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PREFACE 

This report is published to provide coastal engineers with the 
results of an investigation to develop a theoretical analysis to account 
for wave reflection and transmission at permeable breakwaters; and to 
compare the effectiveness of alternative breakwater configurations, 
independent of repetitive experimental programs. The work was carried 
out under the coastal construction program of the U.S. Army Coastal 
Engineering Research Center (CERC). 

This report is published, with only minor editing, as received from 
the contractor; 'results and conclusions are those of the authors and are 
not necessarily accepted by CERC or the Corps of Engineers. 

The report was prepared by Charles K. Sollitt (as partial fullfill
ment of the requirements for a Ph.D.), and by Dr. Ralph H. Cross III 
(who provided project supervision) of the Department of' Civil Engineering, 
Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, 
under CERC Contract No. DACW72-68-C-0032. The research was carried out 
in the Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics 
at MIT. 

The authors gratefully acknowledge the contributions of Mr. Keh 
Wilson who performed most of the model construction (assisted by Mr. John 
Fisher), data acquisition, and reduction; and Mrs. Melissa Sollitt who 
assisted in the preparation of the figures. Dr. o.s. Madsen reviewed 
the initial drafts; his colIUilents were helpful in the preparation of the 
final manuscript. 

Dr. R.M. Sorensen, Chief, Coastal Structures Branch, was the CERC 
monitor for this report under the general supervision of Mr. R.P. Savage, 
Chief, Research Division. 

ColIUilents on this publication are invited. 

Approved for publication in accordance with Public Law 166, 79th 
Congress, approved 31 July 1945, as supplemented by Public Law 172,, ssth 
Congress, approved 7 November 1963. 
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ColIUilander and Director 
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WAVE REFLECTION AND TRANSMISSION AT PERMEABLE BREAKWATERS 

·~ 

CharZes K. SoZZitt a:nd RaZph H. Cross III 

I. INTRODUCTION AND REVIEW OF PREVIOUS INVESTIGATIONS 

1. Introduction. 

It is common practice in coastal engineering de~tgn to account for 
wave transmission past rubble-mound breakwaters by considering two pos
sible mechanisms: (a) diffraction around the ends of a structure or 
through navigation openings, and (b) overtopping across the crest of the 
structure. Standard optical techniques have been modified to successfully 
account for the diffraction process. The overtopping process is less well 
defined; however, recent semiempirical methods (Cross and Sollitt, 1971) 
have improved design capabilities. 

Both procedures are based on the assumption that the structure itse~f 
is impervious. Engineers have been compelled to make this assumption 
because of inadequate design techniques for considering the alternative 
condition. Field and· laboratory observations raise some doubts about the 
universal applicability of this assumption. Indeed, many structures seem 
to be highly pervious with respect to long-wave activity. The most graphic 
example of this is presented by the interaction of tides with breakwaters. 
Tidal motions are the manifestation of very low-frequency and low-steepness 
waves. They propagate through permeable rubble-mound breakwaters with 
little change in phase or range. In fact, the breakwater is practically 
transparent with respect to motions of this scale. 

Significant transmission has also been reported for wave periods in 
the swell and storm wave range. Calhoun (1971) measured transmission and 
reflection coefficients in excess of 40 percent for 23-second waves at 
Monterey Harbor breakwater, Monterey, California. Similar observations 
have been made by the U.S. Army Engineer Division, New England, for the 
Isle of Shoals breakwater off the Maine-New ·Hampshire coast. Two
dimensional model tests conducted in conjunction with this study have 
demonstrated that some standard breakwater designs admit transmission 
coefficients greater than 30 percent for intermediate range wavelengths. 
In all of the above examples, no overtopping occurred. 

Wave height constraints in protected high-density anchorage areas are 
quite severe. The Corps of Engineers restricts wave activity in its 
designs to wave heights less than 2 feet for commercial craft moorings 
and less than 1 foot for recreational craft moorings. Results of this 
study for standard three-layer breakwater structures indicate that trans
mission coefficients equal to 15 percent are attainable for water depth 
to wavelength ratios of 1 to 12, and wave height to wavelength ratios of 
1 to SO. This yields transmitted wave heights greater than the recrea
tional craft limit of 1 foot for a 12-second incident wave which has a 
height of 7 feet in a water depth of 27 feet. 
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The potential for harbor seiching in basins enclosed by permeable 
breakwateis ·is also great. This type of basin acts as an energy trap 
because any wave energy which is transmitted through the breakwater and 
which subsequently reflects off interior basin surfaces is also partially 
reflected off the interior breakwater slope. Initially, more wave energy 
is transmitted.in through the breakwater than out. If the incident wave 
excitation persists, the energy level inside the basin may increase until 
equilibrium is reached between the incoming and outgoing wave energy. 
Consequently, the wave activity inside the harbor may become significant 
even though the transmission coefficient is small. 

These few examples serve to illustrate that direct transmission 
through permeable breakwaters can be an important consideration in harbor 
design. Furthermore, assuming that rubble-mound breakwaters are impervious 
may lead to an erroneously low estimation of the wave activity on the lee
ward side of the breakwater. 

To account for this feature in breakwater design it is necessary to 
have some method to predict the behavior of a permeable breakwater inter
acting with a surface wave train. A literature survey demonstrates that 
no independent design techniques are presently available and little has 
been written about the phenomenon itself. The results of this study are 
intended to contribute to both of these areas. 

2. Scope of the Investigation. 

The analytical approach used in this study begins with the unsteady 
equations of motion for flow in the pores of a coarse granular medium. 
The equations are linearized by a technique-which approximates the known 
turbulent damping condition inside the medium. This yields a potential 
flow problem satisfied by an eigen-series solution. Linear wave theory 
is assumed "to apply outside the breakwater and the excitation is provided 
by a monochromatic incident wave. The solutions are matched at the sea
breakwater interfaces by requiring continuity of horizontal mass flux and 
pressure. 

Three different breakwater designs are considered: (a) crib-style 
breakwaters with vertical .walls and homogeneous fill, (b) conventional, 
trapezoidal-shaped structures with layered fill, and (c) pile-array . 
breakwaters composed of vertical piles placed in symmetric patterns. 
Inclusion of sloping-faced structures necessitates an estimation of the 
breaking losses incurred on the windward face of the breakwater. A 
semiempirical method, adapted from Miehe (1951), is used to approximate 
the effect of wave breaking. 

Experimental results are presented for crib-style and trapezoidal
layered models which are constructed and tested as a part of this study. 
Pile-array experimental data are taken from Costello (1952). 

The theoretical solution is compared with experimental results and 
the following general conclusions are reached: (a) 1he transmission 
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coefficient decreases with decreasing wavelength, breakwater porosity 
and permeability, and increasing wave height' and breakwater width, 
(b) the reflection coefficient decrea.Ses· with increa.Sing wavelength, 

· breakwater porosity and permeability, and decreasing b·reakwater· width.· 
Experimental results correlate better with the theoretical transmission 
coefficient than with the· reflection coefficient. This seem5 to be due 
to the sensitivity of the reflection coefficient to surface effects. 
Application of the theoretical results is limited to wave heights which 
are larger.than the medium grain diameter and to·wave steepnesses which 
are within the linear wave theoiy range. 

3. Review of Previous Investigations. 

Some of the early work in permeable structures was directed toward 
an understanding of the behavior of wave filters. Wave filters are veiy 
porous structures which are placed in front of laboratoiy wave generators 
to reduce surface ripples, higher harmonics, and secondaiy reflections, 
in e·xperimental wave trains. Filters are similar to breakwaters in that 
they cause partial reflection and reduced transmission ~f the incident 
wave. 

Biesel (1950) developed one of the first analytical approaches to 
this problem. His work identified the tmsteady potential flow equations 
of motion for a hypothetical wave filter which was infinitely long, 100 
percent porous, and which resisted fluid motion according to Darcy's law. 
The resulting botmdaiy value problem was similar in form to that derived 
in this study. However, his solution was expressed in a particular form 
which incorporated some of the frequency,...dependent features and the wave 
amplitude in an tmdefined leading coefficient. Nevertheless, Bi~sel -· 
showed that the motion decays exponentially in the direction of wave 
propagation. The decay rate and wavelength were specified by a pair of 
dispersion equations which paralleled those obtained in this study. The 
results were not applied to any specific examples. 

Although Biesel (1950) did not actually solve the wave filter problem, 
his work was significant because it identified the form of the spatial and 
temporal ftmctions which described a linearly damped, periodic, free
surface motion. 

Le Mehaute (1957) recognized that the resistance forces in large
scale granular media were not prescribed by Darcy's law. However, to 
develop an analytical solution he assumed that a resistance law could be 
written which was linearly proportional to the local velocity. He antic
ipated that a constant of proportionality could be fitted to the theoret
ical approximation which would be subsequently evaluated by comparison 
with experimental results. He further recognized that any inbalance of 
pressure and resistance forces in the flow results in an acceleration of 
the pore velocity rather than the local gross flow rate. This permitted 
him to accotmt for the effect of porosity in his equations of motion. He 
prescribed an irrotational velocity field so the boundaiy value problem 
became similar to Biesel (1950). Le Mehaute (1957) accepted Biesel's 
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solution to the problem without resolving the dynamic free-sur~~ce condi
tion to find the correct combination of parameters to specify the actual 
wave surface profile. Comparison of Le Mehaute's velocity potential with 
this study or with Ijima, Eguchi, and Kobayashi (1971) makes this error 
apparent. In addition, Le M~aute's pair of dispersion equations was 
presented incorrectly, as .demonstrated by comparison with Biesel's 
results. These errors do not affect the outcome of Le MGhaute's study 
because he ultimately abandoned the solution for the declared reason 
that the equations were too cumbersome to extract answers. As an 
alternative, he accepted the experimental results that reflection 
coefficients are nearly constant to 60 percent, and he modified that 
part of the theory which predicts exponential decay in the internal wave 
amplitude to formulate an empirical equation for the transmission coeffi
cient. He attempted to evaluate the constants in his empirical expression 
by comparison with experiments, but the results were inconclusive. Conse
quently, Le Mehaut6 (1957) concluded his study without having solved 
either the wave filter or the pe~meable breakwater problem. 

In addition to analytical studies, Le Mehaut6 conducted an extensive 
experimental program on multilayered, sloping-faced breakwaters and homo
geneous crib-style breakwaters. However, his results cannot be used to 
verify other theories because he did not determine the hydraulic proper
ties of the media composing the models. Section II shows that these 
properties are necessary inputs to independent analytical solutions • 

. The studies of Biesel (1950) and Le Mehaute (1957) were important 
because they represent the first attempts to define the nature of wave 
motion within a porous media. Significant advances on their work were 
not ma.de for more than a decade. During the interim many investigators 
attempted approximate methods of solution by coni>ining linear wave theory 
with various energy conservation requirements. The work of the following 
four investigators typifies this latter approach. 

Straub and Herbich (1956) proposed an artificial viscosity theory to 
account for wave damping in a filter. They coni>ined the Navier-Stokes 
laminar dissipation ·function with a linear progressive wave theory· 
velocity field to determine the power consumed by the filter. The kine
matic viscosity ·was replaced by an artificial viscosity and the value of 
the latter was adjusted until theory and experiment agree. The method 
is not generally applicable to less permeable structures because the 
linear progressive wave theoty assumption is invalid inside the structure. 
In addition, wave reflection is ignored and it is impossible to predict 
the artificial viscosity a priori. 

Goda and Ippen (1963) conducted experimental and theoretical studies 
of wave filters composed of wire-mesh screens. An analysis was performed 
which resolved the mesh into two sets of horizontal and vertical cylinders. 
Linear wave theory was assumed to give the proper depth and temporal depen
dence for the velocity field. The power loss was computed from well-known 
drag-force relationships on circular cylinders. Partial reflection from 
individual screens was ignored so that the change in energy flux across 
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each screen was simply equated to the power loss at the screen. Linear 
drag-force relationships on circular cylinders. Partial reflection from 
individual screens was ignored so that the change in energy flux across 
each screen was simply equated to the power loss at the screen. Linear 
wave theory established the relationship between energy flux and wave 
amplitude; the total effect of the filter was found by summing across 
each screen. The theory was not completely independent since it had to 
be calibrated to experimental results to determine the appropriate 
tmsteady drag-coefficient relationship. After this calibration was per
formed, the correlation between experimental and theoretical transmission 
coefficients was quite good. However, the method can not be applied to 
less porous structures because neglecting wave reflection becomes a poor 
approximation. Furthermore, linear wave theory does not adequately 
describe the flow field in less permeable structures. 

Keulegan (1948) also us.ed an energy dissipation approach to analyze 
wave damping in composite screen filters. Instead of superimposing the 
drag force on rows and columns of cylinders to predict the effective 
screen-resistance coefficient, Keulegan measured the quantity directly 
in separate uniform flow tests. He used both. cnoidal and linear wave 
theory to relate the particle velocity to the wave amplitude between 
adjacent screens. Then, assuming the local wave energy to be proportional 
to the square of the local amplitude, he wrote a differential equation 
which expressed the rate of change of amplitude as a function of the power 
lost to filter resistance forces. The solution ultimately requires that 
one or more parameters be evaluated by comparison with experimental results. 
As with the previous wave filter theories, the solution cannot be applied 
to less porous structures because it does. not account for wave reflection. 

Kamel (1969) modified Keulegan 's (1948) theory for wave filters and . 
applied it to idealized homogeneous crib-style breakwaters. The structures 
were fabricated from vertical-walled wire baskets filled with spheres or 
cubes. Experimental reflection coefficients exceeding 60 percent were 
reported and yet this important process was ignored in the analysis. A 
fitting parameter which was used to calibrate the theory to the experi
ments was evaluated. The parameter should be constant for a particµlar 
breakwater, but it varies by almost an order of magnitude. This result 
tends to confirm that wave filter theories which do not account for wave 
reflection simply do not model less pervious structures correctly. 

Sawargi and Koichiro (1970) employed a technique similar to that of 
Goda and Ippen (1963) to analyze wave transmission through. arrays of 
vertical cylindrical piles. They assumed that linear wave theory applied 
in the region between rows of piles and solved the unsteady Bernoulli 
equation for the effect of drag-force losses across the piles. Horizontal 
mass continuity was also required. This second condition permitted the 
investigators to solve the reflection coefficient as well as the trans
mission coef°ficient. Several approximations were made to expedite the 
solution: (a) the reflected and transmitted waves were assumed to be in 
phase with the incident wave, (b) long-wave conditions were assumed so 
that depth dependence could be ignored, and (c) the temporal functions 
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were all evaluated with the a.rguments atbitrarily set equal to II/2. 
Theoretical and experimental results were compared and the drag coeffi
cient was evaluated to optimize correlation. Results were presented for 
one- and two-row configurations and only one incident wave condition, so 
general conclusions are not readily inferred. However, the three stated 
approximations would seem to limit the applicability of the results. 

Kond~ (1970) developed an analytical approach to long-wave inter
action with homogeneous, vertical-face breakwaters. He solved the one
dimensional equation of motion for periodic, linearly dampe~ free-surface-
flow in porous media. The linear damping law approximated the known tur
bulent damping law by requiring that the two expressions yield the same 
time average resistance force at the center of the breakwater. Kondo's 
general solution was similar to that developed by Lean (1967) for perme
able absorbers. It yielded exponential decay of wave amplitude in the 
direction of wave propagation. Linear wave theoiy was applied outside 
the breakwater and the two solutions were coupled by requiring continuity 
of horizontal velocity and pressure at the sea-breakwater interfaces. The 
boundary conditions yielded solutions to the reflected and transmitted 
wave amplitudes. Experimental and theoretical transmission coefficients 
were compared. Although considerable scatter was present in the result, 
correlation for short-wave data was significantly better than for long
wave data. This paradox was left unexplained but may be partially due 
to Kondo's approximate method of evaluating the linear damping coeffi
cient. The analysis cannot be applied to the general case of inter
mediate or short-wave excitation unless the equations of motion are 
rewritten to account for depth dependence. Wave interaction with con
ventional breakwater forms was not discussed. 

The work of Ijima, Eguchi, and Kobayashi (1971) was conducted simul
taneously and independently of the investigation described herein. 
Although both studies solve similar boundary value problems for homo
geneous crib-style breakwaters, there are several important differences 
which distinguish the two solutions. These investigators began with 
Le M~haut~'s (1957) boundary value problem and developed a solution in 
terms of an- unknown linearized damping coefficient. They evaluated the 
coefficient by fitting the theoretical solution to experimental data~ 
This fitting technique yielded empirical equations which equate the damp
ing coefficient to functions of the incident wave properties for a parti
cular model breakwater. The empirical equations did not include· the 
effect of media properties on breakwater dimensions. They were valid 
only for the conditions existing in the model which was used to generate 
the equations. This precluded the use of the theory independent of model 
studies. 

In the present investigation, the boundary value problem is derived 
from fundamental considerations. The simplifying assumptions and limit-· 
ing conditions are identified and discussed. A technique is defined 
which permits a linearized damping law to be determined in terms of 
known media properties and independent of model breakwater data. An 
eigen-series solution is developed for readily identified wave and 
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breakwater parameters as opposed to the auxiliary variables used in the 
solution by Ijima, Eguchi, and Kobayashi (1971). 

Ijima, Eguchi, and Kobayashi did not investigate layered or sloping
face structures. Nevertheless, their work verified the form of the com
plex eigen-series solution used in this study to describe the velocity 
field for idealized crib-style breakwaters. In addition, their work sub
stantiat~d a prior assertion that the solutions proposed by Bi6sel (1950) 
and Le M~aut~ (1957) were incomplete in their published form. 

4. Summary. 

This brief survey summarizes the state of technology as applied to 
permeable breakwater analysis. It may be concluded that presently avail
able theories can not predict wave transmission through idealized struc
tures for a variety of incident wave conditions unless experimental break
water tests are conducted simultaneously. Scaling of the results to pro
totype conditions has not been considered. Furthermore, no theories have 
have been proposed to include the effect of heterogeneous layering or'\ 
inclined surfaces. In the following sections, each of these important: 
problems is considered. 

II. TIIEORY 

1. Introduction. 

The literature review revealed a need for a theory to predict the 
effect of a permeable structure interacting with a surface wave train, 
The analytical part of this study is formulated to provide insights into 
breakwater behavior for a variety of wave and structural conditions. The 
total solution may be divided into two major parts. First, general solu
tions are derived for the flow fields inside and outside of the permeable 
structure. Second, the two general solutions are coupled with some speci
fied excitation to yield the complete problem solution. The.major effort 
is employed in describing the fluid motion within the interstices of the 
permeable structure. 

An overview of the solution technique begins with a close look at the 
flow field within the structure. Most structures of interest, e.g., 
rubble-mound breakwaters, are composed of materials which are randomly 
shaped and placed so that it becomes impractical, if not impossible, to 
specify the local instantaneous velocity and pressure at all interior 
points. The first part of this section identifies an appropriate substi
tute velocity and pressure field which can be evaluated. The resulting 
quantities are the pore-averaged seepage velocity and pressure. The 
Navier-Stokes equations are operated on to revea~ the character of t~~~~ 
quantities and to disclose the dominant stresses which govern their behav
ior. One of these stresses is the total stress tensor of apparent turbu
lent friction. It is intractable in its general· form and is replaced by 
an established damping law which is a deterministic function of the seep
age velocity. ·This leads to a set of equations which are linearized to 
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pennit an analytical solution. The linearized equations "Specify a bound
ary value problem which is shown to be satisfied by a series of eigen 
functions. The problem inside the structure is solved using standard 
techniques and the important features are discussed. The internal solu
tion is coupled to a linear wave theory solution outside the structure by 
requiring continuity of velocity and pressure at the sea-structure inter
faces. The orthogonal properties of the solution are used to reduce the 
coupled expressions to simple algebraic equations for the reflected, trans
mitted, and internal wave amplitudes. The equations are reduced further 
for the case of long-wave excitation. After discussing the solution behav
ior for vertical-faced breakwaters, an .approximate method is introduced to: 
apply the results to conventional breakwater forms. Finally, a solution 
for pile-array breakwaters is presented. 

2. Derivation of the Equations of Motion for Damped, Small-Amplitude 
Water Waves in a· Coarse Porous Medium. 

a. A Microscopic View. A complete mathematical description of flow 
through a coarse granular material requires exact infonnation about the 
shape, location, and orientation of each individual particle. If the 
geometry of the sample of interest is precisely known, then one can pro
ceed with the incompressible Navier-Stokes equations and the necessary 
botmdary conditions to describe the velocity and pressure distribution. 
The appropriate equation of motion is: 

Dq* __ 1 2 
.. Dt - p V ( p* + 'Y z) + vV q * , 

with 
V·q* = O, 

where q* is the actual, instantaneous Eulerian velocity vector at any 
point; p* is the corresponding pressure; y is the fluid weight densi
ty; p is the fluid mass density; v is the fluid kinematic viscosity; 
z .. is the vertical coordinate; t is time; V is the gradient operator 

,., a 
k-. az 

in an orthogonal coordinate system; and D/Dt is the total derivative 

D a 
(- c - + q*•V) 
Dt at • 

Obtaining an exact geometric description of a closely packed struc
ture of randomly placed and shaped particles would be a very difficult 
and tedious task. ~olving th? equations of motion for such a complex 
geometry would require extensive computer memory and time. A more rea
sonable approach to the problem is to determine the important physical 
and hydraulic properties of the media and then evaluate the macroscopic 
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flow field in terms of these properties. This approach yields the well
known seepage velocity concept in porpus media flow. 

b. Applying the Seepage Velocity Concept to the Equations of Motion. 
The seepage velocity concept assumes that pores and flow-resistance prop
erties are uniformly distributed throughout the structure in some known 
manner. The analysis attempts to evaluate velocities and pressures which 
are averaged over the small but finite pore volumes. The resulting solu
tion yield~ the "seepage velocity" which ignores perturbations in the flow 
field due to the presence of individual particles and pore irregularities. 

The applicability of the Navier-Stokes equations has been established 
historically. For the present application it is necessary to operate on 
these equations and the flow variables to replace the actual velocity with 
the seepage velocity. To accomplish this the local instantaneous vector 
velocity, q*, is resolved,into three components: 

q* = q + qs + qt• 

where q is.the seepage velocity, the average velocity within small 
but finite and uniformly distributed void spaces; qs is a spatial 
perturbation accounting for local additional velocity components due to 
pore irregularities or boundary layers; and qt is the time perturba
tion ·accounting for local transient eddy fluctuations within the pores. 
q and qs are· time-averaged over intervals large enough to eliminate 
qt but small enough so as to not hide the overall unsteady effects 
associated with the macroscopic flow field. 

If a velocity probe is inserted into a pore, the total velocity q* 
will be measured at any instant. However, if the total velocity .is meas
ured at a point for some small-time interval, ~T, and the average veloc
ity within that time interval is determined, then the resulting quantity 
is simply the seepage velocity, q, plus the spatial perturbation, qs, 
associated with that location in the pore. If several probes were able 
to perform this same temporal average simultaneously at different points 
throughout the pore, then the spatial average of all of the temporal aver
ages is simply the mean velocity in the pore at that instance, q. Like
wise, the pressure may be written as: 

Utilizing these definitions, one may operate on the complete Navier
Stokes equations to determine the effect of the transient and spatial per
turbations on the mean flow within the pore. The time-averaging opera
tion is defined as: 
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where T is any quantity of interest and t:.T is much .. smaller than the 
time scale of macroscopic unsteadiness. Then, 

because, by definition, the time average of qt is zero. Similarly, all 
functions linear in qt average to zero. 

The total derivative may be expanded to reveal its local and convec
tive terms; 

Do* Cla* · 
Dt = at-+ (q* "'i/) q* . 

When this is introduced into the Navier-Stokes equation and the te~poral 
integration is performed, the result is: 

== .1. "ii (p + p + yz) + " v2 (q + q ) ' 
0 s s 

with 

"ii • (a + o ) == 0. . ·s 

The effect of spatial fluctuations within the pore may be isolated by 
integrating the equations of motion over small but finite pore volumes; 
t:.V. The volume average is defined as: 

-1- 1 . 
T = !J.V f !J.V TdV • 

Within any particular pore there is, by definition, an equal distribution 
of positive and negative qs's. Consequently, the pore-averaged. qs 
is zero and all functions linear in qs integrate to zero over the pore 
volume if the pore volume, t:.V, remains constant throughout the medium. 
This last condition allows one to interchange the order of the spatial 
integration and the gradient operation, Thus, 

(o + o ) = q' . . ·s 

and the pore volume-averaged Navier-Stokes equations become: 

I I 
Clo + r Y 1 2 · 
at q •Vq + q •Vq + ·a •'i/q == - - 'i/(p + yz) + v"il q. 

s s ·t t p 
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To be completely rigorous, these equations should be applied only to homo
geneous media where the length s~ale of the seepage motion is much greater 
than a pore diameter. 

c. · The Effect of the Spatial and Temporal Fluctuations. It is appar
ent from the form of the resulting equations that the effect of the spa
tial ·and temporal fluctuation is to modify the seepage velocity in a man
ner analogous to a Reynolds stress (Schlicting, 1968). However, this 
stress is distinguished from the usual Reynolds stress in the turbulent 
Navier-Sto~es equation in that it contains a spatially derived component, . 

and a transient eddy component, 

q ·' 'lq s s' 

-I-
qt. 1Vqt. 

These terms remain in the equations of motion after the two integrating 
operations have been performed because of the inherent nonlinearity of 
the convective acceleration terms. They may be interpreted as stresses 
with respect to the mean motion because they consume momentum from the · 
force imbalance on the right-hand side of equation and thus prohibit this 
momentum from being transferred to the mean motion. As a result of the 
momentum-consumption character of these terms, it is customary to trans
pose them to the right-harid side of the equation where they assume the 
identity of a stress tensor. 

d. Scaling Arguments. It is important to note that q, q5 , and qt 
may all be of the same order of magnitude. Two examples illustrate this. 
At solid bol.llldaries, the no-slip requirement imposes the restriction that 

q* = q + qs + qt = O • 

Likewis~, eddy fluctuations must vanish at solid bol.llldaries, so: 

q = - a • S I • 

The magnitude of the transient eddies may be argued heuristically if one 
accepts the idea that some of the eddies result from vortex shedding at 
abrupt protrusions in the pore. Since the velocity distribution must be 
continuous from the external flow through the vortex, it is necessary that 
the magnitude of the velocity near the edge of the vortex be of the same 
order as external flow. Consequently, qt~ O(q). This result concurs 
with the large turbulent velocity components observed in turbulent jets 
and wakes ·(Rouse, 1959). 

However, the magnitudes of the respective velocity gradients may be 
entirely out of scale. Gradients in the seepage velocity occur over a 
distance corresponding to a macroscopic flow-field length scale. For the 
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particular problem of interest~ tlti.s scale is repres~mted by a wa~e
length. Gradients in the spatial and temporal velocity perturbations 
occur over distances on the order of a pore ·diameter. For problems of 
any practical importance, the wavelength is always much greater than the 
pore diameter, thus, 

and 

As a result of these order of magnitude arguments, the convective accele
ration term containing the seep.age velocity will be ignored. This :?impli
fication is consistent with the· small-amplitude wave· assumption to be 
imposed subsequently. 

The small-amplitude wave assumption leads directly to linear wave 
theory in the region exterior to the breakwater. In linear wave theory, 
one assumes that the quadratic terms in the equation of motion may be 
ignored. The quadratic terms are the velocity products in the convective 
acceleration terms. Wave field velocities are proportional to the wave 
amplitude divided by the wave period. Because damping causes a reduction 
in wave amplitude within the breakwater, the quotient of wave amplitude 
divided by wave period should be smaller inside the breakwater than out
side. Consequently, it is consistent with linear wave theory to neglect 
seepage velocity convective acceleration terms in the equation of motion. 

A solution is developed later in this study for a pile-array break
water. It will be shown that for the case of widely spaced piles, the 
equations of motion are similar to the large-grain porous media problem 
with an additional requirement imposed by the added mass of .the- pile. 
This requirement introduces the virtual mass coefficient, CM, to the 
local acceleration term such that aq/at becomes (1 + func. (CM)) aq/at. 
To incorporate this effect into the general derivation, a coefficient 
S = (1 + func. (CM)) is introduced as a cofactor in the local acceleration 
term. It should be understood. that with respect to porous media fiow, 
S has a value of unity. 

e. Turbulent Damping Law. The spatial and temporal Reynolds stress 
terms are combined with the laminar shear stress to yield the total stress 
tensor of apparent turbulent friction. With the assumption of small con
vective seepage acceleration the equation of motion becomes: 

I 

= - .!. V (p + yz) + vV
2

q - (q ~ Vq + q : Vq ) , 
p s s t t 

(1) 

with 

V.q = O •. 
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Equation (1) represents the equation of motion for the seepage velocity 
and pressure with a total stress tensor which accounts for the effect of 
local spatial and temporal fl.uctuations. 

The total stress tensor contains a laminar damping term and a turbu
lent damping term. The laminar term is linearly proportional to a veloc
ity and in.versely proportional to the square of the gradient length scale. 
The turbulent damping term is directly proportional to the square of a 
velocity and invers.ely proportional to the gradient length scale. The 
quantities qs and. qt can not be evaluated airectly. However, it is 
possible to relate them to other deterministic quantities in a manner 
which retains the essential character of the total stress tensor. 

One might hypothesize from the structure of the stress tensor that 
the laminar term could be replaced by ari equivalent damping law, 

2 
vi/ q 

Similarly, using the seepage velocity to scale qs and qt, the turbu
lent term could be replaced by: 

where · { } refers to the units of the quantities, A1 and A2 • In fact, 
it has been demonstrated that under steady, nonconvective flow conditions 
the pressure drop through large-grain permeable media is specified by 
(Ward, 1964; Dinoy, 19 71) : · 

I 

f - ! v 
p 

(p + yz) 

For the conditions stated, this established the equivalency of: 

I / I 

vV
2
q - (q ~VQ + q ·Vq ) = -

s ·s t t 

Vq C 
_i + f qdlqdl' 
K K 1/2 

'P p 

(2) 

(3) 

where Kp is the intrinsic permeability, a hydraulic property of the 
medium with a dimension of length squared; Cf is a dimensionless turbu
lent coefficient; and qd is the discharge velocity. The discharge 
velocity is a conceptual quantity defined by distributing the seepage 
velocity over the solid volume as well as the void volume. The discharge 
velocity is analytically expedient in that it allows one to apply the 
continuum concept to flow fields with unknown internal boundaries. 
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Algebraically, the discharge velocity may be expressed as the product of 
the seepage velocity and the porosity, e: 

(4) 

where 

void volume 
E = . . • 

(void + solid) volume 

Kp and Cf may be spatial variables· and in an isentropic medium they 
may be directionally sensitive. In general, tensor notation would be 
appropriate for the friction term. Nevertheless, this discussion will use 
vector notation. However, note that Kp and Cf assume their proper 
values in the direction of q. 

One important feature of this damping law is that for low Reynolds 

number flows, i.e., q~ « qd~ the equation reduces to Darcy's Law for 

flow in porous media: 

1 Vqd 
- - 'i/ 'P + yz) = T. 

p p 

A useful consequence of the steady-state damping law expressed in equa
tion (2) is that it facilitates the definition of a friction factor or 
loss coefficient analogous to pipe flow. Specifically, 

1 
Vq ' cf qdjqdl_ qcllqdl 

- - 'i/ (p + yz) = __E_ + 
1/2 - f K 1/2 ' (5) p K 

p K p K 
p p 

Then, 

f K = 
1 

+cf, (6) 
~ p 

p 

where 

I JK 1/2 
R = 

qd E 
K~ \) 

, 
p 

a permeability Reynolds number, and .fKp is the media friction. factor. 
Utilidng equations (5) and (6), it 1s possible to construct a "Moody 
Diagram" for turbulent flow in porous media. Such a diagram was con
structed by Dinoy (1971) and is shown i/ Flgure l; in the figure, d 
represents the media grain size and d/ Kp e is a relative roughness 
proposed by Dinoy. This figure substantiates the validity of the proposed 
damping law for several different materials. Experiments verify that 
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Figure 1. Friction factor versus Reynolds number RKp = qt"Kp/v (Dinoy, 1971). 



damping becomes pure Darcian (linear) at low Reynolds numbers and fully. 
turbulent, square-law damping at high Reynolds numbers, ·again as in pipe 
flow. 

The applicability of the discharge velocity damping law expressed in 
equation (2) has been established for steady, nonconvective flows. Other 
investigators have tested this law for unsteady flows. Shuto and Hashimoto 
(1970) reported, "Resistance coefficients obtained in steady and oscilla
tory flows show almost no difference." However, their study was limited 
to periods of oscillation greater than 3.4 seconds. The experiments w&r~. 
performed on various size models of artificial armor-layer materials in a 
large U-tube-type permeamete'r. Free. oscillations were induced by imposing 
an instantaneous head difference across the ends of the U-tube. Because 
of the relatively long periods, the results have important implications 
for prototype-wave excitation but may not necessarily apply to all small
scale laboratory conditions. 

1he effect of acceleration in the flow is not well defined. However, 
Wright (1968) found that converging flows impede turbulence and cause a 
relative decrease in the resistance coefficient. Diverging flows induce 
separation from physical boundaries, thereby increasing turbulence and 
the resistance coefficient. In periodic fluid motions, the flow accele
rates and converges during one-half cycle while it decelerates and 
diverges over the remaining one-half cycle. 1he two effects are partial
ly compensating so that the total hydraulic resistance during one cycle 
may approach that indicated by the steady-state resistance coefficient. 
In the absence of more definitive information, it is assumed in this study 
that periodic flows cause the same mean resistance to flow during one cycle 
as that indicated by steady-state resistance tests. Consequently, the 
permeability, Kp, and turbulent friction coefficient, Cf, obtained by 
conventional methods in steady-state tests are accepted as adequate 
descriptions of the medium hydraulic properties and equation (3) becomes 
the appropriate damping law for oscillatory flow. Substituting equations 
(3) and (4) into equation (1) yields: 

S ~ = - .!. V (P + yz) at p 

with 

2 
ve: Cfe: 
-~--

K K 1/2 
p p 

(7) 

Equation (7) represents a s.ignificant improvement over equation (1). 
1he damping term is deterministic.because the media properties £, K~, 

and Cf may be evaluated a priori from standard tests or from empirical 
expressions (Dinoy, 1971). Although this term is derived from steady
state concepts it is assumed that it accounts for the damping due to the 
instantaneous velocity occurring at all phases of the wave cycle. 1hus, 
the linear term dominates during that phase in the cycle when velocities 
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are low and.the turbulent term dominates when velocities are high. The 
number of llllknowns has been reduced from four (q, qs, qt, and p) to two 
(q, p), so a llllique solution to a properly posed problem is possible. 
The assumptions which limit the application of this expression are that 
convective accelerations be small and that the motion be periodic with 
frequency low enough to maintain the validity of the damping term. Thus, 
equation (7) applies when the wavelength is long with respect to wave 
amplitude and media grain size. · · 

Some linearizing is necessary to find an analytical solution to equa
tion (7). Two approaches are evident. The· analyst can perturb the equa
tions to seek successive improvements to the· linear solution or seek a 
linear solution which attempts to incorporate the essential features of 
the nonlinear problem. This study proceeds with the latter approach 
because it yields the most information at the first-order level. Further
more, perturbation schemes predict the existence of higher harmonics due 
to the nonlinear damping term. Few investigators are properly equipped 
experimentally to reduce multiple harmonics in partial standing wave 
trains .. This data would be necessary for the verification of the pertur
bation solution. 

f. Linearization Technique. The specific technique to be employed 
is as follows. The total stress tensor in equation (7) is replaced by 
an equivalent stress term linear in q, i.e., 

C c.2 

VEq + _f_ qlql + fO'q' 
K K 1/2 

p p 

(8) 

where a is the angular frequency of the periodic motion and f is a 
dimensionless friction or damping coefficient. The coefficient, a, is 
introduced to make f dimensionless and for subsequent algebraic expe
diency. To evaluate f in terms of the known damping law it is required 
that both the linear and nonlinear friction laws accollllt for the same 
amollllt of energy dissipation during one wave cycle. This is connnonly 
referred to as Lorentz's condition of equivalent work (Lorentz, 1926). 

The stress tensor in the equation of motion, e~ressed in either form 
of equation (8), represents a friction force per unit mass acting at a 
point in the flow field. If this term is multiplied times the mass flux 
per unit volume flowing in a direction opposed to the friction force, the 
resulting quantity is the power dissipated per unit volume. If the power 
dissipation per unit volume is integrated over the volume of the flow 
field, V, and the wave period, T, the resulting quantity is the total 
energy consumed by friction in the volume of interest during one wave 
period. According to Lorentz's hypothesis, this quantity must be the 
same for all legitimate damping laws describing the same process. In 
equation form, this constraint is: 

. t+T t+T C 2 

: Jc.d\t I faq•pq dt = J e:dV J { ~e:q + £~ 12 qlql} •pq dt. 

V t V t p KP 
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Tln.is, a unique relationship exists between the media parameters 
(e, KP• Cf), the flow-field parameters (v, q) and the friction coeffi
cient, f. With f assumed spatially independent in V, this rela
tionship is: 

Jdv 
ft + T 12 .. CfE 

,q,3} 
' 

J E 
2 {~ 

+ l/2 
dt 

K 
p K 

1 v t 
f = - r/T 0 

t dV £q dt 

t 

(9) 

where q2 = q·q, the dot product, and f is considered constant within V. 
The entire flow field may be divided into any number of subvolumes V, 

.. each with its own characteri~tic f and unique equation of motion. 

Substituting the linearized damping term equation (8) into equation 
(7) yields the linearized equation of motion; 

da 1 
5 at= - p V (p + yz) - fOq, (10) 

with 

· V·q = 0. 

g. Potential Flow Field. The equation of motion is linear in both 
q and p. As a result, a simple harmonic excitation will yield a 
simple harmonic solution to the equation. The excitation in this study 
is assumed to be a monochromatic sea surface consistent with equation (10) 
to equate the frequency of oscillation within the medium to the frequency 
of the excitation, a, so that: 

and 

q(x,y,z,t,), p(x,y,z,t) 

"' .. 

iOt = {q(x,y,z,), p(x,y,z)} e 

~t :{q,p'} = io {q,p}.· 

Substituting into equation (10) yields: 

. 1 
(i~S + fo) q = - - V (p + yz). 

p 

Performing the curl operation on th~s equation demonstrates the irro
tationali ty of the seepage velocity field, i.e.: 

1 
o(iS + f) vxq = - - VxV (p + yz) = O. 

p 
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The vector identity VxVT = 0 sets the right-hand side of the equation 
equal to zero,.consequently, 

Vxq=O. (11) 

The above equation is a statement of zero vorticity or irrotationality 
and is a sufficient con9.ition to establish the existence of a velocity 
potential, ~, wherein (Robertson, 1965) 

q ::: V¢. 

Combining equation (11) with the incompr~ssible condition in equation 
(10) yields Laplace's equation: 

V·q = v-v~·= v 2 ~ = o. 

(12) 

(13) 

Equation (13) expresses Laplace's equation for the seepage velocity 
potential. A similar expression may be derived for the discharge veloci
ty. Again, the medium must be homogeneous with respect to porosity. 
This may be demonstrated by substituting equation (4) into equation (11): 

V X ~
1

/E = 0. 

Clearly, the discharge velocity is irrotational only if the porosity is 
constant. 

Steady-state damping laws are commonly written in terms of the dis
charge velocity, e.g., equation (5). Unsteady motions, on the other hand, 
are characterized by an imbalance in friction and pressure forces causing 
the flow through the pores to accelerate at the rate of change of the 
seepage velocity. 1hus, the acceleration terms in porous media equations' 
of motion are written in terms of the seepage velocity. As a result, the 

.seepage velocity assumes greater physical significance in unsteady flows 
and in all cases it represents the actual flow-field kinematics more·pre
cisely than the discharge velocity. For these reasons, this study uses 
the seepage velocity potential to describe the flow field. 

It may not be immediately apparent why the friction coefficient, f, 
behaves like a constant. This may be explained if one recognizes that 
equation (9) ·and (10) are not coupled equations. Instead, equation (9) 
is a constraint which specifies a friction coefficient, f, which is 
acceptable in equation (10). The friction coefficient is implicitly a 
function of time and spac~, as expressed in equation (9). However, once 
f has been evaluated, it assumes the character of a constant in equation 
(10). Thus, f may account for variable permeability and nonlinear damp
ing without complicating the form of the solution to the equation of 
motion. 

h. The Bernoulli Equation. Equation (13) represents the irrotational, 
incompressible character of the seepage flow field. To determine the 
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particular effect of damping and relate that to the pressure distribution, 
it is necessary to substitute equation (12) into equation (10) to yield: 

s !_ V~ = - .! V (p + yz) - foVi!>. at P 

Transposing and removing the gradient operator, 

v· { s ~«%> + .!. (p + yz) + foe%>} r:t 0. 
at P 

Since V is a spatial operator, the operand can be a function of time 
only 1 and 

ac1> 1 ' ) s at + P (p + yz) + fcr<I> = F(t • 

Changes in fluid motions occur due to stress gradients. Since F(t) 
is constant throughout the flow field at any time, t, it has no effect 
on the stress gr.adients. Therefore, it may be neglected or included in 
the definition of ~ without ~ffecting the solution (Ippen, 1966). Then, 

a<I> 1 
S at + P (p + yz) + fcr<I> = O. (14) 

This is the linearized unsteady Bernoulli equation for flow in large
scale granular media with quasi-linear damping. Along with Laplace's 
equation, it describes the flow and p~essure field within the interstices 
of the granular media. To completely specify the problem, it is necessary 
to resolve the boundary conditions. 

3. Boundary Value Problem. 

a. Boundary Conditions. The boundary conditions may be visualized 
with the aid of the definition in Figure 2. The sketch depicts a peri
odic flow in an unconfined, coarse-granular media. The vertical dis
placement of the free surface above the stillwater level (SWL) is 
specified by n. 1he vertical coordinate, z, is referenced to the 
SWL and the impervious horizontal bottom is located at depth h below 
the SWL. 

Capillarity and surface tension are negligible phenomena due to the 
large scale of the pores in the media of interest. Consequently, the 
fluid pressure at the free surface is atmospheric pressure. Thus, at 
z = n, P.= O and the Bernoulli equation reduces to: 

s ai!> + Y n + fcr<I> = o • at p 
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With y/p = g, the dynamic free-surface condition becomes: 

1 a~ 
n = - - cs - + fa~) 

g at z=n 

To avoid the difficulties of a transcendental solution it is consistent 
with small-amplitude waves to apply the surface boWJ.dary condition at 
z = O, thus, 

1 a<I> 
n = - - cs ~ + fa<I>) 

0
• 

g at Z= 
(15) 

Equation (15) reduces to a homogeneous boWJ.dary condition with the 
aid of the. following observation as shown in Figur~ 3. '!he rate at which 
the water surface rises and falls about the SWL, dn/dt, is equal to.the 
vertical velocity component in a pore at the free surface. '!his _pore 
velocity is a seepage velocity and should not be mistaken for a discharge 
velocity. In equation form this statement reads: 

·~~ F ~='·=~ • 
But, 

-
· dn an + an dx 
dt = at ax dt • 

'!he convective term is of second order and may be ignored so that: 

and 

dn an 
dt t:: at' 

an = ·a<I>J 
at az . 

z=O 

(16) 

ERuation (16) is the kinematic free-surface condition and when combined 
with equation (15) yields: 

2 
1 {s a <I> + a<I>1 a<I> 
g 

0
t2 foat z=O = az 

z=O 

or 

= o. (17) 

According to the argwnents presented in the development of equation (12), 
the pressure and velocity fields are expected to have a simple harmonic 
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time dependence. As a result, the velocity potential may be expressed as: 

<l>(x,y,z,t) = <l>(x,y,z)'eicrt. 

Substituting into equation (17) yields the homogeneous free-surface 
boWldary condition: 

at 2 · 
{g ~ + a (if :.... S) <%>} = 0. 

oZ z=Q 
(18) 

Breakwaters are commonly constructed on natural bottoms of very_low 
permeability (sand) or zero permeability (shale, bedrock). It is con~ 
sistent to regard such a foWldation as being impervious. It follows that 
the vertical velocity component must vanish at z = -h, i.e.: 

a~I . - :c 0. az 
z=-h 

(19) 

Two indep:;ndent boWldary conditions are sufficient to determine the 
general for11. uf the solution to a. second· order partial differential equa
tion. Thus, equations (13), (18), and (19) may be conbined to specify the 
botindary value problem. 

Throughout the domain: 

\72<1> = 0 ' 

z = 0: 

z = - h: 

g ~: + ~ 2 (if - S) ~ = 0, 

a~ 

az = 0 • 

(20) 

(21) 

(22) 

These are the basic governing equations for damped small-amplitud~ 
water waves propagating through.a coarse-granular media. Laplace's equa
tion ~pecifies a general irrotational, incompressible flow field while 
the Bernoulli equation determines the particular effect of damping.on 
the simple harmonic flow. 

b. Solution by Separation of Variables. This study seeks a two-· 
dimensional solution to the equations of motion. The longitudinal coordi
nate is in the direction of wave propagation. Unless the boWldary condi
tions at the sea-breakwater interfaces are written to account for oblique 
incidence and refraction, direct application of these results is limited 
to excitation provided by waves of normal or nearly normal incidence. 

The homogeneity of the differential equation and the boWldary condi
tions suggests that a variable separation technique will be effective in 
solving the problem (Robertson, 1965). This may be achieved by replacing 
the velocity potential with the product of three te111l5, each of which is 
a function of only one of the independent variables. Thus, 
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• 

~(x,z,t) = X(x) Z(z) T(t), 

where x is the longitudinal coordinate in a rectangular coordinate 

system and T(t) is the simple harmonic function, eicrt. Laplace's 
equation may now be written as: 

"2"' = a
2

c:> + :lc:> = 
v "' X"ZT + XZ "T = 0 , 

dX
2 

()z
2 

or 

X" z II 
x =-z-:· 

Since X and Z are independent, the above quotients can only be equal 
to constants or zero, and two equivalent expressions may be written: 

X" 
K2' -= -x 

Z" 
K2 • -= z 

In the absence of a superimposed current, these equations have the well
known solutions (Robertson, 1965): 

Z = CeKz + De-Kz. 

Applying the bottom bomdary condition requires 

a~1 -o 
()z - ' 

z=-h 

therefore, 

- ==0, dZ' ()z Z=-h 

-Kh Kh 
KCe - KDe = 0, 

2Kh 
C = De ' 

39 



and 

or 

Z = 2DeKh ch K(h + z), 

where ch K(h + z) is the hyperbolic cosine of K(h + z). 
Z neKh, may be incorporated into the constants A and B, 

1> ;= (AeiKx + Be -iKx) chK(h + z) ei.crt, 

The factor 

whence 

-· 
(23) 

Substituting the above expression into the dynamic free-surface .condi
tion yields the constants A and B in terms of the water surface pro
file, 

n 
1 a<I> a 

1 
- - (S - + fa<l>) . = - - (iS + f) <l> g at z=O . g . 

z=O 

= - Q. (iS + f) ch Kb (Aei(at + Kx) + Bei(at - Kx)) • 
g . 

The x and t dependent factors have been combined to reveal that A 
represents a waveform propagating in the negative x-direction and B 

represents a waveform propagating in the positive x-direction. The sur
face profile, n, may be decomposed into two components with n1 
propagating towards plus infinity and n2 propagating towards minus 
infinity. Then the two components may be separated as: 

n = a (is + f) ch Kh (Bei(crt - Kx)) , 
1 g 

and -
n

2 
= - i (is + f) ch Kh (Aei(crt + Kx)), 

n 1 attains its maximum, a1, when the period:i,c function ei (at - Kx) 

attains its maximum value of unity. Likewise, n2 attains its maximum, 
a2 , when· the periodic function ei(ot + Kx) attains its maximum value 
of unity. Thus, 

and 

or 

a (iS + f) ch Kb (B), 
g 

a 2 = - 0 
(iS + f) ch Kb (A), 

g . 

al' a2 
B, A = -----__;~--

a 
- - (iS + f) ch Kh 

g 
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and equation (23) becomes: 

~ =_i(ale-iKx + a2eil<x) cr(S-~f) ch K(h·+ z) 

ch Th 
icrt 

e (24) 

. c. Eigenvalue Problem. Substitution of equation (24) into the com-
bined kinematic and dynamic free-surface condition expressed by equation 
(21) leads directly to: 

1° ( -iKx iKx g ·ah Kh icrt 
igK ale + a2e ) a(S - if) ch Kb e 

2 • -iKx iKx g ch Kh icrt 
+a (if-: S) i (a1e + .a2e ) a(S _if) ch Kh e = O, 

where sh Kh is the hyperbolic sine of Kh. 
connnon factors yield: 

Transposing and canceling 

cr2 (s - .if) = K sh Kh = 
g ch Kh gK th Kh, 

where th Kh is the hyperbolic tangent of Kh. This equation specifies 
acceptable values of K. · It is a characteristic equation and has an 
infinite number of complex roots. Each root may be denoted by a different 
value of the subscript n so that the equation properly appears as: 

' 2 
.a (S - if) = gK th K h. 

n n (25) 

A bolmdary value problem consisting of a linear, homogeneous, second 
order, partial differential equation with two linear, homogeneous boWld
ary conditions is called a Sturm-Liouville problem (Hildebrand, 1965). 
These problems are also called eigenvalue problems where the solutions to 
the characteristic equation are the eigenvalues. For each eigenvalue, 
Kn, there is one eigen function, $n, with its own arbitrary constants 
a1n. a2n. Each eigen flmction is a solution to the boundary value prob
lem. The total solution is the sum of all eigen functions. In theory, 
an infinite. number of eigen functions exist, but in practice it is found 
that only a finite number of eigen fWlctions need be summed to specify a 
problem to a reasonable degree of acc~racy. 

Each eigen function may be written: 

JI.. • ( :_iK x1 iK x) g 
~n = 1 alne n + a2ne n a(S : if) 

ch K (h + z) iat __ n__, ___ e 

ch f< h 
n 

(26) 

Alternatively, substituting equation (25) into the above leads to another 
form for the eigen function: 
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'Ihe .total solution to the botllldary value problem is: 

00 

.~=I~. 
n=l n 

(28) 

d. '!he Dispersion Equation. '!he behavior of the characteristic equa
tion (25) is worthy of further discussion. In wave propagation problems 
this equation is often referred to as the dispersion equation because it 
accotlllts for the dispersive character of gravity waves, i.e., wave speed 
is a ftlllction of wave frequency. Some insights into the nature of the 
dispersion equation may be gained by separating the complex eigenvalue, 
Kn, into real and imaginary p~rts: 

K = f (1 - ia. ) . (29) 
n n n 

where Cln may be interpreted as a proportionality factor relating the 
imaginary to the real part of Kn. r symbolizes the real part of a ·com

plex wave number. As will be. shown, the negative prefix in the imaginary 
term assures positive solutions to Cln· Substituting equation (29) into 

equation (25), using the identities: 

and 

th fh - th iafh 
th fh(l - ia.) = 1 - th fh th ia.fh 

th ia.fh = i tan a.rh, 

and equating real and imaginary parts, lead directly to: 

. 2 
So 
--= 

g 
r {th fh (1 + tan2a.rh) 

1 + th
2
rh tan

2
a.rh 

- a tan a.rh (1 - th
2
rh), 

and 

fo
2 r 

--= 

g 1 + th
2 

h tan
2 

2 : 
{a.th fh (1 + tan a.fh) 

h 

2 . + '.tan aTh (1 - th fh), 

wher~ the subscripts have been dropped from intermediate results to 
simplify notation. Introducing the identities: 

2 
1 + tan arh = 1 

2 , 
cos a.fh 

1 
sin a.rh cos a.fh = 2 sin 2a.rh, 1 

sh Th ch Th = 2 sh 2fh , 
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and regrouping terms in equation (30) yield the result: 

2 
80 

- r th r h 
g n n 

Ctn sin 2a r h 
1 

_ n n 
sh 2r h 

n 

sin
2 

(l r h 
1 --~-n_n __ 

ch
2 r h 

n 

(32). 

Dividing equation (31) by equation (30) and using the above identities 
lead to the results: 

sin 2cx. r h 

1 + n n 

f an sh 2r h 
n 

(33) = (l 

s n 
sin 2a r h Cl 

1 -
n n n 
sh 2r h 

n 

'Illus, the complex dispersion equation has produced two real equations for 
the two real unknowns an and rn. 

An important feature of the dispersion equation pair is the limiting 
conditions of zero damping, i.e., f + 0. In this case, with S = 1.0, 
the equations reduce to: 

02 
-= 
g 

r
1 

th r
1

h with CLl = 0, 

and 

02 
- = - (l r tan (l r h with r = 0 ' 
g nn nn n 

and 

These are simply the linear wave theory dispersion equations. The first 
one represents the familiar progressive mode while the second one re~re
sents the local modes, which are discusse·d later. It is not surprising 
that this limiting condition is attained because the theory includes a 
small-amplitude assumption (negligible convective acceleration), and as 
the medium takes on the properties of pure seawater, the solution should 
reduce to linear wave theory. 

1he roots to ~he dispersion equation are transcendental; therefore, 
it is necessary to seek eigenvalues via iteration techniques. To hasten 
the iteration process, this study has employed a complex Newton-Raphson 
scheme for rapid convergence (Hildebrand, 1965). The success of this 
method is dependent on estimating the value of the roots within some 
unspecified but reasonably close vicinity of the actual solutions. 
Appendix A provides some useful guidelines for estimating the roots. 
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Appendix B de.mons·trates that both positive and negative · rn are 
admiss;ble solutions to the real pair of dispersion ·equations but the 
Cln roots are always positive.· The i.mportanc~ of this trait be co.mes 
evident when the surf ace profile and wave celerity are analyzed in the 
following discussions. 

e. The Surface Profile. Equations (15), (26), and (29) may be com
bined to yield the surface profile for a single eigenvalue component: 

n = 
n 

a (is+ f) ~ I 
g n z=O 

iat , 
e 

= a el-Cl r x ei(at - r x) .+ a e
1
anrnx i(CJt + rnx). 

In n n n 2n e (34) 

This equation depicts each wave component as an exponentially damped 
sinusoid, decaying in the direction of propagation. Note that including 
negative values of rn simply interchanges a1n and a2n without alter
ing the problem solution. 

It is apparent from the form of the exponentials that rn specifies 
the spatial periodicity of the function and Clnrn specifies the amplit~de 
decay. Consequently, Kn is simply a complex wave number with real and 
imaginary parts which characterize wavelength and decay distance, respec
tively. 

f. Celerity. The concept of phase velocity or wave celerity is easy 
to visualize with the expression for the surface profile, equation (34). 
The phase velocity, Cn, may be interpreted as the rate at which zero 
crossings propagate in the x, t plane. This is simply the rate at 
which one must move in x to compensate for a temporal change in t 
such that the periodic term in equation (34) remains constant. That is: 

c 
() i(at + r x) a i(Ot + rnx) == 0, 
dX 

e n +-e 
n dt 

or 

c = + S!_ (35) 
n - r ' 

n 

where the positive sign applies to wave propagation in the positive 
x-direction, etc. 1hus, it is the real part of the wave'number, rn, 
which specifies the propagation rate and it is the imagery part, Clnrn, 
which specifies the decay rate • 

. g. Depth Dependence. It is useful to substitute equation (29) into 
equation (27) and look at the form of the velocity potential for a single 
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eigenvalue propagating in the positive x-direction. With the subscripts 
omitted to simp'iify notation' the velocity potential appears as : 

<I> I ioal e-a.rx 
n - -=----oJ;x - r (1 - ia.) 

ch f(h+z)cos a.r(h+z)-i sh f(h+z)sin a.f(z+h) ei(crt-rx). 
sh rh cos arh - i ch fh sin a.rh 

This equation contains five complex terms including a1 , which in general 
contains the phase as well as the magnitude of the amplitude and is there
fore complex. When these terms are expanded and separated they yield 16 
real and 16 imaginary terms. Complex notation consolidates 32 terms to a 
single expressl.on and greatly simplifies subsequent algebraic manipula
tions. The interesting feature in this equation is the depth-dependent 
term. In linear wave theory, the depth dependence decays hyperbolically. 
The above equation·:shows that with damping, the depth dependence is a 
summation of four terms, each of which is a trigonometrically modulated 
hyperbolic decay term. Thus, for large a, the horizontal velocity 
includes four terms, each of which exhibits a depth dependence (Fig. 4). 
As the damping properties of the medium go to zero, the velocity potential 
reduces to that given by linear wave theory. 

4. Vertical-Wall Breakwaters. 

a. Physical Description. The two-dimensional velocity potential 
described by equations (26), (27), and (28) applies to media of finite 
depth and arbitrary longitudinal extent. To specify the potential for a 
bre.akwater of finite width, b, consider a crib-style breakwater, located 
in a monochromatic sea environment (Fig. 5). As an incident wave encount
ers the breakwater face, part of the wave is reflected back out to sea 
wh1le some of the wave energy is transmitted to the interior of the break
water. This transmitted energy excites the appropriate eigen modes which 
in turn propagate and decay toward the lee face of the breakwater. At the 
lee face each mode experiences partial transmission out of the breakwater 
where the energy excites the proper modes in the transmitted wave train. 
Likewise, a part of each mode is reflected back to the interior and each 
modal component continues to decay as it propagates towards the front face 
of ~he breakwater. Again, at the front face, each modal component experi
ences partial reflection back to the interior and partial transmission. 
The energy transmitted to the windward side of the breakwater contributes 
to each mode in the reflected wave train. This process continues 
ad infinitwn as the components which are propagating back and forth within 
the breakwater become smaller and smaller with each traverse due to expo
nential damping and partial transmission at each face. 

The effect of a continuous incident wave train is to continuously 
excite new components of each mode as 01µ components decay away. A 
quasi-steady-state situation is reached so that there is no net accumu
lation of energy within the breakwater. Then all components of each 
eigen mode propagating in one direction may be superimposed to yield a 
single component for each mode. This superposition principle applies 
equally well to the reflected and transmitted wave trains. The net result 
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. 
Figure 4. One term in the horizontal velocity distribution. 

I II III 

x•O x-b 

Figure S. Crib-style breakwater. 
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of placing a permeable breakwater in a monochromatic wave train of constant 
wave height is to produce n modes in each of the following: a reflected 
wave ~rain! a transmitted wave train, and two wave trains propagating in 
opposite directions in the interior of the breakwater. Since each mode 
propagates with some unknown amplitude, there are, in general, 4n 
unknowns and 4n boundary conditions needed to solve the problem. 

b: Flow-Field Specification. The velocity potential defined by 
equation (27) applies to region II in Figure 5. It is worthwhile to 
redefine the phase references. The amplitude of waves propagating in the 
positive x-direction are maximum at x = O; waves propagating in the nega
tive x-direction have maximum amplitudes at x = b. Accordingly, a1n 
and a2n should be referenced to x = 0 and x = b, respectively. This 
alters the form of the velocity potential in equation (27) to: 

ch K (h+z) iO't 
~ = i (a e-i'K x+ a eiK (x-b)) !L __ n ___ e 

n ln n 2n n K sh K h 
(36) 

n n 

"The total velocity potential in region II is the sum of the eigenfunctions, 
that is: 

~II = l ~n • 
n=l 

The pressure field is given by equation (1), 

Pu 
- = - O' (iS + f) <l>II - gz • 

p 

Linear wave theory applies in regions I and III. As revealed earlier 
in the derivation, the expressions for the velocity potential and dis

persion equation in the granular media reduce to linear wave theory for 
the limiting condition of S = 1.0, f = O. However, it is necessary to 
properly account for the phase and direction of the separate wave trains 
in each zone. 

With S = 1.0 and f = O, the dispersion equation reduces to: 

2 
O' = gk th k h, 

n n 
(37) 

where the lower case wave number refers to the regions exterior to the 
breakwater. The n = 1 mode is a real wave number and represents a pro
gressive wave which propagates without decaying. The n .::._ 2 modes have 
imaginary wave numbers and represent local standing waves with spatially 
decaying amplitudes. The local modes are included to satisfy irregular
ities at the boundaries between two regions, but have no effect far away 
from the boundaries. 
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There is, in general, one real solution to equation {37). This is 
easily foood using the Newton-Raphson method with any initial; real esti
mate to k1. The fooction is odd so that either the negative· or posi
tive 'roots will satisfy the equation. The sign of the root is chosen to 
correspond to the proper direction of propagation. The imaginary roots 
are easy to locate by rewriting equation (37) as: 

a2
h 

- ::: k h th k h, 
g n n 

k = :-i k' ' 
n n 

- k' h tan k 'h. 
n n 

Now ~ is real for n > 2. 
near: 

Solutions to this equation will be foood 

k'h "' cit - 1> n 
n 

The behavior of the local modes is apparent from the form of the 
velocity potential, equation (27), which applies exterior to the break
water if the complex wave number, ~, is replacea with kn. This leads 
to the result: 

~ = i (a e-ik x + a eik x) a 
n ln n 2n n k 

n 

Bu~ kn = - ik~, n .::_ 2, then, 

ch k (h + z) 
n 

sh k h 
n 

iO't 
e 

k' k'x a cos k~(h + z) iot 
~ I = -i (al e- nx + a2ne n ) k' sin k'h- e 
n n>2 n n n 

Since ki'i is real and positive, the x-dependent expressions show that 
the local modes decay exponentially in the direction of propagation of 
the progressive mode. Thus, the local modes in the reflected and trans
mitted wave trains decay with increasing distance from the booodaries. 

In region I (Fig. 5), the total velocity potential is the sum of the 
incident and reflected wave potentials, 

The incident wave train is the known forcing fooction in the problem and 
has been specified as a monochromatic sea surface. Consequently, only 
the progressive mode is present, the amplitude is known, and the incident 
wave velocity potential is: 
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cp. 
l. 

The reflected wave train, on the other hand, must include all modes to 
account for local disturbances at the sea-breakwater interface. Thus, 

00 

w = I w , 
r n=l rn 

<I> 
rn 

ch kn(h + z) icrt 
--s"'""h_k,........,h~-- e 

n 

where the am are reflected wave amplitudes of llllknown magnitude and 
phase. Note that the phase of the oscillations in region I has been 
referenced to the windwar<l breakwater face, x = 0. The pressure field 
falls directly out of equation (14) with S = 1.0, f = O, 

Pr 
- = - ia<I> - gz. 
p I 

In region III the velocity potential is simply that represented by the 
transmitted wave train, 

.. 
The transmitted wave train is composed of a progressive mode and an infi
nite series of local modes, 

00 

<I>t = I ~ . 
n=l tn 

The phase of the oscillations is referenced to the leeward breakwater 
face, x = b, and there fore appear as : 

ch k (h + z) icrt 
<I> = i a e-ik (x - b) SL __ n ____ e 

tn tn n k sh k h 
n n 

A5 in region I, the pressure field is: 

Pnr 
--= -

p 

c. Interfacial Boundary Conditions. These results conclude the 
specification of the velocity and pres~ure fields in each of the three 
regions of interest. Al.though the structure of the expressions describ
ing these fields has been determined, each expression contains unknown 
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amplitudes which remain to be evaluated. Before proceeding with this 
evaluation, it is useful to summarize the solution in each region. 

Region I: 

Region· II: 

<I>II = 

00 

<I>I = ¢ + I <I> 
i n=l rn' 

ch k (h + z) 
<1> = i a e ik x .....!!._ ___ n __ _ 

rn rn n k sh k h 
n n 

Pr 
- = - icr<I> - gz . 
p I 

2 
(J = gk th k h 

n. n 

\ <1> 
L 0 

n=l 

icrt 
e 

icrt 
e 

( 38) 

<!> = i(a e-iK x + a eiK (x - b) cr 
ln n 2n n K 

ch K (h + z) . 
0 e 10' t , ( 39) 

sh k h n 
n 

Pu 
--= 

p 
- (iS +f) ¢II - gz, 

a
2 

( s - if) = gK th K h. 
n n 

Region III: 

00 

l ~tn' 
n=l 

<P 
tn 

ch k (h + z) 
= i -ik (x - b) O' __ n ___ _ 

atne n iz- sh k h 
n n 

Prrr 
-= 

p - ia<I>
1
II - gz, 

02 = gk th k h . 
n n 
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These equations contain 4n unknowns, i.e., n unknowns for each 
of the amplitude series am, a1n, a2n, and atn· To evaluate these 
Wlknowns, 4n additional boundary conditions are needed. Since the 
solutions in adjacent regions must be continuous at the interface between 
regions, it is apparent that the appropriate boundary conditions are con
tinuity of pressure and horizontal mass flux at x = 0 and x = b. If these 
conditions are applied at n points along each interface, then there will 
be sufficient equations to specify the unknown amplitudes. 

At the sea-breakwater interface, the flow must contract or expand as 
it enters or exits a particular pore. Incompressible flow mass conserva
tion requires that a constriction in the flow field be accompanied by an 
acceleration such that the product of the velocity and the projected flow 
area remain constant. Thus, at x = 0: 

or 

i 
u I = 

I• 

Although the porosity, E, is defined as the ratio of pore volume to 
total volume, it is also equal to the average ratio of cross-sectional 
pore area to total area. Similarly, at x = b: 

Note that continuity of horizontal mass flux is equivalent to continuity 
of the discharege velocity. The interfacial boundary condition may now be 
written as: 

x = 0 ur = Eurr' 

Pr = Prr. 

x = b EUII = UIII' 

Prr = Prrr· 

But u = a~/ax, and the pressure terms are elementary functions of the 
velocity pot~ntial, 1as summarized in equations (38), ('39), and (40). 
Consequently, the interfacial boundary conditions become: 

x = 0 ( 41) 

cti
1 

= (S - if) ct>II • (42) 
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x = b ( 43) 

(S - if) ~II= ~111· ( 44) 

Substituting the velocity potentials from equations (38), (39), and 
(40) into equations (41) to (44) lead directly to: 

CX) ch k (h + z) CX) ch K (h + z) 

l n 
+ l e: 

n (a - a e-iK b) 
sh k h 

a 
sh K h rn ln 2n n 

n=l n n=l n 

ch k
1

(h + z) 
= 

00 

\' 
I ... 

n=l 

sh k
1

h 
c1 •• 

]. 

l 

k 
n 

ch k (h + z) 
n ------a 

sh k h rn 
n 

CX) 

+ (S - if) l 1 

n=l Kn 

ch K (h + z) 
n ( -iK b 

sh K h aln + a2ne n ) 
n 

= a .. 
]. 

l c: 
n=l 

ch K (h + z) 
n ( -iK b) 

sh K h a2n - aln e n 
n 

+ 

co 
1 

ch K (h + z) 

(S - if) ) n (a e-iK b 
/.., K sh K h ln n 

n=l n n 

CX) ch k (h + z) 

l 
1 n 

= 0. 
k sh k h atn 

n=l n n 

CX) 

l 
n=l 

ch k (h + z) 
n 

sh k h 
n 

+ a2n) 

a 
tn 

(45) 

(46) 

= 0. ( 4 7) 

( 48) 

In the limit, these four equations must be satisfied at all z if 
one is to solve for the amplitudes of an infinite number of eigen func
tions. 1his will be shown to be unnecessary, as satisfactory results 
may be found for a finite upper limit on n. 1herefore, each equation 
must be satisfied at n different depths, z, to obtain a solution. 
Solutions typically converge for n less than 10. Consequently, the 
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problem reduces to solving a 4n by 4n complex matrix for 4n complex 
amplitudes. Packaged subroutines such as Sit.Q (International Business 
Machines, 1968) which will solve large complex matrix problems very 
efficiently. 

d. Orthogonality. Although it is possible to proceed directly with 
a solution to this large matrix, considerable simplification may be 
gained by using the orthogonal properties of the eigen functions. The 
z-dependent terms are orthogonal because they are solutions to a linear 
second-order homogeneous differential equation with linear first-order 
homogeneous boundary conditions (Hildebrand, 1965). Orthogonality is 
the characteristic that the integral of the ·product of two eigen func
tions vanishes over the interval specified·for the boundary conditions, 
that is, 

0 . 

I 
~ ~ dz = O, m f n 

-h m n 

This property may be used to eliminate the depth dependence and reduce 
the order of the matrix problem. To accomplish this, multiply equations 
(45) to (48) through by ch KmCh + z) and integrate over the full depth. 
The following identities are useful: 

ifo 
-h 

ch K (h + z) ch K (h + z) dz 
m n 

J
O ch K (h + z) ch k ( h + z) = 

-h m n 

= 0, m-/- n 

sh K h ch K h + K h 
= m m m 
---'--'------ , n = m , 

2K 
m 

2 ch K h ch k h 
cr m n 

g K2-k2 
m n 

(S-if-1). 

If the porosity is constant throughout the full depth, then the above 
operations may be performed on equations (45) to (48) to yield: 

a 2 ch K h ch k h 
l rn o m n 

n=l sh knh """8 K 2 k·2 
m n 

ClO 

(S-if-1) 

(a - a ' e-iK h) (sh K h ch K h + K h) 
e: Im 2m m m m m 

+ sh K h 2K 
m m 

(49) 
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E 

Substitute 

(sh K h ch K h + K h) 
m m m 

2K 
m 

( -iK b) (sh K h ch K h + K h) a2m - alme m m m m 

sh K h -2K 
m m 

ch K h ch k h oo atn 
0

2 

+ I sh 'k1l-
n=1 n g 

____ m ___ n_ (S-if-1) = 0 •· 

K 2 k 2 
m n 

oo atn 02 ch K h ch k h 

I k sh k h -g 
m n 

n=l n n 

0
2 ch knh 

3 i g sh k h = 
n 

k , 
n 

(S-i'f-1) = 0. 

into each of the above, divide through by 

(S-if-l)K 
----~ 1 

ch K h, 
Km2 _ IS_ 2 m 

(50) 

(51) 

(52) 

and introduce the following notation for the dimensionless amplitudes: 

(53) 
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c 

Tiiese steps lead directly to the result: 

I a:i k 
l c __.!!. 

n=l rn kl 

Q') c 
-I rn 

(K 2 - k 2) 
m · 1 (S-if) iK b 

+ (S-if-1) (Clm + C2me- m ) 
n=l (K 2 - k 2) 

m n 

(K 2 - k 2) 
m 1 

2K 2 
m 

co k 
l c _!! 

. + n=-1 tn kl 

S-if_ (C e-iK b c ) 
s .... if-1 lm m + ·2m 

~ K 2 - k 2 
}: C m 1 = O. 

n=-1 tn K 2 - k 2 
m - n 

Kh 

(l + sh K : ch K h) 
m m 

(54) 

(55) 

. (56) 

(57) 

Tiiis form of the equations reveals that the condition of orthogonality 
permits the extraction of one mode from the series solution in region II, 
(C1m, C2m) in terms of the full series in regions I and III ' 

(L c , ct
0
). 

0 
rn 

55 



Then, using standard algebraic methods for solutions to simultaneous 
equations, c1m and C2m may be eliminated from any two of the four 
equations to isolate Cm, Ctn series as: 

l c. 
rn 

n=l 

CX> 

I 
n=l 

c 
tn 

K 2 
m 

K 2 
m 

- k 2 
1 

k 2 
n 

k K 
( n E _.!!!.)= 

kl - S-if kl 

k K 
n E m 

( k + S-if k) = 
1 1 

1.0 

E K 
l.O + S-if km. 

1 

The remaining two equations yield C1m and c2m as fllllctions of the 

Crn' Ctn series: 

sh K h ch K h 
m m 

sh K h ch K h + K h 
m m m 

K oo 

(58) 

(5'9) 

. {1.0 + e: m l 
S-if k1 -n=l 

k K 
(. n E m ) }. (60) 

k
1 

- S-if k
1 

S-if-1 kl~ s sh K h ch K h 
c :c: 

m m 
2m E K 2 - k 2 sh K h ch K h + K h 

m 1 m m m 

CX> K 2 - k 2 k K 
{- l c m 1 ( n E __.!!!. ) }. (61) 

n=l 
tn K 2 - k 2 kl - s::If kl 

m n 
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Equations (58) to (61) represent a significant simplification with 
respect to the original form of equations (45) to (48). Specifically, 
the.reflected and transmitted components may be solved from equations 
(58) and (59) independent of the components inside the breakwater. How-

. ever, the latter two components will .be necessary for the application of 
Lorentz's (1926) condition of equivalent work. They may be solved 
directly from equations (60) and (61) in terms of the previously deter
mined cm, ctn· Th.us, a 4n by 4n matrix has been reduced to a 2n 
by 2n matrix plus two linear vector equations. This condensation repre
sents a considerable saving in the computation effort. 

The actual computation requires that a 2n by 2n matrix be formed 
by rewriting equations (58) and (59) n times for n different values of 
~· Th.is matrix is solved using a method such as SIMQ and yields the 
reflection and transmission coefficient series Cm and Ctn' respec
'tively. Then the two dimensionless amplitude series inside the break
water, C1n and c2n, are solved by direct substitution of Cm and 
Ctn into equations (60) and (61), respectively. 

It is apparent from the terms appearing 'in these last four equations 
that the solution ultimately depends on: (a) the structural properties 
of the breakwater width and depth, b and h; (b) the media properties 
of porosity and damping, e: and f; and (c) the wave properties .as 
described by the wave nunbers inside and outside the breakwater, Kn 
and kn. However, the dispersion equation (37) establishes the dependence 
of kn for n > 1 on k1 and h as: 

2 
0 

h = k h th k h = 
g 1 1 

Thus, given k 1 and h, all other kn 1 s 

dispersion equation inside the breakwater, 

dependence of Kn on k 1, h and f as : 

may be found. Likewise, the 

equation (25), establishes the 

2 
·a h (S-if) = K h th K h = k

1
h th k

1
h (S-if)~ 

g n n . 

Therefore, k
1 

along with h and· f completely specify all of the wave 
numbers ~ and Kn· Then the independent parameters are h, b, e:, f, 
and k1• Nondimensionalizing h, b, and 'k1 reduces the number of 
parameters by one to the dimensionless form b/h, e:, f, and.k1h. 

A detailed discussion of the solution behavior is discussed later. 
Presently, the very important condition of long-wave excitation is con
sidered. The relatively simple form of the resulting solution will reveal 
the general character of the breakwater response. 
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e. Tile Long-Wave Problem. Tile long-wave problem is characterized by 
a wavelength which exceeds the water depth by a factor of 20, so that: 

"' klh < 0.3, 

"' Y).h < 0.3 {1 - i). 

For this limiting condition, the value of the hyperbolic tangent in the 
dispersion equation is suitably described by the value of the argument 
itself, that is: 

., 
cr""h 

k h th" k h ~ {k h)
2

, --= 
g n n n 

and 

0'2h 
(S-if) K h "' {K h) 

2
• = th K h = 

g n n n 

Each equation has two roots of equal magnitude but opposite sign. Tile 
sign is chosen to correspond to the direction of pro:pagation so that in 
actuality only one mode specifies the complete solution to the long-wave 
problem. Tilis result should be anticipated. A fundamental characteristic 
of long waves is that the horizontal velocity and dynamic pressure compo
nents are independent of depth .. Tilus, if the boundary conditions are 
satisfied at' one point in a vertical plane, they are satisfied at all 
points. Consequently, the absence of local irregularities at the inter• 
face between two solution domains :precludes the existence of multiple 
modes both physically and mathematically. 

With the upper limit on n being equal to unity, the subscript may be 
dropped from the long-wave solution, and the dispersion equations become: 

k2h2 = 
C12h 
--, 

g 

K2h2 
2 

= C1 h (S-if). (62) g . 

Substituting Kh = rh (1 - ia) into equation (62) and separating real and 
imaginary parts yield: 

and 

I 1 + r2;s2 
- 1 

a= 
f /S (63) 
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Note that the effect of the damping coefficient, f, is to increase 
the long-wave nunber inside the breakwater relative to its value outside. 
'!his causes the wavelen~th to shorten, a result whiCh is anticipated. In 
general, friction inhibits wave propa~ation; therefore, the celerity and 
wavelength should be decreased as indi.cated by equation (63). 

Two other identities are useful for the long-wave solution: 

sh Kh "' Kh, 

ch Kb "' 1.0. 

Introducing the above into equations (58) to (61) leads to the result: 

( E K -iKb E K E K 
Cr l + S-if k ) + e Ct (l - S-if k ) = l - S=If k ' 

E K iKb e: K e: K 
Cr (l - S-if k ) + e Ct (l + S-if k ) .= l + S-if k: 

S-if-1 kK 1{ E K e: I< }, cl = 
K2-k2 

2 1.0 + S-if k - Cr (l - S-if k ) e: 

c = - S-if-1 kK 1 E K 
2 E K2-k2 

2 Ct(! - S-if k ). 

Solving these four equations simultaneously produces expressions for 
the four unknown wave components: 

(l- E
2
k

2
)(eiKb_e-iKb) 

2 2 
i(l- ~) sin Kb 

c 
K2 K2 

• (64) = c 

r 2 2 E2k2 
(l Ek) iKb (l Ek) -iKb Ek 
+- e - -- e 2 I< cos Kb + i(l + -

2
-)sin Kb 

K K 
K 

4 
Ek 

2 
Ek 

ct = K K 
(65) = 2 . 2 2 2 • 

(!+Ek) eiKb_(l- Ek) e-iKb Ek E k 
2 I< cos Kb + i(l + ~ 2 -)sin Kb 

K K 
K 

2(1 + ~) iKb 
(1 + ~)(cos Kb+ i sin Kb) e 

. cl = = (66) 
2 2 2k2 

(l+ Ek) eiKb_(l- Ek) e-iKb Ek 
21< cos Kb+ i(l+ T)sin Kb 

K K 
K 

e:k Ek _ l 
-2 (1 - -) 

c2 
K K 

(67) = = 2 2 2 2 
(!+Ek) eiKh_(l- Ek) e-iKb e:k 

Kb+ i(l+ E ~ ) sin Kb 
K K 21< cos 

K 
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The breakwater depth and width are of the same order of magnitude so 
that small Kh implies small Kb. Utilizing equation (62) and the small 
argument identities: 

cos Kb, sin Kb+ 1.0, Kb, 

the reflection and transmission coefficients become: 

C = S-if-£
2 

r S-i.f+e: 
2 

- i2£ /i[ ' 
ob 

(68) 

(69) 

and the dimensionless amplitudes of the components inside the breakwater 
are: 

(1 + rs=rr) (1 + iOb IS-if ) 
£ IRh" 

i ab 2 
2 + - - (S-if+e: ) 

£ lgh 

ls~if 
1--

E 

(70) 

(71) 

f. Implications ·of the Long-Wave Solution. These equations represent 
an exact solution to the permeable breakwater problem for the specific 
case of an incident wave which is very long with respect to water depth 
and,breakwater width. The simple form of the equations allows one to 
easily interpret the effect of various independent parameters on the 
solution. Some pertinent limiting conditions are: (a) as the media takes 
on the properties of pure seawater, ioe., 100 percent porosity and no 
damping, transmission becomes complete and no reflection .occurs (£ + o, 
e: + 1 with S = 1 yields Ct + 1, Cr + 0); (b) as the porosity approaches 
zero, the breakwater assumes the characteristic of a solid vertical wall 
and no transmission occurs while reflection becomes perfect (e: + O yields 
Ct+ O, Cr+ 1); (c) as the damping properties of the media become severe, 
the transmission drops to zero and the reflection becomes perfect (f + oo 

yields Ct+ O, Cr+ 1); (d) as the breakwater becomes very thin, the trans~ 
mission becomes nearly complete while the reflection becomes negligible 
(b + 0 yields Ct + 1, Cr ->- O); and (e) as the wave period becomes very 
long, such as a tidal oscillation~ the transmission becomes complete and' 
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no reflection occurs (er + 0 yields Ct + 1, Cr + O). These same trends 
have been ·observed in the solution to the· general problem for shorter 
waves as governed by equations (58) and (59). 

Equation (69) verifies that increasing the friction coefficient, f, 
or the product.of f with the wave frequency, o, causes a relative 
decrease in the long-wave transmission coefficient. This behavior also 
applies to the short-wave solution. It will be useful to be able to pre
dict the dependence of fo on the wave and breakwater characteristics. 
Lorentz's (1926) condition of equivalent work, as given by equation (9)., 
specifies this dependence. The friction coefficient characterizes the 
damping throughout the breakwater so the volume integral in equation (9) 
may be replaced by a double integral on x and z with the submerged 
part of the breakwater as limits of integration: 

(72) 

where qR is the real part of the complex velocity, q. The numerator 

includes a term which is proportional to the cube of the· velocity whereas 
the denominator is proportional to the square of the velocity. Conse
quently, relative increases in the velocity will cause relative increases 
in fo. The velocity inside the breakwater is proportional to the product 
of the wave amplitude and wave frequency. The amplitude and frequency of 
the wave components inside the breakwater increase monotonically with 
increasing amplitude and frequency of the incident wave. Consequently, 
if the wave frequency is held constant then a relative increase in the 
incident amplitude will cause a relative increase in fer. Likewise, if 
the amplitude is held constant, then a relative increase in the frequency, 
i.e., decrease in period and wavelength, will cause an increase in fer. 
Since increasing fer causes a decrease in the transmission coefficient, 
it may be concluded that the transmission coefficient will decrease for 
increasing wave steepness or increasing wave nunber. 

Appendix C discusses the numerical evaluation of equation (72) and 
the simplifications arising for the case of constant permeability. 

This completes the formal theoretical solution to the crib-style 
breakwater problem. It will be useful to review the method by which 
numerical results are extracted from the theory before discussing 
example solutions. 

g. Numerical Procedures. The formal generation of numerical results 
from the completed problem solution requires a preliminary evaluation of 
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the breakwater properties and specification of the incident wave con
ditions. The necessary breakwater· properties are: . (a) depth, h, 
(b) ·width, b, (c) porosity, £, (d) permeability, 1<p, and (e) turbulent 
damping coefficient, Cf. The depth is a function of the particular 
site and tidal range. The.width is often fixed by economic considera~ 
tions but can be adjusted to yield the desired breakwater performance. 
The three media properties are determined using the techniques discussed 
in Section III, 2. 

The incident wave conditions are selected as design criterion using 
available forecasting techniques. The necessary properties are the dimen
sionless wave numqer, k1h, and the wave steepness (or camber), Hi/L. 
The wave number and steepness are evaluated from the design wave period 
and height using conventional linear wave theory methods. It is usually 
desirable to investigate the behavior for a variety of wave conditions. 

The above quantities are inputs or independent variables with respect 
to the theoretical solution. One decision remains to be made: how many 
eigen functions should be included in the solution? It will be demon
strated later that five eigen functions are sufficient for k 1h ..::_ 3.0, 
one is sufficient for k1h ..::_ 0.5. To initiate the solution, a value for 
the damping coefficient, f, is assumed (f = 1.0 is suitable). Then, 

. the appropriate number of eigenvalues are evaluated from equation (25) 
using a complex Newton-Raphson quick convergence scheme. The eigenvalues, 
or equivalently the wave numbers, inside and outside the breakwater are 
used to enumerate the coefficients in the matrix equations (58) and (59). 
The matrix is solved using an efficient complex Gaussian reduction scheme 
for the complex reflection and transmission coefficients. These are sub
stituted into the vector equations (60) and (61) to solve for the dimen
sionless amplitudes inside the breakwater. The seepage velocities are 
solved by differentiating the velocity potential (eqs. 27 and 28) with 
respect to x and z and introducing the internal wave amplitudes. 
The real components of the velocities are extracted and subst.i tuted into 
Lorentz's (1926) condition of equivalent work, (eq. 72), to compute f. 
If the result is different from the assumed value it is necessary to 
iterate and return to the step which evaluates the eigen~alues. If the 
assumed and computed values of f are within 1 percent, the solution is 
complete. The reflection and transmission coefficients are obtained by 
taking the absolute value of Cr1 and Ct1• respectively. The itera
tion scheme typically closes after four to_ eight cycles. 

A FORTRAN program has been written to perform these operations on a 
digital computer. It is listed and described in Appendix D. 

h. Numerical Results. The following numerical results demonstrate 
the behavior of the theoretical solution as a function of the dimension
less parameters b/h, i=;, f, and k1h. Equations (58) to (61) and an earlier 
discussion identify these parameters as the quantities which ultimately 
govern the solution to the various modal amplitudes. Only b/h, i=;, and 
k1h are truly independent. The damping coefficient, f, is implicitly 
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a function of the media damping properties as well as the breakwater dimen
sions and internal wave characteristics. ·A consequence of this dependence 
is that a change in the media damping properties or the incident wave 
height is simulated by holding b/h, e, and k1h constant while varying f. 
Henceforth, the subscript will be omitted from the incident wave number. 

The dependence on f is shown in Figure 6. In this figure, the 
reflection and transmission coefficients are plotted as a function of the 
dimensionless wave number kh for a square breakwater which is 40 percent 
porous. The breakwater shape and porosity are representative values and 
their effect is investigated in subsequent figures. The reflection coef
fiFient 'is, by definition, equal to the absolute value of the complex 
dimensionless progressive mode amplitude in the reflected wave train, 

Similarly, the transmission coefficient is equal to the absolute value of 
the complex dimensionless progressive mode amplitude in the transmitted 
wave train, 

The long-wave solutions are also presented in Figure 6. The reflec
tion and transmission coefficients are found by taking the absolute values 
of equations (6.8) and (69), The solutions are: 

(73) 

1 

CT = 1 
. (74) 

crbf S + {crb{S + 
2 

2 2 
{ (1 + 

e: >1 } 
2e:/gh 2e:/gh 

The general results substantiate the behavior predicted by the long
wave solution--the transmission coefficient decreases monotonically with 
increased damping at all wave numbers. The increased damping may be a 
result of decreasing the media permeability or increasing the incident 
wave amplitude (steepness). In either case, the .response is the same. 
Accompanying this behavior is an increase in the reflection coefficient. 
It may be concluded that increased damping results in an increased resis
tance to wave ·penetration and an increase in internal wave decay. 

This result is somewhat arialogous to the open-channel flow response 
to ·an abrupt '.increase in channel roughness. The water surface rises 
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upstream to store potential ene.rgy in anticipation of the energy losses 
through the' rough section. The' breakwater system responds by increasing 
the potential 'energy of the partial standing wave and reflecti.ng more · 
energy back out to sea. 

Figure 6 also supports the long-wave solution trends for decreasing 
wavelength, i.e., the reflection coefficient increases and the trans
mission coefficient decreases. An upper limit is reached near kh = 1.0, 
where the reflection coefficient attains a relative maximum. This appears 
to be a resonant phenomenon controlled by the n2 component, (Fig. 5) . 
This component reflects off the leeward breakwater face.and propagates· 
back through the interior of the structure and ultimately contributes in 
part to the reflected wave train. As the wavelength shortens, the rela
tive resistance inside the breakwater increases. This accentuates the 
media discontinuity at the sea-breakwater interface and causes more 
direct reflection of the incident wave but decreases the amount of n2 
available to the reflected wave train. Further decreases in the wave
length cause the internal damping to become so severe that virtually 
nothing is left of the n2 component to contribute to the reflected 

wave train. Then the reflection coefficient becomes mainly a surface 
phenomenon and is controlled by the porosity of the windward breakwater 
face. Note that as the absolute level of damping is increased (> f), 
the.resonant condition moves to even longer wavelengths (< kh). This is 
probably caused by the decrease in wavelength inside the breakwater due 
to increased friction. 

The long-wave solution compares favorably with the general solution 
up to a wave number of approximately kh ~ 0.5. For intermediate wave 
numbers the long-wave solution tends to slightly underestimate the 
reflection and transmission coefficients, while for high-wave numbers it 
overestimates both coefficients. The reasons for this latter behavior 
are easily understood. The long-wave solution yields a lower frequency 
oscillation (eq. 62) for a given wave number than the general solution 
(eq. 25). The low-frequency oscillations are damped less severely as 
they pass through the breakwater, thus the transmission coefficient is 

·greater. Similarly, the n2 component propagating back through the 
breakwater is damped less severely for low-frequency oscillatl.ons, and it 
can contribute more to the reflected wave when it reaches the windward 
face.· Thus, the long-wave solution overestimates the reflection coeffi
cient at high-wave numbers. This also accounts for the resonant phenomenon 
not appearing in the long-wave reflection coefficient. Furth.er errors are 
anticipated when the long-wave approximation is substituted into the 
Lorentz equation calculation for fin actual breakwater forms. Neverthe
less, the long-wave approximation provides a rapid solution with accepta
ble accuracy for kh < 0.5. 

These same features apply to increasing breakwater widths, as sho~n 
in Figure 7. As in Figure 6, the reflection and transmission coefficients 
are plotted as a function of wave numb.er for a 40 percent porous structure. 
However, the damping coefficient is held constant and is equal to unity. 
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In.the real case, f is not constant, hut this figure still serves to 
isolate the effect of changing the relative width {or depth)·. Increasing 
widths behave like increa.Sed damping, and this results in more reflection 
and less transmission. · 

The dependence on porosity is shoWii-in F.igure 8. Again, the reflec
tion and transmission coefficients are plotted versus wave nuniler. The 
particular case depicted is a square breakwater with constant damping 
coefficient equal to unity. Most natural gravel materials have porosities 
in the range 0.30 < £ < 0.5. The effect of halving and doubling a mean 
value of £. = 0.4 is given. Decreasing the porosity causes an increase in 
the reflection coefficient and a decrease in the transmission coefficient 
at all wave numbers. The reflection coefficient is most sensitive to 
changes in porosity and this sensitivity increases with the wave number. 
1his behavior is exaggerated for the case of constant f. When the same 
change in porosity is applied to an actual breakwater form and f is cal
culated from the media and wave properties, the resulting change in the 
reflection and transmission coefficients is approximately one-third that 
shown in Figure 8. The long-wave solution behavior is the same as in 
Figures 6 and 7. Increasing porosity accentuates the difference between 
the long wave and general solutions but correlation remains excellent 
below kh ::::: 0.5. 

Th.e inertial coefficient, .s, was introduced earlier to incorporate 
the effect of added· mass in widely spaced pile-array- breakwaters. 1h.e 
sensitivity to this coeffici.ent is shoWn · in Figure 9. The· added mass 
concept arises due to unsteady.converging and diverging of streamlines 
around solid bodies. . This results iii mcreased re'sis'tance to flow and 
therefore causes an increase in th.e reflection coefficient and decrease 
in the transmission coefficient. CF.ig. 9). 

The convergent character of the theoretical eigen-series solution is 
demonstrated in Figure 10. In this figure, the reflection and transmission 
coefficients are plotted versus the reciprocal of the number of e.igen 
functions summed in the series solution. The results for three different 
wave numbers are given for a square breakwater which is 40 percent porous 
and has a damping coefficient equal to two. The results show that solu
tion converges quickly as the number of eigen functions is increased from 
one to infinity. For long waves, kh = 0.1, one eigen function yields the 
same solution as the extrapolated value for an infinite series. 1his 
conaurs with the anticipated result for long waves. Intermediate wave 
numbers, near kh = 1.0, require two.or three eigenfunctions to give the 
same result as an infinite series. Shorter waves near kh = 2.0 converge 
within 2 percent of their ultimate value when five eigen functions are 
summed. Summing more than 10 eigen functions introduces roundout errors 
into the matrix solution unless double precision is used in the computa
tion scheme. Thus, n = 5 is used for all waves occurring outside the 
deepwater range (kh < TI) to combine acceptable convergence with negligible 
roundout error. 
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This concludes the theoretical development of the crib-style breakwater 
solution. Comparison between experiment and theory is discussed in 
Section IV. The application of the theory to sloping-face breakwaters 
is discussed below. 

5. Conventional ~reakwater Schemes. 

a. A Rigorous Approach .. The preceding discussion has been limited to 
permeable structures of rectangular form. The inclusion of conventional 
trapezoidal-shaped breakwaters greatly complicates the problem. To illus
trate this, consider Figure 11 depicting a hypothetical breakwater scheme. 
The zones identify distinct regions, each of which has its own character
istic boundary value problem. The effects of heterogeneous layering are 
assumed to be accounted for by an average linearized friction coefficient 
in each region. The boundary value problem in region IV is similar to the 
crib-style breakwater problem discussed previously. "An eigen-series solu
tion satisfies this problem with n modes propagating in both the positive 
and negative longitudinal directions. The solutions· in regions I and VII 
can be assumed to be given by linear wave theory. This introduces 
n-reflected and n-transmitted modes. The general forms of the solutions 
in regions II, III, V, and VI are not known. The diagonal interface 
between adjacent regions produces nonhomogeneous boundary conditions and 
couples the solution iri a very complicated fashion. For the present dis
cussion it will be assumed that a periodic series solution applies in 
these regions and that n terms in each series, propagating in both 
directions, will specify the solution adequately. Th.e boundary conditions 
of continuity of pressure and mass flux applied at the interface between 
each of the seven regions produce 12n equations which ideally could be 
solved for the 12n unknown amplitudes and series constants. It follows 
that the trapezoidal-shaped breakwater produces three times as many knowns 
as the rectangular-shaped breakwater problem and the effort required to 
solve the equation matrix alone is proportional to the matrix size raised 
to the third power. 

---.--S .W .L. 

I 
II 

VII 

Figure 11. Trapezoidal breakwater. 
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.'!he problem is made more difficult .by the complexity of wave inter
action with rough inclined surfaces;. Breakwater· faces. are typically 
sloped at 1.5:·1 or less and this induces breaking in the' incident wave. 
Previous investigators have been frustrated with. the· idealized problem 
of wave breaking on impermeable slopes (Le Mehai1te'"· 1966; Koh, 1966). 
Existing methods for predicting the energy consumed in breaking on such 
slopes are semiempirical at hest. Cons'equently, the wave-bre'aking part 
of the problem itself is a very ambitious undertaking. When one adds to 
these complications the effect of heterogeneous layering, the mechanical 
effort involved in attempting a rigorous analytical solution becomes very 
great indeed. Even if such a solution were obtained, the complexity and 
nuni>er of simultaneous equations describing the solution would probably 
mask any attempt to draw general conclusions about the system behavior. 
However, this last item is the single most important feature of analytical 
solutions as opposed to numerical solutions. Consequently, it may be bene
ficial to simplify the approach to the problem to aml>lify an overall under
standing of th; basic governing processes. 

b. The Equivalent Rectangular Breakwater. One might attempt to 
simplify the problem by applying the eigen-series solution of region IV 
to regions III and V. Similarly, the linear wave theory eigen series 
could be applied to regions II and VI. Then the boundary conditions of 
normal mass flux and pressure continuity at the sloping interfaces could 
be solved for the various unknown amplitudes. Such an approximation does 
confine the damping process to the appropriate regions but does not satisfy 
the free surface and impermeable bottom boundary conditions simultaneously. 

To ·satisfy these latter· conditions, i.t IDight be preferable to extend 
the solution of .region IV _midway into region's II, 'III, v,_and VI. This 
would require that the linea! wave theory· solution be extended .. into the 
outer half of these respective r_egions. The approach is approximate 
because it applies the damped solution to r_egions -.II 1 and VI' (Fig. 12) 
and ignores the losses due to regions III' and-V'. The two approximations 
should be partially compensating. Furthermore, use of the potential flow 
solution requires that a constant porosity be assigned to the breakwater. 
Once these approximations are made, the solutions applied throughout the 
full depth and the free surface as well as the bottom boundary condition 
are satisfied. 

II~ 

/ 

x=O 

/ 

/ ' -- S.W.L. 

' V' ' 

Figure 12. Equivalent rectangular breakwater. 
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This study uses the second approach to replace regions II through VI 
(Fig. 11) with an equivalent rectangular breakwater which has the same 
submerged volume as that of the trapezoidal breakwater. That is, a hypo
thetical breakwater is formed by bisecting the slopes between regions II 
and III and between V and VI with vertical planes (see Fig. 12). Within 
the confine of these planes, the rectangular breakwater has the same 
internal structure as the trapezoidal breakwater, and the crib-style 
breakwater solution is used to describe the flow field. Exterior to these 
planes, linear wave theory is applied to describe the incident, reflected, 
and transmitted wave trains. The two solutions are matched at the hypo
thetical interfaces to satisfy continuity o£pressure and horizontal mass 
flux, and thereby solve for the unknown modal amplitudes. 

Lorentz's (1926) condition of equivalent work was used to evaluate a 
linearized damping coefficient, f, which applies throughout the hypo
thetical rectangular breakwater. However, unlike the condition derived 
for the crib-style breakwater, the new equivalent work principle attempts 
to account for the effect of energy dissipation due to waves breaking on 
the windward slope. This is accomplished by modifying a theory attributed 
to Miehe (1951) which estimated the wave energy losses on impermeable 
slopes. These losses are added to the frictional losses in the numerator 
of equation (72) to yield a revised estimate to the damping coefficient, f. 

In this manner the surface-breaking dissipation is incorporated with the 
internal-friction dissipation. F.inally, that part of the theory which 
satisfied the interfacial boundary conditions distributes the breaking 
effect among the various modal components in the reflected and transmitted 
waves. 

c. Modifying Miche's Breaking Criterion. To proceed with this model, 
it is necessary to evaluate the energy loss due to waves breaking on the 
windward breakwater slope. Miche's (1951) technique has been shown to 
give reasonable correlation between experiment and theory for smooth 
impermeable slopes (Straub, 1956). Through the use of an empirical sur
face coefficient, o, his results have been extended somewhat less suc
cessfully to rough and permeable slopes. 

Miehe' s breaking criterion was based on the hypothesis that the maxi
mum water surface slope attainable without breaking on a reflecting sur
face is equal to the slope of the reflecting surface itself. He used 
linear wave theory to transform the maximum nearshore wave steepness to 
deep water where it is then pqssible to define a critical deepwater wave 
steepness. The result was: 

H 
(~) 
L 

o crit 

1 2 
= (2$) 2 Sin a 

rr n ' (75) 

where a is the surface slope, measured from a horizontal reference in 
radians, and the left-hand side of the equation is the critical deepwater 
wave steepness. Miehe concluded that because (H0 /L0 )crit is the maximum 
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steepness which remains stable on the slope, any deepwater wave steepness, 
H0 /L0 , which exceeds this will break and be reflected at the critical 
steepness. The definition for a reflection' coefficient follows directly 
as: 

C' = 
0 (76) 

Miehe (1951) found that the discrepancy between his theory and experi~ 
mental reflection coefficients for rough and permeable slopes could be 
corrected by introducing an empirical coefficient, 8, which he called 
the intrinsic surface-reflection coefficient. 'Ibis coefficient has been 
found to depend on wave steepness and wave number as well as surface char
acteristics (Moraes, 1970). Although no method presently exists for pre
dicting o, it is common to experimentally evaluate this coeffici'ent in 
comparing the breaking characteristics of various slopes. 'Ihe revised 
reflection coefficient may be written as: 

(77) 

where C~ is the predicted reflection coefficient for smooth slopes and 
Co is the corresponding coefficient for rough or permeable slopes. 

This study proceeds with the assumption that Miche's technique is an 
acceptable approximation to the wave-breaking process on a smooth imper
meable surface. Furthermore, it is assumed that the effect of the slope 
of the reflecting surface is separable and that this effect is properly 
identified by the right-hand side of equation (75). 'Ihen o incorpo
rates the Reynolds effect of surface roughness combined with wave pro
perties. At this point, the theory digresses from Miche's hypothesis 
that all of the energy which remains after breaking is returned in the 
form of a reflected wave. Instead, it is assumed that with the proper 
intrinsic reflection coefficient, Miche's equation may be used to cal
culate that part of the incident wave energy which remains after breaking 
and is available for transmission into the permeable breakwater and 
reflection back out to sea. Thus, Miche's equation is used to model the 
wave-breaking process rather than wave reflection, and his reflection 
coefficient may be interpreted as the dimensionless amplitude of a ficti
cious wave which accounts for that part of the incident wave energy 
remaining after breaking on the windward slope. 

Energy conservation requires that the power lost to breaking equal 
the difference in energy propagation rates of the incident wave and the 
~icticious reflected wave. According to linear wave theory the difference 
in energy propagation rates is (Ippen, 1966): 
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. 
where E is the period-averaged power loss and Cg is the group_ celerity 
of the incident wave. Til.e group celerity may be written in one of its 
many forms as : 

Til.us·, 

C = _g_ ( sh 2kh + 2kh ) . 

~ 0 2ch
2
kh 

2 

E = Y
2

8
i 1L. ( sh 2kh + 2kh )(l _ c;). 

loss 2a 2ch2kh u 

Combining equations (76), (77), and (78): 

.!. 2 
c = o(2S)2 sin f3 I (H /L ). 

0 JI JI 00 

Linear wave theory provides a simple transformation for the deepwater 
wave steepness, H

0
/L

0
,, to the wave steepness at any depth h, Hi/L: 

1 

Ho Hi ( 2kh + sh 2kh )2th kh. 
Lo = L 2ch2kh 

In terms of wave parameters at the breakwater site, Miehe' s (1951) 
coefficient becomes: 

(78) 

.!. 2 R 2 .!. 
c = o(2f3)2 sin SI { ...l:.c 2kh +sh kh)2 th kh}. c79) 
o TI JI L 2ch2kh . 

To ·evaluate the power lost in breaking, it is necessary to specify 
the intrinsic reflection coefficient, o. As discussed previously, this 
term is exP'ected to be a function of the reflecting surface and wave 
characteristics. · 'Ihe frictional losses due to flow through the permeable 

·slope are accounted for by the porous media part of the solution. Con
sequently, o need only accotmt for pure breaking. 'Ihe exposed.slopes 
of most practical breakwater designs are typically steeper than 1:2.5 
and, because of depth limitations, they are of relatively limited extent. 
As a result, long waves experience little transformation on the slope 
while short waves tend to steepen and break. It follows that o should 
approach tmity for very long waves (no breaking) and approach zero for 
very short waves (complete breaking). In addition, increasing surface 
roughness and decreasing slope should accentuate the breaking process. 
An empirical expression proposed by the author which incorporates this 
anticipated behavior is: 

f c/h> . -1/ s 
~ "' .1 - e ,(-t.::::a_n_,,,f3 g ' ' (80) 
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where fs is a dimensionless surface-roughness coefficient~ Note that: 

Although equation (80) behaves in a intuitively agreeable manner, 
it may be· argued that not much has been gained because the surface coef
ficient, fs, remains to be evaluated. It is true that fs is an tmknown 
quantity; however, by heuristic arguments its effect has been separated 
from the surface slope and wavelength. It will be shown by comparison 
with experimental results that fs behaves like a geometric property 
which remains invariant during changes in the system dynamics. Further~ 

more, fs assumes a constant value which characterizes the armor-layer_ 
material on the breakwater slope. 

It is not possible to predict fs from previous experiments. To the 
writer's knowledge, no other investigators have attempted to separate sur
face breaking and internal losses from wave reflection on permeable slopes. 
Straub (1956) measured the reflection coefficients for various permeable 
slopes. He evaluated Miche's (1951) intrinsic reflection coefficient by 
computing the ratio of the measured coefficient with that predicted by 
equation (76). His results showed .that o decreases .with decreasing wave
length and decreasing slope angles. This behavior is incorporated in 
equation (80). In addition, his results indicated that o decreases with 
decreasing wave steepness. This characteristic is accotmted for by the 
porous media model in this study. 

To indicate the order of magnitude of fs, one can invert equation 
(80) to yield: 

f 
s 

= 
tan B 

(81) 

Now Straub's data can be analyzed to find an fs which incorporates the 
effect of internal damping. His results include data for a wedge-shaped 
absorber composed of crushed rock which passes a 3/4-inch screen and which 
is retained on a 1/4-inch screen. The structure is sloped at 22° and is 
46 percent porous. For an offshore wave steepness of 0.04 he determines 
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intrinsic reflection coefficierits.o = 0.12, 0.18, and 0.25 corresponding 
to 0

2h/g = 2.32, 1.28, and 0.844, respectively. Equation (81) yields 
fs = 1. 40, 1. 58, and 1.68. The resulting values are within 11 percent of 
being constant and seem to characterize the absolute roughness of the slope. 
The values are higher than those anticipated for this study because they 
include th~ effect of internal porous media losses. 

d. Combining Breaking and Internal Losses. The surface-roughness 
coefficient is calibrated by comparing experiment with theory for a limited 
number of conditions. Once evaluated, it can be used to extend results into 
ranges which have not been explored experimentally. Ideally, this para
meter will characterize the absolute roughness of similar slopes in other 
models or prototype breakwaters. 

The method used to incorporate wave breaking into the theory is to 
combine the breaking and internal losses in Lorentz's (1926) condition of 
equivalent work. This effectively increases the· linear friction coef
ficient, f, by requiring that the linearized damping law account for 
the same amount of dissipation during one wave period as that caused by 
turbulent internal damping and \'la.Ye. breaking. Dividing equation (79) 
through by p and addin.g the resulting quantity to the· numerator of 
equation (C-3) (App. C) satisfies thfs reqilirement: 

0 b 

I:· f ~ 
fC1 = 

where 

iot 
Q =Real (q/e ), 

R 

I
o Jb 
dz dx 

-h 0 

QI = Imaginary (q/eicrt), 

. 

(82) 

£ ! (Q 2 + Q 2) 
2 R I 

and E loss is evaluated from equations (78), (79), and (80). Finally, 
equation (82) is combined with dispersion equation (25), and the inter
facial boundary conditions, equations (58) to (61) to completely specify 
the trapezoidal breakwater problem. 

e. Comments on the Sloping-Face Breakwater Solution. The trapezoidal 
breakwater solution is an extension of the crib-style breakwater solution 
which includes a consideration for wave breaking. This approach does 
greatly simplify the problem and yet it reproduces the important features 
in an intuitively reasonable manner. For example, an approximate homo
geneous damping law is assumed to apply throughout the interior of the 
breakwater so that a relatively simple velocity distribution may be found. 
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After the velocity field is known, it is run through the actua·l hetero
geneous internal structure of the breakwater and revised until the damping 
resulting from the simplified structure is the same as that resulting from 
the actual structure. 

1he second important feature involves wave breaking. If the slope 
were impermeable, the breaking losses would simply reduce the reflected 
wave modal amplitudes. However, waves breaking on permeable slopes reduce 
the interior and transmitted wave components as well as the reflected wave 
components. It is unnecessary to prescribe.some arbitrary method for dis
tributing these losses among the various components if the internal and 
breaking losses are combined into a single calculation for the linearized 
friction coefficient, f. 1he new f changes the coefficient matrix in 
the interfacial boundary condition equations and thereby redistributes the 

effect of the losses among the modal component amplitudes. Adding break
ing losses to the equivalent work principle increases the value of f. 
1his in turn increases the value of the damping exponent, an, in equa
tion (33) and a larger damping exponent causes the modes propagating 
through the breakwater interior to decay more quickly. In addition, the 
rate of exponential decay is maximum where the function itself is maximum, 
that is: 

i{-r (1 - ia ) x + crt} 
n =ae n n ' n n 

and 

dn 
___!!_ = - a r n {decay rate} - i r n . {propagation rate}, 

dx n n n n n 

therefore, 

dn 
{---.!!.} 

dx 
maximum decay rate 

.= - a r · {n } 
n n n 

maximum, 

and the nn are maximum at x = 0. Consequently, waves decay most rapidly 
in the hypothetical rectangular breakwater in the same vicinity where 
breaking occurs in the actual breakwater. 

It may be concluded that the trapezoidal breakwater solution, although 
relatively simple with respect to the mathematical details, does reproduce 
the important governing processes in a manner which is similar to the 
actual physical phenomenon. 

f. Numerical Procedures. 1he. nonhomogeneous sloping-face breakwater 
solution is identical to the crib-style breakwater solution except for 
some additional requirements on Lorentz's condition of equivalent work. 
1hus, the procedures discussed earlier apply with the following additions. 
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1he equivalent rectangular breakwater width (according to the defini
tion in this report) is equal to the crest width at the SWL plus half the 
sum of the horizontal projections of the two slopes extending below the 
SWL. To apply the orthogonalized form of the interfacial boWldary con
ditions, a constant porosity must be assumed in the rectangular model. 
1his i~ equal to the depth-averaged porosity at the sea-breakwater inter
face (x = 0). 1he media properties are prescribed at discrete grid points 
within the confines o.f the equivalent rectangle. 1his is an input to the 
numerical spatial integration of the numerator in the Lorentz (1926) equa
tion (82). Details are presented in Appendix E. 1he velocities are 
evaluated at each grid point and a trapezoidal rule is used to perform 
the integration. 1he breaking loss is enumerated via equations (78), 
(79), and (80). It is necessary to estimate the surface coefficient, fs, 
to compute the breaking loss. To indicate the order of magnitude of this 
coefficient, a value of fs = 1/3 is foWld to give best correlation between 
experiment and theory for the armor layer used in this study. 

By following these instructions, the effect of nonhomogeneous media 
and breaking losses can be included in the evaluation of the damping 
coefficient, f, in equation (82). Substituting this step into the 
method previously outlined (Sec. II, 4, g) completes the procedure used 
to solve the conventional breakwater problem. 

1he gross effect of wave bTeaking is to increase f at all but the 
smallest wave numbers. As illustrated in Figure 6, this causes the reflec
tion coefficient to increase and the transmission coefficient to decrease. 
Comparison with specific experimental results is Wldertaken in Section IV. 

6. Pile-Array Breakwaters. 

a. General Description. Pile-array breakwaters are a familiar subset 
in the general category of permeable breakwaters. 1hey are often construc
ted to support wharves or offshore structures and their fWlction as break
waters may be of secondary importance. Loading requirements conbined with 
sUbocean soil conditions often prohibit dense packing of the pile foWlda
tion. Model experiments on pile arrays (Costello, 1952) have demonstrated 
that they are, in general, relatively transparent to wave activity. Never
theles~, in many applications it is useful to be able to predict what level 
of protection they afford and how that level might be improved. 

b. 1he Governing Equations. In most applications the piles are driven 
vertically into the ocean floor with the top of the pile extending above 
the design wave height elevation. 1he piles are typically spaced at two or 
more pile diameters, center to center. In this study it will be assumed 
that the spacing is great enough to apply Morison's equation to evaluate 
the wave forces on individual piles. 1he fluid forces on the pile are 
equal and opposite to the pile forces imposed on the fluid. Morison's 
equation pre.scribes these forces analytically as: 

(83) 
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where dFp/dz is the force per unit length exerted on a vertical cylin
drical pile of diameter D due to drag and inertial forces. The drag 
force is characterized by the drag coefficient, c0 (Schlicting, 1968), 
and the horizontal approach velocity, u. The inertial force is char
acterized by the virtual mass coefficient, CM (Robertson, 1965), and 
the local acceleration in the approach velocity, u. 

The seepage velocity concept is used to describe the flow field in 
the voids between the piles. Thus, equation (1) may be applied with S 
equal to unity. The total stress tensor of apparent turbulent friction 
is replaced by the pile force exerted on each unit mass of surrounding 
fluid so that equation (1) becomes: 

with 

" dF an 1 i n 
.::..i = - - " (p + yz) - - --L.. at P P d¥ , 

V·q = 0, 

(84) 

where i is the unit vector in the longitudinal x-direction. The volume 
derivative of Fp is simply equal to the depth gradient in fp (eq. 83) 
divided by the average distribution of horizontal water surface area per 
pile. Referring to Figure 13, 
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Figure 13. Pile-array pattern. 
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dF dF 
__E. - .!__:_ __E. 
dV - EA dz ' 

p 

where 

E = , the array porosity. 

Combining equations (83) and (85): 

But 

thus, 

l ~ = CDD ujuj+ ~ IID
2 

u· 
pd\? £A 2 EA 4 • 

no2
/4 

A 
p 

p p 

= 1-E' 

!~= _Q_C ulul + 1-£ c.__. 
P d'V EA D 2 £ -M u • 

p 

Substituting equation (87) into equation (84): 

£3. 1 ) "' ( D u I u I 1-£ • ) at = - "P V(p + yz - 1 t.A en 2 + £ GM u • 
. . . p 

(85) 

(86) 

(87) 

(88) 

When the excitation is provided by a long incident wave, the vertical 
velocity components become negligible so that: 

"'i ( ") - ~ u,u - q, at· 

Then the inertial force and the local acceleration may be combined on the 
left-hand side of equation (88) to yield: 

~ (1 + l-E C ) du = - ! V(p + yz) - ~ _E_ C ulul ~ 
£ M ()t p - t.A~ D z 

As an approximation to the intermediate and short-wave condition, it will 
be assumed that the virtual mass has the same effect on the vertical accel
eration component. For the case of horizontal cylinders this would be 
true. It represents a convenient approximation for the vertical-pile 
application and permits equation (88) to be expressed as: 

1-£ E_g_ l ~ D 
( 1 + =--::c ) " = - - v ( p + "(Z) - i A CD u I u I . 

£ M at p p· 2 
(89) 
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The inertial force is a conservative force resulting from unsteady 
diverging and converging streamlines around solid bodies. It is not a 
dissipative force like the drag component, and therefore it identifies 
more closely with acceleration in the approach velocity than with the 
drag force. The coefficient of the local acceleration term defines the 
pile-array inertial coefficient S as: 

s = 1 + l-e: c_ _. 
. £ -M 

(90) 

The drag force is linearized using the technique in Section II, 2, f, 
i.e. , the non linear drag force is rep laced by: 

D ulul 
~- c ~f oq 
c.A D 2 • 

(91) 
p 

Lorentz's (1926) condition of equivalent work is used to evaluate f such 
that foq dissipates the same amount of energy during one wave cycle as 
the actual nonlinear drag relationship. Equation· (91) distributes the 
losses among the vertical and the horizontal velocity components, even 
though the drag force is horizontal. This step is mathematically expe
dient and yet the approximation may be better than completely ignoring 
the effect of damping on the vertical motion. 'Ihe physical rationale 
behind this is that real fluid effects induce losses due to the vertical 
velocity component interacting with the wakes and eddies produced by the 
horizontal velocity components. Introducing equations (90) and (91) into 
equation (89) yields the linearized equation of motion: 

£g_ 1 
Sat= - P V(p + yz) - faq, (92) 

with 

'll·q = 0. 

c. Solving the Equation of Motion. Equation (92) is identical to the 
coarse-granular media equation of motion (eq. 10). One can operate on 
equation (92) to derive the same boundary value problem for the pile-array 
breakwater as that derived for the rubble-fill breakwater. Thus, the gen
eral' eigen-series solution also applies to the pile-array breakwater. 
Similarly, the interfacial boundary conditions of horizontal mass flux 
and pressure continuity prescribed for the crib-style rubble-fill break
water are equally suitable for the pile-array breakwater. Consequently, 
the orthogonalized boundary conditions represent a valid solution to both 
problems. 

The two breakwater systems differ only in their internal structure. 
As a result, the character of the flow field retarding forces is unique 
to each system. However, in terms of the parameters f and S which 
account for these differences, the general forms of the solutions are the 
same. It is only necessary to revise the method for evaluating f and S 
in pile-array breakwaters. 
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The inertial coefficient is evaluated directly from equation (90) .. 
The virtual mass coefficient for circular cylinders alined perpendicular 
to the flow is given by potential flow theory as CM= 2.0 (Robertson, 1965). 
Investigations of wave forces on piles (Ippen, 1966) have related measured 
forces to predicted wave kinematics and determined virtual mass coefficients 

varying from 0.93.to 2.30 .. The.vari.ation is due to e.xperimental error, 
approximations involved in -predicting the fluid kinematics from measured 
wave height and period, and real n·uid effects such as wakes, etc. In 
this study·, the theoretical value of CM = 2 is accepted as a reasonable 
approximation. 

The damping coefficient, f, is solved .from Lorentz's condition of 
equivalent work. The expression relating the energy dissipated by the 
linearized law to the energy dissipated by the conventional drag law is: 

J~y r:x J :z r:aq •q dt = J~y J:x J~z J:+T ~ ·sd uJ 'u dt. (93) 
0 0 -h t 0 0 -h t p 

The two-dimensional problem is being solved so the lateral integration on 
the left-hand side of the equation is simply replaced by a unit width. 
The lateral and longitudinal integration on the right-hand side of the 
equation are combined by evaluating the energy dissipation at each pile 
in the longitudinal direction, summing and multiplying times the nuni>er 
of piles per unit width in the lateral direction. Thus, 

J
b JO Jt+T 
dx dz e: fcrq

2 

0 -h t 

· N Jo Jt+Tc x DD 3 
dt=N A l ·dz X-2 lujl dt, 

y pj=l p 
-h t 

(94) 

where 

Ny = number of piles per unit width per row, 

Ap = the unit of horizontal surface area in the x, y 

integration (Fig. 13), 

Nx = number of .rows of piles longitudinally, and 

j = the incremental row number. 

The drag coefficient is a function of the approach velocity Reynolds 
number, and is as unsteady as the local velocity. Circular cylinder drag 

coefficients have been determined experimentally at various steady-flow 
Reynolds nwrbers (Schlicting, l968). The results are shown in Figure 14. 
It is assumed that the drag coeffiGient for unsteady flows is specified by 

the steady-state value corresponding to the instantaneous approach velocity 
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Reynolds number. To account for the spatial and temporal variability of 
c0 in equation (94), an approximate empirical equation is fitted to the 
data in Figure 14. The resulting equation expressing the relationship 
between c0 and Rn for subcritical drag ·is: 

where 

1 

10 
CD :: I~ I + L 2 ' 

~ = uD/v. 

• ••••••• 

• 
• •••• 

• • 1 .&.mdu"'1.L-dswM1~\.oJ.d:J.~~'lfl4d.~ 

10
2 ~o 3 

10
4 

105 · 106 

~ == uD/v 

Figure 14. Drag coefficient versus Reynolds number, 
circular cylinder. 

(95) 

The equation is also plotted in Figure 14. It would be possible to improve 
the correlation by fitting more complicated equations to the data. How
ever, even this simple relationship represents a significant improvement 
over an attempt to guess at some appropriate average constant value for 
c0• It is interesting to note the similarity between the cylinder drag 
coefficient and the friction factor for porous media or pipe flow. Lam
inar, linear drag dominates at low Reynolds numbers and turbulent, square
law drag dominates at high Reynolds numbers. 

Substituting equation (95) into equation (94) yields: 

I ~ ·J~z J:;: 
0 -h t 

2 
q dt dt. 
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The temporal integration is performed as in Appendix C with the following 
result: 

(96) 

,. 
where Ur, UR = Imag.(u), Real(u) and u =.q·i. 

The denominator of equation (96) is evaluated analytically as in 
Appendix C. The numerator is evaluated numerically, using the trape
zoidal rule for the depth integration. 

d. Numerical Procedures and Results. Equations (90) and (96) com
bined with dispersion equation (25) and the interfacial boundary condi
tions (eqs. 58 to 61) specify the solution to the pile-array breakwater 
problem. The numerical procedure used to solve these equations is iden
tical to that outlined in Section II, 4, g. It is only necessary to 
revise the Lorentz calculation according to equation (96). 

Because of the relatively high porosities in pile-array breakwaters, 
it can be anticipated from the results of Figure 8 that reflection coef
ficients will be low and transmission coefficients high. The effect of 
the virtual mass increasing the inertial coefficient is indicated in 
Figure 9; the reflection coefficient increases and the transmission 
coefficient decreases slightly. 

One might expect that including the vertical-velocity component in 
the virtual mass and linearized drag-force calculations limit the appli
cation of the results to long-wave conditions. Comparison with available 
experimental data in Section IV demonstrates that this approximation also 
yields excellent results for short waves. 

II I. EXPERIMENTAL APPARATUS AND PROCEDURES 

1. Introduction. 

Many of the references cited in Sections I and II contain experi
mental data on wave reflection from and transmission through permeable 
structures of various composition and form. Only two of these references 
report of an attempt to evaluate the hydraulic properties of the material 
composing the experimental models. Recent studies (Dinoy, 1971) indicate 
that the important media hydraulic-resistance properties are the permea
bility and the turbulent damping coeff.ic'ient identified in equation (5). 
As of this study, none of the published information on wave interaction 
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with permeable structures has evaluated these latter quantities. As a 
result, it was necessary to conduct additional experiments to validate 
the theory proposed by this study. 

A description of the experimental program may be conveniently divided 
into four subtopics: (a) physical and hydraulic properties of the various 
media used in the.models, (b) homogeneous rectangular breakwater models, 
(c) trapezoidal-layered breakwater models, and (d) wave testing facili
ties and procedures. Information about the apparatus and technique 
associated with each of these topics follows. 

2. Media Properties. 

a. Material Selection. The most straightforward application of the 
theory is for rubble-motll1d breakwaters. Hence, natural or crushed gravel 
becomes a logical choice of materials for breakwater modeling. Three 
different rock sizes were selected to allow some variation in the homo
geneous rectangular model dimensions and to provide a reasonable grada
tion of material for multilayered structures. Construction~grade gravel 
was obtained from pits in the greater Boston, Massachusetts, area con
forming to commercial sizes of 3/8, 3/4, and l~ inches. The material is 
mostly igneous rock with a high percentage of fractured faces. All of 
the gravel is washed and graded in the laboratory and conforms to the 
specifications listed in Table 1. Representative samples of the gravel 
are shown in Figure 15. 

Table 1. Media physical properties. 

Commercial Sieve tolerances Equivalent mean Specific Porosity 
size· Retained Passing sphere diameter gravity 

(in) (in) (in) (in) (pct) 

0.375 0.25 o.so 0.325 2.70 43.0 

0.75 0.50 1.0 0.774 2.67 43.9 

1.5 1.0 2.0 1.37 2.68 43.4 

b. Physical Properties. The gravel is sieved by hand on standard
ized screens according to the tolerances in Table 1. Only the 2-inch 
passing dimension of the large gravel was not checked in the laboratory. 
This latter tolerance was assured by the supplier. 

The porosity is obtained by weighing a gravel sample dry and submerged, 
subtracting the two quantities to yield the weight of water occupying the 
pores, and di vi ding the pore water weight by the weight of water occupying 
the same gross volume as that of the sample. Thus, if the samples are 
weighed in a container of fixed volume and Wf is the net weight of the 
container filled with water, Ws is the net weight of the container filled 
with dry gravel, and W is the net weight of the container filled with 
gravel and water, the porosity e, is: 
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w - wf 
e: = ---w 

s 

The porosities in Table 1 apply to permeameter samples measured in place. 

Figure 15. Media samples. 

With the porosity known, the specific gravity is determined directly 
by dividing the dry sample weight by the weight of water occupying the 
same volume as that of the solids in the sample, i.e., 

w 
S.G. = --~ 6 '---

(1 - e:)Wf' 

The equivalent sphere diameter is calculated by dividing the volume 
of solids by the number of particles in the sample and equating this to 
the volume of a sphere of unknown diameter. This simply requires that 
the equivalent sphere has the same volume as the mean particle volume. 
Thus, if y is the weight density of water, N is the number of parti
cles in the sample, then the equivalent sphere diameter, d, may be 
solved from: 

Itd3 ws 
-- s: ----6 N(S .G.)y. 

Care is taken to remove air bubbles from the pores before the submerged 
weight measurements are performed. The dry weights are determined after 
the sample has air dried for a few days. 
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c. Hydraulic ·rroperties. Tite important media hydraulic peroperties 
are the permeability, Kp, which governs low Reynolds number damping, 
and the turbulent damping coefficient, Cf, which governs high Reynolds 
number damping. Titese quantities are evaluated experimentally by measur
ing the pressure gradient through a sample of media as a function of an 
imposed discharge velocity. Then, KP and Cf are solved via equation 
(5) in terms of the meas.ured quantities. 

A large permeameter was constructed to facilitate these measurements. 
The permeameter basically consists of an 8-inch vertical s~andpipe with a 
circular weir at the top and a gradual contraction on the bottom (Fig. 16). 
'Ib.e device is supported on a 5-inch, 90° elbow with a structural foot. 
About 4 feet of the standpipe forms the test section wherein the media 
sample is contained. 'Ib.e sample is restrained at the bottom of the stand
pipe by a stainless-steel screen which is held fast between the flange 
gaskets. The gravel is also restrained at the top with a second stainless
steel screen which in turn is held in place by a vertical, threaded com
pression member. 'Ib.e upper screen keeps the sample consolidated over the 
full range of flow rates. 

The flow proceeds vertically upward through the sample. 'lb.is direc
tion is most effective for washing air bubbles out of the interstices of 
the media. 1he supply line runs through a heat exchanger so that water 
temperatures are maintained constant within ±1° Fahrenheit for any experi
mental run. 'Ib.e flow rate is measured on a weigh scale and temperature 
corrections are included in the density as well as viscosity calculations. 
Pressures are monitored at the four elevations (Fig. 16). Each pressure 
reading represents a circumferential average of four taps, spaced at 90° 
around the perimeter of the standpipe. 

The experimental data· is given in reduced form in Appendix F, i.e., 
the pressure readings are presented as the average head gradients across 
the four tap elevations, the flow rates are presented as discharge veloc
ities, and the viscosities are adjusted to reflect temperature corrections. 
All notations are as previously defined, except for -~h/~t, which repre
sents the gradient in the pressure head. 

The specific technique used in the data reduction is adopted from 
Dinoy (1971) .. Briefly, equation (5) is modified by dividing through by 
vqd to obtain: 

1 .!. V(n + yz) = Kl + 
vq p . 

d 'P 

Letting 

1 Llh 
Pg V (p + Yz) = z;;r, 

the total head gradient, the above equation becomes: 
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Now let the left-hand side of the equation be referred to as Kpo, the 
permeability resulting from applying Darcy's Law at any ReynoldS number. 
Then, 

1 --= 
K 

po 

where the absolute value signs have been dropped from qd because the 
flow is unidirectional .in the permeameter. Cf and Kp are constants for 
any particular medium; consequently, plotting 1/Kpo versus qd/V should 
produce a straight line. The value of the intercept at qd/V = O is 
simply the reciprocal of the true permeability, Kp. 

'Ihe seventh colUJIDl in the tabulation of Appendix F evaluates 1/K~o 

for the various qd/v. A least-squares computer program is used to fit 
a straight line through the data and extrapolate the value of 1/Kp at 
qd/v = 0. The resulting value of Kp is listed at the bottom of the 
eighth colunm in each table. Once Kp is known, the permeability 
Reynolds nunher may be evaluated directly from: 

~ = 
p 

and the friction factor, fKp' is solved from equation (5) as: 

gKl/2. lih 

fK = E M. 
2 

p qd 

'Ihen equation (6) yields the turbulent damping coefficient:. 

1 ---
~ · 

p 

'Ihe last three colUJ1D1s in the tabulation of Appendix F evaluate these 
quantities in order. 'Ihe mean value of Cf, listed at the bottom of 
the last column, is accepted as a representative value for the medium. 

There is some scatter in the value of Cf, especially at low 
Reynolds numbers. This is a result of experimental errors attributed 

90 



to the difficulty of discerning small pressure losses at low flow rates. 
Pressure fluctuations in the supply line compound this difficulty. Titese 
same errors weigh heavily on the slope intercept method for evaluating Kp,• 
Nevertheless, the technique is sotmd and gives good correlation between 
experiment and theory for the friction factor (Fig. 17). Note that the 
damping does indeed become pure Darcian at low Reynolds nunbers and fully 
turbulent at high Reynolds nunbers. 

No corrections have been made for permeameter wall effects. Dudgeon 
(1967) reports that the resulting errors are 10 percent or less, but does 
not provide a satisfactory method for making numerical corrections. In 
this study, the effect is accepted as within the range of experimental 
and data reduction errors. 

A summary of the hydraulic properties are given in Table 2. 

Table 2. Media hydraulic properties. 

Connnercial Equivalent sphere Permeability I Turbulent damping 
size diameter coefficient 

d K cf p 

(in) (in) (ft2) (dimensionless) 

0.375 0.325 3.74·10-7 0.406 

0.75 0.774 1.138· 10-6 0.295 

1.5 1.37 8.638·10- 6 0.390 

3. Homogeneotis Rectartgular·Breakwater. 

Model DescriptiOns. Tests on two different gravel-filled structures 
are presented in detail. 'Ihe model dimensions are scaled in accordance 
with the requirem~nts of a separate study on scale effects (Wilson, 1971). 
As a result, the model widths, the water depths, and the gravel sizes 
all bear the same ratio. 'Ihe physical dimensions of the two models are 
described in Table 3. 

Table 3. Model dimensions. 

Gravel size (d)" 0.774 in 1.37 in 

Breakwater width (b) 12. O' in 21.6 in 

height 18.44 in 32.13 in 

breadth 29.75 in 29.75 in 

weight 373.2 lb 1,126.5 lb 

In Situ porosity (e) 0.411 0.437 

Water depth (h) 12.0 in 21.6 in 
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The gravel is contained in wire-screen cribs, shaped as rectangular 
parallelopipeds. The screen is constructed of 0.05-inch galvanized wire 
spaced at 0.5 inch on center. The shape and structural integrity of the 
crib is reinforced with O. 05-inch cross wires spaced at 3 to 4 inches on 
center between the two vertical breakwater faces. The cribs are filled in 
the wave tank by pouring small quantities of gravel in a random fashion. 
However, the gravel level is increased uniformly and care is taken to 
avoid oversized pores near corners and around cross wires. 

The breadth of the models is limited by the 30-inch lateral dimension 
of the wave tank. Consequently, the wire cribs are 29.75 inches across 
and 1/8-inch Lucite sheets are used to fill the remaining gap between the 
wave tank walls and the sides of model. The model heights are sufficient 
to prevent overtopping by the highest waves. The dry gravel weights, gross 
crib volumes and previously determined specific gravities (Table 1) are 
combined to calculate the in situ breakwater porosities. The resulting 
values are quite close to the permeameter sample porosities in Table 1. 

The large and small models are placed on 1/4- and 1/8-inch-thick 
plywood sheets, respectively, to prevent concentrated point loads on the 
glass bottom wave tank. The wire crib and interlocking gravel combine 
to make an extremely rigid structure. The rigidity and bulk weight of 
the models overcome any tendency to flex or slip under the action of even 
the highest waves. Photos of each model are shown in Figure 18. 

4. Trapezoidal-Layered Breakwater. 

Model Description. The sloping-face breakwater design optimizes the 
laboratory wave-generating capabilities with the size and quantity of 
available rock. The configuration is of the deepwater varie~y, wherein 
the armor layer extends approximately two-thirds of the distance to the 
toe. The design dimensions are shown in Figure 19. 

The three-layered structure is composed of the gravel materials whose 
properties are given in Tables 1 and 2. The 3/8-inch gravel is used for 
the mat and core. The intermediate layer is constructed of 3/4-inch gra
vel. The l~-inch gravel forms the armor layer. 

The actual construction is performed by hand. Dry rock is poured in 
place from a 1-quart container. The layers are screeded and compacted 
lightly with a 29"'.'inch-long ~ by 4. Each layer is completed b.efore moving 
on to the next. A 1/8-inch-thick piece of masonite, 30 by 66 inches, 
is placed underneath the breakwater to prevent concentrated point loadings 
on the plate glass tank bottom. 

In situ porosities are determined from the weight, volume, and speci
fic gravity of each layer. The calculated porosi'ties for 3/8-, 3/4-, and 
1~-inch gravel are 0.440, 0.432, and 0.414, respectively. Note that these 
results are within 2 percent of the porosities determined .for the perme
ameter samples in Table 1. 
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Th.e exterior face and each layer are sloped at 1.5:1. Th.is is a stable 
slope for the nonovertopping wave conditions imposed in this study. Photos 
of the completed breakwate'r mode 1 are shown in Figure 20. 

I 

Figure 20. Trapezoidal-layered breakwater model. 
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5. Wave ·Testing ·Facilities ·a.nd ·procedures. 

a. General Equipment Description~ The.wave experiments were con
ducted at th.e Ralph M. Parsons Laboratory for Water Resources. and Hydro
dynamics, Massachusetts Institute of Technology (MIT). Th_e wave tailk. is 
of rectangular cross section with glass walls and hottom supported on a 
structural steel frame. The test section (Fig. 21) extends 90 feet from 
the wave generator to the crest of the beach· and is 30 inches wide by 34 
inches deep. The plywood beach. is sloped at 1:10 and is covered with 2 
inches of rubberized horsehair to reduce wave reflection. A wave filter 
constructed of parallel sheets of expanded aluminum lath is placed in 
front of the generator to reduce surface ripples and smooth the overall 
profile of the incident wave. 

The wave generator is of ·the hinged-flap variety with a continuously 
variable stoke and frequency. Power is provided by a 1.5-horsepower 
Master Speedranger variable-speed drive unit. V-belts couple this llllit 
to a pulley and shaft. The shaft is keyed to a 12-inch diameter, ~-inch
thick steel drive wheel. Power is transmitted to the generator plate via 
a 2-foot-long stainless-steel connecting rod. The rod is pinned to both 
the drive wheel and the generator plate. The eccentricity of the drive
wheel pin is continuously variable from 0 to 4 inches. The aluminum 
generator plate is hinged at the bottom and measures 30 by 32 by 3/8 
inches. The plate normally oscillates about a mean vertical position. 
However, to generate long waves of appreciable amplitude it is necessary 
to operate the plate about a mean angle of approximately 35° to the hori
zontal. This position effectively increases the submerged surface area 
of the plate and, for a given angle of rotation, the displaced volume of 
fluid increases accordingly. In either position, the resulting wave pro
files are acceptably lllliform beyond the wave filter. 

Wave conditions are monitored by two resistance-type wave gages 
mollllted on moving carriages. The gages are constructed from two 1/8-inch
diameter uncoated stainless-steel rods separated by a distance of 1 inch 
and mounted in insulating acrylic blocks. An input signal to each.gage 
is provided by the oscillator section of a Sanborn Model 350-llOO C pre
amplifier. Each gage acts as an additional variable resistor in a Wheat
stone bridge circuit. When the gage is partially immersed in water, the 
circuit is completed and the flow of current across the wires is propor
tional to the immersed depth. The signal is returned to the Sanborn 
instrument, amplified, and recorded on a twin-channel Sanborn oscillo
graph Model 77-12 B. 

b. Procedures. The gages are calibrated statically by immersing each 
gage in a vertical position to a known depth and recording the immersed 
depth as a function of the oscillograph pen deflection. The response is 
linear within 5 percent for all sensitivity ranges used in conjunction 
with this study. Wiegel (1955) conducted extensive dynamic tests on 
resistance-type wave gages and concluded that the estimated error of the 
wave gage and recording system is ± 5 percent. 
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The wave gages are brushed clean with steel wool and wiped with a 
highly volatile solvent before each. day's test. Th.e calibration is 
checked at the end of each test. Recalibrations have proven to be unnec
essary due to the stability of the Sanborn unit. 

It has been observed in thiS study that reflections from permeable 
breakwaters result in a change in wave amplitude and phase but not fre
quency. Consequently, the superposition of incident and reflected waves 
yields a partial standing wave. The standing-wave envelope profile does 
not propagate relative to a fixed reference system. It merely oscillates 
in one place. If such a profile is to be measured, a wave gage must be 
moved perpendicular to the crestline to record the amplitudes of the 
oscillations at successive positions. Using this method, one will find 
relative maxima and minima every quarter wavelength in the standing-wave 
envelope. The maxima occur where the incident and reflected wave crests 
superimpose to yield a surface elevation equal to the sum of the two 
amplitudes. At the same point, one-half period later, the troughs super
impose to yield a maximum surface depression. The minima occur where the 
incident and reflected waves interfere, i.e., the reflected trough sub
tracts from the incident crest to yield a minimum envelope surface eleva
tion. Likewise, one-half period later, the incident trough subtracts from 
the reflected crest to yield a minimum envelope surface depression. By 
moving the wave gage, the investigator is able to locate and record these 
maxima and minima and the resulting record appears as in Figure 22. 
Linear wave theory allows one to solve directly for the incident and 
reflected wave heights because: 

Hence, 

and 

c = 
R 

a 
r 

- == 

H + H 
max min 

2 

Hmax - Hmin 

H + H ' 
max min 

(97) 

(98) 

This same method is used to separate the transmitted wave component 
from any partial reflections off the beach. The beach reflections are 
typically of the order 3 to 4 percent, always less than 7 percent, and 
are therefore usually ignored. 

The general technique used in this study for measuring wave envelopes 
is to record Hmax and Hmin at several positions along the wave tank 
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and use the average values in determining the incident and reflected wave 
heights. It is the usual practice to avoid the region immediately 
adjacent to the breakwater where local modes disorder the free surface. 

The resistance wave probes are sensitive to any highly conductive 
material which interferes with the electric field near the probe. 'Ihis 
problem manifests itself as an imbalance in the output signal. 1he diffi
culty is overcome by laying ground wires along the tank bottom centerline 
and by additional grounding of the wave filter and breakwater crib. 

The test section of the wave tank is moderately short so that waves 
reflected off the breakwater face return to the wave generator and super
impose with the incident wave before the measurements can be completed. 
However, with each traverse of the test section the wave amplitude is 
dampened and reduced as it passes through the wave filter and is further 
reduced due to partial transmission into the breakwater. Consequently, 
after propagating back and forth a number of times, the original ampli
tude of any single wave component is reduced to a negligible level. 1hen 
a steady-state situation is attained where the energy fed into the system 
by the wave generator is equal to that absorbed by the filter and trans
mitted into the breakwater. When this state has been attained, all wave 
components propagating towards the breakwater superimpose to yield the 
incident wave and all wave components propagating towards the wave gener
ator superimpose to yield the reflected wave. 1he steady state is typi
cally achieved after three or four traverses of the test section, and is 
readily identified when the partial standing-wave envelope remains uniform. 
Then the standard techniques discussed above are used to determine the 
resulting incident, reflected, and transmitted wave amplitudes. 

IV. EXPERIMENTAL AND THEORETICAL RESULTS 

1. Introduction. 

1he results of the theory formulated in Section II and the experimental 
program described in Section III are summarized in this section. 1he 
behavior of the predicted and measured results are compared and evaluated. 
Application of the analysis to prototype conditions is also discussed. 

1he governing independent dimensionless parameters have been identified 
as b/h, £, kh, and f. '!be damping coefficient, f, evaluated via the 

'equivalent work, principle contains the dependence on wave steepness and 
media properties. For a given breakwater configuration b/h, £ and the 
media properties are fixed. Consequently, the wave steepness, Hi/L, 
and the dimensionless wave number, kh, constitute the two remaining 
degrees of freedom which can be varied to evaluate the breakwater per
formance. 

'!be reflection and transmission coefficients are presented (in figures) 
as functions of the wave steepness for a range of wave numbers. Experi
mental and theoretical results are given for four breakwater configura
tions: two homogeneous crib-style structures, one trapezoidal-layered 
structure, and one pile-array structure. 
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2. Homogeneous Crib~Style·Breakwaters. 

a. Experimental Results. The wave reflection and transmission 
are collected using the procedures described in Section III, 5, b. 
of the data are tabulated in Wilson (1971). Small- and large-:niodel 
dimensions are given in Table 3. · 

data 
All 

Changes in the incident wave height and wavelength in the small-model 
tests are initiated by setting the drive-wheel pin at discrete eccentric
ities and varying the generator frequency over a broad bandwidth. This 
technique leads to a great variety in incident wave numbers and wave 
steepness, but it precludes presentation of wave data for constant values 
of the wave number. As a result, the reflection and transmission coef
ficients are presented as functions of the wave steepness for finite 
ranges in the wave number. That is, a median value of kh is selected 
and all data w. ::hin ± 0. 25 of the value are plotted on the same graph. 

Figures 23 to 27 present the experimental reflection and transmission 
coefficients as a function of wave steepness for relatively constant 
values of the dimensionless wave number (or relative depth). The graphs 
show that the transmission coefficient is strongly dependent on the inci
dent wave steepness. As predicted by the simple form of the long-wave 
solution, the transmission coefficient tends to decrease with increasing 
wave steepness. The reflection coefficient, on the other hand, is rela
tively insensitive to changes in wave steepness. One would expect the 
structure to be more impervious to steeper waves due to increased flow 
resistance in the pores of the granular fill. However, the reflected 
wave is also partially attenuated due to the roughness of the reflecting 
surface. This latter effect appears to be sufficient to compensate for 
the expected increase in the reflection coefficient. 

The dependence on wave number becomes apparent when the six figures 
are compared with each other. In general, there appears to be a decrease 
in both the reflection and transmission coefficient for shorter wavelengths. 
This behavior is clearly visible in Figure 28 where the reflection and 
transmission coefficients are plotted as a function of wave number for a 
constant wave steepness, Hi/L = 0.01 ± 0.002. A relative maximum in each 
coefficient appears near kh = 1.0. This is probably due to a trade-off 
between increasing wave height and increasing wavelength as kh decreases 
and Hi/L remains constant. Increasing wavelength makes the breakwater 
appear to be more transparent (thereby decreasing CR) while increasing 
wave height causes the damping to be more severe (thereby decreasing Cr)• 
At high wave numbers, the relative roughness of the windward face reduces 
the reflection coefficient and the high frequencies promote severe inter
nal damping so that Cr decreases. 

Wave conditions in the large-model tests are controlled in the reverse 

order of the procedure used in the small-model tests. In particular, the 

generator frequency is set at discrete values while the eccentricity of 
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the drive-wheel pin is varied. This produces variable wave steepness for 
constant values of the wave number, ~ desirable condition for graphical 
presentation of the data. 

The large-model reflection and transmission coefficients are plotted 
as a function of wave steepness for five constant wave numbers in 

Figures 29 to 33. The results emibit the same basic trends demonstrated 
in the small-model tests: transmission coefficients decrease with increas
ing wave steepness and wave number; reflection coefficients are relatively 
constant with respect to wave steepness but decrease with increasing wave 
number. Figure 34 shows the effect of changing wave number while main
taining wave steepness at Hi/L = 0.01. Again, relative maxima occur near 
kh = 1.0, as in the small model, with decreasing reflection and trans
mission coefficients for both large and small kh. 

b. Comparison of Experimental and Theoretical Results. Theoretical 
solutions are also plotted in Figures 23 to 34, and are obtained for a 
five-term eigen series. The spatial integration in the numerator of the 
Lorentz equation is performed numerically using ·a 10 by 10 grid to repre
sent the submerged cross section of the breakwater. Appendix E shows the 
computer program used to evaluate the theoretical solution. Theoretical 
results are presented for the median kh occurring in each of the small
model figures and for the specified constant kh occurring in each of 
the large-model figures. 

The theoretical behavior is clear--transmission coefficients decrease 
and reflection coefficients increase with increasing wave steepness. The 
theory generally overestimates the transmission coefficient at all wave 
steepnesses and all wave numb~rs. In addition, the theory underestimates 
the reflection coefficient at low steepnesses and overestimates the 
reflection coefficient at high steepnesses. These discrepancies may be 
due to several factors including: (a) errors made in estimating the 
permeability, (b) unsteady modification of the steady-state damping law, 
(c) violation of the assumed macroscopic flow-field scale when particle 
orbits become smaller than the rubble diameter, and (d) roughness of the 
breakwater reflecting surface. 

Errors caused by inferior estimates of the permeability are a real 
possibility. The slope intercept method of measuring ~ermeability is 
very sensitive to inaccurate permeameter pressure readings at low ~l~w 
rates. If the low flow-rate readings are omitted from the permeability 
analysis (also omit two high flow~rate readings wh~~ deviate ~ro~ the 
rest of the data; see App. F, Fig. F), the permeability and friction 
factor calculations are revised (App. F, Tables F-4, F-5, and F-6)._ The 
tabulated values of Cf display a marked decrease in scatter relative to 
Tables F-1, F-2, and F-3 (App. F). Th.is demonstrates that much of the 
error is in the low Reynolds nurrber data. 

The resulting permeability and friction coefficient values are 
summarized in Table 4. 
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Table 4. Revise me ia ty1 rau ic properties. d d. h d 1. 
'commercial Equivalent sphere Permeability Turbulent damping 
size diameter coefficient 

d K cf p 

(in) (in) . (ft2 ) (dimensionless) 

0.375 0.325 2.53·10- 7 0.314 

0.75 0.774 7.19·10- 7 0.218 I 

1.5 1.37 3.20·10- 6 0.228 

By coruparing the properties in Table 4 with those in Table 3 it is 
evident that eliminating the low Reynolds nurrber data decreases the per
meability and the turbulent damping coefficient. However, the ratio of 
Cf/Kp~ remains relatively constant. According to equation (5), this 
change in hydraulic properties produces more frictional resistance at low 
Reynolds nurrbers (where l/Kp dominates) and the same resistance at high 

Reynolds nurrbers (where Cf/Kp~ dominates). One might anticipate the 
latter result because the same high Reynolds nurrber data are analyzed 
in both cases. The net effect of the reduced permeability is an apparent 
increase in the fluid resistance of the structure; this should cause a 
relative increase in the reflection coefficient and a decrease in the 
transmission coefficient. 

The revised theoretical solution to the small breakwater problem is 
shown in Figure 35. Comparison with Figure 28 demonstrates that elimi
nating the low Reynolds nurrber data from the permeability analysis does 
tend to improve correlation between experiment and theory. The improve
ment is relatively small compared to the large change in the permeability. 
This suggests that even in the small model, the unsteady damping is domi
nated by the turbulent resistance forces. It also indicates that in future 
studies it is probably not necessary to collect permeameter data at low 
Reynolds numbers. The high Reynolds nurrber data are easier to obtain and 
seem to prescribe the media properties adequately. This certainly would 
apply for prototype-scale media. 

Another source of discrepancy between theory and experiment may be 
that the steady-state damping law (eq. 3) is not entirely suitable for 
small models which are excited by relatively high-frequency waves. It 
may be necessary to add an unsteady inertial force to the resistance law 
as in the pile-array analysis, represented by equation (88). The net 
effect of the additional inertial force is to increase the inertial 
coefficient, S, to a value greater than unity. As shown in Figure 9, 
increasing S causes a corresponding increase in the reflection coeffi
cient and decrease in the transmission coefficient. This would also tend 
to improve correlation between theory and experiment in Figures 23 to 34. 
One cannot predict the magnitude of the inertial coefficient in advance 
because the virtual mass of densely packed fractured stone is not known. 
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However, evaluation of S, may serve as a calibrating link between 
theory and experiment in future studies. 

Theory and experiment also tend to diverge for very small.values of 
the incident wave amplitude. This response is apparent at small Hi/L on 
the constant kh curves, and at large kh on the constant Hi/L curves 
It is hypothesized that this behavior is due to the scale of the fluid 
motion becoming smaller than the aggregate scale on the breakwater surface. 
As the wave amplitude becomes very small, the wave field orbit diameters 
are exceeded by the individual rock diameters on the slope. Then the 
waves begin interacting with individual pieces of gravel rather than a 
continuous porous slope. The reflection process is modified as waves are 
partially reflected directly off particle surfaces. As the relative scale 
of the particle increases, the direct-refl~ction processes dominate and 
the reflection coefficient seeks a limiting value near SO to 60 percent. 
This value is equal to the percent of solids of the porous surface. 

The theory does not account for this behavior because the seepage 
velocity concept assumes that fluid particle trajectories are large for 
media grain size so that interaction with individual units of media can 
be ignored. When the orbital trajectories are equal or less than the 
grain diameter, this assumption is violated. Then the flow field begins 
to function like a series of interconnected cells rather than a continuum. 

The ratio of equivalent sphere diameter to water depth in both models 
is approximately d/h = 0.064. For the wave height to exceed the particle 
diameter, the lower limit on the wave steepness is: 

Hi/L ~ (d/h) (h/L) 'v kh/100 

Although this is only an approximate guide, it is apparent in the.preced
ing figures that correlation between theory and experiment generally 
imp~ove above this limiting steepness. 

The fourth factor which influences the disparity between experiment 
and theory is the damping effect of the rough reflecting surface. As the 
wave heights increase, the attenuation due to surface roughness also 
increases. The theory does not account for this effect and therefore 
tends to overestimate the wave reflection at high steepnesses. 

The experimental procedure for determining reflection coefficients 
assumes that the wave profiles are simple sinusoids. This procedure tends 
to underestimate the reflection coefficient when finite amplitude effects 
become significant (Goda, 1968), and may contribute to experimental error 
for the steep, long-wave measurements. 

A scale effect in the transmission coefficient becomes apparent when 
the small- and large-model results are compared in Figures 28 and 34. 
This feature is discussed later in this section. 
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The theoretical results are heavily influenced by the approximation 
introduced through the Lorentz equivalent work principle. This linear
izing technique prevents the theory from predicting the occurrence of 
high harmonics due to non-Darcian damping. The existence of these har
monics is only weakly evident in the experimental long-wave records. 
Nevertheless, part of the theoretical error may be attributed to the 
lniear approximation. 

In summary, it may be concluded that theory and experiment correlate 
best when the incident wave height exceeds the rock diameter on the wind
ward breakwater face. The transmission coefficient is the more useful 
quantity and correlates better with the theory than does the reflection 
coefficient. The theory tends to slightly overestimate the transmission 
coefficient but this is a desirable condition for design application. 

3. Trapezoidal-Layered Breakwater. 

a. Experimental Results. Wave reflection and transmission data are 
collected using the procedures described previously. The data are tabu
lated in Appendix G. 

The experiments·are conducted at a stillwater depth of 14 inches. 
This water level is relatively high with respect to the elevation of the 
breakwater core. It is comparable to a high spring tide, a condition 
which is conducive to large transmission coefficients. The wave height 
and length are controlled by setting the generator frequency at predeter
mined constant values and then varying the eccentricity of the drive-wheel 
pin. This produces variable wave steepness at several constant wave 
numbers. 

Figures 36 to 41 present the reflection and transmission coefficients 
as functions of incident wave steepness ··for six values of kh. The trans
mission coefficients behavior is similar to that. observed for the homo
geneous rectangular breakwater, i.e., transmission decreases with 
increasing wave steepness. The reflection coefficient, on the other 
hand, decreases with increasing wave steepness and wave nunber. The 
dependence on wave steepness results from waves breaking on the incli~ed 
slope. Observations during the experiments verify that steeper waves 
break more violently on the rough permeable slope. 

The dependence on wave nunber is delineated in Figures 42 and 43. In 
contrast to the homogeneous rectangular breakwater results, a r~l~tive 
maximum does not appear in the reflection coefficient. The additional 
effect of wave breaking seems to reduce the reflection coefficients more 
abruptly and eliminates the relative maximum near kh ~ 1.0. ~o~ever, a 
definite relative minimum does appear in the reflection coefficient near 
kh ~ 2.5 in the trapezoidal structure. A similar minimum is ~eakly . 
apparent in the rectangular structures (Figs. 29 and 34). . This behavior 
is interpreted as caused by the fluid-motion scale decreasing below the 
aggregate scale on the breakwater surface. When the wave velocity field 
orbit diameters become smaller than the aggregate diameter, the waves 
begin interacting with individual pieces of rubble as in the crib-style 
breakwater. Wave breaking is partially replaced by direct reflection 
off rubble surfaces, and the reflection coefficient tends to increase. 
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This argument can be substantiated quantitatively. The velocity 
field orbit diameters are less than or equal to the wave height. For 
kh = 2.5 and Hi/L = 0.02, Hi/h is equal to 0.05. The ratio of the mean 
particle diameter to stillwater depth is equal to d/h ~ 0.1. Thus, the 
scale of the wave motion is approximately one-half the particle diameter 
when the reflection coefficient begins to increase. 

b. Comparison of Experimental and Theoretical Results. The theoret
ical solution is obtained according to the procedures in Section II, 5, f. 
A fi ve-.term eigeri series is chosen to specify the velocity field. The 
spatial integration in the numerator of the modified Lorentz equation is 
evaluated numerically using the discretization scheme of Appendix D. The 
breaking loss is evaluated with the roughness coefficient fs = 1/3. This 
value is found to give best correlation between theory and experiment. 

The theoretical results are presented in Figures 36 to 43. The solu
tion behavior is similar to that of the crib-style breakwater--trans
mission decreases with increasing wave steepness and number; reflection 
increases with increasing steepness and decreasing wave number. 

The transmission coefficient experimental and theoretical results 
correlate very well, even better than the crib-style breakwater results. 
It is likely that this is due to the inclusion of surface losses on the 
inclined face of the structure, whereas such losses are ignored on the 
vertical-face structure. 

The reflection coefficient does not fare as well. The theory gener
ally underestimates the experimental results at low steepnesses and over
estimates the results at high steepnesses. In addition, the theory does 
not account for the abrupt increase in the reflection coefficient at 
kh ~ 2.5. The low steepness and high-wave number disparity can be attri
buted at least partially to the wave height becoming small with respect 
to the media grain diameter; this causes relative increases in the reflec~ 
tion coefficient. The theory does not account for this effect because it 
assumes the pore sizes to be small with respect to the length scale of the 
fluiq motion. The inertial effect and errors in the permeability measure
ment may also contribute to any differences between theory and experiment. 

The success of the theory is dependent on the evaluation of the 
surface-roughness coefficient, fs· This coefficient is not a universal 
constant, but is a function of the shape of the armor-layer material. 
The value fs = 1/3 determined in this study, represents an approximate 
first guess for all rubble slopes which are modeled using this theory. 
Tetrapods and other artificial armor material can be expected to have 
their own characteristic value. Further model studies are necessary to 
evaluate fs for these materials. The form of the proposed empirical 
expression for Miche's intrinsic surface-reflection coefficient (eq. 80) 
has provided favorable results in the application of this study. Further 
comparison with other experiments is needed to verify its general appli
cability. 
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A general assessment of the theory is that it predicts the important 
features of wave interaction with conventional breakwaters quite well. 
The transmission coefficient is the quantity of greatest interest and it 
is evaluated within the range of experimental error. The results seem to 
justify the assumptions made in the equivalent rectangular breakwater 
solution. Although the validity of the theory is not established by 
comparison with a single set of experiments, the available results tend 
to support the assertion that the important physical processes have been 
accounted for. 

4. Pile-Array Breakwaters. 

Costello (1952) conducted two-dimensional model tests on pile-array 
structures composed of vertical circular cylinders. Experimental data 
from two of his models are presented herein and compared with the theory 
in Section II, 6. 

The structures are composed of 3/8-inch-diameter piles spaced 1 inch 
on center in an orthogonal pattern of rows and columns. The'resulting 
porosity is 89 percent. The water depth is maintained at 1.5 feet and 
the piles extend well above the maximum wave height. The two structures 
differ only in longitudinal extent; one is 24 rows long, the other is 48 
rows long. 

Incident and transmitted wave amplitudes are monitored with parallel
wire resistance-type wave gages. No mention or record of reflection 
measurements is given. The transmission coefficients are measured 3.5 
feet shoreward of the test section. The incident wave characteristics 
are varied between the following limits: 0.01 < H~/L < 0.12; 1 ~ kh ~ 4. 

The transmission coefficients for both models are presented as func
tions of incident wave steepness in Figure 44. The graph shows that the 
transmission coefficient decreases with increasing wave steepness and 
increasing breakwater width. The dependence on wave nunber is too weak 
to positively identify. 

The theoretical transmission coefficients are also plotted in Figure 
44. The solution is obtained according to the procedure in Section II, 
6, d. A five-term eigen series is used to describe the velocity field, 
and all other conditions in the solution are specified by the geometry of 
the structure. 

Theoretical solutions are presented for kh = 1, 2, and 4 and 0.01 
< Hi/L < 0.1. Correlation between experiment and theory is within the 
range of experimental error with the exception of the kh = 2 curve on the 
4-foot-long structure. Costello (1952) does not provide the wave nunbers 
for experimental data points on the long structure. Thus, it should not 
be inferred that the theory is in error because the experimental data 
simply may not apply to the kh = 2 curve. 

126 

,, 



I\) 

"""' 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

o.o 

Pile Array Breakwater 

h z: 1.5 ft. 

...._ . ..._-...::::::::::::::;;;;;;::::.. 

......... ....._ ..._ . ~ in. diam. piles, tin. on ctr. 

0 ......... ...................... 8 
""" . 0 ....................... 

............ ' 0 .·y· . . ........ 
kh a 2.0 • C 

• ......_ T ......... 
0 .. '· 

kh .. 1.0,4.0 _>.'t,. '· 

°" '· ·,o, 0 

kh = 1.0 

0 0o 
0 b = 2.0 

0 

kh =0 
4.0 

Exp. 
Ref. Coef. 

·,·, ., ·,. 
. ' 
' b 

Trans. Coef. 00 . , • 4.0 ft . 

--b .. 2.0 ft. ---~---- -3---- _b .. 4.0 ft. 
kb .. 1.0 c_ . - - ... 

-R - -.... - __ ... 
_.. ... -- .... ------------------

0.01 0.02 0.05 0.1 

ft. 

Figure 44. Transmission coefficient dependen~e on wave steepness, pile-array breakwater. 



A relative maximum occurs in theoretical transmission coefficient 
between kh = 1 and kh = 4. This response corresponds to that observed 
in the crib-style breakwater. However, the overall dependence on wave 
number is much weaker. The general behavior is simiiar to that of wave 
filters, i.e., high transmission and low reflection. The similarity is 
due to the high porosity in both structures. 

The theoretical reflection coefficients are also plotted for kh = 1. 
Note that the reflection coefficient is greater for the short structure 
at this particular kh. The apparent reason is that the ratio of incident 
wavelength to the short structure length is 1:4. This causes the n2 
component, which reflects off the leeward face of the structure, to 
resonate. The behavior is analogous to a"resonating tidal basin. The 
reflection coefficients for kh = 2 and 4 are clustered near 0.03 < CR < 

0.08. Experimental data are not available for comparison. 

The favorable correlation between experiment and theory in Figure 44 
demonstrates the utility of the theory as applied to pile-array structures. 
Although the assumptions in the derivation apply rigorously only to long
wave excitation, the results seem to justify application of the theory to 
intermediate and short-wave excitation as well. 

5. Scale Effects and Prototype Application. 

A scale effect appears when the large- and small-model results are 
compared for constant Hi/L but variable kh. Figures 28 and 34 reveal 
that the reflection coefficients are nearly equal while the transmission 
coefficients are always greater in the large model'. This shows that 
essentially the same energy is being transmitted into each structure while 
less is coming out of the small model. A qualitative argument can be made 
for this behavior on the basis of friction factor-type internal damping. 
Equation (5) gives the following relationship for the head loss per foot 
through the small model: 

2 
u 

m 
g , (99) 

where (6.h/8t)m is the head loss per unit length through a structure 

composed of rock of p~rmeability Kpm' with friction factor fK m 

defined as in equation (6), and with t1in properly scaling the i~ternal 
velocity field. Likewise, in the large model: 
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Accordi.ng to Dinoy (1971) and Ward (1964), the square root of the 
permeability is directly proportional to the hydraulic radius of the 

1 

media. Thus, ~m scales with the model length scale. Froude modeling 
is assumed to govern the velocity field so the velocity ·is scaled propor
tional to the square root of the length scale. Summarizing: 

Kl/2/Kl/2 = L /L 
pm PP m p ' 

u
2 
/u

2 = L /L 
m p m p' 

where Lm, Lp denote the length scales of the two models. Then the 
ratio of the head-loss gradients is simply: 

(6.h/ M.) 
m 

(6.h/ M.) 
p 

The friction factors scale according to equation (6) as: 

1 

~ 
p 

(100) 

(101) 

Table 4 shows that the revised ·Cf is approximately the same for the 
0.774- and 1.37-inch gravel. The original estimate in Table 3 yields 
a Cf for the 0. 774-inch gravel which is ·approximately 70 percent that 
of the larger stone. Without asserting which values are correct, it can 
be stated that the two values are nearly equal. The Reynolds numbers, 
on the other hand, scale according to the square of the length ratio~ 
Because the small model operates at a considerably lower Reynolds nuni>er, 
it may be.assumed that it has a larger characteristic friction factor 
according to equation (6). Equation (100) indicates that the hea'd-loss 
gradient is greater in the small model, therefore damping is more severe. 
Consequently, the transmission coefficient is reduced in the small model. 

This result has important implications for scaling experimental 
direct-transmission measurements because physical models tend to under
estimate prototype transmission coefficients. Determining the magnitude 
of the scale effect in a particular model requires that specific values 
be assigned to the friction factors. The prototype friction factor may 
be set equal to Cf because the damping is fully turbulent. The model 
friction factor is a function of the Reynolds number and in an unsteady, 
spatially variable flow field the choice of an appropriate Reynolds 
number is not obvious. 
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The theoretical solution overcomes this difficulty by solving the 
prototype problem directly. The prototype solution requires an estima
tion of the physical and hydraulic properties of the full-scale media. 
One may determine these properties by performing the tests in Sections 
III, 2 and III, 3 on samples of small-scale rubble which have approxi
mately the same angularity and packing as that anticipated in the proto
type rubble. Then, according to the results of Dinoy (1971) and Ward 
(1964), the permeability scales directly proportional to the length 
ratio.' The turbulent friction coefficient, Cf, and the porosity are 
the same in similar materials. 1he surface-roughness coefficient, fs, 
is assumed ·to be the same in model and prototype. Th.us, previously 
determined values for fs which characterize common armor-layer materials 
may be used. With the media properties determined in this manner, the pro
cedures of Section II are applied directly to solve the prototype problem. 

V. CONCLUSION 

1. Summary . 

. Rubble-mound breakwaters are designed to protect exposed marine areas 
from excessive wave activity. Observations of breakwaters interacting 
with surface waves in laboratory models and in full-scale field applica
tions demonstrate that significant wave energy is transmitted through the 
interstices of structures commonly regarded as being impervious. The 
objective of this investigation is the development of a theoretical anal
ysis to account for this phenomenon. The results are intended to be used 
by coastal engineers to compare the effectiveness of alternative break
water configurations, independent of repetitive experimental programs. 

Three different breakwater designs are considered: (a) crib-style 
breakwaters with vertical walls 'and homogeneous fill; (b) conventional 
trapezoidal-shaped structures with layered fill; and (c) pile~array break
waters composed of vertical piles placed in symmetric patterns. Th.e.two
dimensional problem is studied. Waves are assumed to arrive at normal 
incidence and end effects are ignored. 

The analysis begins with the unsteady equations of motion for uncon
fined flow through the voids of an arbitrary pervious structure. The 
resistance forces are specified by known turbulent damping laws for flow 
through coarse porous media and by drag and inertial forces for flow 
through pile arrays. In either case, convective accelerations in the 
macroscopic flow field are neglected and resistance forces are linearized 
to facilitate an analytical solution. The linearizing technique requires 
that the assumed first-order resistance law and the known turbulent law 
dissipate the same amount of energy during one wave period throughout the 
structure. The procedure explicitly evaluates the damping coefficient in 
the assumed form of the 'resistance law without resorting to fitting tech
niques with experimental data. Th.is yields a potential flow solution 
which is dependent on wave amplitude as· well as frequency, water depth 
and the structure damping properties. 
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Linear wave theory is assumed to apply outside .the structure. The 
reflected and transmitted amplitudes are solved in the crib-style break
water problem and the pile-array problem by requiring continuity or pres
sure and horizontal mass flux at the sea-breakwater interfaces. The con
ventional trapezoidal-layered breakwater problem·is solved by identifying 
an equivalent rectangular breakwater which has the same submerged volume 
as that of the original structure. Breaking losses are accounted for by 
a semiempirical method which ultimately requires the experimental evalua
tion of a dimensionless constant. The constant seems to characterize the 
roughness of the reflecting surface. Breaking and internal losses are 
combined in the linearized damping law and a modified form of the crib
style breakwater problem is solved. 

The complete solution is expressed as an infinite series of eigen 
functions. The first five terms are found to adequately specify the 
velocity field for wavelengths longer than deepwater waves. Considerable 
si~plification is gained in the long-wave solution--only one eigen func
tion is ~etained and depth dependence is eliminated. The ~ong-wave solu
tion has the greatest potential for design application. 

2. Evaluation. 

In all three breakwater configurations, 'theory and experiment gener
ally concur that: (a) the transmission coefficient decreases with 
decreasing wavelength, breakwater porosity and permeability, and increas
ing wave height and breakwater width, and (b) the reflection coefficient 
decreases with decreasing breakwater width and wavelength, and increasing 
breakwater porosity and permeability. 

Correlation between theory and experiment is best when the incident 
wave height exceeds the diameter of the medium. When the wave heights 
become much smaller than the characteristic medium diameter the break
water behavior seems to be dominated by wave interaction with individual 
units of rubble and the theoretical assumption of a continuum no longer 
applies. 

In general, the crib-style breakwater solution slightly overestimates 
the measured transmission coefficient and underestimates the reflection 
coefficient. The disparity is thought to be due to unsteady modifica
tion of the assumed form of the damping law, errors in determining the 
permeability and approximations introduced by the linearizing technique. 
Nevertheless, the predicted transmission coefficients are very useful 
design estimates. 

Correlation between the conventional trapezoidal-shaped breakwater 
theory and experiment is very favorable. The results are contingent upon 
proper evaluation of the surface-roughness coefficient. The empirical 
expression proposed to account for wave breaking has produced gratifying 
results for one breakwater configuration but further verification is 
needed. The equivalent rectangular breakwater hypothesis also works well 
for long, low nonbreaking waves. 
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Agreement between theory and experiment for. the pile-array structure 
confirms the validity of the analysis when applied. to a well-defined, 
homogeneous vertical-face structure. The results indicate that the 
general method could be successfully applied to wave filters as well. 

3. Future Investigations. 

To apply the method proposed by this study to breakwaters of arbitrary 
shape and composition, further work is rteeded to verify the breaking loss 
calculation or to find a suitable substitute .. The roughness coefficient 
should be evaluated for other armor-layer materials and it should be 
determined if scale effects are inherent in this coefficient. 

Three~dimensional effects and oblique incidence also need to be 
studied. Combining the results with overtopping and diffraction tech
niques is a logical progression. 

Breakwater response to random wave excitation may be of interest. 
It is to be anticipated that only long, low swell will penetrate the less 
permeable structures. 

Finally, the linearizing technique used in this study precludes the 
existence of higher harmonics in the theoretical solution. A perturba
tion solution should be attempted for long-wave excitation to see if the 
generation of multiple harmonics is important. This may be a useful input 
to harbor seiching studies. 
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APPENDIX A 

ESTIMATING 11IE ROOTS TO TIIE COMPLEX DISPERSION EQUATION 

To estimate the roots to the coinplex dispersion equation, it is 
helpful to write the equation in the dimensionless form: 

2 

crgh (S - if) = r h(l - ia ) th r h(l - ia ) 
n n n n • 

Experience gained through numerous trial solutions to this equation 
has shown that for a wide range of frequencies and depths it is usually 
possible to fine one solution near: 

and 

. 2 ' ' 
cr h s"' r h th r h, 

g n n 

' . f 
c. rv-, 

n s 

where the prime denotes the first estimate in the iteration scheme. 
·rm and am represent the actual solution to the above estimates and 

the subscript m assumes the larger of the two values: 

m = 1, 

or 

f 
m = 

JI 

where integer math is used in the quotient. If m > 1, then in general 
there will be m - 1 solutions in the vicinity of: 

a' f 'h"' (2n - 1) JI 
n n 2 

f 'h"' 0.4n 
n 

·· } n = 1, 2, •.• ,m - 1 , 

The remaining solutions will be found near 

a' r 'h "' nJI n n 
} n = m + 1, m + 2, •••. 

r 'h "' r h cn-l) 
n n-1 n 

These guidelines should be accepted as empirically based estimates 
rather than hard and fast rules. They are presented here because extract
ing roots from the dispersion equation can be a frustrating task without 
some knowledge of the behavior of the solution. 
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APPENDIX B 

GENERAL CHARACTERISTICS OF TIIE COMPLEX DISPERSION EQUATION 

The dispersion equations are transcendental and it is necessary to 
solve for the roots by iteration. In spite of this difficulty there are 
several features which can be identified without actually solving the 
equations. First, because the hyperbolic tangent is an odd function of 
the argument, the product .rnth rnh will always be positive. The denomi
nator in equation (32) is also positive because: 

0 < sin
2
a rh < 1, 

and 
2 

ch fh > 1. 

The left-hand side of equation (32) is always positive and it follows 
that the numerator must be positive for any roots to the equation. The 
sine and hyperbolic sine are both odd functions but their quotient is 
even in the numerator of equation (32); thus, the entire equation is 
even with respect to r, and if r = T is a solution to equation (32), 
then r = - T is also a solution. 

The denominator in equation (33) is identical to the numerator in 
equation (32) and, according to prior arguments, these quantities are 
positive and even. It is easy to show that the numerator of equation 
(33) is also positive, and even by considering the following: 

therefore, 

and 

la sh 2rhl > l2arhl, 

lsin 2afhj < l2arbj, 

lsin 2afhl 
a sh 2fh < l.O, 

sin 2afh 
1 + a sh 2fh 

> o. 

In addition, sin 2arh and a sh 2rh are both odd functions with 
respect to a and r; thus, their quotient and the entire numerator 
are even. For f to be a proper damping coefficient, wherein it 
extracts momentum from fluid motion, it must be positive. By these 
arguments it has been established that the left-hand side of equation 
(33) is positive and the quotient on the right-hand side is positive 
and even. It follows directly that an must be positive to be a 
solution to equation (33). 
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APPENDIX C 

EVALUATING LORENTZ'S CONDITION OF EQUIVALENT WORK 

The velocity potentials and resulting velocities described in this 

study are generally complex. Nonlinear operations performed on complex 
quantities are not commutative; consequently, it is ncecessary to secure 
the real part of a function before undertaking operations such as equa
tion (72). Some simplifications can be made by recognizing the separable 
properties of the special functions used in this study. For example, the 
complex velocity, q, may be written as: 

where 

Then, 

and 

Define: 

then, 

iO't 
e 

QR, Q1 = real function (x,z). 

q = (QR+ i Q
1

)(cos O't + i sin O't), 

q = real q 
R 

QI . 
= QR(cos O't - ~sin O't). 

QR 

The phase triangle, 
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shows that 

thus, 

Let 

then, 

and 

thus, 

QR 
sin el = ~ 2 + Q 2 , 

R I 

qR = - ~· 2 + Q 2 
sin (at - 0

1
). 

R I 

e = at - e
1

, 

d9 = d(crt), 

q = 
R 

- ; 2 2 
QR + Q

1 
sin 0, 

qR > 0 : (2n - l)II < 0 < 2nTI, 

qR < 0 2(n - l)Il ·~ 0 < (2n - I)JI. 

Integrals involving the absolute value of functions of q present 
no problem if the above limits are observed, e.g., 

l

at + 2II 
·3 

lqR I 
a J

2nTI J(2n-l)JI 
. . 3 3 
d(crt) = · qR d0 - qR d0 

(2n-l)TI 2(n-l)IT . 

. 312 J2n f (2n-l)IT 
2 2 { 3 3 = (QR . + Q

1 
) -sin 0d0+ sin 0d0 } 

(2n-l)IT 2(n-l)IT 

3/2 
= ~ (Q 2 + Q 2) 

3 R I 

4 2 2 312 . 
= 3IT (QR + QI ) • 
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.. 

Also, 

f 

at+211 

qR
2
d(at) 

at f 

2n11 
2 = q d8 = 

2 (n~l)TI f 

2nTI 
2 2 2 

(QR + Q1 ) sin 8d8 

2(n-l)TI 

= II(Q 2 + Q 2) 
R I 

. f t+t 
1 2 
T qR dt 

t f 

at+2TI . 
1 2 . 

= 2Il qR d(at) 

. at 

1 2 2 
= 2 (QR +QI ). 

Dividing the numerator and denominator of equation (72) by the wave 
period, T, and substituting in equations (C-1) and (C-2) yield: 

J

o Jb 2 v 1 2 2 cf .4 2 2 312 
dz dx E: { Kp 2 (QR + QI ) + 1/2 E: 3il (QR + QI.) } 

~ 0 . ~· 
f cr = 

J
o Jb 1 2 2 
dz dx Ez (QR + QI ) 

-h 0 

where 

Q R 1( l iOt) ·-= ea q,e , 
R 

QI :: Imag(q/eicrt)~ 

(C-2) 

(C-3) 

The denominator of equation (C-3) may be evaluated analytically by 
defining a few auxiliary variables in terms of complex conjugates of 
known functions. Let the complex velocity field vector, with the 
temporal dependence removed, be denoted by: 

~ A iO't 
Q • iQ + kQ e q/e , 

x z 

Then, 

2 2 . * Q + Q a Q·Q* = Q·O* + Q·Q R I x~ z z' 
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where the superscript, (*),denotes the complex conjugate. 
are evaluated from equation (36) as: 

o = ~ I «!> I e iat ' 
'x ax JIFl n 

n 

0 = _2 I 4> I e iOt • 
z az m=l n 

Q and Q 
·x z 

Substituting the above into the denominator of equation (C-3) and 
evaluating the integrals produces the following result after much algebra, 

e: (Q 2 + Q 2) 
2 R I 

-2a r a 
(1-e . ta m ) { _:___ ___ __,__ sh2 r h 

4 ru 

2 n 1 
= e:a l -

m=l·a r 2 
mm 

-a r b 

1 
ch2I' h - cos 2a r h 

m mm 

( a
1 

a
1
* + *) e m m sin 2amrmh sin I'mb ( 2.

1 
..... a

2
m* + alm* a 2m) }• (C-4.) 

m m a2ma2m - 2 "' 

'Ihe complex conjugate amplitude products may be replaced by the 
following: 

2 2 2 2 2 
(almal: + 8 2ma2:) = ai (ClR + Cl! + C2R + C2I) ' 

m m m m 

and 

where 

(C-5) 

(C-6) 

Combining equations (C-4), (C-5), and (C-6) yields the form of the 
definite integral which is used in the computer program of Appendix D. 

The results also apply to the first term in the numerator if the 
permeability is constant. The second term must be evaluated numerically 
because of the absolute value requirements. 
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The numerical integration is accomplished by discretizing the break

water cross section according to Appendix E and evaluating Qx and Qz 
at each grid point. The absolute values are taken and a summation is 
performed using a trapezoidal rule. Sufficient comment cards are 
presented in the computer program listing to make this clear. 
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APPENDIX D 

COMPUfER PROGRAM LISTING 

This appendix lists the computer program used to solve the trapezoidal

layered breakwater problem. Sufficient comment cards are included to make 
the computation scheme clear. A sample output is also presented. 
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c 
c 
c 

c 
c 
c 
c 
·c 
c 

c 
c 
c 
c 
c 
c 
c 

~AVE REFLECTJCN ANO TFA/\S~ISSICN AT PERMfA8LE 8REAK~ATER~ 

CCMPLEX CCH,CS~,CRG, l~tCMPLX,OMEGA,ESF,SFE,YG,CHK,YHtYA,,B,C~I 

CC"PLEX ZETA,CEX~ 

COMPLEX ClX(27,5l,C2)127,5),CZl8t5l,SZIS,51 
CCII FLEX KF- ( 5 l, KI I 5) , H ( 5), SHK I 5 l, YI I 5 l, CR I 51 , CH 51,C1( 51 ,C2( 5) 
COMPLEX YEl5,5J,YFl5t51tYOl5),Y(lO,lOJ,C(l0) 
FE~L EPLl5J,CFL15l,PERMLl51,AKH(l01tCAMBF(l01 
REAL EPSl8t27l,CFl8,21l,PERM(8,27l,EXZ(8,27l 
REAL KHl5J,ClRl51,ClI<5l,C2Rl5l,C2Il5J,Cf'l<15J,CRll5lrCTRl51 
FEAL CTI(5),FrAZRl5),FrAZl(SJ,PrAZ2151,PrAZTl51,GAl'A(S),EETAl51 
REAL Tll5lrT2151,REF151,TRANSl5l 
INTEGER LAYERIS,27) 

IN THE OIMENHON STATEMENTS ABOVE, THE 'PARTICULAR INTEGERS USEC 
CORRESPONC TC 5=N, 1C=LIMIT=2*~' S=NZ, 27•/\X 

THE FOLLOnING ARE STAlEMENT FUNCTIONS 

CHIARGl=C.5•1EXFIARGl•EXPl-ARGI) 
SHIARGJ=0.5*1EXPIARGJ-EXP(-ARGIJ 
CCHICRGl=C.5•1CEXPICRCl+CEXPl-CRGJ) 
CSHICRGJ=C.5*1CEXPICFCJ-CEXPl-CRGJ) 

FGCT, PCU/\O, SECCNO l~ITS USEC FCR DIMENSIONAL QUANTITIES 

IM=S~RT CF MINUS O~E 
\ISCO=KI~EMATIC VISCCSITY 
G=GRAVITY 

I,_.=Cl'PLXIC.C,l.CI 
VISCQ=1·.cc;e-s 
G=32.2 
FI=3.1415«;2c5 
[EGR E=180 .! P J 

,_.AI/\0001 
"1AINOOC2 
MAINOOC3 
l'Ait\0004 
MAINOOCS 
MAIN0006 
"AIN0007 
MAINOOC8 
MAIN0009 
MAINOOlO 
MAINOOll 
l'AIN0012 
MAINOC13 
MAIN0014 
MAIN0015 
MAIN0016 
MAIN0017 
"AIN0018 
MAIN0019 
,,.AIN0020 
MAINC021 
MAIN0022 
MAIN0023 
MAIN0024 
l'A IN0025 
"1AIN0026 
MAIN0027 
l'AIN0028 
MAINC029 
MAIN0030 
"AIN0031 
MAIN0032 
l'A IN0033 
MAIN0034 
MAIN0035 
l'Alt\0036 



c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

~ 
c ..., c 
c 

c 
c 
c 
c 

·c 
c 
c 
c 
c 
c 

c 
c 

EP•C.C 

FEAC IN EREAKWATER PRCPERTIES 

S=INERTIAL CCEF 
EHaBREAK"ATEF WICTH 
!-=DEPTH CF SloL 
SLCPE=COTANGENT OF Al\CLE OF INCLINATION CF Wl,...CWARC EREA~WATER FACE 
EREA~=SURFACE eREAKl"( CCEF CF SLCPE 

~Z,NX=DI~ENSICN CF AFFAY WHICr SPECIFIES SPATIAL ~ARIATICI\ Of 
EREAKWATER PFOPERTIES 
l\L=l\C. CF DISCRETE LtYERS IN BREAKWATER 
l\=NO. OF EIGEN FUNCTJCNS 
l\K=H. OF WA~E l\CS. LSEC AS If'.tCICENT WAVE EXCITATIGN 
l\C=NG. OF WA~E CAMBER~ISTEEPNESSJ USED AS INCIDEl\l "AVE EXCITATIC" 
IFMAX=MAX. l\C. OF CYCLES ALLOWED IN ITERATIVE SOLLTICN 

LAYER(l,JJ=ICENTIFIES FROPERTIES OF LOCATION I,J "ITH 01\E OF ~l LAYERS 

REAC ( 5' lC ~c) ( (LA YER ( I ,J) 'J=l ,Nx) 'I =l '" z I 

~ET FREFIX OF I IN lC~O FOR~AT E'UAL TO l\X 
EPL!ll=PGROSITY OF LA,ER I 
CFLIIl=TlRBULEhT FRICTICI\ CGEF Cf LAYER 
PERMLIIl=PER~EABILIT~ GF LAYER I 

READ ( 5, 1 C30 I IE PU I l , C FL! I I , P ER,.L I I l • I =l, HJ 
CO lC I=l,NZ 

EP=MEAN PCROSITY OF SEAWARD FACE OF FECTAl\GULA~ eREAKWATER 

l'AIN00~7 

MAIN0028 
MAIN0039 
f4AIN0040 
MAIN004l 
MAIN0042 
MAIN0043 
>'AIN0044 
MAINC045 
,.A IN0046 
t'Ail\0047 
MA!N0048 
filAIN0049 
MAIN0050 
MAIN005l 
"'AIN0!)52 
MAINC053 
MAIN0054 
>'AINC055 
MAIN0056 
MAIN0057 
p.tAIN0058 
MAIN0059 
"'AIN0060 
"'Ail\OCH 
MAIN0062 
"'AIN0063 
MAINCCE4 
MAINOll65 
MAINCO(:(: 
MAIN0067 
MAIN006B 
MA IN0069 
flAIN0070 
>'AlhC071 · 
MAIN0072 



c 

c 

EP=EF+EPL(LAYER(J,lJ J 
CO lC J= l,N>c 
IJ=LAYER (I, JI 

C EPS(I,JJ=PORCSITY AT LCCATIQN l,J 
C CFCI,JJ=TCRBLLENT FRICTION CCEF AT LOCATION l,J 
C PER,..(J,Jl=PEFMEAP.ILil~ AT LOCATICI\ I,J 
c 

c 

EPS(I,Jl=EPL(JJ) 
CFC I,JJ,;CFU IJI 

10 FER~II,Jl=PEF~L(IJI 

EP=EP/l\Z 
LIMIT=2*N 
LI "E=lI·°" IT-1 
E=BH/H 
f\I=NZ-1 
t.J=l\Jr-1 

C CELZtCELX=OI~El\SI~NlESS GRID SPACING BET~EEN PCINTS SPECIFYll\G 
C EREAKWATER PFGPERTIES 
c 

c 

CELX=B/NJ 
CELZ=l.0/1\I 

C ALPHA=ANGLE CF INCLll\JTICN UF BREAKWATER SLOP~ 
c 

c 

IF (SLOPE .LE •• 1 E-5 JAL HA= P II 2. 
IF(SLOPE.GE •• lE-SIALF~A=ATAN(l.O/SLOPEI 
SIA=SIN(ALPHA) 

c ~LMAX=MAX. kAVE STEEPl\ESS WHICH will NCT BREAK GI\ SLCPE IMIC~E·s 

C CRITERION I 
c 

~LMAX=SQRTl2.*ALPHA/Pl)*SIA*SIA/FI 

c 

flAINOOi3 
MAIN0014 . 
MAIN0075 
ll'Ail'i0076 
MAINCC77 
MAIN0078 
MAINC079 
1'1AINOOeo 
flAINOOSl 
ll'AINOOE2 
MAIN0083 
ll'Ail'i0084 
MAINCoes 
MAIN0086 
MAIN0087 
MAIN0088 
ll'AIN0089 
ll'AINOO~O 

MA INOO«;l 
,..Alr\0092 
MAINC0«;3 
MAIN0094 
P4A IN0095 
MAIN0096 
P'AINC097 
li'AINOO«;S 
MAIN00«;9 
f'AINOlOO 
MAINOlCl 
MAIN0102 
MAIN01C3 
MAIN0104 
P'AINOlOS 
l'Ail'i0106 
MAIN01C'7 
ll'AINOlCS 



~ 
<D 

c 
c 

c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

i,.P.ITE OUT BREAKkATER FRQPERTIES 

i,.RITEl6,1040) 
i,.RITEl6,lC50lll.X,BH,l'-2,H 
loRITEl6,1C551SLCPE 
kRITEl6,lC60111LAYERII,Jl,J=l,NX),I=l,NZI 

SET THE PREF IX OF I II\ lC60 FORM.AT E(;l,;AL 1Q t-.X 

kRITEI t, 1C7C I 
i,.RITE I!>, lCBO I 
loRITEI 6' l cqc II I' EPL ( 1). FERP-!L (I J, CFLI I 1, l = l, r.. L) 

PEAC IN ~AVE PROPERTIES 
AKHIIl=PRCDUCT OF INCICENT WAVE 11.C. kITH CEPTH IFRCGRESSIVE lt'OCEl 
CAMeRI I I= INC JOENT WAH STEEPNESS 

READ( 5, l lCO I IAKH( I), I =l,NKl 
FE.ACl5,1100 I ICAMBRI I J, I=l,NCI 
!oRITEl6,lllOJS,EF,VISCC 
kRITE(6,ll151BREAK 
CC 1000 IK=l,1'..K 

SOLVE EIGEN VALUE·WA~E NOS. 01,;TSIDE BREAKWATER, KEl"'l 

f'\OTE: ALL WA~E NOS. n THIS FRCGFA"' ARE [Il'Ef\SICl\LESS, I.e., 
INCLUDE JrE FROCUCT lolTH DEPTH. LIKEkISE THE nCRIZCNTAL SCALE IS 
lt'ADE DI"'Ell.SICll.LESS BY CIVIDil\G TrKGUGH ev OEPTr 

llECll=AKrlIKl 
ICHlll=AKP.!It<l 

SIG= WAVE ANGULAR FRE,UENCY 

SIG=SQRTIG•Kr(l)•TANr(KHllll/Hl 
SIG4=SIG**4 

MAIN01C9 
f'!AINOllO 
MAINOlll 
MAIN0ll2 
MAIN0113 
MAIN0114 
HA1N0115 
MAIN0116 
MAIN0117 
MAIN0118 
"'AlN0119 
MAIN0120 
MA IN0121 
MAIN0122 
MAtN0123 
"'AIN0124 
MAill.Cl..:5 
11AIN0126 
"'Alt-.0127 
MAINCL~8 

MAIN0129 
"'AIN0130 
MA1N0131 
MAIN0132 
lt'AINC133 
MAIN0134 
MAIN0135 
HAINOl36 
MAIN0137 
"'AIN0138 
MAIN0139 
lt'AIN0140 
"'AlMl4l 
MAIN0142 
MAIN0143 
MAINOL44 



01 
0 

c 
C FER=~AVE PERIOC 
c 

FER=2.*PI/SIG 
c 
C ~.AVEL=INCIDEl\T hAVE LENGTH 
c 

c 

~AVEL=2.C•PI•H/KHC11 

tRG=KI" ( l I 
CO=CHC4RGI 
SI=Sl-'CARGJ 
FKH=(KH(ll+SJ•CGl/CCC•COI 

C CELT.A=MIC~E'S INTRINSIC REFLECTICN CCEF 
c 

c 

IFCSLOPE.LE •• 1E-51DEL1A=l•O 
IF(SLOPE.Ge •• 1E-51DEL1A 2 l.O-EXP(il.llSLOPE•BRE.AK•S~GJI 
~RITEC6rll201KHlllrS~E,PER,W.AVEL 

hRITE(6rll251DELTA . 
CC 20 1'=2rN 
KEll'l=-Il'•PI•<M-11 
CMEG-'=SHG 
CALL EIGEl\(1',CMEG.A,KE(~J,LARl'I 

IFIL.ARM.EC.llGO TO lCCC 
20 Kl-'(MJ=-All'.AG(KE(MJI 

F=l .C 
rn c;c;o IC=lrl\C 

C l!EGll\ ITERATICI\ CN F 
C F=LINE-'PIZEC CAMPING CGEF 
c 

ITERF=Q 
c 
C -'=Il\CIOENT hlVE .Al'PlllUCE 
c 

HAIN0145 
l'AIN0146 
MAINC147 
H.AIN0148 
HAIN0149 
MAIN0150 
l'AIN0151 
HAIN0152 
HAIN0153 
l'Ail\0154 
MAIN0155 
H.AIN0156 
~AIN0157 

MAIN0158 
MAIN0159 
l'AINOltC 
MAIN016l 
l'Aif(Ol62 
MAIN0163 
MAIN0164 
HAIN0165 
MAINOH6 
l'AIN0167 
1'AlN0168 
MAIN0169 
,.AIN0170 
MAINCl 71 
M.AIN0172 
MAIN0173 
HAIN0174 
MAIN0175 
fl'AINCl 76 
HAIN0177 
l'AIN0178 
MAINCl 79 
H.AINOlBO 



c 

t=CA,.,eRC ICl•kAVEL/2.C 
~RITEC6,ll3CICA1"8RIICI 

C SCLVE FCP BREAKI~G LCSSES 
c 

c 

1-LC=A*SIG•SIG*SORTIF~l-l/IPI*GI 

Rl"ICl-=l"L,.AX/1-LC 
iFIRfolICH.GT.l.CIRMICl-•l.C 
EHICl-=ICELTA•RMICHI••~ 

C ELOSS=Oil"ENSICNLESS Et.ERGY LCST 10 8REAKil\G 
c 

ELCSS=G*G*FKl-*ll.C-E,.ICHl/12.0•Bl-*H*SIG41 
IFIELOSS.LT.C.CIELOSS=C.C 
IFISLCPE.LT •• llELCSS=C.O 

30 ITERF=ITERF+l 
IFIITERF.GT .JFMAXIGO 10 410 
IFIITERF.EQ.l.Al\C.IC.GT.llF=F*SCRTICAMeR!ICl/CAMBRCIC-11 I 

(. 

C SCLVE EJGEN ~ALUE WAVE NCS. INSICE BREAK~ATER, Kll'"I 
c 

c 

FSl-G=F*Sl-G 
SSHG=S*Sl-G 
fol=l 

C CMEGA=SIGfllA*SIG~A*H/G*IS-IM*FI II\ THESIS l\OTATION 
c 

C,.EGA=SSHG-Ifol*FSl-G 
)R=SSHG+F/lC. 
IFISSHG.LE.1.0.ANO.FSl-G.GT.4.CIXR=SSHG*ll.C+F/10.1 
'lfol=FS~G . 
f\FS=FSHGi:!.+l. 
IFCSS~G.LT.2 •• AND.FSl-G.LT.3.•NFS.AND.FSHG.GT.3.•NFS-llYI,.=NFS*PI 

c 
C ESTifllATE AN If\ITIAL HLlJE TJ Kilflll At\O Tl-EN CALL 'EIGEN' TC 
C SCLVE FOP EXACT VALUE VIA l\EWTCN-RAPHSCI\ l'ETl-CC 

MAlf\0181 
MAINCleZ 
MA INOle3 
MAIN0184 
HAINCle5 
IOINOl86 
l'AIMlfl 
MAIN018B 
l'AIM189 
MAI NC LSC 
MAIN0191 
MAINOl92 
MAIN01<;3 
l'AIN0194 
l'AI l\Cl c;5 
MAINOl<;b 
l'Alt\0197 
MAIN01S8 

·'1AIN0199 
'1A.IN0200 
MAIN02Cl 
MA?N0202 
l'Alf\02C3 
MAIN0204 
fi'AINQ205 
MAIN02C6 
MAIN0207 
MAIN.0208 
MAIN0209 
MAIN021El 
l'AINC211 
HA.IN0212 
,.AIN0213 
MAIN02Llt 
MAIN0215 
MAIN0216 



01 
I\) 

C SEE APPE~CIX e FCR EXFLA~ATION OF INITIAL ESTIMATES TO KICMJ 
c 

tcl(l'J=XR-Il'OIM 
CALL EIGEl\(1'1Cl"EGA,Kl(l'J1LARf'J 
IF(L~RM.E~.llGO TO lCCO 
l\PI=FSHG/Fl+C.25 
IF(NPI.LT.!IGC TC SC 
CC 40 I=l1NPI 
l'=I + 1 . 
't IM= ( I-0. SI •FI 
XR=FI*I*fl-0.251/12.C~FS~GJ 

KI (I" l=XR-IM•'tIM 
CiLL EIGE~(M10MEGA,Kl(l'J1LARMI 
IF(LARM.Ec:.llGC TC lCCC 
IF(M.GE.~IGC TO 7C 

40 CCHil\UE 
50 l\PI=l\PI+2 

CO tC M=f.;PI,I\ 
>R=FSHG*C.4/(2.0**(l'-21) 
1F(M.cQ.~PI.AND.SSHG.(E.2*(NPI-llJXR 2 C~PI-ll/SSHG 

l<HMl=XIHl<Ell'l 
CALL EJGEl\CM,CMEGA,Kill'l1LARf'J 
IFILARM.EQ.llGC TO lCCO 

60 CCNT INUE 
70 l\l=t-.-1 

co ec M=l,Nl 
1\2=1'+1 
CO EC MP=l\2,1\ 

80 IF I CABS ( I K If I' 1-K JIM P) Ill KI IM J +Kl IMP 11 J eL 1 eO• C llWR ITE I 6t l 1'101 f' ,MP 
c 
C SOLVE FOR CCEF MATQIX IN ORTHOGONAL INTERFACIAL BCLNCARY CONCITICl\S 
c 

ESF=EP/I S-Il"•FI 
SFE=IS-Il"•F-J.01/EP 
cc 110 llI=l 11\ 
'tCIMIJ=ESF•KIIMil/KE(JJ 

HAINC217 
l'Alf\0218 
l'.AIN0219 
MAIN0220 
l'AIN0221 
MAIN02:22 
MAIN0223 
HAIN0224 
MAIN0225 
/llAIN0226 
MAIN0227 
MAIN0228 
f'AIN0229 
HAIN0230 
HAIN0231 
MA IN0232 
MAIN0233 
l"A IN0234 
fo'AI~0235 

MAIN0236 
l'All'\0237 
MAIN0238 
MAIN0239 
MAIN0240 . 
MAIN0241 
MAIN0242 
f'AIN0243 
MAIN0244 
MAI~0245 

HAINC246 
MAIN0247 
l'AIN0248 
HAIN0249 
MAI~0250 

MAIN0251 
MAIN0252 



c 

'fOC,..I)=CEXPC-IM*KI<Mil*Bl 
'fG=KECll*KIC~I)/CKIC~ll**2-KElll**2l 

CRG=KHMI) 
Sr.Kll'Il=CSHCCRGI 
CHK:CCHICflG) 
'fH=Sr.KCMil*CrK/CSHKCflil*CHK+KICMill 
YICl'Il=SFE*Y(*Yr. , 
tC 110 ME=l, t-
'fA= CK I IM I l**~-KECll**~l/CKI(Mil**2-KElMEl**21 
YB=KECl'El/KE<ll 
'fEIMI,MEl=YA*l'fB+YCl~lll 

110 YF(l'J,MEJ=YA•IYe-vccfllll 
CO 1£0 I=l,LIME,2 
l'I=II+lJ/2 
Cl I l=l.O-YC Cl'l I 
CII+l)=l.C+YCIMII 
CO 120 J=l,LlME~2 
~E= I J+ll /2 
YllrJl=YEIMI,MEI 
YII,J+ll=YFCl'I,MEl*YC(Mll 
'fll+l,JJ='fFl~I,l'El 

120 'f(l+l,J+ll=YEIMI,MEJ/,DIMII 

C CALL SIMC TC SOLVE FCF Ut-.KNO"t-. CCl'PLEX Dll'ENSICNLESS AMPLITUCES 
C t-.OTE THAT Y ~UST BE CIMENSIONED EXACTLY AS Lil'IT 8Y LIMIT, 
C CTrEFWISE CCt-.VERT TC CCLUMN MATRIX BEFORE CALLING SIMQ 
c 

c 

CALL Sill.CIY,C,LI"IIT,1<SI 
tFIKS.EQ.CIGC TC 140 
kRITEI 6, l15C I 
GC TC 1000 

c. JLL ·COMPLEX AMPLITUDES ARE MADE CIMENSIC"LESS ev CIVICit-.( THFOUGr. 
C EV Tr.E It-.CIOENT kAVE lflPLITUCE 
c 
C CRIMlrCTll')=CCl'PLEX FEFLECTEC, TRANSMITTED WA~E Al'PLITUOES 

l'AIN0253 
f'IAIN0254 
HAIN0255 
l'Alt-.0256 
MAIN0257 
HAIN0258 
HAIN0259 
MAIN0260 
MAIN026l 
MAIN0262 
MAIN0263 
HAIN0264 
HAINC265 
HAIN0266 
HAIN0267 
HAIN026B 
flAI1'<0269 
l'AI N0.2"70 
MAIN0271 
MAIN0272 
MAIN0213 
MAIN0274 
MAIN0275 
HAIN0276 
MAIN0277 
l'AIN0278 
HAIN0279 
flAIN0280 
HA IN02El 
HAIN0282 
MAIN0283 
HAIN0284 
MAIN0285 
"1AIN02E6 
HAIN0287 
l'AIN028B 



c P'AIN0289 

lltO co l':C M•l,N HAIN0290 

J•2•'1 plAIN0291 
CR('1) 2 C( I-11 HAINOZc;Z 

150 CT( M l=C(I > HAIN02c;3 

CC 170 1-l"l'N li!AIN0294 

c HAIN02«;5 

c Cl(M),C2(~J=COMPLEX htVE AHPLITUCES INSICE B~E•KhAlER .-AIN0296 

c 14AIN0297 

CUMl=l.C+YC(M) HAIN0298 

CZ(MJ=O.O f1Alti0299 

CG HO ME=l ,I'. MAIN0300 
Cl(MJ=Cl(PIJ-CR(MEl*Yf (M,ME> MAIN0301 

160 ~2(MJ=C2(MJ-CT(MEl•Yf(,.,,,..EJ HAIN0302 

CU,.,J=YI (Pll*CUMJ MAIN0303 

C2(,.,J=YI(~J•C2(MJ "'AIN0304 
ClR(PIJ=REALICl(,.,JJ MAIN0305 

OJ 
Cll(,.,J=AI,.,AG<Cl(MJI MAIN0306 

C2R(PIJ=REAL(C21Mll "'AIN0307 
.:i. C2I(PIJ=AIPIAGlC2("'JJ HAIN03C8 

CRR(MJ=REAL(CR(MJI MAIN0309. 

CRl(PIJ=AIPIAGlCR(MJJ l'!AIN0310 

CTR(PIJ=REALlCT(MJJ MAIN0311 

CTl(,.,J=AI,.,AG(CT(MJI "AIN0312 

c plAIN0313 

c COMPLTE PHASE OF kAVE~ MAIN0314 

c li!AIN0315 
FHAZRl,.,J=ATAl'.2(CRI(PIJ,CRR(~JJ*CEGRE HAIN0316 
FHAZl(~J=ATAl'.2(Cll(MJ,ClR(MJJ•DEGRE MAIN0317 
FHAZ2(,.,J=ATAl'.2(C21(MJ,C2R(MJJ•OEGRE 14AIN0318 
PHAZT(MJ=ATA"'2(CTI(MJ,CTR(fllJ•OEGRE MAIN0319 

c "'AIN0320 

c GAMA=REAL PAFT CF Il'.TERNAL WAVE l'.C. MAIN0321 

c BETA=IMAGINARY PA·RT CF If\l'ERf\H "AVE NC. HAIN0322 

c l#Alf\0323 

GAMA(MJ=REAL(KJ(,.,J) MAIN0324 



OJ 
OJ 

c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

170 

180 

190 

EETAIMl=-AI .. ~GIKil .. I I 

CCMPLTE AP.SCLLTE VALLE GF Dil'El'tSICNLESS "AVE AMPLITUCES 
~OTE REFlll,TRANSlll ARE THE R~FLEClICl't AND TRA~Sl'lSSlC-fl COEFS CF 
THE fREAKPIATER 

REFl,,l=CAESICRCMll 
ll(l'l=CAfSICll"ll 
T 4: I 14 I= CABS I C ~I H I l 
TRANS(Ml=CAesccTCMI I 
CEf\Cl'=O.O 

CCl'PUTE CEhCl'INATOR 1~ LORENTZ'S CONC. OF EQUIV. WCRK (E)ACT lNTEGRATIONI 

CO lEO M=l,N . 
AA•l.0/18*BETAIMl*GA,l(Mll 
ARG=~•C*GA,..AIMI 

tRF=2.0*BETA CM I 
AB=l.O/ICHIA~Gl-CCSltFFll 
AC=ll.O-EXPl-ARF*Bll/l.Q 
IC=S~IARGI · . 
AE•ClRIMl**2+ClIIMl**~+C2RIMl**2+C2Il~l**2 
~F•EXPl-8ETAIMl•Bl*SI~CARFl•SINIG~~AIMl•el 
AG•ClRCfi'l*C2Fl"l+Clil~l*C2ICl'I 

CENO,,=OE l'tCH+AA*A8* (AC~ AD*AE- 6F*AG I 
tENC~=z.o•EP•DEl'tCM 

COHP~TE hUMERATCR IN LORENTZ'S CCNO. OF ECUI~. WCRK(l\UME~ICAL INTEGRATIGNI 

co i c;o J= i, l't > 
X=IJ-ll*CELX 
cc 1c;o fi'=l, l't 
ClXIJ,MJzCll"l*CEXPl-Il'*KIIMl*XI 
C2X(J,Hl=C21~l*CEXPIIl'*KIIMl*IX-811 
CC 240 I•l,l'tZ 
Z•-( I-ll•D.ELZ 

HAIN0325 
,.AIN0326 
MAIN034:7 
HAIN0328 
f4A IN0329 
HAIN0330 
f'AIN0331 
fl'AIM.332 
~AIN0333 

f'AIN0334 
MAIN03.35 
MA IN0336 
MAIN0337 
MAIN0338 
fi'A IN0339 
fi'AIN0340 
HAIN0341 
"All\0342 
MAINC343 
HAIN0344 
,.AIM345 
MAIN0346. 
flAIN0347 
14AIN0348 
14AIN0349 
f'AIN0350 
MAINC3Sl 
HAIN0352 
MAIN0353 
MAIN0354 
flA tN0355 
"4AIN0356 
HAIN0357 
f'AIN0358 
HAIN0359 
MAIN03i:O 



c 
c 
c 
c 

01 
(1) 

c 
c 
c 
c 

c 

CO 200 M=ltN 
CRG=Kl(MJ•(l.O+ZJ 
CZ(I,MJ=CCH(CRGJ/SHK(P'J 

200 SZ(I,MJ=I~*CSr(CRGJ/S~KIMJ 

co 240 J= 1, t-.) 

210 

~30 

240 

250 

IFCCF(I,JJ.LT •• 1E-5J~C TG 230 
CHI=Cl<'FLX(O.c,o.o} 
ZETA=CMPL:X(O.c,c.01 
CO 210 M=l, N 

CHI=COMPLEX CIMENSIONLESS H8RIZONTAL VELCCITY INSICE 6RE'K~ATER tT x,z 
ZETA=CC,..FLEX DIMENSIC~LESS VERTICAL VELOCITY INSIDE BREA~kATER Al XrZ 

Ct- I= CH I+ CZ ( I t M > * ( C 1 X ( J t M J-C 2 :X ( J , ~ ) I 
ZElA=ZETA+SZ(I,"'>*lCl:X(J,,,l+C2X(J,MJJ 
AX=REAL( CHI I 
EX=.AIM.AGCCnII 
H=REAU ZETA I 
ez=A IMAG (ZEH J 
EAT=AX*AX+AZ•~Z+Bx•e:x•eZ•BZ 

ELA,..=VISCO/(FERMCI,Jl•SIGI ~ 

ETUR8=EPSClrJl*A*8.0~CF(I,JJ•SQRT(EATJ/(SQRT(FERfllirJll*?•O*PIJ 

EXZlirJl=DI,..ENSIONLE~~ FRICTIGNAL ENERGY LCSS FEP LNIT WEIGHT CF 
FLU IC: AT x_, Z 

EXZfI,JJ=EAT•lELAM+EllRBl*(EPS(I,J)**2) 
GC TC 240 
exzn,JJ=C.c 
CONTINUE 
~t-.UP'P=O.O 

CO 2 ~ 0 J = 1, NJ 
CO 2 50 I= 1, N J 
ANL~R=ANLMR+(EX7.(I,JJiEXZ(I,J+ll+EXZ(I+l,JJ+EXZ(l•lrJ+llJ/~.c 

ANUMR=ANuMR/(NI*NJI . 

MAIN0361 -
MAINC362 
HAIN0363 
"AIN0364 
HAIN0365 

.fl.A IN0366 
MAIN0367 
MAIN0368 
P'AIN0369 
HAINC370 
"1AIN0371 
l<'AIN0312 
1"AIN0373 
MAIN0374 
f!AIN0375 
MAIN0376 
"AIN0377 
MAIN0378 
MAIN0379 
MAIN0380 
MAIN0381 
"AIN0382 
MAIN03E3 
MAIN0.31!4 
MAIN03.85 
MAIN0.3E6 
"IAIN0387 
MAIN0388 
MAIN0389 
YAIN0390 
"'AIN039l 
MAIN0.392 
fi'AIN0393 
HAINC394 
HAIN0395 
"AIN0396 



(JI 

-.J 

C FC=CALCULATEC ~ALUE Cf Llt..EARIZEC DAMPING COEF 
. C 

FC=(At..UM~+ELCSSl/OEt..C~ 
c 
c COMPARE wITr ASSUMED \ALUE AND ITERATE IF NECESSAR' 
c 

c 
c 
c 

c 
c 
c 

400 

IF(2.o•ABSIFC-Fl/IFC+Fl.LT.a.c11GC TC 4CC 
\oR1TE(6,ll601F,FC 
FCC=F 
F=( F+FC I /2.C 
IF(FC. GT .10. •FCC I F=lC .*FCC 
lF(FCC.GT.lC.*FCIF=FCC/lG. 

kRITE GUT INTERMEDIATE SCLUTIGJl.S FOR ASSUMED F 

loRITE(6,ll7C I 
\oRITE(6,llBCl!M,KH(~l,Kill'l,REFl~l,PrAZRIMl,Tl!Ml,PHAZl(l'),T~(M1,P 

XrAZ21Ml,TRANS(Ml,?HAZTIMl,M=l,Nl 
GC TC 30 
\oRI TEU:, ll9C I 

ftRlTE CUT FI~AL SOLUTICt.. FCR CLCSED lTERtll~N 

\oRITE(6,1160lF,FC 
\oRITEU:,ll7C l 
kRITE(6,llBGl(M,KH(M),KI(Ml,REFl"l•PHAZR(fll,Tl(MI ,FHAZl(~l,T2(fll,F 

XhAZ2(fll,TPANSl~l,PHtll(~l,M=l,Nl 

GC TC c;c;c 
410 \oRITE(6,l20CJIFMAX 
~<;C CCt..lINUE 

lCOO CONTINUE 
lClO FOP!'H(5fl0.41 
lClS FORMAT17ISI 
1C20 FORflAT(27Ill 
1030 FCRMAT(2F10:~.e10.s1 
1040 FORMAT(lHl, 1 lHE P.REAK~ATER HAS BEEN OESCRETIZEC eELOW TrE SWL AS 

!4AIN03Ci7 
MA IN0398 . 
MAINOH9 
MAIN0400 
l'.AIN0401 
flAINC4C2 
MAIN0403 
MA1ti04C4 
HAIN04C5 
MAIN0406 
MAIN04C7 
HAIN0408 
MAll'l0409 
MAlt-;0410 
MAIN04ll 
l'A1NC4l2 
MAIN04i3 
MAIN04l4 
MAIN0415 
MAIN0416 
flAIN04l7 
"'Alll.0418 
MAINC419 
"'Ait..0420 
MAINC42l 
MAIN0422 
MAIN0423 
MAIN0424 
!'Ait..0425 
MAIN0426 
MAIN0427 
"Alt..0428 
"IAINC429 
MAIN0430 
MAIN0431 
MAIN0432 



(JI 

CJ) 

XIN Tt-E FCLLOloING DIAGICAM (00 NOT SCALE>'> 
1C50FOR~AT(lHO, 1 ThERE ARE•,14, 1 COLUMNS EQUALLY SPACED OVER 1HE 1 ,F6.l, 

ic• FCCT DISTAf\CE TCE lC TGE, ANC 1 ,I4, 1 RC\ooS EC:UALLY SPACEC OVER HE 
X1 ,F(:.3, 1 FOOT DEPTH'> 

lC55 FCRl'ATllHC, 1 SLOPE CF FRC~T FACE = l/ 1 ,F4.21 
lC!:O FORMAT!lhC,21I31 
1C70 FOIC~H(lt-0, 1 EACt- ~UlolE!EREC LAYER t-AS THE FOLLC\ooING PRCiPERlIES 1

) 

iceo FORl'ATllHC,•tAY~R NG. PORCSITY PERl'EABILITY (FT••21 lURBlL 
XENT OAMPI~G COEF. 1 > 

1c9o FCR,,AT(lH ,4x,r2,4X,El3.S,6X,El3.5;llX,El3.51 
1100.FGRl'AT17Fl0.4) 
1110 FORMATllhCt 'lt-E EOUI,ALENT RECTA~GULAR BFEAKkATER t-AS A~ INEICTIAL 

XCOF.FFICIEl'IT "'rF6.3,•, l'EAN FCROSITY=•,H.3, 1 ; KINEMATIC VISCOSITY 
lC =•,El3.51 

1115 FCRMAT(lt-C,'SURFACE El<EAKING COEF= 1 ,F6.3J 
1120 FORMAT(lHO,·~•t-=•,e13~5,•, SIGMA••2•t-/G= 1 ,El3.s,•, PERIOC= 1 tE13.S, 

X1 SECS, ftAVE LENGTH = 1 tE13.5, 1 FEET 1 1 
1125 F:RMATllt-0, 1 /'ICt-ES If\TRINSIC REFLECTICN CCEF= 1 tF6.3) 
1130 F~RMATUHC, 'loAVE CAl'E!ER=' rE13.51 
1140· FORMAT<lt-:C, 1 /'0DE NUME!ERS',13, 1 .HD',13, 1 .4RE ICENTIC.4L1 SG FCLLOlol 

)Cf\G SCLUTICN IS SINGUllR' I 
1150 FORMATllHC, 1 Sl11Q REJECTS COEFFICIENT l'ATFIX AS SI~GULAR' J 
1160 FOICMAT(lt-O,•tSS~l'EC F= 1 ,E13.s,•; CALCULATED F= 1 1El!.S) 
1170 FCiRMAT(lHC, 1 I' ~t-(1') Kl(MJ REF(/') Pt-AZ 

XR(MJ Tl(~) PHA21(1') T2(MI FHAZ2(1') TRANS(/') PHAZ 
XT(M).I) 

1180 FCRMHUH ,!4,llEll.41 
1190 FJICMAT!lt-C, 1 f ITERATICN CCNVERGEC, FINAL SOLlTION FOLLO\ooS ******* 

X********************4~****************************************'l 
lcOO FOR~AT(lHC,'F ITERATICN EXCEEDE0•,13,• C~CLES, GO TC NEXT CAl'eER'I 

STCF 
E~D 

MAIN0433 
HAIN0434 
HAIN0435 
fi'AIN0436 
HAlt.0437 
MAIN0438 
HAit\0439 
MAIN0440 
MAIN0441 
MAIN0442 
MAIN0443 
MAIN0444 
MAIN044? 
MAIN0446 
l'Ait-.0447 
MAIN044E! 
MAIN0449 
MAIN0450 
MAIN0451 
MAIN0452 
HAIN0453 
MAIN0454 
flAIN0455 
MA IN0456 
HAIN0457 
HAIN0458 
HAIN0459 
HAIN0460 
HAIN0461 
HAIN0462 
HAil't0463 
MAIN04t4 



c 
c 
c 

c 
c 
c 

c 
c 
c 
t 

c 
c 

"t 

sueRCUTINE EJGE~(H,OllEGA,PSI,LARllJ 

~EwTON-RAPHSC" SOLUTICN TO DIMENSIONLESS OISPERSIC~ E'UATICN 

CCllPLEX CMEGi,PSirSI<cOJ,F(60J,cF(60J,T~,cexP,CAes,x,v 
llAX•~O 

LAR,.•O 

SIUJ=INITIAL GUESS TC ·SOLUTION 

SH U=PS I 
l;C lC I=l,HAll 
ll=CEllP(SI U J J 
Y=CHP (-SI( I II 
TH• 0-Y JI (X+'f J 

F=Cl~ENSICNLESS DISPErSION EQUATION 
CF=OERIVAlIVE CF F 

f(IJ=SllI>*T~-C~EGA 

CFIIJ=TH+SIII>*ll.0-1~••2J 
SHI+lJ=SH 11-FllJ/DFUJ 
IFCCABSCISICl+lJ-SHJll/SICI+llJ.GT.O.OOlJGO TO 10 
IFCCABS(fll·J/SIII+lJJ.LT.o.oc1JGC TC 20 

10 CONTINUE 
lARll=l 
l!RITE16r llJll 

11 FOR,,H(lHO,' NC SCLUTION FOR HOOE NU~BER 'r13J 
l!Rl1Etc,12J 

12 FORM.OT cue,. I SIC I J F( 11 
X DFCIJ 'J 
~RITE(6,13J(I,SIIIJ,Flit,OFCIJ,I•l,11AXJ 

13 FORHlT(l~ rI4,6E13.5J 
RE Tl.RN 

FSizSOLUTION TO WAVE ~C. 

ZO PSI=SIII+ll 
rETUrN 
END 

EIGP\0001 
EIGNOOC2 
ElGN0003 
ElGN0004 
EIGNOOC5 
-EIG"0006 
EIG~0007 

EIGNOOC8 
EIGN0009 
EIGNCOlO 
EIGNOOU 
EIGN0012 
EIGN0013 
EIGNi>Ol4 
EIGNCOlS 
EIGN0016 
EIGN0017 
EIGN0018 
EIGN0019 
EIGN0020 
EIGNC021 
EIGl'\0022 
EIGN002~ 

EIGN0024 
EIGN0025 
EIGNCC26 
EIGN0027 
EIGN0028 
EIGN0029 
EIGN0030 
EIGN0031 
EIGN0032 
EIGM033 
EIGN0034 
EIGN0035 
EIGN0036 
EfGN0037 
EIGN003B 
EIGN0039 
EIGN0040 



O> 
0 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SI'1Q 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SIMQ 

SUBROUTINE S IMQ 

PURPOSE 
OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR -EQUATIONS, 
AX•B 

t.SAGE 
CALL SIMQ(A,B,N,KSJ 

DESCRIPTION OF PARAMETERS 
A - MATRIX OF COEFFICIENTS STCRED COLUMNWISE. THESE ARE 

OESTRCYED IN THE CCHPUTATICN. THE SIZE OF fllATRIX A IS 
N BY N. 

B - VECTOR CF ORIGINAL CC~STA~rs, (LENGTH NJ. THESE ARE 
REPLACED BY FINAL SOLLTICN VALUES, VECTOR X. 

N - NUMBER OF EQUATICNS ANO V~RIABLES. N HUST BE .GT. CNE. 
KS - OUTPUT DIGIT 

0 FOR A NORMAL SOLlfTICN 
1 FOR A SINGULAR SET OF EQUATIONS 

REMAPKS 
MATRIX A ~UST BE GENERAL. 
IF MATRIX IS SINGULAR , SOLUTICN VALUES ARE HEANI~GLESS. 
AN ALTERNATIVE SOLUTICN MAY BE OBTAINED BY USING fllATRIX 
INVERSION (MINVJ ANC MATRIX P~COUCT (GMPRCJ. 

SUBROUTINES ANO FUNCTICN SUBPROGRAMS REQUIRED 
NCNE 

SIMQ 
SIMQ 
SIMO 
SP4Q 
SIMQ 
SI"IQ 
SIMQ 
SIMQ 
SIMO 
SI"IQ 
SIMQ 
SIMO 
SIMO 
SIMQ 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SIMO 
SI"1Q 

METHCD SIMO 
METHOD OF SOLUTION IS BY ELIHI~ATION USING LARGEST PIVOTAL SIMO 
DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSI"10 
ROWS WHEN NECESSARY TC AVOID CIVISION BY ZERO OR SMALL SIHQ 

10 SlMOCOQl 
?O S l"lf'JJ002 
30 Sl,.QOCC3 
40 SI"'Q0004 
50 SI Mf'JOM5 
t>O S P.IQOC06 
70 SIMQ0007 
Pl') SifllOOCC8 
c;o SIM~CCC9 

100 s 11'10001:> 
110 SI ,.QOOll 
120 SIM'J0012 
130 SIH000l3 
140 Sil-!00014 
150 SI"100015 
160 SIM'.l00l6 
170 SI fllQOOl 7 

180 S IM000l3 
190 Sil-!QCC19 
200 SIMQ0020 
210 $Ifll~Ov21 

220 SIMQ0022 
230 SIMQ0023 
240 SIM00024 
250 SIM00025 
260 SIMQ0026 
210 Sil'QC027 
28G SIMQ0028 
290 SI M:JOn9 
300 SI~Q003'.J 

310 SIMQ0031 
320 SIMQ0032 
330 SIMQ0033 
340 Sill.00034 
350 SIM00035 
360 SIMQ0036 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c. 

c 

ELEMENTS. 
THE FORWARC SOLUTICN TO OBTAIN VARIABLE N IS DC~f JN 
N STAGES. THE BACK SCLUTICN FCR THE OTHER VARIA~LES JS 
CALCULATEC BY SUCCESSIVE S~BSTITUTIONS. FINAL SCLUTJCN 
VALUES.ARE CEVELGPED IN VECTOR B, WITH VARIABLE 1 IN B(lJ, 
VARIABLE 2 IN B(2)t••••••••t VARIABLE N-IN B(NI. 
IF NO PIVOT CAN BE FCUNO EXCEEDING A TOLERANCE OF c.c, 
THE MATRIX IS CC~SIDERED SINGLLAR AND KS IS SET TO 1. THIS 
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. 

SIMO 
SIMQ 
SIMQ 
SIMO 
SIMO 
SIMO 
SIMQ 
SIMO 
SIMO 
SIMO 

370 
380 
3<;0 
400 
41!) 
420 
4"10 
440 
450 
460 

•••••••••••••····~··••••••••••••~••••••••••••••-•••••••••••••••••••SI~Q 470 

SIMQ0037 
SIMQ0038 
SI ~00.39 
SIM00040 
SIMQ004l 
SIMQ0042 
SIM00043 
SIMQ0044 
SIMQ0045 
Sl,..QO'J46 
Sl"IOC047 

SUBROUTINE SIMO(A,B,N,KS) 
COMPLEX A(lJ,B(lJ,BIGA,SAVE 

FORWARD SOLUTION 
TOL=O.O 
KS=Q., 
JJ=-N 
DO 65 J•l,N 
JY=J+l 
JJzJJ+N+l 
BIGA=O 
lT=JJ-J 
DO 30 I=J,N 

SEARCH FOR MAXIMUM COEFFICIE~T I~ COLUMN 
IJ.aIT+I 
IF(CABS(BIGAJ-CABS(A(IJJJJ20,30,30 

20 BIGA=A<IJ J 
IMAX=I 

3C CONTINUE 
TEST FOR PIVOT LESS T~AN TOLERANCE (SINGULAR MATRIX) 

, IFfCABSfBlGAJ-TCLJ35,35,4~ 
35 KS=l 

RETURN 
INTERCHANGE ROkS IF NECESSARY 

40 ll•J+N* (J-2) 

SIMO 4~0 SIW.QC048 
SIMQ 490 SIMQ004Q 

SIMQ0050 
SIMO 520 SIMQ0051 
SIMQ 540 SIM00052 
SIMO 550 SI~Q0053 
SIMO 560 SIMQ0054 
SIMO ~70 SIM~0055 

SIW.Q 5RO SIMQ0056 
SIMO 590 SIMQOC57 
SIMO 600 SIMQ0058 
SPl.O 610 SIM00059 
SIMQ 620 SIMQOC60 
SIMQ 640 SIMQ006l 
SIMQ 660 SI~Q0062 
SIMQ 670 SIM00063 
SIMQ 680 St~Q0064 
SI~Q 690 "SIMQCC65 
SIMQ.700 SIMQ006~ 
SIMQ 720 SIMQ0~67 
SIMQ 740 SIMQ0069 
SIMQ 750 SIM00069 
SIMQ 760 SIMOOC70 
SI~Q 780 SIMQ0071 
SIMQ 8CO SJMQ0072 



IT=IHAX-J SIHQ 810 SI/IQ0013 
DO 50 K•J,N SIMO 820 SIHQOC74 
ll•Il+N SIMO 830 SI"4Q0075 
I2:all+IT SIMQ 840 SI,..00076 
SAVE=A( I1) SIHQ 850 SIMQOC77 
AUH=AU2) SIMO 860 SIMQ0078 
A(12):aSAVE SIMO 870 SIMQCC79 

c DIVIDE EQUATION BY LEADING COEFFICIENT SIMO 0c;o SIM00080 
so A(Ill=A(Ill/BIGA SIMQ 910 Sil'QOCBl 

SAVE:aB(IMAX) SIMQ 920 SIMQOC82 
B(IHAXJ=B(J) SIMO 930 STMQOC83 
B(J)=SAVE/BIGA SIMO 940 Sifo!QOCe4 

c ELIMINATE NEXT VARIABLE SI"40 960 SIMQ0085 
IF(J-N) 55,70,ss Sil"Q 9RO SJMQOC86 

55 IQS=N*( J-11 SIMO 990 S·I M0~087 
DO t: 5 I X= JV, N SIMOlOCO SIM00088 
IXJ=IQS+IX SI1'101010 SIMQ0089 

a> IT=J-IX SIMQ1020 SIMl)OCqo 
I\) 00 60 JX=JY,N SIM01030 SIMQOCql 

IXJX=N*(JX-lJ+IX SI "401040 SI 1".QOOCl2 
JJX= IXJ X+I T SIM01050 SI~OOOQ3 

60 A(IXJXJ=A(IXJX)-(A(IXJ)*A(JJX)) SIHQ1060 SIMQOOCl't 
65 B(IX>=B(IX)-(B(J)*A(IXJ)) SIMQ1070 SIMQOC<;5 

c BACK SOLUTIO~ SIMQlOt;iO SIMQOCO.C, 
70 NY=N-1 511"01110 SIMQ00q7 

IT=t\•N SIMQ1120 SI/IQCC98 
DO 80 J=l,NY SIMQ1130 SIMQOQ09 
IA•IT-J SIMQ1140 SI/IQOlOJ 
IB•N-J SIMQ115C' SlMOOlOl 
IC•N SIMQ1160 SI"'-QOln 
DO 80 K=l,J SIM01170 SIMQ0103 
8(18J=B(IB)-A(IAJ*B(ICJ SIMQllRO SIMQ0104 
IA=IA-N SP1Ql190 SI,...00105 

SC IC=IC-1 SIH012CO SIHQ0106 
RETURN SIM1210 SIMQ0107 
END SIMQ1220 Sl/IQ0103 



c DATAOOOl 
c DATA CARDS FOLLOW OAU0".>°02 
c OATAOOOl 
c BREAKkATER PARAMETERS DATA0004 

1.0 3.25 1.167 1.5 c.333 DATAOOOS 
27 8 4 5 6 2 10 DATA0006 

c BREAKWATER DESCRETIZATICN SCHE"'E DATAOCC7 
111111122222222222221111111 OATA0008 
111112222222333222222211111 04TA:l009 
111222222233333332222222111 OATAOOlO 
122222223333444333322222221 OATACOll 

m 232323333344444443333323232 CATA0012 
(>I 333333334444444444433333333 DATA0013 

343434344444444444443434343 04TA0014 
444444444444444444444444444 OATA0015 
c LAYER PFOPERTIES DATA0016 

1.0 o.o .lEl OATA0017 
.434 .282 .482E-5· DATAC018 
.439 .295 • ll38E-5 DATA0019 
.430 .4056 .374E-6 OATAOO?O 

c WAVE NUMBERS DATAOIJ21 
0.5 1.0 1.5 2.0 2.s 3.0 DATA0022 

c WAVE CA,.BERS DATA0023 
.005 .c4 DATA0024. 



APPENDIX E 

DISCRETIZATION OF NONHOMJGENEOUS BREAKWATER CROSS SECTIONS 

The media properties are evaluated at discrete points within the 
confines of the equivalent rectangular breakwater. This becomes an 
input to the numerical spatial integration of the numerator in the 
Lorentz equation (81). Th.e breakwater cross section is discretized in 
a pattern which adequately samples each layer. A rough rule of thuni> 
is to select a grid size which yields at least two points across the 
minimum dimension of the thinnest layer. Th.e particular pattern chosen 
is shown in Figure E. An 8 by 27 scheme is used, each grid being 1.5 
inches wide by 2 inches deep. Only half of the pattern is shown because 
the breakwater is symmetric about the centyrline. 

There are four distinct layers in this structure (Fig. E): 1 is a 
triangular wedge of seawater; 2 is a coarse armor-layer material; 3 is 
an intermediate grade layer; and 4 is a relatively fine central core. 
Each layer has a unique porosity, permeability, and turbulent damping 
coefficient. In addition, each grid point is assigned a layer number 
which identifies the media properties of that point. 

The particular technique developed for reading this information into 
the computer is to input the layer number associated with each point 
first, and then input the properties of each layer number. One card 
contains all of the layer numbers for a particular row in the grid. 
For example, the card representing the third row (I=3) (Fig. E) reads 
from left to right 

111222222233333332222222111. 

The entire pattern is presented in Appendix F with a sample of the pro
gram output. 'The layer properties are read in as a short array arid prop
erties of each point are assigned internally. Sufficient comment cards 
are provided in the program to make this clear. 
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en 
01 

14in 

Layer c 

1 1.0 
2 0.434 
3 0.439 
4 0.430 

v 
4 ~ -=--

•• / 
-

cf K d 
p 

o.o 1.0 -5 0 
0.282 0.482·10 -5 1. 37 in. 
0.295 0.1138•1Q6 0. 774 in. 
0.4056 0.375·10 0.382in. 
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Figure E. Discretization pattern. 
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APPENDIX F 

PERMEABI.LI1Y !'ND FRICTION-FACTOR CALCULATIONS 

24 

22 [Tick marks identify data 0 
points rejected from revised 
permeability calculation.] d ... 0.325 in. 

20 0 

18 d 

16 

0 

14 

0 

12 
_!_ d=0.774 in. 

Ko 
10 

d dcPo 

106ft.-2 
9 

0 
8 

d oOO 

0 
6 

d•l.37 in. 0 
d IJ G> 

4 0 G) 

d d Ci) 

d d 0 
Ci) 

2 d 
G> 

G) 

0 
fl <ii 

0 4 8 12 16 20 24 28 32 36 40 

q/'J 103ft.-l 

Figure F. Permeability data. 



Ta e -bl F 1 P b" l" ermea i ity an r1ct1on- actor ca cu at1ons. d f . f 1 1 

llh' ~ 
llh qd l -gll.l qd ~ -gK llh 

fK 
l 

\) 

~ -=-- RK = -K fK = ....:.J!._ cf = ll.l \) 

i)io vqd \) p q~ ll.l RK p p p 
p 

*105 ·10-i. •10-7 

(ft2,'s) (ft/s) (ft- 1) (ft-2) 

1.09 0.935 0.1872 1. 717 1.475 10..50 0.525 0.430· 

1.102 
: 

1. 38 0.224 2.033 1.800 12.43 0.542 0.461 

1.09 2.30 0.314 2.881 2.164 17.62 0.459 0.403 

1.072 1. 71 0.262 2.444 1.960 14.95 0.491 0.424 

1.102 0.173 0.0716 0.6497 0.7060 3.97 0.664 0.413 

1.102 0.0729 0.0427 0.3875 0.4989 2.37 0.787 0.365 

1.053 0.0216 0.0192 0.1823 0.3440 l.12 1.154 0.257 

1.118 0.690 0.156 1.395 1.274 8.53 0.588 0.441 

1.118 0.339 0.1025 0.9168 0.9526 5.61 .0.635 0.457 

Least squares yields K 
p 

= 3. 74· 10-7 ft2 0.406 

d = O. 0271 feet e: = 0.430 feet 



a e - . T bl F 2 p ermea b" l" l ity an d f . t" f r1c ion- actor ca cu at1ons. 
t.h -gK~ . 

t.h qd 1 -gr;: qd ~ I v - -;u ~ -=-- ~K s:-K fK 
=~t.h cf = fK .. R;"" v ~o v<ld v p q~· M. 

l' p p p 

*105 ·10-lt •10-s ; 

(ft2/s) (ft/s) cn-1) (fC2) 

1.04 o.ooso 0.0311 0.2990 0.4978 8.79 0.489 0.37S 

1.063 0.01043 O.OS28 0.49~7 O.S984 14.60 0.3S4 0.286 

1.072 0.0467 0.09S7 0.8927 1.466 26.24 0.483 0.444 

l.OS3 0.09Sl 0.1431 l.3S9 2.032 ,39.94 0.440 0.414 

l.OS3 0.181 0.200S 1.904 2.761 SS.96 0.426 0.408 

1.090 0.230 . 0.232S 2.133 2.922 62.69 0.403 0.387 

1.090 0.320 0.268 2.4S9 3.S27. . 72.26 0.422 0.408 

1.072 0.411 0.310 2.892 3.982 84.99 0.405 0.393 

1.102 . 0.602 0.377 3.421 4.666 · 100. SS 0.401 0.391 
-

Least squares yields),-= 8.64.10~6 ft 2 , 0.390 

d = 0.114 feet & = 0.434 feet 



Ta e - Perm ca i lity an r1ct1on- actor calcu at ons. bl F 3 b <l f . r l i 

llh ~ 
llh qd 1 -gt:.R. qd ~ -gK llh 1 " - ht qd -=-- RK = -K fK =....:....E.-· cf .. fK - R;"" " l)io "~ " p qa llR. p p p 

p 
*105 •10-lt •10-6 

(ft2/s) (ft/s) (ft- 1) (fC 2) 

1.053 0.0196 0.0366 0.3476 1.638 3.703 0.503 0.233 
1.058 0.118 0.102 0.9641 3.521 10.28 0.390 o •. 292 
1.053 0.207 0.138 1.311 4.587 13.98 0.373 0.302 
1.053 0.534 0.227 2.156 7.194 23.00 0.356 0. 312 
1.063 0.568 0.236 2.220 7.291 23.68 0.350 0.308 
1.063 0.876 0.306 2.879 8.672 30. 71 0.321 ·o.289 
1.058 0.890 0.304 2.873 8.910 30.65 0.331 0.298 
1.058 1.048 0.338 3.195 9.437 34.08 0.315 0.286 
1.063 1. 042 0.321 3-. 020 9.833 32.21 0.347 0. 316 
1.0?8 1.028 0.332 3.138 9.424 33.47 0.320 0.290 
1.063 1.132 0.350 3.293 9.797 35.12 0.317 0.289 
1.053 0.388 0.190 1. 804 . 6.245 19.25 0.369 0. 317 
1.058 0.744 0.272 2.571 8.325 27.42 0.345 0.309 
1.058 0.599 0.248 2.344 7.351 25.00 0.334 0.295 
1.042 0.091 0.0956 0.9175 2.942 9.79 0.342 0.240 
1.058 0.223 0.142 1. 342 4.780 14.23 0.380 0. 310 
1.053 0.0779 0.0802 0.7616 2.970 8.12 0.416 0.293 
1.053 0.280 o. 161 1. 527 5.325 16.29 o."372 0.311 
1.053 0.156 0.116 1.104 4.105 11. 77 0.397 0.312 

"Least square.s yields K = 1.14.10-6 ft2 
p 

, 0.295 

d = 0.0645 feet e: = 0.439 feet 



....., 
0 

T bl F 4 P a e - .. ermeii 

qd t.h 
·V -Ti ~ v 

*105 •10-'+ 

(ft2/s) (ft/s) (ft-1) 
-·· 

1.053 0.207 0.138 1.311 

1.053 0.534 0.227 2.156 

1.063 0.568 0.236 2.220 

1.063 0.876 0.306 2.877 

1.058 0:89 0.304 2.873 

1.058 1.048 0.338 3.195. 

1.058 1.028 0.332 3.138 

1.063 1.132 0.350 3.293 

1.053 0.388 0.190 1.804 

1.058 o.744 0.272 2.571 

1.058 0.599 0.248 2.344 

1.058 0.223 0.142 l. 342 

1.053 0.280 0.161 1.527 

1.053 0.156 0.1162 1.104 

Least squares yields KP= 7.19•10-7 ft~ 

d = 0.0271 feet e: = 0.439 feet 

h·1 · I f . t• f t l l i i ity am r1c ion- ac or ca cu at ons. 
t.h 

R • qd KJi 
Ji 

1 -8t;r -gK t.h 1 _., __ 
fK 

• ...:....£. _ 
cf• f.: .- R 

1),o "Cid ~ v p p q3 t.I. 
p KP 

*10-6 

(ft-2) 

4.587 11.11 0.297 0.207 

7.194 18.28 0.283 0.228 

7.291 18.82 0.278 0.225 

8.672 24.41 0.255 0.214 

8.910 24.36 0.263 0.222 

9.437 27.09 0.251 0.214 

9.424 26.61 0.255 0.217 

9.797 27.92 0.252 0.216 

6.245 15.30 0.293 0.228 

8.325 21.80 0.275 0.229 

7.351 19.88 0.266 0.215 

4.780 11.38 O.S02 0.214 

5.325 12.95 0.296 o.218 

4.105 9.36 0.315 0.209 --.-
0.218 



a -T ble F 5 p ermca l ity an b"l" r1ct1on- actor ca d f . f 1 culat1ons. 

qd 
t.n. 11 

"' 
t.h 1 -gt.R. qd ~ -gK t.h 1 -AI qd -

l),o = "''ld 
RK = -K fK = -=....E. - cf = fK -~ "' "' p qa t.1. p p p 

p 
*105 •10-1+ •10- 7 

(ft2 /s) (ft/s) (ft- 1) cn-2) 

1.09 0.935 0.1872 1. 717 1.475 8.63 0.432 0.31(, 

1.09 2.3 0.314 2.881 2.164 14.48 0.378 0.309 

1.072 1. 71 0.262 2.444 1.960 J2.29 0.403 0.322 

1.118 0.339 0.1025 0.917 0.953 4.61 0.522 0.306 

1.118 0.690 0.156 1. 395 1. 274 7.01 0.459 0.316 --
Least squares yields KP = 2.53·10-7 ft 2 

0.314 

d = 0.0271 feet E = 0.430 feet 

Ta bl F 6 P e - . ermea b"l' l ity an d f . f 1 1 r1ct1on- actor ca cu at1ons. 

t.n 11 
llh qd 1 -gt.R. qd ~ -gK t.h 1 

"' - t.R. ~ - -=-- RK = -K fK 
= -=....E, _ 

Cf = fK -~ "' l),o vqd "' p qa t.R. p p p 
p 

*105 •10-1+ *10-6 

· (ft2 /s) (ft/s) (ft- 1) (ft-2). 

1.072 0.0467 0.0957 0.8927 1.466 15.96 0.294 9.231 

1.053 0.0951 0;1431 1. 359 2.032 24.30 0.267 0.226 

1.053 0.181 U.2005 1.904 2.761 34.04 0.259 0.230 

1.09 0.230 0.2325 2.133 2.922 38.14 0.244 0.219 

1.09 b,320 0.268 2.459 3.527 43.96 0.256 0.234 

1.072 0.411 0.310 2.892 3.982 51. 70 0.246 0.227 

1.102 0.602 0.377 3.421 4.666 61.17 0.244 0.228 

Least squares yields KP = 3.20·10- 6 ft2 0.228 

d = 0.114 feet E = 0.434 feet 



APPENDIX G 

WAVE DATA FOR TRAPEZOIDAL-LAYERED BREAKWATER 

Table G. Wave data for trapezo 
I 

Id al-layered breakw,uer. . 
kh • 2~h C • 

11
aax .. H•in Haax •"•in CT•~ "1 

Run h T L II ·
11.in Ill • ''r r-... R Ha.ax+ "•in 

, 
. "1 No. 

(ft) (s) (ft) (ft) (ft) (ft) (ft) 

419 1.167 1.376 7.36 0.995 0.150 0.08 0.304 0.1!5 0.019 0.165 0,0156 

420• 0.120 "0.065 ·0.291 0.0926 0.017 0.183 0.0126 

421 0.088 0.048 0.294 0.0680 0.0140 . 0.208 . 0,0092 

422 0.062 o.o:i4 0.292 0.0480 0.0115 0.240 0.0065 

423 0.038 0.020 0,312 0 .0290 0.0085 0.293 0.0039 

424 0.084 0.046 0.292 0.065 0.0140 0.216" 0.0088 

425 0.018 0.008 0.385 0.()130 0.005 0.385 0.0018 

426 '()..160 0.088 0.290 0.124 0.0180 0.145 0.0169 

427 1.167 2.485 14.65 0.500 0.088 0.024 ·0.571 0.056 0.016 0.286 0.0038 

425 0,056 O.OlS 0.578 0.0355 0.0115 0.324 o.<1024 

429 0.057 0.016 0.562 0.0365 0.0125 0.342 0.0025 

430 0.075 0.020 0.!;80 0.0474 0.014 0.296 O.OOl2 

431 1.167 1.025 4.88 1.500 0.115 0.072 0.230 0.094 0.0092 0.098 0.0192 

432 0.145 0.090 0.234 0.117 0.0115 0.098 o. 0240 

433 0.160 0.105 0.205 0.133 0.011 0,083 0.0273 

434 0.200 0.135 0.194 0.167 0.0120 0.072 0.0342 

435 0.095 0.060 0.226 0.0775 0.010 0.129 I 0.0159 . 

436 0.075 0.045 0.250 0,060 0.0082 0.137 0.0123 

437 0.054 0,032 0,256 0.0430 . 0.0072 0.167 0.00901 

435 0.030 0.017 C.277 0.0235 0.0056 0.238 0.0043 

439 1.167 0.860 3.65 2.01 0.037 0.022 0.254 0.0295 0.0050 0.169 0.0081 

440 0.062 0,040 o.~16 0.0510 0.0060 0.118 0.0140 

441 0,090 0,060 0.200 0.075 0.0065 0.0867. 0.0206 

442 0.115 0.078 0.192 0.0965 0.0072 0.0746 0.0274 

443 0.135 0.095 0.174 0.115 0.0074 0.0644 0.0315 

444 0.157. 0.111 0.172 0.134 o.oon 0,0545 0.0368 

445 0.175 0.125 0:167 0:1500 0.0075 0.500 0.0411 

446 0.195 0.142 0.157 0.168 0.0078 0.0460 0.0461 
I 

447 0.215 0.155 0.162 0.185 0.0081 0.0437 0.0506 i 
448 0.024 0,0130 0.298 0.0165 0.0031 0.168 0.00506 

449 1.167 0.685 . 2.42 3.02 0.0250 0.0120 0.351 0.0185 0.0015 0.081 0.00765 

450 0.03] o.ou 0.345 0.0275 0.0017 0.062 0.0114 

451 0.065 0.035 0.300 0.050 0.0017 0.034 0.0206 

452 0.088 0.048 0.294 0.068 0.0020 0.029 0.0281 

453 0.125 0.065 0.316 0.095 0.002& 0.029 0.0392 

454 0.161 0.080 0.336 0.120 0.0030 0.025 0.0496 

455 0.175 0.092 0.311 0.133 0.0030 0.023 0.055 

456 1.167 0.760 2.92 · 2.51. 0, 155 0.112 0.161 0.133 0.0051 0.038 0.0456 

457 0.175 0.130 0.147 0.153 0.0050 0.033 0.0525 

458 0.200 0.150 0.143 0.175 0.0052 0,030 0.0600 

459 0.130 0.092 0.171 0.111- 0.0045 0.041 0.0380 

460 0.112 0.080 0.167 0.096 0.0042 0.044 0.0329 

461 0.090 0.060 0.200 0.075 0,0040 0.053 0.0257 

462 0.062 0.040 0.216 0.051 0.0032 0.063 0.0175 

463 o.ou 0.027 0,217 0,035 n.002s 0.072 j 11.0120 

464 0,028 0,018 0.217 0,023 0.0020 . 0.087 I 0.00788 

465 1.167 2.488 14.65 0,500 0.305 0.100 0.506 0.202 0.0365 0.181 0.0138 

466 0.380 0.140 0.462 0.260 0.0400 0.154 0.0178 

467 0.450 0.170 0.452 0.310 0.044 0.142 0.0212 

" 468 0.530 0.220 0.414 0.374 0,048 0.128 0.0255 

469 0.245 0.080 0.508 0.162 0.032 0.198 0.0111 

470 0.180 0.050 0.565 0.115 0.026 0.226 0.00785 

471 0.118 0.032 0.573 0.0750 0.021 0.280 0.00511 

472 0.065 0.016 0.605 0.0405 o.~1.3 .•. _'!_..321_ 0.00276 
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