-style
breakwaters with vertical walls 'and homogeneous fill; (b) conventional
trapezoidal-shaped structures with layered fill; and (c) pile-array break-
waters composed of vertical piles placed in symmetric patterns. The. two-
dimensional problem is studied. Waves are assumed to arrive at normal
incidence and end effects are ignored.

The analysis begins with the unsteady equations of motion for uncon-
fined flow through the voids of an arbitrary pervious structure. The
resistance forces are specified by known turbulent damping laws for flow
through coarse porous media and by drag and inertial forces for flow
through pile arrays. In either case, convective accelerations in the
macroscopic flow field are neglected and resistance forces are linearized
to facilitate an analytical solution. The linearizing technique requires
that the assumed first-order resistance law and the known turbulent law
dissipate the same amount of energy during one wave period throughout the
structure. The procedure explicitly evaluates the damping coefficient in
the assumed form of the resistance law without resorting to fitting tech-
niques with experimental data. This yields a potential flow solution
which is dependent on wave amplitude as' well as frequency, water depth
and the structure damping properties.
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Linear wave theory is assumed to apply outside the structure. The
reflected and transmitted amplitudes are solved in the crib-style break-
water problem and the pile-array problem by requiring continuity or pres-
sure and horizontal mass flux at the sea-breakwater interfaces. The con-
ventional. trapezoidal-layered breakwater problem'is solved by identifying
an equivalent rectangular breakwater which has the same submerged volume
as that of the original structure. Breaking losses are accounted for by
a semiempirical method which ultimately requires the experimental evalua-
tion of a dimensionless constant. The constant seems to characterize the
roughness of the reflecting surface. Breaking and internal losses are
combined in the linearized damping law and a mod1f1ed form of the crib-
style breakwater problem is solved.

The complete solution is expressed as an infinite series of eigen
functions. The first five terms are found to adequately specify the
velocity field for wavelengths longer than deepwater waves. Considerable
simplification is gained in the long-wave solution--only one eigen func-
tion is retained and depth dependence is eliminated. The long-wave solu-
tion has the greatest potential for design application.

’

2. Evaluation.

In all three breakwater configurations, theory and experiment gener-
ally concur that: (a) the transmission coefficient decreases with
decreasing wavelength, breakwater porosity and permeability, and increas-
ing wave height and breakwater width, and (b) the reflection coefficient
decreases with decreasing breakwater width and wavelength, and increasing
breakwater porosity and permeability.

Correlation between theory and experiment is best when the incident
wave height exceeds the diameter of the medium. When the wave heights
become much smaller than the characteristic medium diameter the break-
water behavior seems to be dominated by wave interaction with individual
units of rubble and the theoretical assumption of a continuum no longer
applies.

In general, the crib-style breakwater solution slightly overestimates
the measured transmission coefficient and underestimates the reflection
coefficient. The disparity is thought to be due to unsteady modifica-
tion of the assumed form of the damping law, errors in determining the
permeability and approximations introduced by the linearizing technique.
Nevertheless, the predicted transmission coefficients are very useful
design estimates.

Correlation between the conventional trapezoidal-shaped breakwater
theory and experiment is very favorable. The results are contingent upon
proper evaluation of the surface-roughness coefficient. The empirical
expression proposed to account for wave breaking has produced gratifying
results for one breakwater configuration but further verification is
needed. The equivalent rectangular breakwater hypothesis also works well

for long, low nonbreaking waves.
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Agreement between theory and experiment for. the pile-array structure
confirms the validity of the analysis when applied. to a well-defined,
homogeneous vertical-face structure. The results indicate that the
general method could be successfully applied to wave filters as well.

3. Future Investigations.

To apply the method proposed by this study to breakwaters of arbitrary
shape and composition, further work is needed to verify the breaking loss
calculation or to find a suitable substitute. . The roughness coefficient
should be evaluated for other armor-layer materials and it should be
determined if scale effects are inherent in this coefficient.

Three-dimensional effects and oblique incidence also need to be
studied. Combining the results with overtopping and diffraction tech-
" niques is a logical progression.

Breakwater response to random wave excitation may be of interest.
It is to be anticipated that only long, low swell will penetrate the less
permeable structures.

Finally, the linearizing technique used in this study precludes the
existence of higher harmonics in the theoretical solution. A perturba-
tion solution should be attempted for long-wave excitation to see if the
generation of multiple harmonics is important. This may be a useful input
to harbor seiching studies.
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APPENDIX A
ESTIMATING THE ROOTS TO THE COMPLEX DISPERSION EQUATION

To estimate the roots to the complex dispersion equation, it is
helpful to write the equation in the dimensionless form:

2
o' h : '
— (S - = - -
z ( if) rnh(l ian) th Pnh(l ian).
Experience gained through numerous trial solutions to this equation
has shown that for a wide range of frequencies and depths it is usually
possible to fine one solution near:

' Zh 1 '
— ST hthTh,
g n n

and

v

where the prime denotes the first estimate in the iteration scheme.
I'nm and op represent the actual solution to the above estimates and
the subscript m assumes the larger of the two values:

or

where integer math is used in the quotient. If m > 1, then in general
there will be m - 1 solutions in the vicinity of:

o T'hv (2n-1) %
- “}n=1,2,..,m = 1,

I''h ™ 0.4n

n

The remaining solutions will be found near

uﬁ F;h N onll '
} n=m+1,m+2, ....
T'ha T h(Ed
n n-1 n
These guidelines should be accepted as empirically based estimates
rather than hard and fast rules. They are presented here because extract-

ing roots from the dispersion equation can be a frustrating task without
some knowledge of the behavior of the solution.
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APPENDIX B
GENERAL CHARACTERISTICS OF THE COMPLEX DISPERSION EQUATION

The dispersion equations are transcendental and it is necessary to
solve for the roots by iteration. In spite of this difficulty there are
several features which can be identified without actually solving the
equations. First, because the hyperbolic tangent is an odd function of
the argument, the product .I'nth I'yh will always be positive. The denomi-
nator in equation (32) is also positive because:

0 < sinza T'h <1,
and

chzrh > 1.

The left-hand side of equation (32) is always positive and it follows
that the numerator must be positive for any roots to the equation. The
sine and hyperbolic sine are both odd functions but their quotient is
even in the numerator of equation (32); thus, the entire equation is
even with respect to T, and if T =T is a solution to equation (32),
then T' = - T is also a solution.’

The denominator in equation (33) is identical to the numerator in
equation (32) and, according to prior arguments, these quantities are
positive and even. It is easy to show that the numerator of equation
(33) is also positive, and even by considering the following:

|a sh 2Th| > |2arh|,

|sin 20rh| < |2arh},
therefore,

sin 2alh

o sh orn| S 10
and

sin 2alh

22 e > 0.

1+ 3 sharn 20

In addition, sin 2aTh and o sh 2Th are both odd functions with
respect to o and T; thus, their quotient and the entire numerator
are even. For f to be a proper damping coefficient, wherein it
extracts momentum from fluid motion, it must be positive. By these
arguments it has been established that the left-hand side of equation
(33) is positive and the quotient on the right-hand side is positive
and even. It follows directly that op must be positive to be a
solution to equation (33).
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APPENDIX C
EVALUATING LORENTZ'S CONDITION OF EQUIVALENT WORK

The velocity potentials and resulting velocities described in this
study are generally complex. Nonlinear operations performed on complex
quantities are not commutative; consequently, it is ncecessary to secure
the real part of a function before undertaking operations such as equa-
tion (72). Some simplifications can be made by recognizing the separable
properties of the special functions used in this study. For example, the
complex velocity, q, may be written as:

iot
q= (QR + 1 QI) e ’
where
QR’ QI = real function (x,z).
Then,
q= (QR + 1 QI)(cos ot + i sin ot),
and
QI .
4 = real q = QR(qos ot - 6; sin oOt).
Define:
Q
I
— = cot O,
QR 1
then,
QR 5
% =~ 5in sin (ot - 1).

1

The phase triangle,




shows that

Q
in 5, A2 +0q°
: s 1 % I
thus,
L : /QRZ +QI2 sin (ot - el)'.
Let
e=oz-el,
then,
de = d(ct))
and
q, = - /2 2
R QR + QI sin O,
thus,
qR >0 : (2n - l)n < ®< 2unll,
g <0 :2(n-1DI< 06 < (2n - 1N,

Integrals involving the absolute value of functions of q present
no problem if the above limits are observed, e.g.,

ot + 21 2nll (2n-1)T
la.3] deoe) = | q.3d0 - 340
R R g

o (2n-1)T 2(n-1)T .

. 3/2 2n (2n—l)n
(QR2.+ QIZ) { I —sin3OdO+ [ sin>0do }

(2n-1)1I 2(n—1)H

3/2 t+t ot+21
8 2 2 1y ¢ 3 1 3
=3 (@ *0) TJ lag”lae = 5 J |ag”latot)
o

t

=57 @ *+ 0 . . (-1

140



Also,

ot+211 2nll 2nll
2 2.~ 2 2 2
j 4 d(ot) = I A do = (QR + Qg ) J sin“04a0

ot 2(n-1)T 2(n-1)1
: t+t ot+211
- 2 2, 1 2. 1 2.,
Mo" + ;") F I qp dt = iﬁ'[ qp"d{ot)
t ‘0t
-1 2 2

Dividing the numerator and denon_linator of equation (72) by the wave
period, T, and substituting in equations (C-1) and (C-2) yield:

0 ¢

‘ - C 3/2
. 2, v 1 2 2 f 4 2 2
,dz [dxe{sz (N Q) Y=z eay QT o) )
Kp™
_ ‘=h 70 :
fo = 0 b » (C-3)
1 2 2 ‘
ldz fdx €5 (QR + 0 )
-h /0
where
Qp = Real(qe®%);

QI = Imag(q/eiot)

The denominator of equation (C-3) may be evaluated analytically by
defining a few auxiliary variables in terms of complex conjugates of
known functions. Let the complex velocity field vector, with the
temporal dependence removed, be denoted by:

” ~ iot
Q iQx+sz g/e ,

Then,

Q7 + 0,7 = Q-Q* = Q;Q* + Q03
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where the superscript, (*), denotes the complex conjugate. Qx and QZ
are evaluated from equation (36) as:

5 B iot
QX::—B; Z (Iin/e ’
=1
)

9 iot
0, = 3z m=1 ¢n/e :

Substituting the above into the denominator of equation (C-3) and
evaluating the integrals produces the following result after much algebra,

0 ¢b ' n .
sz [dx ;— (QR2 + QIZ) = 802 2 ‘ ‘1 2 ch2l' h - ios 20T h
~h 0 w1 0Lmrm ' o mm
a -2umrmd)
g 7 sh2l h
-0 ' b

% m m . . ’ * % C-4
(aj a;% . % - g_ sin 20 T h sin I b 23,5 + a* aZm)}'( )

The complex conjugate amplitude products may be replaced by the
following:

2 2 2 2 2
* * = -
(a1p21m * 2apPam) = 35 (Gig + G *+Cpp +Cy1)s (€3
m m m m
and 2
* * = -
(almaZm + almaZm) 2ai (ClR CZR + C11 C21 ), (C-6)
m m m m
where
ClR , C2R = Real (Clm’ sz),
m m

ClI , C21 = Imag. (Clm’ sz).
m . m
Combining equations (C-4), (C-5), and (C-6) yields the form of the
definite integral which is used in the computer program of Appendix D.
The results also apply to the first term in the numerator if the

permeability is constant. The second term must be evaluated numerically
because of the absolute value requirements.
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The numerical integration is accomplished by discretizing the break-
water cross section according to Appendix E and evaluating Qx and Qg
at each grid point. The absolute values are taken and a summation is
performed using a trapezoidal rule. Sufficient comment cards are
presented in the computer program listing to make this clear.
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APPENDIX D
COMPUTER PROGRAM LISTING

This appendix lists the computer program used to solve the trapezoidal-
layered breakwater problem. Sufficient comment cards are included to make
the computation scheme clear. A sample output is also presented.
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WAVE REFLECTICN AND TFANSMISSICN AT PERMEABLE BREAKWATERS

CCMPLEX CCHyCSFtCBGvIF,CHPLX'OMEGA,ESF'SFEyYG1CHK'YH’YA'\39CHI
CCMPLEX ZETALCEXP

COMPLEX CiX(27+5)9C2X(2745)3C2(845),S2(8,45)

CCMPLEX KE(5)9KI(5),)Y({5),SHKI5),YI(5)4CR{5)4CT(5),C1(5),C2(5)
CONMPLEX YE(5,35),YF(548),YD(5)4+Y(10,10),C(10)

REAL EPL(S)yCFLIS),PERML(5)AKHT10),CANBFR(10)

REAL EPS(8927)4+CF(8,27),PERM(B8,27),EXZ(8,27)

REAL KHUE)yCIR(5),CLI5)4C2R(5),C2I(5)CRR{5)sCRI(E)4CTRI(5)
FEAL CTI(5)+FFAIRIS ) $FFAZLI(S)yPHAZ2{E)yPFAZT(E),,GAFALS) sEETA(E)
REAL T1(5),T2(5),REFI(E),TRANS(S)

INTEGER LAYER(8,27)

IN THE DIMENSION STATEMENTS ABOVE, THE ‘PARTICULAR INTEGERS USEC
CORRESPONC TC 5=N, 1C=LIMIT=2%Ny 8=NZ, 27=AX )

THE FOLLOWINGC ARE STATEMENT FUNCTICNS

CH{ARG)=C.5% (EXF(ARG)4EXP(=ARG))
SH{ARG)=0.5*(EXP{ARG)I-EXP(-ARG)}
CCH{CRG)=Ce 5*{CEXP(CRC)I+CEXP (~CRE))
CSHICRG)=Coe SH{CEXP(LFRCI-CEXP(=CRC)}

FCCT, PCUND,y SECCND UMITS USEC FCR DIMENSIONAL QUANTITIES

IM=SCRT CF MINUS ONE
VISCO=KINEMATIC VISCCSITY
C=GRAVITY

IN=CMPLX(CeCyl.C)
vISCO=1.0GE-E
C=32.2
PI=2.1415626¢
CEGRE=180./P1
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EP=C.C -
FEAC IN EREAKWATER PRCPERTIES

S=INERTIAL CCEF
EH=BREAKWATEF WICTH
F=DEPTH CF ShL

SLCPE=COTANCGENT OF ANCLE OF INCLINATION CF WINCWARC BREAKWATER FACE
EREAK=SURFACE BREAKIMC CCEF CF SLCPE

REAL(S,1010)SsBFyH,SLCPE,BREAK

N NX=DIFENSICN CF AFFAY WHICF SPECIFIES SPATIAL VARIATICAN OF
EREAKWATER PFOPERTIES

M.=AC. CF DISCRETE LZYERS IN BREAKWATER

M=NO. OF EIGEN FUNCTICNS

AK=NC. OF WAVE ANCS. LSEC AS INCICENT WAVE EXCITATICN

AC=NG. OF WAVE CAMBERS(STEEPNESS) USEC AS INCICENT WAVE EXCITATICA
IFMAX=MAX ., NCo. OF CYCLES ALLOWED IN ITERATIVE SOLLTICN

FEAC{5+1C15)AXyNZsNL ¢MyNK,NC ,IFMAX

LAYER(I,J)=ICENTIFIES FROPERTIES OF LCCATION I,J wITH CANE OF NL LAYERS

REAC(Sy LCZCI((LAYER(I yJ) 9J=1 ¢NX) 9I1=1,N2Z)}

SET FREFIX OF I IN 1Cz0 FGRMAT ECUAL TO AX
EPLUI)=PCROSITY GF LAYER [
CFLUI)=TURBULENT FRICTICN CCEF CF LAYER 1
PERML(I)=PERFMEABILITY GF LAYER I

READ(5,1C30) (EPL(I) s CFL(T)4PERMLITI) o I=1,ML)
C 1C I=1,NZ

EP=MEAN PCROSITY OF SEAWARD FACE OF FECTANGULAR BREAKWATER
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EP=EF+EPL(LAYER(I,1))
0 1C J=14NX
IJ=L2YER( I, J)

EPS(I,J)=PORCSITY AT LCCATION [,J
CF{I,J)=TURBLLENT FRICTICN CCEF AT LOCATICN 1,4
PERM(1,J)=PERMEABILITY AT LOCATICN I,J

EPS(I,J)=EPL(1J)
CFUI,J)=CFL(TI)
FERM(I,J)=PEFNL(TJ)
EP=EP/NZ

LIMIT=2#N
LINE=LIMIT-1

E=BH/H

M=NZ-1

A=hx-1

CELZ,CELX=DIMENSICNLESS GRID SPACING BETVYEEN PCINTS SPECIFYINMNG
EREAKWATER PFRGPERTIES

CELX=B/NJ
CELZ=1.0/MI

ALPHA=ANGLE CF INCLIN!TICN UF BREAKWATER SLOPE.
IF(SLOPE .LE..1E-5)ALFLA=PI/2.

IF(SLCOPE «GE«+1E-S)ALFF2=ATAN(1.0/SLOPE)
SIA=SIN(ALPHA)

tLMAX=MAX, WAVE STEEPNESS WHICH WILL NCT BREAK GN SLCPE (MICFE'S

CRITERION)
HLMAX=SQRT( 2.*ALPHA/P1)*SIA*SIA/F]
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WRITE QUT BREAKWATER FfROPERTIES

PRITE(6,1040) : -
WRITE(6,1C50)NX4BHy N H

WRITE(641C55)SLCPE

WRITE(6+1C60)CILAYER (I9J)4J=19yNX)yI=1,N2) )

SET THE PREFIX OF 1 IM 1C60 FORMAT EQUAL 10 AX
WRITE( £,y 1C7C)

WRITE(5,1C80)
WRITE(Ey1CICIIILEPLITI,PERMLITI), CFLIT),T=1,NL)

REAC IN wAVE PROPERTIES

AKH(I)=PRCOUCT OF INCICENT WAVE NC. WITH CEPTH (FRCGRESSIVE MOCE)
CAMEBR{I)=INCICENT wWAVE STEEPNESS

READ(S,11C0) (AKH(I) 91=1,4NK}
FEAC(5411C0)(CAMBR(I191I=1,NC)
WRITE(641110)S,EF,VIS(C
WRITE(6y111Z)BREAK

€C 1000 IK=1,NK

SOLVE EIGEN VALUE - WAVE NOS. OUTSIOE BREAKHATEP, KE (M)

NOTE:z ALL WAVE NOS. IM THIS PRCGRAM ARE CIMEANSICALESSy I 4Eey
INCLUDE THE FROCUCT WwITH DEPTH. LIKEWISE THE RCRIZCNTAL SCALE IS
MADE DIMENSICALESS BY CIVIDING THRCUGH BY DEPTH

KE(1)=AKF{IK)
KH{1)=AKH(IK)

SIG= WAVE ANCULAR FRECUENCY

SIG=SORT (G*KF{1)*TANF (KH(1))/H)
SIG4=S1G**4
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SHG=SIG*SIG*F/G

FER=WAVE PERICC
FER=2.*%PI/S1G
WAVEL=INCIDENT WAVE LENGTH

WAVEL=Z2.C*PI#4H/KH(1}
FRG=KE(1)

CO0=CH(ARG)

SI=SH(ARG)
FKH=(KH{1)+SI*CG)/(CC2CO)

CELTA=MICFE®'S INTRINSIC REFLECTICN CCEF

IF{SLOPE .LE. . 1E=-S)DEL1A=1.0
IF(SLOPE oCE o «1E-5)IDELTA=1,0~EXP{£]1,/(SLOPE*BREAK*SHG))
WRITE(64112G)IKH(1)4SHCyPERyWAVEL
hRITE(691125)DELTA

£C 20 ¥M=2,4N

KE(M)==]V2P]I3(M-1)

CMECA=SHG

CALL EIGEN(VM,CMEGA,KE(NM),LARN)
IF{LARML,EC.11)G0 TO 1cC(C
KB(M)==AIMAG(KE(M]})

F=1.C ’

€0 SS0 IC=1.,AC

BEGIN ITERATICN CN F
F=LINEARIZEC CAMPING (CEF

ITERF=(Q

A=INCIDENT w2ZVE AMPLITUCE

MAINO145
PAINO146
MAINC147
MAINO148
MAINOL1 49
MAING150
MATINO1S51
MAINOLS2
MAINQO153
YAINQLl 54
MAINGC1ES
MAINO156
MAINOLS7
MAINGC158
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F=CAFBRUIC)*WAVEL/2.C
BRITE(64113CICAMBRIIC)

SCLVE FCR BREAKING LCSSES

FLC=A*STG4SIGH#SORTIFKF) /(PI*G)
RMICH=KLMAX/FLG

IF(RMICH.GT4 1.CIRMICH=1.C
EMICH={CELTA4RMICH) #3¢

ELOSS=DIMENSICNLESS ENERGY LCST 1O BREAKING

ELCSS=GXG*FKE*{1.,C~ENICH)/({2.0%BF*H*51G4 )
IFIELOSS oLT +C+CIELOSS=CWC

IF(SLCPELLT 4 «1)ELCSS=C.D

ITERF=ITERF+1

IFCITERFLCT .IFMAX)IGO TC 410
IF(ITERFoEQeleANCLICCTL)IF=F¥SGRT(CAMEBR (IC) /CAMBR(IC-1))

SCLVE EIGEN VALUE WAVE NCS. INSICE BREAKWATER, KI(N)
FSHC=F*SHC

SSHG=S*S+C

v=1

CMEGA=SIGMAXSIGMAXH/C#(S—IM*F) IN THESIS NOTATION

CMEGA=SSHG-IN*FSKG

XR=SSHG+F/1C. ’
IF(SSHG.LE.I.O-AND.FSFG.GT.#-C)XR=SSHG*(lonF/lO.)

YIV=FSHG

th=FSHG730’10
IF(SSFGeLlTe2eeANDoFSHECoLT e3¢ #NFS cANDSFSHGGT 2. %xNF S=1) YI F=NF S*P]

"ESTIMATE AN INITIAL VZLUE TJ KI(M) AND THEN CALL 'EIGEN' TC
SCLVE FGF EXACT VALUE VIA NEWTTN-RAPHSCON METHCLC
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SEE APPEACIX B FCR EXFLANATION 0& INITIAL ESTIMATES 10 K1(M)

KI{M)=XR-IM3YIM

CALL EIGEN{M,CMEGA,;K1 (M) LARN)
IF(LARM.EC.1)G0 TG 1€CO
ANPI=FSHG/FI+C.25
IF(NPI.LT.L)GC TC 5C

CC 40 1=1,NPI

F=I+l )

YIM=(I-0.5) #F]
XR=FI*[* (I~C .25/ (2 .CAFSKG)
KI{M)=XR—-IM*YIM

CALL EIGEN{M,OMEGA,K1(M),LARM)
IFCLARM.EC.1)GC TC 1cCcCe
IF{M.GE.NIGC TO 7C

CCATINUE

API=API+2

L0 £C M=NPI4A
YR=FSHGXC 44/ (2.0%%(¥=2))

TF(M.EQ.RPI ¢ ANDoSSHG « CE« 2% {NPI-1))XR=(NFI=1) /SSHG

KI{M)=XR4KE (M)

CALL EIGEN(M,CMEGA,KIN)4LARYN)
IF{LARMJ.EQ.1IGC TO 1C(Q

CCNT INUE

Al=A-1

[0 8C M=14N1

N2=N+l

CO EC MP=A2,A

IF(CABS {(KI(MI=KI(MP)I/(KI(MI4KI(MPI)) oL Te0eCIIWRITELS91140) M MP
SOLVE FOR CCEF MATRIX IN ORTHUGONAL INTERFACIAL BCUNCARY CONCITICAS

ESF=EP/(S-IVAF)
SFE=(S~IM#F=1.,0)/EP

CC 110 MI=1,A
YC(MI)=ESF*KI(MI)/KE(])
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YOU(MI)=CEXP (- IM*KT(M1}48)

YG=KE(L) #KT(FI)/(KI(M1)9%2—KE (1) #%2)
CRG=KI(MI)

SFK(MI)=CSH(CRG)

CHK=CCH(CRG)

YH= SFK(MI)*CFK/(SHK(PI)*CHK#KI(HI))
YI(MI)=SFE*YC*YF

CC 11C ME=1,M

YA= (KI(MI)*%Z-KE(L1)#42)/(KI(MI )%22-KE(ME )#*2)
YB=KE{NE)/KE (L)
YE(MIyME)=YA*{YB+YC{M])
YE(MI+ME)=YA4(YB=YC(N])
CO 120 I=1,LIME,2
MI=(I+1)/2
C(I)=1.0-YC(N])
CI{I+1)=1.C+YC(MT)

€0 120 J=1,L IME,2
PE=(J+1) /2

Y(IsJ)=YE(MI ME)
Y(IsJ#1)=YF (M, ME)*YL (ML)
Y(I+1,J)=YF(FI,VNE)
Y(I#41,d+1)=YE(MI,ME) /YC(MI)

)
)

CALL SIMC TC SOLVE FCR UNKNOWN CCMPLEX DIMENSICNLESS AMPLITULCES
NOTE THAT Y MUST BE C IMENSIONED EXACTLY AS LINMIT BY LIMIT,
CTHERWISE CCAVERT TC (CLUMN MATRIX BEFORE CALLING SIMQ

CALL SIMCUY, (o LIMIT,KE)
IF(KS.EQ.CIGC TC 14C
WRITE(&,115C)

GC TC 1000

ALL CGMPLEX AMPLITUDES ARE MADE CIMENSICM.ESS BY CIVICING THRCUGH
EY THE INCIDENT wAVE ZFMPLITUCE

CR(M),CT(M)=CCMPLEX REFLECTEC, TRANSMITTED WAVE AMPLITUDES
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L0 15C M=1,N
1224V
CR(M)=C(1-1)
CT(MI=C(T)
€C 170 M=1,N

Cl(M),C2(M)=COMPLEX wAVE AMPLITUCES INSICE BREAKWATER

Cl{M)=1,C+YC (M)

(2(M)=0.0

CC 160 ME=1,A
C1(M)=C1(M}=CR(MEI*YF (M, ME)
C2{M)=C2 (M) ~CT(MEI*YF(M,ME)
CL(VM)=YI (M) *CL (M)
C2(M)=YLI(M)*C2(M)
CLR{M}=REAL(C1(V¥))
CLI(M)=AIMAG(CL(M})
C2R(M}=REAL(C2(M))
C2I(F)=AINMAGIC2(V))
CRR{M)=REAL (CR{M))
CRI(M)=AINACICR(M))
CTR(M)=REALICT(M))
CTI(M)=AIMAC(CT(M))

COMPULTE PHASE OF MAVES

FHAZR(M) =ATAN2 (CRI(V),CRR(M) )*CECRE
PHAZ1(M)=ATAN2(CLI(M),C1R(M) )*DEGRE
FHAZ2(M)=ATAN2(C21(M),C2R(M)} )*DECRE
PHAZT(M) =ATAM2(CTI(M),CTR(ML)*DECRE

CAMA=zREAL PAFT CF INTERNAL WAVE ANC.
BETA=IMAGINARY PART CF INTERNAL BAVE NC.

GAMA(M)=REAL(KI(VM))
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MAINGC313
MAINOG314

MAINO315 -

HAINOQ316
MAINO317

HAINO318 -

MAINO31S
¥AINO320
MAING3Z]
HMAINO3Z2
FAINO323
MAING324
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170

180

190

BETA(M)==AIMAGIKI(M))

CCMPLTE ABSCLLTE VALUE C
MOTE REF(1),TRANS(1) AR
THE BREAKWATER

REF(M)}=CABS(CR(M))
TL(M)=CABS(CLI(M))
TZ(M)=CABSICZ(M))
TRANS(M)=CABS(CT(M))
CENCPF=0.0

CCMPUTE CENCFINATOR Ip LORENTZ*S CONC. OF EQUIYV.,

[0 1£0 M=1,N _
BAZ1.0/(B*BETA(M)*GANL(M
BRG=Z.C*GAMA (M)
ERF=2,0%BETA (M)
BB=1.0/{CH{ARG)-CCS (LFF)
AC=(1.0-EXP(~ARF*8))/¢.0
EC=Sk(ARG) :
BE=CIR(M)I*%x24C1T (M) *%Z4C
AF=EXP(-BETA(M)#B)%S IN(A
AG=CIR(MI*C2F(M)I+CLT (M) *
CENOM=DENCM+AA*AR*( ACAAD
CENCM=2,04EP4DENCM

COMPUTE NUMERATCR IN LCR

CO 150 J=14 N>
X={J=1)sCELX

£C 150 v=1,A
CLX{JyM)=CL(V)2CEXP(~IN%
C2X(JyM)=C2 (N} HCEXP( IN¥K
CC 240 1=1,N2
I==(1-1)#DELZ

F DIFENSICNLESS wWAVE BAMPL ITUCES
E THE REFLECTICN AND TRANSMISSICH COEFS CF

WCRK {EXACT INTEGRATION)

')
)

2RIMY*##24C21(F) %42
RE)*SIN(GAMA (M) *p)
C2I(M)

*AE-AF#AC)

ENTZ'S CCND. OF ECUIV. WCRK(NUMERICAL INTEGRATIGN)

KI({M)*X)
IM)*(x-8))

MAING325
MAINO326
MAINO3Z7
MAINO328
MAIN0329
MAING320
FAINO331
MAING232
MAINO323
FAINO334
MAINQ325
MAINO336
MAING337
MAINO328
MAIND339
FAING340
MAINO341
FAINO342
MAINC343
MAINO344
MAINO345
MAINO346.
FAINO347
MAINO348

. MAING349

MAINO350
MAINC3E1
MAINO352
MAINO353
HAINO354
MAINO355
MAINO3S6
MAINO3S57
FAINO3S8
MAINO359
MAINO3&0
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" 200

OO0

o0 n

210

230
240

250

{0 200 M=]1sN
CRG=KI(M)*(1.C+2)
CZ{I,M)=CCH{CRG)/SHK (¥)
SZIT4M)=IM*CSE(CRG)/SHKIM)

CO 240 J=1.N>
IF(CF{I,J3).LTe1E-51CC TG 23C
CHI=CVMFLX(C.(+0.0}

[0 210 M=1,N

CHI=COMPLEX CIMENSICNLESS HORIZOANTAL VELCCI%Y INSICE BREAXKRATER 27 X,2
2ETA=CCMFLEX DIMENSICALESS VERTICAL VELOCITY INSIDE BREAKHATER AT Xs1

CFI=CHI+CZ(I,M)*(C1X{JyMI-C2X(Jy¥))
ZETA=ZETA+SZ (I 4V)I*(CLX(JyF)+C2X{JsM))

AX=REAL{CKI)

EX=AIMAG(CKI)

AZ=REAL(ZETA)

BZ=AIMAG(ZETA)

EAT=AX*AX+AZ#4AZ+BX*EX4EZ4BZ

ELAN=VISCO/ (FERM(1,J)%SIG)

ETURB=EPS(I,J)*A%3, 01CF(IyJ)*SQRT(EAT)/(SQRT(FERF(I:J))*E.O*PII

EXZ(1yJ)=DIMENSIONLESS FRICTICNAL ENERGY LCSS FER LNIT WEICHT CF
FLUIC AT X,Z

EXZ(I,Jd)= EAT*(ELAM+ETLRB)*(EPS(IyJ)**Z)

GC TC 240

EXZ(I,d)=C.C

CONT INUE

ANUMR=0,.0

CO 256G J=1,NJ

€0 250 1I=1,N}
ANLPR-ANLMR*(EXI(I,J)4EXZ(I,J01)4cXZ(101pJ,+EXZ(I'leOl))/ﬁ-
ANUMR=ANUMR / (NI*NJ)

MAINO361 -
MAINC3é€2
HAINO363
MAINO3 64
MAINO3¢€5

MAINO366

MAINO3&7
MAINC368
FAINO369
MAING370
BAING3TL
MATNO3T2
MAING3T3
MAINO374
MAING375
MAINO376
FAINO3T7
MAINC378
MAINO3T9
MAINO380
MAINO381
FAINO382
MAINO3E3
MAINC384
MAINC385
MAING3EE
MAINO387
MAINO388
MAINO389
¥FAINO390
MAINO3S]
MAINO392
PAING393
MAINC3S4
MAINO395
MAINO3G6 -
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400

C

c
c

410
¢€sC
1¢Co
1c10
1€15
1C20
1630
1C40

'

FC=CALCULATEC VALUE C*f LIhEARIZEE DAMP}NG COEF
FC=(ANUMR4EL CSS1/CENCH

COMPARE WITH ASSUMED VALUE AND ITERATE IF NECESSARY

WRITE(6,1160 )F, FC

FCC=F

F={F+FC)/2.C
IF(FC.GT 10 .#FCCIF=1C J#FCC
IF(FCCeGT.1C*FCIF=F(C/1G,

IF(Z.O*ABS(FC-F)I(FC+F).LT.0.01)GC TC 4CC

WRITE CUT INTERMECIATE SCLUTIGNS EGOR ASSUMED F

WRITE(6,117C)

hRITE(é;llBC)(F,KH(P),KI(P)yREF(P),PFAZR(M),TI(M),PHAZI(P),TE(M),P
XFAZ2{M)y TRANS{M) yPHAZT(M) 4M=1,N) ’

GC TC 30

WRITE(&,11G5C)

WRITE CUT FIMAL SOLUTICN FCR CLCSED ITERATION

WRITE(64116C IF, FC

WRITE(£,117C) :
WRITE(69 118C J(MoKH{M) JKI(M) JREF(N 9PHAZR AN )y TLIM] o FHAZL (M) 3 TZ (M) ,F
XRAZ2(M)y TRANS (M) 4PHE2T(M) yM=1,N)
GC TC SSC

WRITE(E,120C ) IFMAX

CCNTINUE

CONTINUE

FORMAT (5F1044)

FORMAT(T15)

FORMAT(2711)

FCRMAT (2F10.5,E10.5)

FORMAT (LH1, * THE BREAKYATER HAS BEEN DESCRETI ZEC EELOW THE SWL AS

MAING3S7?
MAINO398.

"MAINGC369

MAINQ4CO
MAINO4OL
MAINC4C2
MAINQ4O3
MAINO4C4
MAINQ4CS
MAINO406
MAINO4GC7
MAING408
MAINO4O9
MAINO410
MAING41l
MAINC412
MAING413
MAINO414
MAINO4LS
MAINO416
MAINO417
MAINQO4 18
MAINGC419
MAINC420
MAINC421
MAING422
MAINO423
MAINO424
MAINO425 .
MAINQ4 2o
MAINC427
VAINO428

MAINC4 29
MAINDO420
MAINO431
MAINO432
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XIN THRE FCLLOWING DIAGRAM (DO NOT SCALE)')

1C50 FORMAT (1HO, '*THERE ARE®*, I4,' COLUMNS EQUALLY SPACED OVER THE',Fé.2,
X* FCCT DISTANCE TCE TC TGE, ANC' 4I4," RCWS EQUALLY SPACEC OVER TFHE
X'yFée3," FOOT DEPTH')

1C55 FCRMAT(LHC,'SLOPE CF FRCANT FACE = 1/ '%F4.2)

1C60 FORMATI(1hC,2713)

1C70 FORMAT(iFO, "EACF NUMBEREC LAYER FAS THE FGLLCWING PRCPERTIES?)

180 FORMAT(1HC,'LAYER NC. PORCSITY PERMEABILITY (FT#%2) TURBLL

_ XENT DAMPING COEF.") )

1CS0 FCRMAT(1H 94X91294XsE1345+6X9E13.5711X,E12.5)

1100 FGRFMAT(7F1l0.4)

1110 FORMAT(1hC, *THE EQUIVALENT RECTAANGULAR BFEAKWATER FAS AN INEFTIAL
XCOEFFICIENT =' yF6.3 4%y MEAN FCROSITY=',F€a3s '3 KINEMATIC VISCOSITY
X =1,E12,.5)

1115 FORMAT(1FCy "SURFACE EFEAKING COEF='",F6.2) :

1120 FORMAT(1HO,s "K¥xF=?,EL12.5,%, SIGMA**2*-/G=",EL3.5,%y PERIGL=*EL13. 5,
X* SECSy, WAVE LENGTH =',El32.5,' FEET')

1125 FCRMAT{LFOy "MICHFES IATRINSIC REFLECTICN CCEF='yF&.2)

1130 FORMAT(LHCy 'WAVE CAMEER=',E13.5)

114G FORMAT{1kC, '¥OCE NUMBERS",I3,% AND',I3," ARE ICENTICAL, $C FCLLOWI
XMG SCLUTICN IS SINGULZR')

1150 FORMAT(1HC, 'SIMQ REJECTS COEFFICIENT MATFIX AS SIANGULAR']

1160 FOFMAT(1F0, ' ASSUMEL F=*,E13.5,'; CALCULATED F=',E1Z.5)

1170 FCRMAT(1HC,' ¥ KE (M) KI(NM) REF (M) Praz
XR(M) Ti(M) PHA21(M) T2 (M} FHAZ2(¥) TRANS (¥} PHA2
XT(M) )

1180 FCRMAT(LH ,14,11ELLl+4)
1150 FORMAT(1FC,'F ITERATICN CCNVERGEC, FINAL SOLUTION FOLLOWS ###x%33
XERRRRREEDXKEIRSIRRNY IFRXATEIRERIREE R LR IRAX I AR LIS IR LA AR
1200 FORMAT(1HC,"'F ITERATICN EXCEEDED',I13,' CYCLES, GO TC NEXT CAMBER®)
STCF
END
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10

11
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13

20

SUBRCUTINE EICENMyONMEGA,PST,LARN)
MEWTON=RAPHSCN SGLUTICN TO DiMENSIONLESS DISPERSiCh EQUATICN

CCMPLEX CNEGI,PSI,SI(60)'F(601'CF(60)pTP,CEXP.ClES'XgY
MAX=EQ

LARF=Q

SH1)=INITIAL GUESS TC SOLUTION

$1(1)=PS1

CC 1C f=1,MAxX
X=CEXP(SI(1))
Y=CEXP(-SI(1))
TH= (X=Y)/ (X+Y)

F=C IMENS ICNLESS DISPEFSION EQUATION
CF=DERIVATIVE CF F

FLI)=SI{I)*TF-CMEGA

CE{I)=TH+SI(I)%(1,0-TF**2)
SICI+1)=ST(I)-F(1)/DF (1)
IF(CABS((SI(!+1)-SI(l))/SI(I&l)).GT.0.00l)GO 10 1¢

IF{CABS{F(I)/ST(1+41)).LT.0.0C1)GC TC 26
CONT INUE

LARF=1

WRITE(6,y11)M

FORMAT (1HG, ' NC SCLUTION FOR MODE NUMBER *,12)
WRITE(¢&,12)

FORMAT (1+Cy* I SI(D)
X BF(I) ')
hRITE(6'13)(IvSI(I)yF(I)oDF(I)yI’lvPAX)

FORMAT (1F+ ,14,6E13,5)

RETULRN ’

FLI)

FSI=SOLUTION TO WAVE M,

PSI=SI(1+1)
FETUFRN
END

EIGNOOOL
EIGNCOC2
EIGNOOC3
EIGNOCO4
EIGNCCCS
€1GNO006
EIGNOQOT
EIGNOOCS
EIGNOQO9
EIGNCO 10
EIGNOO1}l
EIGNOO12
EIGNOO13
EIGNOO14
EIGNCO1S
EIGNOOQ16
EIGNOOQ17Y
EIGNOOLlS
EICNOO19
EIGNOOQ20
EIGNCO21
EIGNOO 22
EIGNOO 23
EIGNOO 24
EIGNOO25
EIGNCC26
EIGNQO27
EIGNQO28
EIGNOO29
EIGNOO 20
EIGNGO21
EIGNGG32
EIGNCO33

EIGNOO34

EIGN0035
EIGNO036
EIGNGG27
EIGNOO38
EIGNGCO39
EIGNCO40
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SIvQ

...0...t....l.....000.‘._.....o.o.o..o... .-o.o..-.o.oc.......o.on...SlMQ

SUBROUTINE SIMQ

PURPOSE
OBTAIN SOLUTION OF A SET CF SIMULTANEOUS LINEAR -EQUATICNS,

AX=8

LSAGE
CALL SIMQ{A,B,N,KS)

DESCRIPTIGN OF PARAMETERS
A - MATRIX OF COEFFICIENTS STCRED COLUMNWISE. THESE ARF
DESTRCYED IN THE CCMPUTATICN. THE SIZE OF MATRIX A IS
N BY N.
8 - VECTOR CF ORIGINAL CCASTANTS, (LENGTH N). THESE ARE
REPLACED BY FINAL SOLLTICN VKLUESy VECTOR X.
N = NUMBER OF EQUATICNS AND VZRIABLES. N MUST BE .GT. CAE.
KS - OUTPUT DIGIT
0 FOR A NORMAL SOLUTICN
1 FOR A SINGULAR SET OF EQUATIONS

REMARKS
MATRIX A MUST BE GENERAL.
IF MATRIX IS SINGULAR , SOLUTICN VALUES ARE MEANIAGLESS.
AN ALTERNATIVE SOLUTICN MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRCDUCT (GMPRO}.

SUBRCUTINES AND FUNCTICN SUBPROGRAMS REQUIRED
NCNE

METHCD .
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL

SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
STMQ
SIvMQ
SIMQ
SIMO
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SImMQ
SIMQ
SIMQ
SIMO
SIMQ
SIMQ
SIMQ
SIMQ
SIMO
SIMQ
SIMQ
SIMQ

DIVISOR, EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMQ

RCWS WHEN NECESSARY TC AVOID CIVISION BY ZERO OR SMALL

SIMQ

310
320
3390
340
35¢C
360

SIMQCenl
SIMQO002
SIrQDCC3
SI¥QQCOo4
SIMR0CI5
SIMQO0CO6
SIMQGOO7
SIvQOCCH
sIMaecec9
SIMQ0012
SIrQO011
$IMQ0012

" SIMQ0013

SIMQ0014
SIMQ0015
SIMQ0016
SINQON1L7
$1M00013
SIMQCCL9
SIMQ0020
S1¥Q0021
SIMQ0022
SIMQ0023
SIMQ0D24
SIM20025
S 14Q0026
SIvQC027
SIMQN028

S$IMQ0929

S1¥Q0037
SIMQ0031
SIMQ0022
SIMQ0033
SI1¥Q0034
SIMQ0035
SIMQO036
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X3kl Y XaXaXaXzaXalal

20
3C

35

ELEMENTS. SIMOQ
THE FORWARC SOLUTICN TO OBTAIN VARIABLE N IS DCAE IN SIMQ
N STAGES., THE BACK SCLUTICN FCR THE OTHER VARIA3LES IS SIMQ
CALCULATEL BY SUCCESSIVE SUBSTITUTIONS. FINAL SCLUTICN SIMQ
VALUES "ARE CEVELGCPED IN VECTOR B, WITH VARIABLE 1 IN B(1), SIMQ
VARIABLE 2 IN B(2)seeceessesr VARIABLE N.IN B(N). SIMQ
IF NO PIVOT CAN BE FCUND EXCEEDING A TOLERANCE CF. C.C, SIMQ

THE MATRIX IS CCNSIDERED SINGLLAR AND KS IS SET TO 1. THIS SIMQ

TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. SIMO

SIMQ

.Q...O....Q..'.OCQ.......l....'.o‘..‘Q.O.Q..... o—o.o.-a-.coo.oooooooSIMQ

’ : SIMQ

SUBROUT INE SIMQ(A,B,N,KS) SIMQ
COMPLEX A(1),B(1)4BIGA,SAVE . )

FORWARD SOLUTICN . SIMO
TOL=0.0 : SIMQ
KS=0, SIMQ
JJ=~N SIMQ
DO €5 J=1,N - SIMQ
JY=J+1 SIMQ
JI=JI+N+L : SIMQ
BIGA=0 SIMQ
IT=J4-4 ] SIM0
DO 30 I=J,N SIMQ

SEARCH FOR MAXIMUM COEFFICIEAT IN COLUMN . SIMQ

CII=IT+1 SIMQ
IF(CABS(BIGA)-CABS(A(IJ)))20,39,30 SIMQ
BIGA=A(1J) SIMQ
IMAX=1 . SIMQ
CONTINUE SIMQ

) TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX) SIMQ
IF{CABS(BIGA)-TCL135,35,40 ) SIMQ
KS=1 . o SIMQ
RETURN SIMQ

INTERCHANGE ROWS IF NECESSARY - SIvQ

40

I1=J+N%(J-2) _ SIMQ

370
380
360
400
419
4290
430
440
450
469
470
4890
459

520
540
550
560
570
5890
560
500
610
620
640
660
670
680
690

-T00

720
740
750
762
780
8C0

SIMQOO37
SIMQ0038
SIMQ00C39
S IMQO040
SIMQ0041
SIMQ0042
SIMQO0043
SIMQ0044
SIMQ0045
SI¥QNJ46
SIvQC047
SIMQCO6S
SIMQO049
SIMQ0050
SIMQQO051
SIMQ0052
SIrQ0N53
SIMQONS54
SIMQ0055
SIMQJ056
SIMQOCST
S$IMQQ058
SIMQO059
SIMQJC60
SIMQOJ61
SIMQOJI62
SIMQ0063
SI¥Q0064

'STMQCC6S

SIMQON6s
SIMQO0267
SIMQ0063
SIMQ0069
SIMQOC70
SIMQ0071
SIMQOCT2
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50

55

60
65

70

8C

IT=IMAX-J

DO 50 K=J,N

I1=I1+N

I2=11+17

SAVE=A(11)

AlI1)=AL12)

ALI2)=SAVE :

DIVIDE EQUATION BY LEADING CCEFFICIENT

A(I1)=A(I1)/8BIGA
SAVE=8( IMAX)
BULIMAX)=B(J)
B{J)=SAVE/BIGA

ELIMINATE NEXT VARIABLE
IF(J-N) 55,70455
1QS=N*{J-1)
DO €5 IX=JY,N
IXJ=IQS+IX
1T=J-1IX
DO 60 JX=JY.N
IXIX=N*(JX-11+IX
JIX=IXIX+IT
ACIXIX)=A(IXIX)=CA(IXII*A(JIX))
BIIX)=B(IX)-{B(J)*A(IXJ))

BACK SOLUTICN
NY=N-1
IT=N*N
DO 80 J=l.NY
I1A=1T-J
IB=N-J
I1C=N
DO 80 K=1,J
B(IB)=B(IB)-A(IA)*B(IC)
IA=]A-N
1€¢=1C-1
RETURN
END

SIMQ 810
SIMQ 820
SINQ 830
SIMQ 840
SIMQ 850
SIMQ 860
SIMQ 870
SIMQ 850
SIMQ 910
SIMQ 920
SIMQ 930
SIMQ 940
SIMQ 960
SI¥Q 980
SIMQ 5S0
SI1MQ19CO
S1MQ1010
SIMQ1020
SIMQ1030
SIMQ190490
SIMQ1050

. SINQ1060

SIMQ1070
S1MQ1090

'SIM01110

SIMQ1120
SIMQ1130
SINQ1140
SIMQ1150
SIMQl169
SIMQ1170
SIMQl180
SIMQ1190
SIMQ12CO
SINQ1210
SIKMQ1220

SI1¥Q0073
SIMQOCT4
SIMQOO75
SIMQOOT6
SIMQOCTT
SIMQ0078
SIMQCCT9
SIMQO08Q
SIr¥QOC8l
SIMQOC82
STMQOCA3
SIMQOCE4
SIMQO085
SIMQOC86
SIMQ0087
SIMQ0088
SIMQO08Y
SIMQOC99
SIMQ0CO1
SIMQ0092
SIM00093
SIMN0094
SIMQOCSS
SIMQOCO5 °
STMQ0097
SI¥QCC98
SIMQ0099
SIMQ0109
STMQO101
SIMQO102
S1MQO103
SIMQO104
SIMQO105
SIMQO105%
SIMQO107
SI1¥Q01n3
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DATA CARDS FOLLOW

(s Na¥a)y]

BREAKKATER PARAMETERS

1.0 3.25 le167 1.5 C.333
27 8 4 5 6 2 10
c BREAKNATER DESCRETIZATICN SCHEME

111111122222222222221111111
111112222222333222222211111
11122222223333233232222222111
122222223333444333322222221
232323333344444443333223232
333333334444444444433333333
343434344444444444443434343
§44444444444444444444444444

c LAYER PFOPERTIES
1.0 0.0 «1lE1

<434 282 «482E-5"

«439 295 +1138E-5

«430 « 4056 «374E-6
c WAVE KNUMBERS

C.5 1.0 1.5 2.0 2e5 " 3.0
C WAVE CAMBERS

«005 «C4

DATA0001
DATA0002
DATA0003
DATA0004
DATAQ005
DATA0006
DATADCGCT
DATA0008
DATA 2009
DATAOO10
DATACO11
CATAGO12
DATA0013
DATAOO14
DATAOO15
DATAGOL6
CATACO17
DATACOL3
DATA0019
DATA0020
DATACO21
DATAGD22
DATA0023
DATA0024 .



APPENDIX E
DISCRETIZATION OF NONHOMOGENEOUS BREAKWATER CROSS SECTIONS .

The media properties are evaluated at discrete points within the
confines of the equivalent rectangular breakwater. This becomes an
input to the numerical spatial integration of the numerator in the
Lorentz equation (81). The breakwater cross section is discretized in
a pattern which adequately samples each layer. A rough rule of thumb
is to select a grid size which yields at least two points across the
minimum dimension of the thinnest layer. The particular pattern chosen
is shown in Figure E. An 8 by 27 scheme is used, each grid being 1.5
inches wide by 2 inches deep. Only half of the pattern is shown because
the breakwater is symmetric about the centerline.

There are four distinct layers in this structure (Fig. E): 1 is a
triangular wedge of seawater; 2 is a coarse armor-layer material; 3 is
an intermediate grade layer; and 4 is a relatively fine central core.
Each layer has a unique porosity, permeability, and turbulent damping
coefficient. In addition, each grid point is assigned a layer number
which identifies the media properties of that point.

The particular technique developed for reading this information into
the computer is to input the layer number associated with each point
first, and then input the properties of each layer number. One card
contains all of the layer numbers for a particular row in the grid.

For example, the card representing the third row (I=3) (Fig. E) reads
from left to right

111222222233333332222222111.
The entire pattern is presented in Appendix F with a sample of the pro-
gram output. The layer properties are read in as a short array and prop-

erties of each point are assigned internally. Sufficient comment cards
are provided in the program to make this clear.

164
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1l4in.

Layer € Cf Kp d
1 1.0~ 0.0 1.0 0
2 0.43%  0.282  0.482:10 7. 1.37in.
3 0.439  0.295  0.1138-10. 0.774 in.
4  0.430  0.4056 0.375-10 0.382in.
!
A 19.5in.
v A P
@' 1
1.5 /] / ® v ;
1[ //,'<E)
/
/ |
X

J= 1 2 3 4 5

6

7 8 9 10 11 12 13

27 2625 2423 22 21 2019 18 17 16 15

Figure E. Discretization pattern.
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APPENDIX F

PERMEABILITY AND FRICTION-FACTOR CALCULATIONS

lf

(R S S SRR N AN

[Tick marks identify data o

points rejected from revised
permeability calculation.]

d=0.325 in.

Figure F. Permeability data.

o)
L 4
o
0
d=0.774 in.
= d dooo
d 0% 0
B ‘ ° d=1.37 in. |
o =1. n.
d , @ e
Q —
d (-
dd o )
[o] -
d o
a,9 I | | | | 1 ) J
0 4 8 12 16 20 24 28 32 36 40
alv 103,71 '
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Table F-1.

Permeability and friction-factor calculations.

q -g q -gK®
v -2_2. a9y .\Td_ B S Rx:.ﬂl.xlf « — P &h =fK-._1_
Kpo Va4 p P qé AR P RKP

*10° *10°4 *10-7
(££2/s) (ft/s) | (£ (ft72)
1.09 0.935 0.1872 1.717 1.475 10.50 0.525 0.430.
1.102 1.38 0:224 2.033 1.800 12.43 0.542 0.461
1.09 ' 2.30 0.314 2.881 " 2.164 17.62 0.459 0.403
1.072 1.71 0.262 2.444 1.960 14.95 0.491 0.424
1.102 0.173 0.07i6 0.6497 0.7060 3,97 0.664 0.413
1.1Q2 0.072% 0.0427 0.3875 0.4989 2,37 0.787 0.365
1.053 6.0216 '0.0192 0.1823 0.3440 1.12 1.154 0.257
1.118 0.696 0.156 1.395 1.274 8.53 0.588 0.441
1.118 0.339 0.1025 0.9168 0.9526 5.61‘ .0.635 0.457
Least squares yields Kp = 3,74-10°7 ft2

0.406

d = 0.0271 feet

€ = 0.430 feet
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Table F-2.

Permeability and friction-factor calculations.

q -gon q gkt -

v --ﬁ—;‘- 9y v_d A Cak Ry - £y = -— P &h = £, A1

Kpo vay P - v 'p P qi- AR P RKp

*105 110-9 *10°6 B

(£t2/s) (ft/s) | (£t~ (£t-2)

1.04 0.0050 0.0311 0.2990 0.4978 8f79 0.489 0.375
1.063 .0.01043 0.0528 : 0.49?7 0.5984 "14.60 0.354 0.286
1.072 0.0467 0.0957 0.8927 1.466 26.24 0.483 0.444
1.053 0.0951 0.1431 1.359 2.032 " 39.94 0.440 0.414
1.053 0.181 0.2005 1.904 2.761 55;96 0.426 0.408
1.090 0.230 0.2325 .| 2.133 2.922 62.69 0.403 0.387
1.090 0.320 0.268 2.459 3.527. ©72.26 O.422} 0.408
1.072 0.411 0.310 2.892 3.982 84.99 0.405 0.393
1.102 - | 0.602 0.377 3.421 4.666 -100.55 0.401 0.391
0.390

Least squares yields Kp*= 8.64.1075 ft 2

d = 0.114 feet

€ = 0.434 feet




Table F-3. Permeability and friction-factor calculations.

691

8h - %4 L8 d % :ff: &h
v vy Y I BT [T fxp‘ g a | e7

*105 . *10-% *1076

(£t2/s) (ft/s) | (ft7h (£t

1.053 0.0196 0.0366 0.3476 1.638 3.703 .0.503 0.233
1.058 0.118 0.102 0.9641 3.521 10.28 0.390 0,292
1.053 0.207 0.138 1.311 4.587 13.98 0.373 0.302
1.053 0.534 0.227 2.156 7.194 23.00 0.356 0.312
1.063 0.568 0.236 2.220 7.291 23.68 0.350 0.308
1.063 0.876 0.306 2.879 8.672 30.71 0.321 0.289
1.058 0.890 0.304 2.873 8.910 30.65 0.331 0.298
1.058 1.048 0.338 | 3.195 9.437 34.08 0.315 0.286
1.063 1.042 0.321 3.020 9.833 32.21 0.347 0.316
1.058 1.028 0.332 3.138 9.424 33.47 0.320 0.290
1.063 1.132 0.350 3.293 9.797 35.12 0.317 0.289
1.053 0.388 | 0.190- | 1.804 6.245 19.25 0.369 0.317
1.058 0.744 0.272 2.571 8.325 " 27.42 0.345 0.309
1.058 0.599 0.248 2.344 - 7.351 1 25.00 0.334 0.295
1.042 0.691 0.0956 " 0.9175 2.942 9.79 0.342 0.240
1.058 0.223 1 0.142 1.342 4.780 14.23 0.380 0.310
1.053 0.0779 0.0802 0.7616 2.970 8.12 0.416 0.293
1.053 0.280 0.161 1.527 5.325 16.29 0.372 0.311
1.053 0.156 0.116 1.104 4,105 11.77 0.397 0.312

‘Least squares yields Kp = 1.14,1076 ft2 - ' 0.295

d = 0.0645 feet e = 0,439 feet
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Table F-4.. Permeability and friction-factor calculations.
. Ah 3
sh g - 9 -8k 1
v Y ¥ v Ei; = '3§§ Ky " IT'K: fxp - '332'%% £" fxp - E;;

*10° *10-Y *1076

(£¢2/s) (ft/s) | (£71) (£t-2)

1.053 0.207 0.138 1.311 4.587 11.11 0.297 0.207

1.053 0.534 0.227 2.156 7.194 18.28 0.283 0.228

1.063 0.568 0.236 2.220 7.291 18.82 0.278 0.225

1.063 0.876 0.306 2.877 8.672 24.41 0.255 0.214

1.058 0.89 0.304 2.873 8.910 24.36 0.263 0.222

1.058 1.048 0.338 3.195 9.437 27.09 0.251 0.214

1.058 1.028 0.332 3.138 9.424 26.61 0.255 0.217

1.063 1.132 0.350 3.293 9.797 27.92 0.252 0.216

1.053 0.388 0.190 1.804 6.245 15.30 0.293 0.228

1.058 0.744 0.272 2.571 8.325 21.80 0.275 0.229

1.058 0.599 0.248 2,344 7.351 19.88 0.266 0.215

1.058 0.223 0.142 1,342 4.780 11.38 0.302 0.214

1.053 0.280 0.161 1.527 5.325 12.95 0.296 0.218

1.053 0.156 0.1162 | 1.104 4.105 9,36 0.315 0.209
0.218

Least squares yields Kp = 7.19:1077 ft2

d = 0.0271 feet

e = 0.439 feet




WA

Table F-5. Permeability and friction-factor calculations.

q il q -gK?
v —2—2 9y v_d 0 S -_d](!f fK-_-_P_.Al‘. f-_-fK 1
Kpo vay p Y P P qé AR P RKP
.*105 *10-4 *10-7
(£%/s) (ft/s) | (£ (£t-2)
1.09 0.935 0.1872 1.717 1.475 8.63 0.432 0.316
1.09 2.3 0.314 2.881 | 2.164 14.48 0.378 0.309
1.072 1.71 0.262 2.444 1.960 12.29 0.403 0.322
1.118 0.339 0.1025 0.917 0.953 . 4.61 O.SZi 0.306
1.118 0.690 0.156 1.395 1.274 7.01 0.459 0.316
Least squares yields Kp = 2,53-1077 f£t2 0.314
d = 0.0271 feet e = 0.430 feet
Table F-6. Permeability and friction-factor calculations.
- Ly 3
v - & 94 %i L=iﬁ—% - 2y fx =-_gl(;_ﬂ R
Kpo vy ) v P ) qé AR P Kp
*108 *1074 *1076
" (££%/9) A sy | @Y (£t72),
1.072 0.0467 0.0957 0.8927 1.466 15.96 0.294 0.231
1.053 0.0951 0.1431 1.359 2.032 24.30 0.267 0.226
1.053 0.181 0.2005 1.904 2.761 34.04 0.259 0.230
1.09 0.230 0.2325 2.133 2.922 38.14 0.244 0.219
1.09 0.320 0.268 2.459 3.527 43.96 0.256 0.234
1.072 0.411 0.310 2,892 3.982 51.70 0.246 0.227
1.102 0.602 0.377 3.421 4.666 61.17 0.244 0.228
Least squares yields Kp = 3.20-10°6 ft2 0.228

d = 0.114 feet

e = 0,434 feet




WAVE DATA FOR TRAPEZOIDAL-LAYERED BREAKWATER

APPENDIX G

Table G. Wave data for trﬂ@nl-lnyarec t;reakuater.
A o -H H__+H H,
Ran b T O W IV [ u:: 3 u::: R S A '.% T
(fe) (s) { (ft) (£e) | (£1) (ft) (ft)’
419 | 1,167 | 1.376 | 7.36 0.995 |o0.150 [0.08 0.304 0.1:5 0.019 0.165 | 0.0156
420 : * |o.120 |o.065 ‘0,297 0.0926 0.017 0.183 | 0.0126
a2 0.088 [0.048 0,294 0.0680 0.0140 |. 0.208 [.0.0092
422 0.062 [0.034 0.292 0.0480 0.0115 | 0.240 | 0.0065
423 0.038 |0.020 0,312 0.0290 0.0085 | 0.293 | 0.0039
424 0.084 }0.046 0.292 0.065 0.0140 | 0,216~ | 0.0088
425 0.018 [0.008 " 0.385 0.0130 0.005 0.385 | 0.0018
426 0,160 |0.088 0.290 ° 0.124 0.0180 | 0.145 | 0.0169
427 | 1,167 | 2.488 | 14.65 0.500 {0.088 |0.024 -0.571 0.056 | 0.016 0.286 | 0.0038
428 0,056 |0.015 0.578 0.0355 0.0115 | 0.324 | 0.0024
429 R 0.057 10.016 0.562 0.0365 0.0125 | 0.342 { 0,0025
430 . 0.075 10.020 0.580 0.0474 0.014 0.296 | 0.0032
431 | 1,167 | 1.025 | 4.88 1.500 |0.115 }o0.072 0.230 0.094 0.0092 { 0.098 | 0.0192
432 0.145 [0.090 0.234 0.117 0.0115 | 0.098 | 0.0240
433 0.160 |0.105 0.208 0.133 0.011 0.083 | 0.0273
434 0.200 [0.135 0.194 0.167 0.0120 | 0.072 | 0.0342
435 0.095 |0.060 0.226 0.0775 0.010 0.129 | 0.0159 -
436 0.075 [0.045 0.250 0.060 0.0082 [ 0.137 [ 0.0123
437 0.054 0,032 0.256 0.0430 . 0.0072 | 0.167 | 0.00901
438 0.030 [0.017 €.277 0.0235 0.0056 | 0.238 | 0.0043
439 | 1.167 | 0.860 | 3.65 2.01 0.037 |0.022 0.254 0.0295 0.0050 | 0.169 | 0.0081
440 : 0.062 0,040 0.216 0.0510 0.0060 | 0.118 | 0.0140
441 0.0%0 |0.060 0.200 . 0.075 0.0065 | 0.0867°] 0.0206
442 0.115 |o.078 _0.192 0.0965 0.0072 | 0.0746 |0.0274
443 0.135 |0.095 , 0.174 0.115 0.0074 | 0.0644 | 0.0315
m 0.157 . |n.111 0.172 0.134 0.0073 | 0.0545 | 0.0368
445 0,175 10.125 0.167 0.1500 0.0075 .| 0.500 |0.0411
446 0.195 (0.142 0.157 0.168 0.0078 0.0460 | 0.0461
447 0.215 |0.155 :0.162 0.185 0.0081 0.0437 | 0.0506
448 ) 0.024 00130 0.298 0.0185 0.0031 0.168 | 0.00506
449 | 1.167 | 0.688 | 2.42 3.02 0.0250 (0.0120 0,351 " 0.0185 0.0015 0.081 | 0.00765
450 1 0.037 [0.018 0.345 0.0275 0.0017 | 0.062 |o0.0114
451 0.065 [0.035 0.300 0.050 0.0017 0.034 | 0.0206
452 0.088 |(0.048 0.294 . 0.068 0.0020 0.029 |0.0281
453 0.125 10.065 0.316 0.095 0.0026 | 0.029 }0.0392
454 , 0.161 {0.080 0.336 0.120 0.0030 0.025 | 0.0496
455 0.175 10.092 0.311 " oass 6.0030 | 0.023 |0.055
456 | 1.167 | 0.760 | 2.92 | " 2.5L 0.155 10.112 0.161 0.133 0.0051 0.038 | 0.0456
457 0.175 |[0.130 0.147 0.153 - 0.0050 0.033 0.0525
458 - 0.200 |0.150 0.143 0.178 0.0052 0,030 | 0.0600
459 0.130 |0.092 6.171 0.111- 0.0045 | 0.041 | 0.0380
460 0.112 |0.080 0.167 0.096 0.0042 0.044 0.0329
41 {0.090 |0.060 0.200 0.075 0,0040 | 0.053 |} 0.0257
462 0.062 [0.040 0.216 0.051 0.0032 [ 0.063 | 0.0175
463 0.012 |[0.027 0.217 0.035 0.0025 | 0.072 | 0n.0120
464 0.028 0,018 0,217 0.023 0.0020 | -0.087 | 0.00788
465 | 1.167 | 2.488 | 14.65 0,500 ]0.305 [0.100 0.506 0.202 0.0365 0.181 | 0.0138
466 0.380 [0.140 0.462 0.260 0.0400 0.154 | 0.0178
467 0.450 |0.170 0.452 0.310 0.044 0.142 | 0.0212 |
. 468 0.530 [0.220 0.414 0.374 0.048 0.128 | 0.0255
469 0.245 |0.080 0.508 0.162 0.032 0.198 | o0.0111
470 0.180 |0.050 0.565 0.115 0.026 0.226 | 0.00785
471 0.118 |0.032 0.573 0.0750 0.021 0.280 | 0.00511
472 . 0.065 |0.016 0.605 0.0405 0.013_ | _0.321 | 0.00276
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