
CHAPTER 41 

WAVE   REFRACTION  ACROSS   A  SHEARING  CURRENT 

Ivar G.   Jonsson       and    Ove Skovgaard 

ABSTRACT 

Conservation of wave crests and wave action is introduced to yield the 
new wave length L2 and new wave height H2 as a wave train of plane inci- 
dence crosses a shearing current; refraction angle a  is determined by 
Snell's law. Input parameters are water depth h (assumed constant), abso- 
lute wave period Ta, angle of incidence aj, current velocities U> and U 
(see Fig 1), and initial wave height H . Solution domains are also given, 
analytically and graphically. The numerical results for L., L,, a,, and 
H2 are presented non-dimensionally in a number of figures, with dimen- 
sionless input parameters. As a direct illustration of the effect of the 
shearing current, a sequence of graphs are presented, showing in dimen- 
sional form the variation of L2 , a2 , H2, and steepness S2 = 

H
2/L2 with U2 

for fixed values of h, ctj, U^, Ta, and Hj. Large positive and negative 
currents can increase the steepness significantly. The variation of S2/Sj 
with Ta and h is finally depicted, demonstrating the "filtering" effect 
of a shearing current on waves. 

A numerical example shows how simple it is to calculate accurately 
quantities Lj, L2, a2, and H2. 

1 .   INTRODUCTION 

The purpose of this study is to examine the transformation of waves 
advancing across a shear layer, from a region of current velocity Uj to 
one of current velocity D2, see Fig 1. Changes will occur in wave length 
and height, and in direction and speed of propagation. The results are 
presented in a number of graphs. 

Studies of this kind were initiated by Longuet-Higgins and Stewart 
(1961), who considered the special case of deep water waves progressing 
from still water into a region with a steady, uniform current. Here we 
shall consider the general case of waves on an arbitrary (constant) 
depth, with arbitrary (steady and uniform) current velocities on both 
sides of the shear layer. Large-scale currents are considered, i e the 
current gradient is assumed small everywhere. 

In region 1 we prescribe regular and plane incoming waves, and thus 
also the transmitted waves in region 2 will be plane. The two regions of 
flow are denoted by subscripts 1 and 2. In these regions current veloci- 
ties are therefore specified as UjandU2. Assuming linear theory, solu- 
tions are sought for wave lengths L< and L2, refraction angle a2 (see 
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Fig 1. Waves advancing across a shearing current, from region 1 
to region 2. WF and WO mean wave front and wave orthogonal. 
Horizontal sketch. 
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Fig 2. Wave ray WR and ray tube passing a shear layer, from re- 
gion 1 to region 2. Horizontal sketch. 

Fig 1), and wave height H2. Given values are water depth h, current velo- 
cities U-^ and U2, absolute wave period Ta, angle of incidence a (see Fig 
1), and incoming wave height H<. 
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Velocities U are taken positive in the direction of wave travel. If we 
then consider only positive a-values, a positive (i e following) current 
is one running towards the right in Fig 1. 

Since large-scale currents are assumed, reflection is excluded a priori, 
and the waves are purely progressive in both regions. This means in prin- 
ciple that the width of the shear layer must be several wave lengths. In 
practice this needs not be so, however. This can be seen from Evans (1975), 
who found transmission and reflection characteristics for a current dis- 
continuity in deep water. He showed "that the amplitude of the transmit- 
ted wave as a function of the angle of incidence and current strength is 
very close to that obtained by Longuet-Higgins and Stewart [1961] on the 
assumption of small smooth changes in current velocity". This is not im- 
mediately expected, since in the former case the flow is not matched in 
detail at the discontinuity. Only for larger angles of incidence wave 
transmission was significantly affected by the no-reflection assumption. 
Reference is made to Evans' Fig 1 and Peregrine's (1976) Fig 12. So al- 
though the correct solution to the general problem has not been found yet 
(Peregrine, 1976, p 73), there is hope that the wave heights presented 
herein are good approximations also for narrow shear layers. (The only 
thing for certain is that the height found for the transmitted wave is 
too large). 

We have also excluded the effect of turbulence generated by the shear 
layer. Here Evans (1975) concluded on the basis of Savitsky's (1970) in- 
vestigations that turbulence thus generated will have a smaller influence 
than the mean velocity gradients in the flow. Another more important as- 
pect (for narrow shear layers) is that they are unstable, so that steady 
solutions here cannot be expected to give more than somewhat crude ap- 
proximations (Peregrine, 1976, p 71). 

The current is assumed constant over depth. The effect of a possible 
vorticity was examined by Jonsson et al (1978). Dissipation is neglected, 
but can be included as described in Chapter 3. 

The general case of current depth refraction has been studied else- 
where, see for instance Skovgaard and Jonsson (1977), Jonsson and Wang 
(1978), and the two review articles by the senior author (Jonsson, 1977, 
1978b); 

For completeness it is mentioned that fundamentally it is not a re- 
quirement that regions exist in which U^ and U~ are constant; the results 
obtained are in fact valid going from any point with current velocity U^ 
to any other point with velocity U2, the flow being parallel over a hori- 
zontal bed, and disregarding dissipation. 

2.   SOME BASIC CONCEPTS 

Since wave motion in a moving medium is so different from that in 
still water, it is worth while starting with the introduction of some 
concepts, which are important for this type of flow. 

In each region we have two frames of reference. One is a coordinate 
system fixed on a plane earth, in which the wave period (T ) is constant. 
This is the common absolute frame of reference, in which we use sub- 
scripts 'a1. The other is a Galilean transformation of the first where 
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the transformation velocity is the current velocity. Observations in the 
moving system(s) are referred to as relative, and subscripts 'r' are used 
here. 

It is obvious that an important quantity as for instance the relative 
wave period is not the same in the two systems. The relation is found in 
the following way. Looking at Fig 1, it is seen that in the absolute 
frame, the wave front during time T  has travelled distance 

L = c  T (2.1) 
a  a 

where L is the wave length, and c is the phase speed (here absolute) of 
the wave. Seen from the moving observer the front has travelled distance 
cr T during the same time interval. At the same time, the observer him/ 
herself has travelled distance UT& in the current direction. By project- 
ing this on the wave orthogonal, we hereafter find for the absolute phase 
speed, after having divided by T 

c  = c  + U sin a (2.2) 
a   r 

where a is the angle between the normal N to the streamlines and the wave 
orthogonal. Since we also by definition have 

L = c  T (2.3) 
r r 

we get from (2.1) and (2.2) for the relative period T 

J_ _ J U sin a 

T   T      L 
(2.4) 

It appears that for a following current (U sin a > 0) we have^T^. >. T , as 
expected. In the literature (2.4) is often written ior = u)a - k • U ('con- 
servation of wave crests'), where to = 2TT/T, the angular frequency, and 
k is the wave number vector, which is a vector of magnitude 2IT/L going 
in the wave orthogonal direction. 

In Fig 1 eij is the angle of incidence and a 2 the refraction angle. 

In current wave systems it is important to distinguish between three 
sets of curves: Streamlines, wave orthogonals, and wave rays. A streamline 
gives the (local) mean flow direction. A wave orthogonal is normal to the 
wave front, and gives the direction of wave travel. Finally a wave ray 
gives the direction of the absolute group velocity, i e of 

c   = c   + U (2.5) 
ga   gr 

->- 
where the relative group velocity ca goes in the orthogonal direction, 
see Fig 1. Wave rays determine wave heights since the so-called wave ac- 
tion, defined as 

E 
Wave action = — (2.6) 

01 
r 

is conserved along wave rays, see Chapter 3. 

In (2.6) E is the specific wave energy 



726 COASTAL ENGINEERING—1978 

E  = - pg Hz (2.7) 

and tor is the relative angular frequency. In (2.7) p is density, g gravi- 
ty acceleration, and H is the wave height. 

The component of (2.5) in the direction of the orthogonal is also an 
important quantity. It is given by 

c   = c  + U sin a (2.8) gaa   gr 

The complete differential equations for wave orthogonals and wave rays 
for a general system are presented in the Appendix. 

3.   THE GOVERNING EQUATIONS 

Since linear theory is assumed, the relative phase speed is given by 

cr = /| tanh kh (3.1) 

where k = 2-jr/L, the wave number, and h is the water depth. Similarly we 
have for the relative group speed 

c   =ic(l+G) (3.2)    with  G =     •. 2
u
kh„1v (3.3) 

gr  2 r, smh 2kh 

REGION 1 - Wave length Lj can be found by eliminating cal and crl from 
(2.1), (2.2), and (3.1). The (implicit) result is 

U. sin a. T n 
a rr     nr  r   u< sln

 
a
, 

Atanhk.h- /f    1- 1  T  
1 

/L
1      l 7 Lo L       Ll 

(3.4) 

in which kj = 2TT/LJ, and LQ is the deep water wave length in the absence 
of currents, i e 

L = -3-  T2 (3.5) 
o  2TT a 

Equation (3.4) is identical with (3.5) in Jonsson et al (1971). In a di- 
mensionless representation it gives L^/LQ as a function of h/LQ and 
U^ sin aj/c0, where cQ is the deep water phase speed in the absence of 
currents, i e 

c = -3- T (3.6) 
o  2TT a 

Solutions to (3.4) are depicted in Fig 6. Values of 1,^/lj can also be 
read in Tables 6-a and 6-b in Jonsson et al (1971), remembering that en- 
try parameter q* there equals (h/LQ)(Uj sinaj/c0). Also Tables 3.2-1 and 
3.2-II in Jonsson (1978b) can be used. 

REGION 2 - Equation (3.4) is valid for this region also, if subscript 1 
is replaced by subscript 2. Inserting Snell's law 

Ll     L2 
-TZ7- = -rr-r-r- (3.7) 
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into the   "new"   (3.4)   then yields  for the determination of L2 

(3.8) £ 
tanh

 
k
2
h
 = /r- 

2 o 

U„ sina. T -i 
2. la 

Ll 

in which 1<2 = 2TT/L2, the wave number in region 2. This determines LJ/LQ 
as a function of h/L , Uj sinaj/cQ, and U2 sina^/c0. Solutions to (3.8) 
are depicted in Figs 7-10. 

Note that (3.8) can be solved in quite another way than (3.4). Since we 
assume that L^ has now been calculated, the right-hand side of (3.8) is 
known. Ratio h/L2 can therefore be found from a conventional table for 
surface gravity waves (e g Wiegel, 1964, Appendix 1) using the square of 
the right-hand side of (3.8) as entry in the column "h/L0". L2 is here- 
after found as h/(h/L); it cannot be found from L = LQ tanh kh! 

Refraction angle 012 is determined from Snell's law as 

L sina 
a  = Arcsin   (3.9) 

1 Ll 

This equation gives c»2 as a function of h/LQ, a^, U^/c0, and U2/c0, as 
shown in Figs 11 -26. 

Wave height H2 is found from wave action conservation. In the general 
case this principle reads, see Christoffersen and Jonsson (1979) and 
Jonsson (1978b) 

\ E - T  • U E ">"  \ d  b                                       ,-,„„, — c   + — •  = 0 (3.10) 
to   ga/ u 
r   ' r 

where V is the horizontal gradient operator Q/8x, 3/3y), E, and Cga are 
given by (2.7) and (2.5), rar is the relative angular frequency, E^ is the 
dissipation per unit horizontal area, and tj~,  the (mean) bed shear stress 
(wind shear is neglected) . It is repeated that E/a)r is wave action. The 
wave action flux is often termed B, i e 

SE^-C- (3.11) 
a)  ga r  ^ 

A simple proof of the wave action conservation principle for irrota- 
tional flow has been given by the senior author, Jonsson (1978a). In 
Christoffersen and Jonsson (1979) the general expression (3.10) was de- 
duced. 

In this study dissipation is neglected, and (3.10) reduces to V • 5 = 0. 
Looking at the ray tube in Fig 2 we then find using Gauss' theorem 

Vl = 
B
2
e
2 (3

-
12) 

1^ 1 where B = |B| and e is the tube width. Thus we find for H2, using (3.11) 
and (3.12) 

H    /to 0 c  " 
_2 = /_r2_gal__l_ 
H
l  

/
 
U
rl 

C
ga2 /F 
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where gr is the ray separation factor. e2/ej = cosp2/cosyj; V  is the angle 
between the ray and the normal N in Fig 2. From this figure we also have 
c_a cosy = c„r cosa. Introducing c_r through (3.2) and further using that 
cr/a)r = 1/k and that k2/ki = sina]/sinoi2 (Snell) , we find from (3.13) 

H2    l\ +G%      /sin 2at 

H   / 1 +G / sin 2a 
(3.14) 

Equation (3.14) gives I^/Hj as a function of h/L0, a-j, Uj/cQ, and U2/c0. 
It shows that in this approach H2 is a linear function of Hj. The varia- 
tion of I^/H^ is depicted in Figs 11 -26. In deep water (G = 0) (3.14) 
reduces to Longuet-Higgins and Stewart's (1961) expression I^/Hj = 
(sin 2a^/sin 2a2) . 

In the special case considered here, the wave height can also be found 
by a simple momentum consideration. The "shear stress" in a section par- 
allel with the streamlines is according to Jonsson (1978a) or (1978b, 
Section 3.2,3.2) Fm sina cosa, where Fm = 1/16 pgH

2(l+G), the momentum 
part of the radiation stress. Since this "shear stress" must be the same 
on the two sides of the shear layer, (3.14) follows directly. 

o 
As a2 approaches 90 , H2 goes towards infinity according to (3.14), 

and the theory breaks down. The physical situation is U2 being so much 
larger than Uj that the waves are "swept" along the "first" U2 stream- 
line, and wave orthogonals and rays run parallel with it. The ray sepa- 
ration factor then goes towards zero. In practice this will give a strong 
reflection, which is disregarded in the theory. 

The wave steepness S2 (= H2/L2) is given both directly (Fig 30) and 
relative to Sj (Fig 31), for one set of parameters. 

MEAN WATER LEVELS - There will be a slight difference in mean water level 
between regions 1 and 2. Using the formulae in Jonsson (1978a) or (1978b, 
Section 3.2.3.2), equilibrium at right angles to the streamlines gives 

ipghf+Fpl+Fml cos2ai =}pgh2+Fp2+Fm2 cos2a2 (3.15) 

in which Fp = 1/16 pgH
2G, the pressure part of the radiation stress, and 

Fm is the previously given momentum part. After some manipulations, here- 
under using (3.14), we find for the difference in mean water level, de- 
fined as b = hj - hj 

b=T6hGl 

G. (1+G.)   sin 2a 1+G,   cosa    sin(a   -a  ) 

1 „ \ : ^  + G (1+G ) sin 2a2    G sina 
(3.16) 

correct to second order. Since the factor to the square bracket is rec- 
ognized as the conventional wave set-down (over a varying bottom) it ap- 
pears that b is indeed a small quantity, by order of magnitude 1 cm. For 
normal incidence (aj = 0 ), and in deep water, b vanishes. 

4.   SOLUTION DOMAINS 

REGION 1 - As shown by Jonsson et al (1971, p 493), there are no solutions 
to the wave length expression (3.4), if the wave orthogonal component c 
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£ 

Fig 3. Solution domains for region 1, corresponding to the com- 
ponent c  . in the orthogonal direction of the absolute 
group velocity being positive (below full curves), or the 
Froude number 3Fj being smaller than one (below dotted 
curves). 

(2.8) of the absolute group velocity c„a is negative. So in the limit 

gaa = 0 the ray goes in the wave front direction, and we have from (2.i 

gaal   grl    1     1 

We further have from (3.10) in the above reference 

(1 

o lim 
k.h tanh k.h 

1       1 

(4.1) 

(4.2) 

Combining this with (4.1) gives 

U sina 1 

lim 
tanh k h (4.3) 

(Equation (4.1) is in fact a consequence of (4.2) and (3.4).) Equations 
(4.2) and (4.3) are the bases of the limiting curves in Fig 3. In the 
limit we attain minimum values of L, see Jonsson et al (1971). (Note: In 
that reference c_aa was for brevity denoted c„. This is unfortunate, 
since c„a should be reserved for the magnitude gal of the absolute 

gaa = cga cos^ 
- 1/4. 

group velocity. So in this study we have from Fig 1 c 
In deep water we find the well-known limit U,   sina./c^ 

In Fig 3 we have also shown (Uj sinaj/Zgh)lim versus h/L0. For the 
latter going towards zero, the former goes towards - 1+. It is seen, ge- 
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Fig 5. Solution domains for re- 
gion 2, corresponding to 
a - and H„/H.-figures. 
Schematical. 

nerally, that if we restrict ourselves to consider Froude numbers Fj (de- 
fined as jUji/vgh) smaller than one, then this requirement can be 'stric- 
ter' than the limiting curve in Fig 3, especially so for the smaller c^- 
values. Also for the U-y sin aj/c0 solution domain, some F( = 1 limits are 
sketched. 

To sum up, the full curves in Fig 3 both correspond to (a) wave rays 
being orthogonal to wave orthogonals and (b) wave lengths attaining their 
minimum value. The dotted curves correspond to Fj =   lujl/^gh = 1, for 
different angles of incidence. 

The position of the limit cgaal = 0 is sketched in Fig 4 (L2/L0 solu- 
tions) and Fig 5 (HJ/HJ and a2 solutions). It naturally corresponds to 
negative Uj-values. In these figures also the Fj = 1 (and Fj = 1) limits 
are shown. In Fig 4 the position of the (chosen) F = 1 limits depend on 
aj_.   Note also in this figure that with the requirement F < 1, there are 
never solutions outside the " F = 1; 04 = 90° frame". The limits can be 
recognized in the figures in Chapter 5. It appears from these that the 
mutual positions of the limiting curves in Figs 4 and 5 are not absolute. 
Thus the F = 1 curves in Fig 5 can lie outside the chosen Uj/c -U2/c 
frame. And the c al = 0 limit can lie to the left of the F = 1 limit. 

REGION 2 - in this region there is one further restriction on the input 
parameters: The wave height H2 must remain finite, corresponding to a2 < 
90°. Thus there are restrictions on the current strength, whether nega- 
tive or positive. In the former case, one obvious condition is the same 
as that in region 1, that c a  be positive. In this limit we thus have 
from (2.8) 
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c =  c + U.  sina.  = 0 (4.4) 
gaa2 gr2 2 2 

stating that the ray goes in the direction of the wave front. So (4.2) 
and (4.3), and Fig 3, are also valid with subscripts 2. Fig 3 is not di- 
rectly applicable, however, since aj is not known beforehand. The posi- 
tion of the limit ccjaa2 = 0 is sketched in Figs 4 and 5, and can be found 
again in the figures in Chapter 5. 

It should be observed that - in contrast to plane shoaling, see Jonsson 
et al (1971) - minimum wave length here does not correspond to infinite 
wave height. This is because in out case cqaa2  = 0 (=* L2 mj_n)   does not 
yield c„a2 = 0. (Moreover, c a2 can never vanish here.) If, however, U2 
is much larger than Uj, the waves cannot "penetrate" through the shear 
layer, and t^/Hj tends to infinity. This case was already discussed in 
Chapter 3, and it corresponds to y2 = 90°' giving ray separation factor 
pr = 0. Fig 2 shows that here we must also have 012 = 90°, which is in ac- 
cordance with (3.14). 

The corresponding limiting curves are depicted in Figs 4 and 5, and 
can be found again in the figures in Chapter 5. Note that in Fig 4 the 
position is a function of a^. The aj = 0° limit is peculiar, since it al- 
so corresponds to L2/L0 ->• <». 

In shallow water the 02 = ^0  limit corresponds to 

U„ - U   1 - sina   rr— U - U   1 - sina 
21          1/2irh 21          1         ,„ ,->   = —:  /-—     or      — = — . (4.5) 
c      sxna,  / L r-r-             sina. 
o         1     o /gh         1 

So here, where there is no dispersion, the critical condition - for a 
fixed value of aj - only depends on the current velocity difference. 

In the figures, also the limits corresponding to IF2 = jU2|/vgh = 1 are 
shown. 

5.   NUMERICAL RESULTS 

WAVE LENGTHS Lj/L0 - Solutions to (3.4) are presented in Fig 6, which 
clearly demonstrates the "stretching" effect of a positive current, and 
the "compressive" effect of a negative ditto. Other things being equal, 
wave length increases with increasing current velocity and depth. The 
deep water limit (U^ sinaj/c0 , L^/L0) = (-1/4 , 1/4) is clearly seen. 
The thin full curve connecting this point with origo corresponds to - 
for every fixed value of h/L - the minimum value of L^/L0 (i e caaa^ = 0) 
To every angle of incidence the J? = 1 limit yields two curves - the solu- 
tion domain lies between these. The solution domains were also illustra- 
ted in Fig 3. 

WAVE LENGTHS L2/LQ - Solutions to (3.8) are presented in Figs 7-10, cor- 
responding to four dimensionless water depths h/L0. Note that sin a^ - 
not sin a2 - appears together with U2 on the ordinate axis. It is seen 
that other things being equal, wave length in region 2 increases with in- 
creasing current velocity, as expected. The variation of L2 with U2 gets 
slower as Uj grows. As to the solution limit, we can inspect Fig 7; start- 
ing at the bottom and going anti-clockwise the limits correspond to: 
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Fig 6 

U, sin a,/c0 

- Figs 
9-10 

Dimensionless wave length L-^/L0 
in region 1 vs 0|Sina^/co for 
h/Lo = 0.015, 0.05, 0.15,and0.5. 

For Uisinai <0 the two dot-and- Jl5 
dash lines correspond to ~E\ = 1 

for a-y = 15° and 30°. For U^ina^ 
> 0 the five dot-and-dash lines 

correspond to F^ = 1 for a\ = 15°, 
30°, 45°, 60°, and 90°. 

Contours for dimensionless wave 
length L2/L0 in region 2 vs 
Ujsincq/cQ and U2Sinaj/c0. For 
L2/L0 < 1 the contours are plot- 
ted with intervals of 0.1. For 
1 £ L2/L0 S 3 the contours are 
plotted with intervals of 0.5. 
Dot-and-dash lines correspond 
to IF = 1. Dotted curves corre- 
spond to H2/HJ =00. 

-0.5 

U^inai/cg UjSin^/Cg 

0.5r 

-0.5i——>- 
-0.5 

U)Sinai/c0 U, sina,/c0 
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0..      for   a2        •O.S 
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Figs 
11-12 
13-14 

Contours for refraction angle cu and relative wave 
height f^/H^ in region 2 vs U^/c  and I^/CQ. For 0^ 
the contours are plotted with intervals of 10°. For 
I^/H^ < 1.3 the contours are plotted with intervals 
of 0.1. Dot-and-dash lines correspond to IF=1. Note 
that the abscissa axis is reversed for E^/H^. 

IF2 = 1,  Fi = 1, 3F2 = 1, 
H2/Hl = °°i   

cgaal = °» and cgaa2 = °- For details see 
Chapter 4 and Fig 4. In Figs 8-10 the IF = 1 limits lie outside the chosen 
frame. Some of the limiting curves appear jagged because of the discreti- 
zation used in the computer software, which was used to plot these curves. 

REFRACTION ANGLES a2   - Solutions to (3.9) are presented in Figs 11 -26, 
corresponding to four water depths (same as for L2/LQ), and four angles 
of incidence. (H2/HJ is shown laterally reversed in the same figures). It 
appears that the variation of a2 is slowest for the smallest angle of in- 
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Figs 
15-16 
17-18 

Contours for refraction angle o^ and relative wave 
height f^/H^ in region 2 vs U^/c0 and U2/c0. For 012 
the contours are plotted with intervals of 10°. For 
H2/HJ the contours are plotted with intervals of 0.1 
up to 1.3 above the diagonal, and 1.4 below it. 

cidence a^ chosen. Everywhere 0-2  increases with increasing TJ2. It can al- 
so be seen that (naturally) for U2 = Uj we have v.2  = <3.\.   Only for the 
smallest water depth, the F = 1 limits lie within the chosen frame. The 
other limits are discussed in Chapter 4 and illustrated in Fig 5. 

WAVE HEIGHTS H2/H1 - Solutions to (3.14) are presented (laterally rever- 
sed) in Figs 11-26, for four water depths and four angles of incidence. 
It appears that the variation of H2/Hj is slowest for the smallest angle 
of incidence a^ chosen. It is also seen that - except for this value of 
o.\   -  the variation with U2 exhibits a minimum for ^/H^ within the chosen 
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19-20 
21-22 

Contours for refraction angle a2 and relative wave 
height f^/H^ in region 2 vs Uj/cQ and U2/cQ. For a2 
the contours are plotted with intervals of 10°. For 
H2/H1 the contours are plotted with intervals of 0.1 
up to 1.3 above the diagonal, and 1.4 below it. 

frame. This will be discussed later. For U2 = Uj we have H2 = H 

limits are discussed in Chapter 4 and illustrated in Fig 5. 
1- The 

VARIATIONS OF L2, a2,   H2, S2, and S^Sj - A physical discussion of the 
transforming effect of the shear layer is facilitated by looking at a few 
concrete examples. Consider first the sequence in Figs 27-30, giving the 

variation of region 2 quantities with U2. Fig 27 shows how L2 increases 
monotonously with increasing U2; the maximum value is attained for a2 = 

90°. Also a2 (Fig 28) varies in this way; for U2 > 4.3 m/s (approx) a2 = 
90°, and waves cannot penetrate into region 2. In the limit H? theoreti- 
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Contours for refraction angle ct2 an<^ relative wave 
height H2/H1 in region 2 vs Ui/c0and U2/c0. For 02 
the contours are plotted with intervals of 10°. For 
H2/H1 the contours are plotted with intervals of 0.1 
up to 1.3 above the diagonal, and 1.4 below it. 

cally tends to infinity (Fig 29). It is also seen from this figure that 
H2 has a minimum. This can be anticipated by looking at (3.12); H2 can 
become large, if c a becomes small (Fig 29, left), or if ray width e (see 
Fig 2) becomes small (Fig 29, right), so a minimum in between is expected. 
Fig 30 shows that the wave steepness S2 has a sharper minimum. This is 
because L2 is decreasing as U2 decreases. The figure shows that both a 
large negative and a large positive current can have a strong steepening 
effect on the wave; eventually it may break. 

The influence of the (absolute) period is illustrated in Fig 31, which 
gives the ratio between steepnesses in regions 2 and 1. It appears that 
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Figs 27-30  Wave length L2 (Fig 27), refraction angle a2   (Fig 28), 
wave height H2 (Fig 29), and wave steepness S2 = H2/L2 
(Fig 30) vs current velocity U2 for fixed values of 
water depth h, absolute wave period T , angle of inci- 
dence 0^, current velocity Uj, and wave height Hj 
(Figs 29-30). 
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Pigs 31-32  Relative wave steepness S2/Sj = (H2/L2)/(H^/I^) 
(Fig 31) and refraction angle a2 (Fig 32) vs ab- 
solute wave period T for fixed values of water 
depth h, angle of incidence aj, and current velo- 
city Uj. 

both a large negative and a large positive current have a dramatic steep- 
ening effect on waves of smaller period, either because the group speed 
and wave length become small (opposing current), or because the ray sepa- 
ration factor becomes small (following current), opposing current here 
meaning U2 - Uj <0. In both cases the effect is due to the fact that 
"short waves are slow waves". This steepening and thus filtering effect 
was illustrated by Isaacs (1948);  in the photo in his Fig 1 the current 
discontinuity shows up as a foam line because of short wave breaking. 
Fig 31 also shows that the steepness ratio is remarkably constant for the 
higher periods. 

The period influence on the refraction angle is shown in Fig 32. For 
U2 = +4 m/s the variation towards a2 = 90° as Ta tends to 6.6 s (approx), 
reflects that here the ray separation factor goes towards zero. 

Finally the influence of the (constant) water depth on S2/S^ is shown 
in Fig 33. It appears that (naturally) the effect is largest on smaller 
depths, because other things being equal here the phase speed is smallest. 
For h > 10 m the variation is quite small in the case considered. 
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Fig 33 Relative wave steepness S2/Si = (H2/L2)/(H^/L^) vs water 
depth h for fixed values of absolute wave period Ta, 
angle of incidence aj, and current velocity Uj. 

EXAMPLE - It can be difficult to read the quantities in the dimensionless 
delineations in Figs 6-26 with any great accuracy (also a number of in- 
terpolations are necessary). These figures illustrate the trends, but can 
give only approximate values. It is not altogether difficult, however, to 
find the exact figures by calculation. This will be demonstrated in the 
following. Consider the case with 
U2 =-2 m/s, and Hj = 1 m (Figs 27 - 

10  m,   Ta = 8   s,   a1 =45°,   U1 = 1  m/s, 

Calculation of L 

30) .    (g = 9.80665 m/s^ 

.561»8
k 

g/2irf=3 1.561   m/s2) . 

 0= 1.561-8 = 12.49 m/s, LQ = 1. 561 -8* = 99 .90 m=»h/LQ = 
0.1001; q*=10-l«sin 45°/(12.49-99.90) =0.00567. Table 6-a in Jonsson et 
al (1971) (or Table 3.2-1 in Jonsson, 1978b) then gives L/LQ =0.778=>Lj = 
0.778-99.90 = 77.7 m. (Without a current we find L = 70.9 m - the wave is 
"stretched" by the positive current.) 
Calculation of L? - The right hand side of (3.8) squared is 0.1001 (1-(-2). 
sin 45°-8/77.7)ii = 0.1314. Using this as entry in the column "h/L0" in a 
conventional wave table, we find h/L = 0.1677 =»L2 = 10/0. 1677 = 59.6 m, which 
agrees with Fig 27. (The wave is "compressed" in region 2 by the opposing 
current). 
Calculation of a?   - From (3.9) we find ct2 = Arcsin (59.6 sin 45°/77.7) = 
32.°8, which agrees with Fig 28. 
Calculation of H, - h/Lj=10/77.7 =0.1287; h/L2=0.1677. From a conven- 
tional waye_table_we then_Jfijidj31_=JMJ682 and G2 = 0.5200. Then from (3.14) 
H2 = 1•/l.6682/1.5200•/sin 90°/sin 65.°6 = 1.098 m, which agrees with Fig 29. 
(S2= H2/L2 = 1.098/59.6 = 0.0184, which agrees with Fig 30). 

6.   CONCLUSIONS 

Analytical expressions are presented for the determination of wave 
length L2 (3.8), refraction angle o^ (3.9), and wave height H2 (3.14), as 
a wave passes a large-scale shearing current over a horizontal bed. The 
current velocity is assumed constant in time and over depth. Dimensionless 
results are presented in Figs 7-10 (L2) and 11 -26 (02 and H2). The di- 
rect effect of the current velocity U2 in region 2 (see Fig 1) is illustra- 
ted in a concrete example in Figs 27-30. The most interesting feature 
here is the display of a wave height (and steepness) minimum. The "filter- 
ing" effect of a shear layer on a wave motion is illustrated in Figs 31 
and 32, and the influence of the water depth on wave steepness change ap- 
pears from Fig 33. 
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The wave length L-j at the initial state (region 1, see Fig 1) is deter- 
mined by (3.4); solutions in dimensionless form are illustrated in Fig 6. 
Solution domains for region 1 appear from Fig 3. Solution domains for re- 
gion 2 are sketched in Figs 4 (applicable to L2-figures) and 5 (applicable 
to 012- and I^-figures) . 

A detailed example of how to obtain numerical results using tables and 
handcalculations, is given in Chapter 5. 

APPENDIX:   ORTHOGONALS AND RAYS 

In the general case the wave orthogonals are determined by 

Dx/Ds = cos A        (A.l)      Dy/Ds = sin A (A.2) 

DA/Ds = (sin A 3c /3x - cos A 3c /3y)/c (A.3) 
a a     a 

in which x and y are horizontal Cartesian coordinates, s is distance along 
the orthogonal, A is the angle from the x-axis to the positive direction 
of the orthogonal (DA/Ds is the orthogonal curvature), and ca is the abso- 
lute phase speed 

ca = cr + u cos A + v sin A (A.4) 
->• 

In (A.4) cr is the relative phase speed (3.1) and U = (u,v) is the current 
vector. In (A.l) to (A.3) time t can be introduced through Ds = cadt. Thus 
formally the wave orthogonal equations are the same as for pure depth re- 
fraction, see Skovgaard et al (1975). 

In the general case the wave rays are determined by 

Dx/Dr = cos u        (A.5)      Dy/Dr = sin u (A.6) 

Dy/Dr = cos2y D(tan y)/Dr (A.7) 

in which r is distance along the ray and y is the angle from the x-axis 
to the positive direction of the ray determined by 

tan u = (c   sin A + v)/(c   cos A + u) (A. 8) 

In (A.8) c  is the relative group speed (3.2). Note that according to 
(A. 8) y =A for (u,v) = (0,0); however, (A. 7) does not transform to (A. 3) in 
this limit. This is because (A.7) presupposes (A.3) to be known and solved, 
giving angle A. (The ray separation factor is determined by (31) in ' 
Skovgaard and Jonsson, 1977). 

REFERENCES 

Christoffersen, J.B., and I.G. Jonsson, 'A note on wave action conserva- 
tion in a dissipative medium', manuscript submitted for publication, 
1979. 

Evans, D.E., 'The transmission of deep-water waves across a vortex sheet', 
J. Fluid Mech., 68, 389-401, 1975. 

Isaacs, J.D., Discussion of 'Refraction of surface waves by currents' by 
J.W. Johnson. Trans.Am.Geophys.Un. , 29_, 739-742, 1948. 

Jonsson, I.G., 'The dynamics of waves on currents over a weakly varying 
bed', in 'Waves on Water of Variable Depth', eds. D.G. Provis and R. 
Radok. Lecture Notes in Physics, 64_,   133-144, Springer-Verlag, Berlin, 
1977. 



REFRACTION ACROSS CURRENT 741 

Jonsson, I.G., 'Energy flux and wave action in gravity waves propagating 
on a current1, J. Hydr.Res., Ij5, 223-234, 1978 a. 

Jonsson, I.G., 'Combinations of waves and currents', in 'Stability of Ti- 
dal Inlets' by Per Bruun, 162-203. Elsevier, Amsterdam, 1978b. 

Jonsson, I.G., and J.D. Wang, 'Current depth refraction of water waves', 
Inst.Hydrodyn. and Hydraulic Engng. (ISVA), Series Paper No.18, 48 pp., 
1978. 

Jonsson, I.G., O. Brink-Kjeer, and G.P. Thomas, 'Wave action and set-down 
for waves on a shear current1, J. Fluid Mech. , 87_, 401-416, 1978. 

Jonsson, I.G., C. Skougaard, and J.D. Wang, 'Interaction between waves and 
currents', Proc. 12th Coastal Engng. Conf., Wash., D.C., Sep. 1970. Am. 
Soc.Civ.Engrs. , New York, 1_, 489-507, 1971. 

Longuet-Higgins, M.S., and R.W. Stewart, 'The changes in amplitude of 
short gravity waves on steady non-uniform currents', J. Fluid Mech., 
\Q_,   529-549, 1961. 

Peregrine, D.H., 'Interaction of water waves and currents', in 'Advances 
in Applied Mechanics', ed. C.-S. Yih, Academic Press, New York, 16, 
9-117, 1976. 

Savitsky, D., 'Interaction between gravity waves and finite turbulent 
flow fields', Proc. 8th Symp. on Naval Hydrodyn., 389-446, Arlington, 
Virginia: Office of Naval Research, 1970. 

Skovgaard, O., and I.G.Jonsson, 'Current depth refraction using finite 
elements', Proc. 15th Coastal Engng. Conf., Honululu, Hawaii, July 1976. 
Am.Soc.Civ.Engrs. , New York, 1_, 721-737, 1977. 

Skovgaard, 0., I.G. Jonsson, and J.A. Bertelsen, 'Computation of wave 
heights due to refraction and friction', J. Waterways, Harbors and 
Coastal Engrg. Div., Am.Soc.Civ.Engrs., New York, 101, WWl, 15-32, 
1975 + closure: 102, WWl , 100-105, 1976. 

Wiegel, R.L. ,'Oceanographical Engineering', Prentice-Hall, Inc., Englewood 
Cliffs,- N.J. , 1964. 


