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PREFACE

One task of the Working Group on 'Wave Problems at Dikes' set
up by the Technical Advisory Committee on protection against inun-
dation is to study problems connected with wave run-up and wave
overtopping at dikes and similar structures.

Within these terms of reference, the Working Group began by
cataloguing existing knowledge through an extensive search of the
available literature. It made a critical analysis of this literature
from which guidelines have emerged for further study. A full report
is contained in the publication entitled "Wave run—up and wave over-
topping' which was drafted by Mr. J.A.Battjes of the Delft Techno-
logical Unlverggty The final text was edited by Mr. Battjes and
Mr. W.A.Venis of the Rijkswaterstaat Deltadienst.

The Technical Advisory Committee on protection against inunda-
tion believes that this report will be of interest to everyone con-
cerned with the design or maintenance of dikes and recommends it to

all engineers who have to consider wave run—up and wave overtopping

on dikes.
The Hague, J.B.Schijf
January 1972 Chairman,

Technical Advisory Committee on

protection against inundation.




GENERAL INTRODUCTION

In compiling the report entitled '"Wave run-up and overtopping',

topping', an attempt was made to:

- summarize existing literature,

- analyse and interpret the data quoted in this literature,

- where possible, correlate the results from the different
literature sources,

- give recommendations for further study, and

- consider the application of the results.

This report only deals with the fluid-mechanical aspects of
wave run-up and wave overtopping. The characteristics of the waves
and the shore structure are taken as known. It is further assumed
that the structure is rigid.

A selection has been made in presenting the data; results of
an incidental nature are not generally reproduced. In addition in,
a number of instances relatively detailed attention is given to
data which may be of particular interest to conditions in the
Netherlands.

Although data on the run-up and overtopping of regular waves
are not directly applicable to irregular waves, they have still
been included; in this way a contribution can be made to the
qualitative, and in some cases also quantitative knowledge of the
phenomena, provided that the stochastic nature of irregular waves
is taken into account.

The report consists of four parts. Part I contains an excerpt
of the literature summary given in Parts II, III and IV. It also
contains recommendations for further study and some notes on the
use of data in respect of run-up and overtopping in the design of
dikes. Parts II and III deal with the run-up of regular and irregular
waves respectively. It was felt desirable to deal with. run-up in
two separate parts because of the large quantity of data available
on this subject. Finally, Part IV summarizes the literature on wave
overtopping. o S

Parts II, III and IV follow the same pattern. A bibliography
is attached to each of these parts. The symbols.used are shown in

a list at the end of the report.




PART I

SUMMARY AND CONCLUSIONS

INTRODUCTION

This part of the report entitled "Wave run-up and overtopping'
consists largely of an excerpt from the survey of existing
literature contained in the following parts. This survey covers
regular and irregular breaking and non-breaking waves.

Chapter 1.2 briefly summarizes certain experimental data on
run-up and overtopping of irregular breaking waves. In a number of
instances these data are supplemented by information relating to
regular waves, i.e. whenever it appears that the influence of
specific parameters may be the same for both categories. This holds
good in particular for the influence of roughness and permeability.
Chapter I.2 begins with a short description of the characteristics
of irregular wavés. References to Parts II, III and IV are shown as
follows [..... ] . References to literature are not repeated.

Chapter I.3 makes a number of recommendations for further
study while Chapter 1.4 describes briefly the application of wave

run-up and wave overtopping as.design criteria for dikes.




I.2

I.2.

EXCERPT OF PARTS II, III AND IV

Description of irregular waves [T11. 2]

Irregular waves can only be described in the statistical sense.
We may consider the probability distribution of the individual wave
height H (the maximum difference in water level between two successive
zero crossings in the downward direction) or that of the individual
wave period T (the time elapsing between the same two zero crossings)
and also the joint distribution of H and T. These distributions are
defined by their shape, a characteristic wave height Hk and a charac~

teristic wave period T, . The mean wave period T is generally taken

for Tk' The mean of thz highest third of the wave heights H% or the
mean of all wave heights H are usually taken for Hk. The value which
is exceeded by 50% of the wave heights H(SO) and the root-mean—square
wave height Hm = H2 are also used.

The height distribution of wind-generated waves corresponds

approximately to the Rayleigh distribution given by
i) - )
Prob. [wave height 2 H, for given H] =& “\H (1.2.1)

The following relations between the above-mentioned wave heights

can be derived from this:

1,06 H () = H = 0.89 Hn = 0.63 Hy (1.2.2)

Together with equation I.2.] these relations are shown in figure I.2.1.
Measurements have shown that the local wave lengths which are

primarily determined by the periods and depth in front of the dike

have no direct influence on the run-up and overtopping of waves

breaking on the slope. However, the periods appear to be important.

A fictitious deep water wave length can be calculated from a charac-

on the basis of the formula for regular waves

teristic period T

[equ. I1.3.2

k

2
Lo,k = 2:; (1.2.3)
For Tk = T this is written as
_2
T, - g; (1.2.4)

Statistically, irregular waves may also be described as the
sum of a large number of component waves. This leads to the notion
of an energy density spectrum indicating how the wave energy is

distributed among the components. The spectrum is defined by its
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form, the total wave energy and a characteristic frequency or period.
The parameters €, i.e. a measure of the width of the spectrum, and
T, i.e. the period for which the energy density is maximum are used

below.

Wave run—up
Run-up on a plane, smooth slope [III.5.3]

The run-up of waves breaking on a plane, smooth slope with a

gradient o is given by

Zy M YH L, tanQ (I.2.5)

or, using equation I1.2.3,

2y = f2(n) T YgH, tanQ (I.2.6)

in which Z(n) is the run-up height with exceedance percentage n.
The functions f](n) and fz(n) reflect the form of the run-up proba-
bility distribution and depend, in addition to the choice of the
characteristic parameters, on the statistical structure of the waves
concerned, such as the form of the energy density spectrum or the
joint distribution of H and T.

If we specify further by taking T as the characteristic period,
H% as the characteristic height and € as the parameter for the form

of the energy spectrum, equation I.2.6 becomes [equ. III.5.14]

Z,4y 2 Cy )(E)‘T’]/ng tan
(y = i 3 (1.2.7)

C(n) was measured as a function of € for a number of cases. The
results are shown in figure I1.2.2 for an exceedance frequency of 27.
This percentage has been chosen for use with current formulae; this
choice does not imply that the 27 run-up has any unusual significance
other than historical. The figure shows that C(2)(€) varies from
approx. 0.55 with a spectrum which is narrow for wind-driven waves
(€= 0.34) to approx.0.73 with a spectrum which is broad for wind-
driven waves (€ = 0.59). In calculating € the high-frequency portion
of the spectrum has been cut off at the point at which the energy
density amounts to 5% of the maximum.

The spread of the probability distribution of the run-—up
increases with the width of the spectrum. Of the measured distribu-—

tions the one with the broadest spread corresponds approximately to

a Rayleigh distribution,in which case the run-up with an arbitrary
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exceedance percentage n can be calculated from 2(2) by

Z(n) _ 10
37‘2'3“‘0'77]/2' fog n (1.2.8)

It is assumed above that € is representative of the form of
the energy spectrum in so far as it reflects the influence of the
latter on the wave run—up distribution. In fact, however, the
spectrum may assume many different forms with a given € value.
In the tests referred to above, the spectra all had a form corres-
ponding roughly to the standard spectra for sea waves as indicated
by Neumann (1953) or by Pierson and Moskowitz (1963). Figure I.2.3.a
gives an example. It is not known whether € can also be used for
different spectra, two examples of which are shown in figures I.2.3.b

and I.2.3.c. In these cases, the parameter T used in equation I.2.7

is also less significant.

I ® ® ©

Energy density

Frequency e

FiG. I.2.3
Measurements in the North Sea have shown that for practical
purposes the energy spectrum of the sea waves encountered there
may be equated with a Neumann spectrum. If this spectrum is cut
off in the manner described above, its breadth € is 0.55. Accor-
ding to figure I1.2.2 the corresponding value for C(Z) is approx.
0.7 and the 2% run—up is then

zmzo.‘i? Y gH1 tanQ (I1.2.9)

3

In the experiments from which the relationship between C and
was derived, the ratio T/T was approx. 1.05. By substituting this
ratio together with equation I.2.4 in equation I1.2.9, the latter

becomes

2 MY
VHi/G 3 (I.2.10)




For a wave steepness H % /io of approx. 5.5%, equation I.2.10

corresponds to the known run—up formula
(I.2.11)

z = B H] tand
3

(2)
[equ. I1I1.5.12) This is not the case for other wave steepness values.
The above observations are based on measurements. Similar

results are obtained by assuming that individual waves in an
irregular wave train on average cause the same run-up as if they
form part of a regular wave train of the same height and period.

- Equation I.2.7 relates to breaking waves. In general it is
not well known which criteria must be used to determine whether
a given irregular wave train should be considered to break fully
with a given slope gradient. However, wind-driven waves have
steepnesses such that with a slope gradient of 1:3 or less,
practically all waves will break. On the other hand, most waves
will run up without breaking if the gradient is in the order of
1:1} or more. There is little experimental information on the
run-up of irregular waves which do not break. A theoretically
derived formula is given for this purpose in Chapter III.3 but it
has not yet been experimentally verified. If all the waves cannot
be expected either to break or not to break, an estimate of the
run-up may be obtained by ascribing to the individual waves in the
irregular wave train a run-up according to figures II.5.1 or

I1.5.2.

Influence of roughness elements [II.5.3, III.5.4]

Roughness elements on a plane, smooth slope influence the
wave run-up. This influence is expressed in factor r, the
ratio between the 2% run—-up on the rough slope and that on
the smooth slope under otherwise identical conditions. The
relative reduction in run-up is therefore (l-r).

The value of r is primarily determined by the form and
location of the roughness elements and their size in relation
to the wave height. The influence of the wave steepness and slope
gradient is much less, at least within the intervals of these
parameters in the studies concerned which are all related to breaking
waves. The reduction in run-up increases slightly as the slope

gradient diminishes[figure 11.5.8].
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It has been found that elements with a square or rectangular
cross~section are more effective than elements with a triangular
cross—section, e.g. in a stepped slope. For ribs and cubes minimum
r values of 0.5 and 0.6 have been measured whereas for stepped
slopes of similar size steps the minimum value of r is approx 0.8,

The value of r depends on the distance 1 between the rough-
ness elements measured in the run-up direction. For ribs with a
square cross—section r is lowest when 1 is equal to approx. 6 times
the rib height [figure II.5.7].

The effect of interrupted ribs is slightly greater than that
of continuous ribs.

The wave run-up is not noticeably influenced by roughness
elements below the mean water level [figure I1.5.10]) . The re&uctioﬁ
in run-up is almost linearly proportiomal to the width of the rough
zone measured in the run-up direction above this level [figure ‘
I1.5.11] .

The influence of the roughness elements increases with the
ratio of their height k to the wave height Hk' For regular waves
it has been found that the reduction practically ceases to become
any greater when k/H >approx. 0.1 [tables II.5.1 and II.5.2].

It is not known at what point this boundary lies for irregular
waves.

The above considerations show that a considerable reduction
in run-up height can be obtained by incorporating roughness
elements. This may lead to a reduction in capital costs. On the
other hand, greater damage must be anticipated if the design water
level is exceeded [equ. II.5.34] . This is not only the case for
roughness elements but also with other factors limiting wave run-up,

such as a berm or permeability of the slope covering.

Influence of roughness and permeability [II.5.4, III.5.5]

Certain slope coverings such as rubble have an inherent
roughness and permeability. Only the total effect of both factors
has been determined in a number of cases. The results are
summarized in table I.2.1. The definition of r is similar to that
for roughness elements. In the tests in question the stones or
blocks were generally just about stable under the influence of

the waves.
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Covering r

Smooth, impermeable 1

Concrete blocks 0.9

Set basalt stones

Blocks 0.85 to 0.9

Turf

Layer of rubble on 0.8

impermeable base

Set stones 0.75 to 0.8

Dumped round stone 0.6 to 0.65

Dumped rubble 0.5 to 0.6
TABLE I1.2.1

Influence of berm[II.5.5., III.5.6]

To obtain a maximum reduction in wave run-up by means of a

berm, the latter must coincide approximately with the mean water
level, and have the minimum possible gradient. According to a
current formula [equ.III.5.19] the relative reduction in run-up
caused by a berm of this kind will be equal to B/L where B is the
berm width and L a local wave length in front of the slope which
however has not been defined more specifically. There are some
indications that the berm width can better be expressed in a
fictitious deep water wave length EO than in L. It has also been

=3

found that the relationship B/ HkLO may be important. The
variation in the reduction in run—up with berm width is, however,
insufficiently known. For irregular waves, the greatest measured

reduction is approximately 407 [figure III.5.15].

Influence of oblique wave incidence [II.5.6, I11.5.7]

The angle of incidence B is the acute angle between the
wave propagation direction and the horizontal component of the
normal on the slope. It appears that the run—up of breaking waves
on plane slopes varies according to cos é as long as é < approx. 450.
In the case of slopes on which a berm influences wave run-up,
the latter reduces more sharply than according to cos B because
the apparent berm wid;h increases in the run-up direction as the
waves come in more obliquely. The combined relative reduction is

probably not greater than (1-0.6 cosé ).
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1.2.3

Wave overtopping [I]

The amount of data on overtopping of dikes with gentle slopes
is small. In respect of the overtopping of irregular waves over
dikes with a smooth, plane slope all that is available are the re-
sults of a series of tests in which the gradient was varied between
1:8 and 1:2 [IV.5]. The waves were generated entirely by wind which
had an exaggerated velocity because of the limited fetch available
in the channel. As a result the wave height distributions differed
somewhat from those encountered under more natural conditions. The
test results are summarized in figure I.2.4 in which the dimension-
Here a

less overtopping q/gH T is expressed against hd/H

(50) (50)°
is the time-average of the overtopping discharge per unit of width
and hd the height of the dike crest above the mean water level.

The wave steepness H /io, the slope gradient and the percentage

(50)
of overtopping waves are also shown in the figure.




I.3

RECOMMENDATIONS FOR FURTHER STUDY

Parts II, III and IV summarize present knowledge of wave run-
up and wave overtopping on the basis of available literature. The
question is whether and if so to what extent this knowledge must
be extended. In answering this question we have assumed that we
should be able to make an estimate which is sufficiently reliable
for practical purposes, of the run~up and overtopping of irregular
waves in a number of instances of a general nature such as a plane,
smooth slope, a plane slope with roughness elements, a rough and
permeable slope and a slope with a berm. Cases of an incidental
nature have not been considered. In these instances an ad hoc
solution must always be found.

A comparison of the available knowledge summarized in chap-
ter I.2, with the information which would be desirablé, shows that
further study is necessary of:

- Run—up and overtopping of irregular waves over dikes with plane
slopes.

In most of the tests carried out up to now, the relative wind

speed and statistical characteristics of the waves in the

model differed slightly from those encountered under natural
conditions. In a future study the waves should be more
accurately simulated in the model. Steeper slopes (up to

approx. 1:11) should also be included in the study.

- Influence of a berm on wave run-up and wave overtopping.
In view of the fact that dikes with an external berm are very
common in the Netherlands, it is important to extend the
inadequate information available on this point. The experi-
mental results and the hypothesis described in sections
I1.5.5 and III.5.6 can provide guidelines for the structure

of the study.

- Nature and magnitude of scale effects in run~up and overtopping.
In view of the important function of scale models in the
study of run-up and overtopping, it is highly unsatisfactory
that practically nothing is known about the scale effects

which may occur in this connection. In studying this factor,
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attention should be given to various aspects of water move-
ments such as run-up heights, layer thicknesses and veloci-
ties.
At a later stage the influence of roughness on overtopping and that
of oblique incidence and wind on run—up and overtopping could be

studied.

The studies described previously relate to water movements
when a given wave impinges on a given stable structure. In so far
as run-up and average overtopping volume play a part in the
collapse under wave impact, the results of these studies would
also be relevant to problems connected with such collapse.

However, it seems probable that a more detailed description of

the water movement would be necessary. The possibility should be
considered of undertaking a study carrying on from the measurements
made of a model of the Barrier Dam (Afsluitdijk - M 872). In

a study of this kind, factors sudch as the probability distributions
of layer thicknesses, velocities, discharges, pressures and shear
stresses should be measured. This could serve as a basis for a
study of the entire collapse mechanism and might therefore be of

an exploratory nature. The results could be used in preparing a

more detailed plan for further research.
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NOTES ON RUN-UP AND OVERTOPPING AS DESIGN CRITERIA

The primary purpose of the report on "Wave run-up and
overtopping'" is to summarize literature on the subject. In the
context of this report, both the incident waves and the structure
itself are considered to be known. It is also assumed that the
structure is rigid. In designing a dike, however, a design criterion
must be chosen for the structure. This problem is essentially
outside the scope of this report. In view of present practice
however it is desirable to examine in greater detail the use of
run-up and overtopping as design criteria. This practice arose
because a certain correlation was assumed between the stability
of the crest and the inner slope of the dike on the one hand and
the quantities of water flowing over the crest on the other. In
recent decades, it has frequently been assumed in the design of
dikes that under design conditions 27 of the waves may overtop
the crest. More recently, the overtopping quantity has alsoc been
specifically considered. The criterion that a given percentage of
waves may reach the crest does not generally lead to the same
result as the criterion that a specific mean quantity of overtop-—
ping is permissible. After all, the criterion for wave run-up is
relative while that for overtopping is absolute. The higher the
waves, the greater will be the quantity of overtopping for an
identical percentage of waves reaching the crest.

In quantitative terms, nothing is yet known of the correlation
between the stability of the dike and the quantity of overtopping
water. In general, the mechanisms involved in the collapse of a
dike under wave impact are not well-known.In this situation, the
use of a simple criterion such as the 27 run—up has the advantage
that it gives a basis for comparison. It is, however, extremely
important and urgent to determine better criteria taking into

account also the structure of the dike.
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PART II

RUN-UP OF REGULAR WAVES

INTRODUCTION

The run-up of regular waves on slopes has been studied in
detail both theoretically and experimentally. The characteristic
results are discussed in this part of the report. The following
lay-out has been adopted.

Chapter II.2 summarizes the parameters which play a part in
the process of wave run-up, using dimensional analysis. A number
of theories are discussed in Chapter II.3. Experimental data are
presented in the two following chapters: in Chapter II.4 the in-
fluences of the various dimensionless parameters referred to in
Chapter II.2 are considered in qualitative terms while the quan-
titative experiméntal results are dealt with in Chapter II.5. This
chapter is structured on the basis of various geometrical factors
relating to the slope. The influences of the other dimensionless

factors are always considered separately where possible.




11.2

23

PARAMETERS

The independent parameters which determine the wave run—up

on a slope are of three categories, characteristic of:

a)
b)
c)

a)

b)

c)

the structure,
the water and

the wave motion.

Tt is assumed that the slope is completely rigid and stationary.
For the consideration of wave run-up (and also overtopping)

this assumption seems reasonable so that the dynamic charac-
teristics of the slope are not taken into account. The slope

is then determined entirely by its geometry. It is also assumed
that this geometry and that of the foreshore are entirely deter-
mined by the form and a characteristic length A of the cross-

section. This will be defined later for a number of different cases.

The water is characterized by the mass density P the dynamic
viscosity | and the surface tension &’. The compressibility is

not taken into consideration.

For an unambiguous definition of the wave motion as an indepen-
dent variable, the motion which would occur in the absence of
the slope or in the absence of reflection off the slope is con-
sidered characteristic. This is necessary because the reflection
is partly dependent on the structure. Waves are termed regular
if they are long crested and periodic in time. For a given gra-
vitational acceleration g and period T, these waves may be
characterized by a height H and an angle of incidence @ at

a given reference point with depth d, provided that the wave
crests are straight and of constant height in deep water or in
water of constant depth. If these criteria are not met, the
variation in the propagation direction and the wave height

along a crest must be indicated.

The dependent variable is the run—up height z,defined as the

maximum height above the mean water level reached by a wave tongue

running up against the slope. In spite of the fact that we are concerned

here with regular waves, the experimental run-up is generally stochas-

tic in nature with a narrow distribution. The distribution is not
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considered in more detail. The average value is referred to as z.
The above considerations may be written symbolically as
follows:

z = f {shape of cross section, l,pw,H,G.g,d.T.H.B ) (11.2.1)

This relationship is simplified by forming dimensionless groups.

One possible combination is:

2 3
f (shape of cross section, B, 9T2’ a T o2 Y ) (I1.2.2)

e BN

The independent dimensionless groups are sufficient to characterize

the run-up subject to the limitations referred to above. The influence

of each of the independent groups on the dependent group cannot,
however, be determined by a dimensional analysis. More information
is necessary for this purpose and it is generally obtained by theo-
retical and/or experimental means. In the case of wave run—up the

greatest emphasis is placed on experiments.
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THEORIES

Introduction

A distinction may be made between two categories of wave run-
up theory: theories for waves which do not break and theories for
breaking waves. These types of wave differ fundamentally.

~ Mathematical description of the propagation of a breaking wave
is still only possible in the context of the non—linear long-wave
theory in which the breaker is treated as a progressive shock wave.
This theory is only applicable if the bed gradient is not steep.
In the case of non-breaking waves, we are not tied to a long wave
theory but may use a short wave (surface wave) theory in which no
limitations need to be placed on the bed gradient or slope gradient.
The lower the bed gradient and the smaller the depth in relation
to the wave length, a short wave behaves more like a long wave. This
enables a correlation to be established, as has been done, e.g. by
Keller (1961) and Carrier (1966), between a short wave in deep water
oé the one hand and a long wave close to the water line on the other.

In applying one of the existing theories it is necessary to
know whether the waves under consideration will break on the slope.
A number of criteria are indicated for this purpose in the next
section. Thereafter brief summaries are given in sections II.3.3
and II.3.4 of the fundamentals and results of the various theories
for non-breaking and breaking waves. A similar summary has been

prepared by Le Méhauté, Koh and Hwang (1968).

Breaking criteria

According to Iribarren and Nogales (1949) waves of perpendicular

incidence on a plane, smooth slope with a gradient @ will break

8 H
tanC{.S"T— V 29 (I1.3.1)

H is the height of the wave at the assumed breaking point, where

on this slope 1if

the depth is } H. This formula is only valid if the flat slope

extends at least as far as the depth equal to H. By definition

2
Lo = %Ift" (I1.3.2)
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Substitution of the above in equationm II.3.1 gives

tana £ 23 —L—Ho— = tand . (1I1.3.3)
or
H
- >ou9 tan?a = (g5 )er (II.3.4)

A graphic presentation of this will be found in figure IT.3.1.

Iribarren and Nogales arrived at their criterion by semi-
theoretical means. The experimental data presented by them and
summarized in table II.3.1 show that the criterion gives the wave
steepness half way between the limit of complete reflection and
complete breaking. The steepness corresponding to incipient breaking
is therefore less than 0.19 tan 2q . The values in the first and

last column of the table are shown in figure II.3.1.

H tan A
Lo . .
total breaking|total reflection | average
-2
8.1x10 0.42 0.86 0.64
3.4 x1072 0.29 0.59 0.44
2.9 x1072 0.33 0.49 0.41
Table I1.3.1

Miche (1944) gives a linear theory for wave motion on a plane
slope without a foreshore. The limit of breaking on the slope and
also the limit of complete reflection is reached, according to Miche,
when the water surface at the point of greatest run-up is just
tangent to the slope facing. The water surface at the lowest point
is then exactly perpendicular to the slope. This is shown in fig.

I1.3.2.

Criterion assumed for

incipient breaking: Y= 0°

The corresponding 0 = 90°.

FIG. II.3.2
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The corresponding critical steepness is

Ho __an2a 20 T
Toder="w Y  for @ =7
(11.3.5)
L k f n
Lo cr = ETT: or (I = )

in which Hj is the height of the oncoming wave on deep water. For
gentle slopes (tan A< 1:4 approximately) equation II.3.5 may be

written in the more practical form

5
(T2 )er = 025 (tana)? (I1.3.6)
Equations II.3.5 and II.3.6 are shown in graphic form in figure
IT.3.1.
According to equation II.3.5 the critical steepness of the
oncoming wave which would correspond to Miche's breaking criterion

(Y = Oo)is equal to L if the wall is vertical. This means that

the standing wave woulzT;ave a critical steepness of '% . This
value, (calculated by means of a linear theory) is on the high side.
This is also apparent from the theory of Penney and Price (1952),
experimentally confirmed by Taylor (1953), according to which the
critical steepness of a standing wave on deep water is equal to
0.218. It is also apparent from these references that the tangents
to the water surface on either side of the wave crest then form

an angle of 90° and not of 0° as would be suggested by the criterion
adopted by Miche. It follows from the above that for vertical walls
the critical steepness according to Miche is too great by a factor
of (%f )/0.218 = 1.45. The dependence of this correction factor

on & is not known.

Keller (1961) gives a formula for the critical steepness which
is derived for slopes which need only be plane in the vicinity of
the water line. He used a non-linear long wave theory developed by
Carrier and Greenspan (1958) for similar conditions. According to
Carrier and Greenspan, the limit of breaking is reached when, with
increasing wave steepness, the water surface becomes just vertical
at some point. Keller expresses this condition in terms of the on-
coming wave at a greater distance from the water line by connecting
Carrier and Greenspan's theory with the linear short-wave theory.

According to this theory, the following relationship applies in
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two dimensional periodic wave motion over a bed with a gentle

gradient:

1
H _kea ]

n—o——Ks—(ZH tanh md ) (II.3.7)
in which HO is the (equivalent) wave height on (possibly fictitious)

deep water, m = 2 T /L = 21t /(local wave length) and

1 md
n= %+ 3nh 2md (11.3.8)
K is the relative wave height known in English literature as the

"shoaling coefficient". For the critical wave steepness Keller finds:

2
H _a._v.?_g_
(Tgler=2w VT 1 (1II.3.9)

Substitution of equation II.3.7 gives

2

H _gc 4 /2a .

(t'g')cr’“zn = (II.3.10)
which is also shown in figure IT1.3.1. This expression is very

similar to that of Miche but there are some significant differences:

- Both formulae include HO/LO, the wave steepness on deep water.
While in the situation considered by Miche deep water is in fact
present, this is not necessarily the case in Keller's formula where
Ho and LO are simply mathematical parameters.

- Keller's formula is derived for gentle slope gradients which
may, however, vary in a profile. Miche's formula applies to a plane
slope but is not limited to shallow gradients.

- Keller's formula is derived with the aid of a non-linear
theory and Miche's formula by a linear theory. Since we are dealing
with a breaking criterion the non-linear theory is probably better
than the linear.

- The critical steepness according to Keller is approximately

0.5 times that determined by Miche.

Theories for run-up of non-breaking waves

A considerable rumber of publications are known in which the

problem of the run-up of non-breaking waves is approached theoretic—
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ally. The basic assumptions and results of these studies will be
mentioned briefly below. Before looking at the work of individual
authors, a number of more general points will be mentioned.

The theories all relate to an ideal fluid, i.e. one which
is non-viscous. Most of them concern the propagation of regular
waves over a plane, sloping bed as a two-dimensional problem. The
short—-wave theories for run—up are all linear. Some of the long-
wave theories are non-linear. Generally a standing wave is consi-
dered. Two basically different solutions are possible, depending
on whether the amplitude at the mean water line is finite or not.

By superimposing these two solutions, a progressive wave is Obtained
with an amplitude which increases without bounds close to the water
line. This is inevitable in the framework of an ideal-fluid approxi-
mation. For the run—up of non-breaking waves the only theories of
interest are those relating to the standing wave with a finite ampli-
tude at the position of the water line.

Table II1.3.2 has been compiled to summarize the different
theories. It indicates by author the nature of the problem considered
(2- or 3- dimensional, progressive or standing wave etc.), whether
or not a linearized theory has been used, and the slope profile to
which this theory is applicable. Since this table is self-explanatory
only a few supplementary observations are set out below.

Kirchhoff (1879), Pocklington (1921), Hanson (1926), Bondi (}943)
Miche (1944) and Stoker (1947) give solutions applicable to the values

of the slope angle meeting the criterion

LI =
a:a--é-, q—1,2,3 ............ (II.B.I])

Lewy (1946) has extended this to

_ p TC p=’)3,5 . p
=T F5 gm1,2,3..... 1T <2 (IT.3.12)

The solutions given by these authors are all written in the
form of a series in which the number of terms increases as the slope
angle diminishes. To determine run-up (amplitude of vertical move-
ment at the water line) Pocklington (i921) calculated the sum of

these series; his result is
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=T
NEHHHERAREREEE
AUTHOR slclEl2|gls|2|3]|=|s|2|e|3
||| |2|E|2|5|3|5|5|L|2|E
o8| 14 = 2|l a | &
Kirchhoff 1879 Al X X X X X X
Pocklington______ | 1921 Al X X X X X X
Hanson__ 1 1926 Al X X | x| x X X X
Bondi 1943 Al X X X X X X | X
Miche 196 | & | x x X x | xI| x x | x
Lewy 1945 A | X X X X X X
‘Stoker__m___w~ 1947 A X X | X X X X X | X
Friedrichs 1948 A X | X X X X X I X
Isaacsen _ § 1950 A X | X X X X X I X
Peters 1 195¢ A X | X X X X X | X
Roseau ___ 11951,°52} A X X | X X X X | X
Peters 1952 A X X | x X X X | X
Brillovet .} 1967 A | X X X X X X | X
Carrier + Greenspan__{ 1958 A X 1 X X X |1 x | x| X
Keller 1961 | B x | x x | x | x | x4 x X
Keller + Keller__ | 1964 c X | X X | X X X
Wallace 11963 /'65] ¢ | x X X X X
Carrier. | 1966 | B x | x x | x | x | x¥ X
Shuto 1867 A X [ X X | X X | X | X | X
Shuto 1968 A X | x | X X | X X X | X
PROFILE A PROFILE B PROFILE C
Rl ==

1} Stonding wave with limited omplitude.

2} The progressive wave solution comprises two standing wave solutions with limited and

unlimited amplitude at the water line.
3) Only valid for vertical walls
4) Only valid for long-wave theory

TABLE 1.3.2
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z T (11.3.13)

The same result was later also found by Miche and Lewy. The run—up
increases as the slope angle diminishes.

The theories referred to above are difficult to use for gentle
slope gradients because the number of terms in the series becomes
very large. Miche (1944) and Friedrichs (1948) therefore determined
an asymptotic approximation to the exact solution for gentle slope
gradients. However, Miche's approximation formulas are only valid in
the shallow areas. Friedrichs' formulas do not have this limitation.
Friedrichs' result corresponds very closely to the usual approximation
in which the local effect of the bed gradient is disregarded and a
solution found as a succession of constant depth solutions connected
to each other by the principle of a constant energy transport. Fried-
richs' work may be regarded as a justification of this approach, which
Miche claims to be valid as long as O does not exceed approx. 200.

Isaacson (1950) uses Lewy's solution and proves that it is
valid for any ¢ < Tt - Peters (1950) gives a more direct solution for
all a< 1 without reference to p/q.

Hanson (1926) and Stoker (1947) give a solution to the problem
of oblique incidence, for waves which reflect completely and for
progressive waves. Their solutions are limited to the discrete values
of @ given by equation II.3.1!. Roseau (1951, 1952) and Peters (1952)
arrive in a completely different manner at a solution to the three
dimensional problems valid for all A<T,

The solution to the linear problem of the propagation of long-
crested periodic waves in an ideal fluid over a flat bed has been
practically completed by the work of these authors. More recent
theories deal with non-linearities, in particular in the shallow
area close to the water line, and propagation over beds which are
not plane. Most of these theories are c9nfined to gentle slopes. If
it is not to break on slopes of this kind, the wave must not be steep.

Carrier and Greenspan (1958) use the non-linear long wave theory

for a plane beach. They prove that there are solutions in which breaking

does not occur. Their results relate on the one hand to non-periodic

movements caused by first deforming the water surface and then releasing

it without initial velocity, and on the other to a more realistic
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periodic movement. They start from equations in Eulerian coordinates
and reach a solution by means of a suitably chosen coordinate trans-
formation. Shuto (1967) reached the same result in a more direct manner
by working with equations in the Lagrangian system. This method was
later used by Shuto (1968) to calculate the run-up of long oblique waves.
Keller (1961) applied the linear long-wave theory to wave move-
ments at the water line where the slope is assumed to be plane. This
movement is connected to the movement at greater depth by using the
simplified short wave théory, i.e. neglecting all local influences of
the bed gradient. His result is therefore applicable to non-plane
beds provided that the gradient is not too steep. The run-up is given
by:

Zz 1,/ T
H = Ks Y 2Q (11.3.14)

in which K is the shoaling coefficient defined in equation II.3.7,
so that equation II.3.14 can be expressed in the equivalent deep

water wave height H :
Z =/t
Ho ~  2Q (I1.3.15)

This formula is the same as Pocklington's (1921). Keller also applied
the above procedure using the non linear theory of Carrier and Greenspan
(1958) in the area close to the water line. Surprisingly, the result
is exactly the same as far as run-up is concerned.

Keller and Keller (1965) considered the case of a plane slope
adjoining a horizontal foreshore. They use the linear long-wave

theory in the whole area with the result:

Z={af &/ 2 2GR ]/ ) ] (I1.3.16)

in which Joand J| are Bessel functions of the zero and first order
respectively. For high values of their arguments, asymptotic approxi-
mations may be used for the Bessel functions. Equation II.3.16 then

tends towards

1
z 21 d 4 2
T—Tﬂ/“ (ﬁ]/?) (I1.3.17)

Figure 11.3.3 represents both relationships in graphic form.
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For a sufficiently small depth, equation II.3.14 should give

the same result as equation II.3.16. In shallow water (d/gT2 <
approx. 0.005)

270 d
z(a.a..rvg_a) (11.3.18)

ol
noj=»

_ 27d
Keg=(2n tanh = )

so that equation II.3.14 leads directly into equation 11.3.17. As

is shown by figure II.3.3 there is a good agreement with equation

I1.3.16 for d/g/aT > 1.

Wallace's theory (1963,1964,1965) relating to solitary waves
is referred to here in the context of theories for periodic waves
because in some instances the solitary wave may be considered as a
limiting case of a periodic wave. Wallace gives a description which
must be worked out numerically. For vertical walls (1964) he finds by

approximation, if H/d >approx. 0.15,
(I1.3.19)

F=25

Carrier (1966) considers the example of the propagation of the
dispersive wave train generated by a given movement of part of the
bed during a specific period of time. He gives an approximation
formula for the run-up in a special instance of bed movement of this
kind.

Van Dorn (1966) and Le Méhauté, Koh and Hwang (1968) indicate
empirical methods of determining non-linear influences on wave run-up.
Van Dorn uses the linear equations but replaces H by twice the height
of the crest of the oncoming wave above the mean water level, calcula-
ted by a Stokes theory or a cnoidal theory. From these theories he
has derived a nomogram indicating the relative crest height.

Le Méhautd et al start from a standing wave against a vertical

wall where

=144 (11.3.20)

The term A is the relative super elevation of the crest caused by
non-linear effects and is given by Miche (1944) up to the second order

as
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2 (I1.3.21)

A= mH( 1""23” sinh” md—z‘-cosh-zmd ycoth md

|-

Le Méhauté et al assume that the non-linear influences on run-up on
a slope which is not too gentle can be approximated by assuming

that

z _ T
re=)/za * & (11.3.22)
The theories referred to above for run-up of non—breaking
waves indicate that run-up increases as the slope angle decreases.
However, if the slope angle falls below the critical value, which
is dependent on the wave steepness, the wave will break on the slope

and these theories will cease to be valid.

11.3.4 Theories for run-up of breaking waves

As already stated in the introduction to this chapter, breaking
waves may be described with the aid of a non-linear long-wave theory,
provided they have the characteristic of a bore (moving shock wave,
moving hydraulic jump). In this connection, use is made of integration
by means of characteristics. Stoker (1948,1949,1957) drew attention
to this possibility.

After Stoker various authors applied this method to the problem
of run—-up of a breaking wave. In general they studied how a bore with
given (assumed) characteristics is propagated through initially still
water of decreasing depth as outlined in figure I1.3.4. The influence
of preceding waves is not taken into account here. In most cases an
ideal fluid is assumed. (Energy losses do occur in a bore but the details
of what happens in a bore are not considered.) The results obtained by
the various authors are not so much explicit expressions of wave run—up

as methods by means of which incidental cases can be calculated.

FIG. II.3.4




37

Greenspan (1958) and Jeffrey (1964) use the characteristic
method to determine the point at which a given oncoming wave will
break. Kishi (1962) has also considered this problem.

Whitham (1958) gives an approximation method to calculate the
non-uniform propagation of a shock wave. Keller, Levine and Whitham
(1960) carried out a number of calculations which appear to confirm
the validity of Whitham's approximation. They developed the method
for the transformation of a bore over a sloping bed. This was also
done by Kishi (1962).

Ho and Meyer (1962), Shen and Meyer (1963) and Ho, Meyer and
Shen (1963) give a mathematically based qualitative description of
the behaviour of a bore as it runs up. They examined a number of
properties of possible solutions to the long-wave equations with a
plane slope. Because they only introduce a very small number of
secondary conditions, their observations may be applicable to a
large number of instances. The general nature of these observations
means however that their work must be viewed primarily in qualitative
terms. Some of their conclusions are as follows:

- the form of the bore and of the velocity at the water line are
practically independent of the initial conditions;

- near the water line the bore height approaches zero (this had
also been found by Keller, Levine and Whitham);

- beyond the water line run—up takes place 1n the form of a

thin layer of water which becomes increasingly thin as time passes;

- the greatest run—up is at most equal to the velocity head U2/2g
of the water at the water line when the bore reaches this point, but
"no method is presently available for estimating the value of U from
the properties of swell far from the shore'.

In the conventional long-wave theory a non-breaking positive
wave becomes a bore because the front becomes steeper. This theory
does not allow for an intermediate phase in the form of a spilling
breaker (see figure II1.3.5). Le Méhautéd (1962) attempted to overcome
this drawback. He gave a semi-theoretical account of the energy
balance for a spilling breaker partly based on the solitary wave
theory. With a sufficiently steep bed gradient, this type of breaker
becomes a fully developed bore. Le Meéhauté further supplements the

equations presented by Stoker as follows:
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, Spilling breaker ”’

FIG.I.3.5

- a stabilizing term in the equation of motion related to the cur-
vature of the stream lines (Boussinesq term);

- a resistance term;

- other initial conditions which give greater accuracy for the
final result.

Freeman and Le Méhauté (1964) give a detailed account of the
behaviour of the wave at the water line and during run-up. Resis-—
tance is only considered during runm-up as such, i.e. past the mean
water line. The results are dependent on two coefficients including
a resistance factor. Freeman and Le Méhauté do not give numerical
values for thése coefficients. The calculations must therefore be
supplemented by measurements.

Calculations by Le Méhauté and Moore (1965) use both the
exact integration method and the approximation proposed by Whitham
(1958). The differences between the results were considerable.

Kishi (1966) gives a different method from that of Le Méhauté
for calculation of an incompletely developed bore. He bases his work
on that of Whitham (1958) and Keller et al (1960).

Amein (1966) summarizes the methods available to calculate the
run-up of shallow water waves. He takes his boundary conditions from
the linear short-wave theory. In shallow water he changes over to
the non-linear long wave theory. The propagation of waves is also
calculated by the characteristic method with some modifications in
the area past the water line, i.e. where the actual run—up takes
place. Amein does not consider resistance because he believes that
unrealistic results are obtained if a resistance term is introduced

according to existing formulae. Unlike the other authors he considers
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periodic waves. A number of calculations show that the run-up
increases with the wave period.

The propagation of periodic waves over a slope has been
studied by Daubert and Warluzel (1967) as well as by Amein. They
use the non-linear long-wave equations including a resistance term
according to Chézy. For numerical integration, the equations are
not used in characteristic form but directly converted into diffe-
rence equations. The initial condition is the state of equilibrium.
On the seaward side, a harmonic movement is introduced correspon—
ding to an oncoming wave. The first wave which reaches the coast
runs up against a dry slope and reaches a much greater run-up height
than the following waves run up against water flowing back. (The
extent to which this occurs and is a relevant factor generally
depends on the waves steepness and slope gradient.) After some time
but not before the first reflected wave has reached the seaward
side, a periodic movement sets in. An example is given of a wave
with T = 2 sec, and H = 0.10 m at a depth of 0.40 m running up against
a slope at 1 : 5. The calculated run-up length along the slope was
0.85 m; 0.80 m was measured in a model.

It is interesting to compare these figures with the empirical

run-up formula for breaking waves given by Hunt (1959);

z=)/HLo, tanQ (see equation I1.5.8, page 47)

The run-up length calculated in this way is 0.82 m.
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QUALITATIVE EXPERIMENTAL RESULTS

Introduction

In a number of countries experiments have been carried out
for several years relating to wave run-up, especially in Germany,
Japan, the Netherlands, Russia and the United States. The diffe-
rences in geographical conditions are reflected in the wave run-
up problems which are studied. The wave run-up formulae prepared
in the Netherlands and Russia are only valid for steeper waves.

On the other hand,in‘the United States waves with low steepness
are not insignificant because of the long distances and fetches

on the oceans; in run—up studies waves with very low steepness

have therefore also been considered. In Germany the foreshore is
often included in the run-up studies. In addition, one country may
have a basically different type of coastal defence structure from
another. For instance, Japanese literature on wave run-up refers
relatively frequently to (almost) vertical walls,i.e. sea walls,
sometimes protected by stacked concrete blocks. Although there

are therefore differences in the direction of research in the
various countries, the literature consulted shows a sufficient
degree of concordance on a number of points for certain general
conclusions to be drawn. To the extent that these merely represent
a general reproduction of the observations contained in the various
sources, no separate source indication will be given. Instead refe-

rence is made to the bibliography at the end of this part (page 84).

Before going on to present numerical results, the influence
of the dimensionless groups given in Chapter I1.2 will be discussed
from the qualitative point of view. In this conmection, the value of
one group is always varied while those of the other groups are
maintained constant. Consideration is given only to a smooth plane
slope with a gradient angle & which may or may not adjoin a

horizontal foreshore. In this instance

H H

L:f aa 1'—_"‘—1le )
= BgTZ g’ et (I1.4.1)
in which
2
Re = PwH< (11.4.2)




a Reynolds number, and

PwH?
WQ=-6_—172- (IT1.4.3)

a Weber number.

I1.4.2 Slope angle Q

As long as the wave breaks on the slope, i.e. as long as
@ < .. , z/H increases with & while z/H diminishes again for
A > d.p - The latter agrees with the run-up theories’ for non-
breaking waves. Clearly z/H is at its highest when @ =U.p. The

dependence of z/H and @ is indicated in figure IIL.4.1.

I
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I1.4.3  Angle of incidence B

The overwhelming majority of observations of wave run-up

relate to perpendicular incidence. The limited data on oblique
incidence indicate a reduction in z/H when the direction of incidence

deviates to a greater extent from the perpendicular.

I1.4.4 Wave steepness H/gT2

In the case of steepness values which are so low that the
waves do not break, a number of research workers have arrived at
results which are not altogether identical concerning the influence
of the wave steepness. Some observers claim that there is no depen-

dence while others suggest that z/H increases slowly with rising
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steepness. Clearly z/H is not particularly sensitive to wave steep-
ness as long as no breaking occurs.

From the qualitative point of view it is easy to explain why z/H
should increase with steepness as long as the wave does not break.
In this case reflection is practically complete. In the event of
reflection against a wall the run-up height is equal to the greatest
height above the mean water level of the resulting standing wave at
the position of the wall. In the case of both standing and progres-—
sive waves, the relative height of the crest above the mean water
line increases the greater the wave steepness. This is a non-linear
effect.

The influence of steepness on z/H is much greater for breaking
waves than for non-breaking waves. With increasing steepness z/H
diminishes distinctly. The explanation of this may be found in the
fact that the breaking process becomes more intensive with increasing
wave steepness, which apparently more than compensates the super-eleva-
tion of the crest.of the oncoming wave referred to earlier.

The variation in z/H as a function of wave steepness is outlined

in figure II.4.2,

|
non-breaking @——|— breaking

|

e

—> x|~
\

(o]
~4jx

FIG. II. 4.2

H/d ratio

The influence of H/d on z/H is dependent on whether or not the
wave breaks on the slope. In the case of waves which do not break
H/d has a slight influence on z/H, such that z/H increases with
H/d, provided that H/d > approx. 1/3. A possible explanation of this

can be found in the fact that, as with increasing wave steepness.
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with increasing H/d values a higher relative elevation of the crest
above the mean level occurs.

If the conditions are such that the wave breaks, H/d will have
practically no influence on z/H. If the wave still just fails to
break on the foreshore, H/d will have reached its maximum value;
this depends on the wave steepness so that (H/d)max. may not be
considered as an independent variable.

The combined influence of wave steepness and H/d on z/H may
be formulated as follows: for a given a , z/H reaches a maximum
for the combination of wave steepness and H/d at which the wave

just breaks at the toe of the slope.

Reynolds number Re

The influence of the Reynolds number on a flow is generally
greater the smaller the Re value and the more streamlined the
boundaries of the flow. In scale experiments of wave run-up on a
smooth,plane slope where Re is smaller than in the prototype, a
scale effect should therefore occur dependent on the magnitude of
Re. A smaller value for Re in the model implies that the effect of
viscosity is relatively greater. This results in too low a run-up in
the model. This aspect has been studied in the United States. The
provisional conclusion was that a significant scale effect in fact
existed for many values of Re occuring in prototypes and models.
The C.E.R.C. handbook (1966) recommends corrections of up to 207
as a function of the steepness of the wave and slope. These correc-—
tions are, however, based on a very small amount of data and there-

fore not altogether reliable.

Weber number We

Surface tension only plays a significant role in the run-up
phenomenon if We i1s below a certain value. Because the surface
tension is not reproduced to scale, significant scale effects may
occur in small models in respect of the breaking of waves. Since
the run-up phenomenon is very closely related to the breaking of

the wave, this point must be borne in mind.
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QUANTITATIVE EXPERIMENTAL RESULTS

Introduction

In compiling a summary for use in the Netherlands of available
quantitative experimental results, it is desirable to place the empha-
sis on data which may be important to conditions prevailing in the
Netherlands. The observations in the preceding chapter show that the
emphasis must be placed on the run-up of waves which break on the slope.
Most data relate to waves of perpendicular incidence on a smooth, plane
slope. These will be dealt with in the next section. Run—up on rough

and non-plane slopes will be discussed in subsequent sections.

Smooth, plane slope

In the United States a large number of experiments have been
conducted with regular waves (Saville, 1956). The results are repro-—
duced in graphic form in the C.E.R.C. handbook (1966). Figures II.5.1
and II1.5.2 are taken from this publication. The relative run-up z/HO
is plotted against cot @ with the wave steepness HO/gT2 as a parameter.
The right-hand branch of each line relates to waves breaking on the
slope and the left-hand branch to waves which do not break. In figures
II.5.1 and I1.5.2 a line has been drawn at the point of transition
between the two branches. Along this line there is a relation between
wave steepness and slope gradient. This relationship turns out to be
the same as that expressed by equation II.3.6, for all wave steepnesses
considered; this equation was proposed by Miche (1951) as an approxi-
mation for his breaking criterion (eq.I1I.3.5) for steepness values
below approx. 17,

The relative run—up z/HO of waves breaking on the slope appears
to increase with decreasing wave steepness; with constant wave steep-
ness the run-up is then approximately proportional to tan Q.

In a summary of run-up data Franzius (1965) converted the ori-
ginal data used in the C.E.R.C. graphs and expressed the relative
run-up z/H in a formula as a function of @ , H/d and H/L. The useful-
ness of this is doubtful since Franzius' formulae are too complicated

to be remembered easily; in addition it takes a great deal more time

to calculate run-up by means of the formulae than to determine it
with the aid of the original graphs. For the record, however, they are

H
set out below: — (1,58 ~2,35tana )+ 0.092 cota~-0,26
Z =sinA(5.95 tan &+ 1.5) ~1§3L){\/: }
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for -é—s tanas-l——— and %g 0.475 (11.5.1)

N
n

H

(0.56 -0.18)
Z =23 (0’23L T for tana=1:15 (I1.5.2)
H
Z —oz (0.1531_)(0-95\/-5—*0‘43’ for tan@=1:10 (11.5.3)

Franzius also conducted model experiments to test the formulae
independently and thus also indirectly verify the American data.
The result was satisfactory.

The complicated nature of the above expressions is explained
by the fact that Franzius wished to cover the whole area of breaking
and non—breaking waves in a single type of formula. By confining
consideration to breaking waves, it is possible to obtain much
simpler formulae, as Hunt (1959) did. On the basis of the American
model'tests he found that z/H is proportional to tan &, to (H/LS%

i
and to (tanh 2Td4/L) %, or

& =constant xtcna(H)z(tunhznd) 2 (11.5.4)
which after substitution of
- 21d
L=Llo tanh<F (I1.5.5)
gives
%:constont x tan@ (11.5.6)
Lo

The constant was also determined by Hunt from the model experiments.
However, his final formula is not dimensionally homogeneous. If the
formula is restored to the dimensionless form, the constant in

equation I1.5.6 becomes I:

Z - tang
H H (I1.5.7)

Lo

or
z =/HLy tana (11.5.8)
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Although Hunt's formula lacks any theoretical basis it is
possible to find a plausible explanation for the form in which g,

H,T and o occur in it. For this purpose equation II.5.8 is rewritten

as
z=04T gH tanQ (11.5.9)

in which use is made of equation II.3.2.

The formula relates to waves breaking on the slope. Considera-
tion is given to the water particles which run up the slope while the
wave is breaking and after it has broken. The initial velocities of
these particles, i.e. their velocities shortly after breaking, are of
the same order of magnitude as the velocities during breaking. The
horizontal particle velocities in a breaking wave are in the order of

Vrgﬁt The initial velocities of the water masses as they run up in
the horizontal direction are therefore also in the order of v”éﬁ?
The movement is periodic with a period T. If the form of the velocity
as a function of time is approximately independent of the characteris-
tics of the wave and slope, the horizontal particle excursions are in
the order of T V’E’, and the vertical excursions, including run-up,

in the order of T} gH tan @ . According to equation II.5.9 the latter
is in fact the case.

Attention is drawn to the fact that the above observations do
not confirm the accuracy of Hunt's formula. They are intended as a
possible interpretation of it, which may help to give greater insight
into its structure.

In figure I1.5.3, some unpublished data of the Delft Hydraulics
Laboratory are compared with equation II.5.9. It is striking that the
points for which cot @ = 6 not only coincide better with II1.5.9 but
are also better correlated among themselves than the points for which
cota = 4,

Franzius (1965), Drogosz-Wawrzyniak (1965) and Wagner (1968)
give a number of Russian run—up formulae. These are quoted below
together with two formulae proposed by Drogosz-Wawrzyniak and Wagner
themselves. Most of these formulae are based on model measurements.
An indication to the contrary is given when that is not the case. The
limits are also indicated within which the wave steepness and slope

gradient were varied in the model tests.
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Djounkowski (1940):

Drogosz~Wawrzyniak (1965):

Karapetjan:

Kultshiski (1956)

Kurlowitz (1957):

Maksimcuk (1959):

Pishkin (1941,

1954):

50

z= 32H tand
1IScota<x4

0.09 < ﬂLs 0.0

z= 38 H tand
H_
= 0.067

z = (3+02 —'}j)H sinQ
cot A= 3,5,10

z= (3.2+9.6 sinQ ) H tand
006 s—*l‘_-' <010

z=H™VHL tana

2. cota<s

006 < —*E— < 040

z={/HL sinC

Zmax =56 H tanQ
1Scot< 6

oos<H <o

(I1.5.10)

(I1.5.11)

(1I1.5.12)

(I1.5.13)

(I1.5.14)

(I1.5.15)

(11.5.16)

Pishkin's formula relates to "the' maximum run-up.
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]/L
7o1.41.35+0585 [/

Shankin (]955)’ O.25+C01CL H (II.S-]-])

15 < cotass

0.055 < % <om

The form in which H, L and & appear in the formula is deter-
mined in the model. The magnitude of the coefficient of proportio-
nality is based on model measurements and measurements under natural

conditions.

Sidorowa (1957): z=(1.5+0,25%)Htuna (11.5.18)
2<cotas 6

oo3g H <o10

L
. JT
Zukovec and Zajev (1960): z=2)\[{jHtana (IT1.5.19)
cota =215

This formula has also been attributed to Shankin. It appears in
Russian manuals.

In addition to the above formulae, Drogosz-Wawrzyniak mentions
measurements by Suzdalcew (1964). The results were generally the
same as those obtained by Saville (1956)

To enable the formulae referred to above to be compared with
each other, z/H tan @ is plotted against H/L in figure IIL.5.4. The

equation II1.5.17 formulated by Shankin is first written as

L
19+082)/ §
2= 525 tanas1 1 tena (11.5.20)
For 4 € cotd < 12, the denominator assumes values between 1.02 and

1.06. If the denominator is taken as equal to 1.04 an error of at
most 27 is made in this range of A& values. The equation II.5.20 then

becomes

zz(L82+Q7QVQ;)Htona (I1.5.21).
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In addition, in equations II.5.12 and II.5.15, sin @ is assumed
identical to tan @ . As long as tan ® < 1:3 the maximum error is
5%.

Figure II.5.4 shows that there are considerable differences
between the curves. The formulae of Sidorowa and Karapetjan above
all differ considerably from the others. Equation II.5.19 seems to
give much the same results as equation II.5.21.

In a number of Russian formulae the wave length L occurs. To
enable them to be compared with Hunt's formula in which L occurs,
it is necessary to know the ratio L/LO in the experiments from
which the above formulae are derived. Drogosz-Wawrzyniak indicates
the characteristics of the waves used by various authors. These
data are not available for Kultshiski, Kurlowitz and Sidorowa. In
most other cases, L was identical to or differed only by a few
percent from LO. Equations II.5.10 to II.5.21 can therefore be com~
pared with Hunt's equation II.5.8. Kurlowitz' equation II.5.14
coincides with this if H= 1 m, as does Maksimcuk's equation II.5.15
if cos® = 1. Figure II.5.4 also shows that in the range for which
they are valid Djounkowski's and Drogosz-Wawrzyniak's run-up formulae
coincide with Hunt's formula.

The question now arises as to whether the Russian formulae
based on experiments with deep water waves remain valid in shallow
water where L is significantly smaller than L . This problem appeared
in the case of Franzius (1965) although he did not recognize it as
such. He found that the run—up calculated according to equations
I11.5.14, I1.5.17 and I1.5.19 was significantly lower than the measured
run—up. In his calculation, he used L which varied in the experiments
between 0,42 LO and 0.72 LO. If, on the other hand L, is substituted
in the formulae, they coincide reasonably well with the model results.
Kurlowitz's formula and that of Hunt are thereby found to give values
which are up to approx. 207 lower than the measured values for higher
wave steepness levels. In the light of these results it may be assumed
that the expression L in the Russian formula represents the deep water

wave length.

Wagner (1968), working from a differential equation with a
quadratic resistance term, reached the following result for the run-up

of breaking waves:
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2T d
27td [/HL coth 272 (I1.5.22)

z - L -
rsina = Kt |/ coth == (k2 3 )
K, and K2 are unknown constants, y is the determining layer thick-

ness for the run-up, and C is a Chézy coefficient. The differential
equation from which equation I1I1.5.22 is derived is not indicated
by Wagner in the article quoted above.

It appears that in the case of smooth slopes the influence of
resistance can be disregarded so that for these instances only the
constant Kl needs to be determined by measurements. Wagner found K1
= 0.971 or 1.131 for the run-up exceeded by 507 or 10%Z. In the case
of a narrow distribution the average run—up cannot differ substantial-
ly from the median value so that the value associated with the average
run—up will be taken as 0.97 = approx.l. If we also use equation

11.5.5, equation 1I1.5.22 becomes

Zz)/HLO sinQ (11.5-23)

Apart from the factor cos @, which differs by less than 5% from | for
tan @ < 1:3, this is precisely the formula described by Hunt.

Apart from two K1 values for the run-up averaged over the
flume width, Wagner also indicates two K, values for maximum run-up
of wave tongues which do not extend over the entire flume width:

Kl = 1.322 or 1.5 cosa for heights which are exceeded by 107 or 2%
respectively. The 107 run-up of the tongue is 177 greater than the

102 run—up after averaging across the width.

In regard to the run-up of solitary waves on flat slopes,
measurements have been made by Hall and Watts (1953), Kaplan (1955)
and Kishi and Saeki (1966). The results can be written in the form

Z= K(ﬂ)g
d d (11.5.24)
in which K and £ are functions of the gradient of the slope.

The measured values are shown in figure II1.5.5.
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Plane slope with roughness elements

In this section we shall consider the influence excercised on
wave run—-up by roughness elements provided in an otherwise plane and
impermeable slope. This description excludes all slope coverings
which have a substantial intrinsic roughness such as stone revetments.
These will be discussed in sectiom II1.5.4. The influence of the ele-
ments is expressed quantitatively by a factor r, defined as the ratio
of run—up on a roughened slope to that on a smooth, impermeable slope
under otherwise identical conditions.

Studies of the influence on wave run-up of roughness elements
provided on a slope have been primarily carried out in Germany, the
Netherlands and Russia and to a lesser extent in the United States.
A summary of some of the Dutch results, mostly obtained with irregular
waves, has been given by Wassing (1957). More recently Franzius (1965)
gave a detailed summary of American, Dutch and Russian data supplemen-
ted by the results of an extensive series of experiments which he
himself carried out. These results agree very closely with the Dutch
ones. The data quoted below were primarily taken from reports M 544-1
(1957) and M 568 (1957) of the Delft Hydraulics Laboratory and from
Wassing (1957), Jelgerhuis Swildens k1957) and Franzius (1965).

The experiments described in M 568 and by Jelgerhuis Swildens

concern the effect of ribs with a square profile (figure I1I1.5.6).




56

FIG. I.5.6

The influence of elements of this form proved to be considerable:
the minimum r-values were approx. 0.5.

The effect of the rib is partly due to the storage which is
possible behind each rib and partly also to the wake development.
The fact that storage has a favourable influence is confirmed by the
fact that interrupted ribs give rather more reduction in run-up than
continuous ribs. However, the differences are not very large. The
opening percentage of course also plays a part. The favourable effect
of an opening connected with the creation of a possibility of storage
is wholly or partly compensated by the fact that less rib length is
available to offer resistance to the flowing water. Jelgerhuis Swildens
refers as an example to openings of 0.8 m and a rib length of 4 m.
Franzius has studied a number of variants with opening percentages
up to 507, where the form of the elements in the top view varied
from continuous ribs through oblong strips to squares. The differences
in reduction were small.

The influence of the wake development is evident from the fact
that there is an optimum distance between the ribs, which depends
on their height. If the distance falls below a certain limit, the
contribution of each rib to the total reduction is smaller as a
result of the fact that each rib interferes with the wake development
of the others. At distances of less than approx. 4 times the height,
the favourable influence of the larger number of ribs is even overcome.
The optimum distance between square ribs appears to be between 4 and
8 times their height. This is reflected in figure II.5.7, based on
data obtained by Jelgerhuis Swildens. A similar phenomenon occurs
with a permanent flow along.a wall with isolated roughness elements;

see Johnson (1944) and Morris (1955).
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Comparative experiments carried out by Franzius have shown that
the precise shape of the elements has little influence as long as they
are sharp-edged on all sides. In the situation studied, it also seemed
to make no difference whether the front surface was vertical or perpen-
dicular to the slope.

In addition to the shape of the ribs, their height also plays a
part. If the height of the ribs is greater in relation to the thickness
of the water tongue, their influence on the run~up Increases. It is,
however, not necessary for the height to be greater than the thickness
of the running-up tongue of water which occurs under circumstances on
which the design is based. No quantitative data have been found in the
literature on this thickness. An attempt is therefore made to correlate
the influence of the roughness height directly with the wave height.
Report M 568-1 and the article by Jelgerhuis Swildens (1957) based on
this report contain some data which are suitable for a correlation of
this kind. In one series of experiments only the ratio k/H (= roughness
height/wave height) was varied. All other independent variables are
maintained constant including the ratio 1/k (=distance/height of ribs).

The result is shown in Table I1I.5.1!.

~%‘- 0.03 0.07 0.10 0.13
‘ 0.7 0.6 0.5 0.5
tana=1:4 LRI Loy
L, k
TABLE T .5.1

The data indicate that k/H = 0.10 is sufficiently large to achieve
the maximum reduction. In a second series of experiments 1/k was varied
from 2 to 8; this had a scarcely noticeable influence on the minimum

value of k/H at which maximum reduction occurred (see Table I1.5.2).
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-:— 0.0 0.08 0.12 0.16
r 0.7 0.6 0.6 0.6
tan & = 1:4, L =08, 1= =8
TABLE IL.5.2

Franzius also conducted experiments into the influence of the
height of ribs and other roughness elements. These results are shown
in Fig. II.5.8 in which the mean r values for ribs, cubes and bricks
are expressed against k/H with cot @ as a parameter. For k/H >
approx. 0.1, r is practically constant, which agrees with the results
of M 568-1. On the basis of the above data it was concluded that
practically no extra reduction in the wave run—up is obtained by
giving the ribs a height more than some 10% of the wave height in
front of the dike. In the experiments on which this conclusion is
based, H/LQ varied from 0.08 to 0.053 dand cot @ varied from 2.7 to 5.

The influence of roughness elements on the wave run-up is partly
determined by the situation of the roughened area in relation to the

mean water level (a in fig. I1.5.9) and by its extent (b in fig.
1I.5.9). Figure II1.5.10 shows the influence of a on r for an instance
in which the run—up does not reach past the rough zone. This figure
is based on Franzius (1965) as is figure II.5.11 in which the influence
of b on r is shown for the case a = 0. These results relate to cube-
shaped roughness elements where k/H = 0.16,0on a slope with a gradient
of 1:4.3.

The provision of roughness elements below the water line or above
the run-up height has no influence on run—-up, as is shown by figures
I1.5.10 and I1.5.11. The latter circumstance is evident; the former is
explained by the fact that roughness below the water level does not
directly act on the run-up tongue itself but on the wave movement
immediately before run-up. In this area, the ratio of water height
to roughness height is much greater than in the run—up area so that
the water movement encounters less resistance here. This coincides

with the results quoted in M 568.
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Figure II.5.11 shows that the reduction in run-up is practically
linearly proportional to the width of the rough zone from the water
line, provided that the upper limit of the rough zone is situated

between the water line and maximum run-up:

- 1—(1=pr_ ) b “
r=1-(1 r‘m)bm for {b<

a=0 I1.5.25
r=m for { bem ( )

In order to achieve the maximum possible reduction in run—up, the
roughness elements must therefore be provided at least between the
design water level and the point at which the run-up of the design
wave is expected. Often this is the crest of the dike.

The effect of the roughness elements, expressed by the factor
r, is not only dependent on the shape, orientation and relative size
etc. of the roughness itself but also to some extent on the slope
gradient and wave steepness. However there is no agreement in published
literature on the influence of these variables.

American experiments (Savage, 1958, 1959) indicate that r
diminishes with decreasing wave steepness and diminishing slope
gradient.

In the Dutch experiments the influence of H/LO and & on r has
not been systematically studied. Report M 568 only refers to slope
gradients of 1:4 so that it is impossible to draw conclusions from
this relating to the influence of @ ; a comparison of the results
of experiments with different wave steepnesses shows that a higher
H/LO is accompanied by a greater r value, which coincides with
Savage's observations.

Experiments conducted by Franzius (1965) indicate that r may
either increase or decrease with H/L and @« , as is apparent from

figure II.5.12:
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For each H/L ratio there is an & value at which the roughness is
most effective; for slopes with tan @ approx. 1:3, the influence
of the roughness diminishes as the waves are steeper. For a gradient
of 1:5 for example, r = 0.56 with H/L = 0.041 and r = 0.76 with H/L
= 0.080; the roughness for which these values apply consisted of
cubes. For other kinds of roughness element, the value of r may of
course differ. It is, however, true that the type of roughness which
gives the greatest reduction is not dependent on & or H/L (Franzius).

Wagner (1969) gives the following expression for r:

H 04, 21
=1k (F )T) sina)’3

(11.5.26)

The influence of the roughness is expressed in the shape factor Kf
and in the height k. According to equation I1.5.26, r reduces with
diminishing & or increasing H/L, in accordance with or in contrast
to Savage's results.

On the basis of the foregoing it may be concluded that the
influence of the wave steepness and slope gradient on r is not
negligible and that the literature considered is not consistent in
regard to the size and sign of this influence. As a result additional
tests will generally be necessary for a design in which the roughness
plays an essential part in determining the crest height.

It should be noted that there are certain drawbacks in roughened
slopes. If a storm surge occurs which exceeds the design water level,
more overtopping will occur with a rough slope than with a smooth slope.

This has been pointed out by Schijf (1957) with reference to the article
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by Jelgerhuis Swildens (1957) referred to earlier. In his rejoinder
(1957) Jelgerhuis Swildens points out that this is not the case
because the reduction of the dike height should only equal the re-
duction in run—-up height so that the safety factor will remain the
same. This question is interesting in assessing roughness and some
attention will therefore be given to it; the arguments will be
quantified as far as possible.

Let us assume that the design level is P and the design run-up
for the smooth or rough slope zg and z_ as indicated in figure IIL.5.

13 (a or b).

mo

FIG. IL .5.13

The rough zone extends from the design level to the crest of the dike
which 1s assumed to lie at the level of the design run-up. In this

case z,
sin Q@ (11.5.27)

b= bm=

and

Zr=rm 2z, (11.5.28)

If, under otherwise identical conditions, a water level occurs with

a height x above the design level, the run-up will overtop the crest.
In this case, the frictitious run-up height O is defined as the run-up
height above the crest of the dike which would occur if the slope

extended beyond the crest free from roughness.

Rough slope

FIG. IT .5.14
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For the rough slope, we now have (see figure II.5.14b):

b=—MIS X
sin & (11.5.29)
and
(I1.5.30)
Substitution of the above in equation II.5.26 gives
r=rm+;— (;,1—--—1 )
s 'm (11.5.31)
Figure II.5.14b shows that
Op=TZg+X~MpZg
or, using equation II.5.31:
o=t (11.5.32)
For the smooth slope, r = r, = ! so that
Os =x (11.5.33)

which also follows directly from figure II.5.14a. Finally, elimination

of x gives

(I1.5.34)
For the roughness values referred to above, r may amount to approx.
0.5 so that the fictitious run—up height above the crest of a rough
slope will then be approximately twice the equivalent value for a
smooth slope. This implies that the overtopping above a rough slope
will be greater than in the case of a dike with a smooth slope if the
design water level is exceeded. This does not of course apply only
to slopes with ribs etc. but also to rough and permeable slopes and
to slopes with a berm at the design water level. These slopes will be
discussed in sections II.5.4. and II.5.5.
Comparison of
Zp=rmZg (I1.5.28)

and

1
Op= = O
F™m 7S (I11.5.34)
shows that the influence of roughness on the run-up height below the

crest is exactly the opposite of the influence on the fictitious
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run-up height above the crest.

Rough and permeable slope

In the previous section the influence of roughness elements
on an otherwise smooth slope was discussed; we shall now consider
the roughness inherent.in certain facings, particularly stone
facings. In addition to their roughness, revetments of this kind

generally also have a certain permeability so that some of the water

which runs up may be retained in the slope. This may considerably

reduce run—up. Because the effects cannot be isolated, the influence

of roughness and permeability must be considered jointly and not in
isolation. The joint effect is expressed in the factor r.

Drogosz-Wawrzyniak (1965) gives a considerable number of values

of the coefficient r for rough permeable slopes. The data in this

article are of Russian origin, due in particular to Shankin, Pishkin
and Sidorowa. Table II.5.3 indicates some values for r given by

Shankin:

r
SMOOTH, IMPERMEABLE REVETMENT —A——1
CONCRETE SLABS 0.9
SET STONE 0.75 -~ 0.8
ROUND STONES 0.6 - 0.65
RUBBLE 0.5 - 0.55
TABLE I.5.3

Pishkin has derived the following formula from laboratory

experiments, where 0.05<H/L<0.10:

Zyax = SR> Htan a (11.5.35)
Here z is the maximum run-up and n the roughness coefficient

indicated by Ganguillet and Kutter or Manning. In Pishkin's experi-
ments n varied from 0.010 to 0.035. This n has the dimension [L?],
and equation II.5.35 is therefore not dimensionally homogeneous. In

place of an absolute roughness factor represented by n, it would be
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preferable to introduce a relative roughness, e.g. n/H‘E . The
necessary data to change‘equation 11.5.35 in this way are lacking,
however.

A number of r values based on equation II.5.35 are given in
Table II.5.4. The n values quoted in the table are taken from Hender-
son(1966). The r values in the last two columns have been calculated
for the assumption that n = 0.010 or 0.011 for a smooth impermeable
revetment. Although the descriptions of the materials in tables
I11.5.3 and II.5.4 differ somewhat, it may be stated that there is a
good measure of concordance between the values given by Pishkin and

Shankin.

MATERIAL n r= |/ 20100, \/0’0”‘
n n
GLAS, PLASTIC ——-0.010 1 — 1.05——
LEVELLED PLASTER, ——34 0.011 0.95 !
PLANED WOOD
ROUGH CONCRETE ————— - 0.014 0.85 0.89—
STONE SET IN CEMENT —0.017 0.77 0.81
RUBBLE :
n=0.031 D75 . D75 in ft
D75 =0,10 m—+—-0.026 0.62 0.65—
D75 =0.60 m +— 0.035 0.54 0.56—
TABLE I.5. 4

Sidorowa (1960) indicates the following dimensionless formula

for r:
..2H
r-e (11.5.36)

D is defined without further clarification as the absolute roughness
of the slope. For rubble slopes at the limit of stability the ratio
D/H is often between 0.25 and 0.40. The corresponding r values accor-
ding to Sidorowa (figure II.5.15) correspond reasonably well with
those quoted by Shankin, table II.5.3. Care is necessary in applying

equation II1.5.36 for other D/H values because it is not known which




67

D/H interval was represented in the experiments from which equation

I1.5.36 was derived. It should also be noted that in Franzius (1965)

Sidorowa's formula is incorrectly presented, i.e. as r = e ~4 D/H.
1,0
09
0.8
07 ‘\\\\\‘

T

. 0.6 \\‘\\
I 05 \\<:

0.4 T~

0.3 : l’ 4 + L 4 4 I : o 4 & " ]
¥ ¥ ?
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Fic. I1.5.15

The above considerations show that a dumped stone covering
with D/H=0.3 reduces run-up by practically the same amount as opti~
mally placed ribs with k/H= 0.1, despite the fact that the ribs
are smaller and the slope impermeable. An explanation of this may be
found in the fact that the entire height of the protruding ribs acts
as roughness. On the other hand with a dumped or set layer, the
stones are laterally supported against each other and only part of
their height acts as roughness (a set basalt cover 1is an extreme
example of this).

For impermeable slope revetments with natural roughness Wagner

(1969) gives a variant to his equation II1.5.26:

1
r=1-o.73(~1{_,é]/—'€- ) (sina) 3 (11.5.37)

in which ks is the roughness factor according to Nikuradse. In the
experiments on which equation 11.5.37 is based, ks < 0.033 VEE and
cot A < 5,

The Delft Hydraulics Laboratory has made a number of measure-
ments on a rubble slope with a gradient of 1:3. The measured r values
were between 0.5 and 0.6.

Figure 1I1.5.16 gives a number of results for wave run-up
measurements carried out in the Hydraulics Research Station in
Wallingford on a rubble slope with a gradient of 1:2 (Hydraulics

Research, 1965). For H/Lo > approx. 0.03 the result may be expressed

by
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z. 027
H \/{‘; (II.5.38)

If the run-up for the corresponding smooth slope is determined with
equation II1.5.8, it follows that

re 027VHle _ o4

HLo tanQ (I1.5.39)

The C.E.R.C. handbook (1966) indicates as a guideline r = 0.5
for a slope revetment consisting of two or more layers of rubble.
For a single layer of stone, r = 0.8 is recommended. These recommen-

dations are based on experiments by Hudson (1959). The size of the

z _ 0.27
\\<H Ea
2\ .

HR.S. Wallingtord \
measurements \

I‘N

10-2 2 3 4 5 6 7 8 g 107!

&/Lo IR
FIG.IL .5.16

stones was determined by stability requirements so that with given
wave characteristics the size varied as a function of the slope
gradient and of the placement, shape and specific weight of the
stones. These experiments and those conducted by Savage (1958) show
that r reduces with diminishing wave steepness and slope gradient.
This influence is not included in the final recommendations for
design because the dispersion of the results was too great.

Basalt coverings differ from rubble surfaces through the form
and placement of the stones, so that the resulting roughness and

permeability is much lower. According to Wassing (1957) the corres-
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ponding r value is 0.85 to 0.90. This value also applies to turf
(Franzius, 1965).
For tetrapods, Starosolszky (1961) quotes an r value of 0.5.

A summary of the above values is given in table II.5.5.

SOURCE COVERING r

SMOOTH, IMPERMEABLE 4+——— 1
Shankin——————— CONCRETE BLOCKS — 0.9
H.L.Delft -?é‘iﬁ?ﬁﬁimc JH—0.85 to 0.9
Franzius TURF 0.851t0 0.9
C.E.R.C.——————+ | LAYER OF RUBBLE —F— 0.8
Shankin —————— SET STONE 0.75t0 0.8
Shankin —————+ ROUND STONES————1— 0.6 to 0.65
E.L.Delft——————— RUBBLE 0.5 to 0,6
H.R.S.Wallingford+ RUBBLE 0.5 to 0.55
Shankin ——— 1+ BROKEN RUBBLE —1—0.,5 to 0.55
C.E.R.C,——————12 OR MORE LAYERS OF

RUBBLE 0.5
Starosolszky - TETRAPODS 0,5

TABLE I.5.5

It will be seen that the values found by the various authors match

fairly well.

Non-plane, smooth slope

The wave run-up is not only influenced by the roughness or
permeability of a slope but also by the shape of the latter. The
shape of the slope must therefore be considered as an independent
variable. The influence of the shape cannot, however, be expressed
easily in quantitative terms by a multiplication factor as may be
used for the rough, plane slope, since in the case of non-plane

slopes it is generally not clear what corresponding plane slopes




70

should serve as a reference. This is particularly true for concave
or convex slopes. An exception 1s provided by slopes with a berm,
provided that the gradients below and above the berm are identical.
The corresponding plane slope is then defined as the limiting case
in which the berm width becomes zero.

A consequence of the above problem is that the data available
on run-up on non-plane slopes are usually only valid incidentally
and no generalization is possible in the manner referred to above.
A special method of generalization is proposed by Saville (1958)
for regular waves on slopes of arbitrary form. This method will be
discussed first. A number of results will then be presented for

slopes with and without a berm.

Saville's equivalent gradient method

According to Saville, run-up on a non-plane slope corresponds
to run-up on an equivalent plane slope intercepting the non-plane
slope at the position of the breaking point of the wave and the

maximum wave run—up, as indicated in figure II.5.17.

non-plane slope

e —-. equivalent plane slope

FI1G, IL . 517

The run-up z is determined iteratively by using the above definition
of the equivalent plane slope and known data for run—-up on a plane

slope. The procedure proposed by Saville is as follows:

1. Given: g, T, H, d, slope form, run-up on a plane slope as a
function of slope gradient and g, T, H and d.

2. Determine the breaking depth db from

wi—=

gb_:o.sg( (I1.5.40)
le]

5
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3. Determine the point A at which the depth is equal to db'

4. Estimate the run-up.

5. Determine the point B reached by the estimated run-up.

6. Determine the gradient of the line AB.

7. Determine the run-up of the given wave on a plane slope with
the gradient referred to in 6 above.

8. Compare the run-up obtained in this way with the estimated

value. If the difference is too great, repeat the procedure
from 4, the new estimate of run—up being identical to the

run~up calculated in 7 above,

It is also possible to determine the equivalent plane slope graphi-
cally. In this case the corresponding run—~up is calculated accor-
ding to 5, 6 and 7 above, for a number of estimated run—up values.
The estimated run—up values are plotted against the calculated
values in a graph. The point at which they are identical must then
be determined by interpolation.

Although the validity of equation II1.5.40 is very doubtful,
especially when the waves and slopes are relatively steep, this
need not influence the validity of Saville's method. After all,
the method as such is at least as arbitrary as the use of equation
IT.5.40 as a breaking criterion. Saville's method consists of a
number of empirical rules which together may give a usable result.
The validity of the method is determined in the final analysis by
a test against measurement of run-up and not by the fact as to
"

whether each of the elements on which the method is based is

sible'.

permis—

Saville presents a number of applications of his method on
slopes with a shape indicated in figure 1I1.5.18 and on slopes with
a berm. The results appear to coincide well with measurements taken
in Vicksburg, except in the case of slopes with a broad berm (B =

150 ft, L = 160 to 200 ft, prototype).

cot m:-%,1%—,3,6

FIG. I.5.18
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With increasing berm width, the run-up calculated according to
Saville's method decreases more rapidly than the measured run-up.

This is also apparent from measurements by Herbich, Sorensen and
Willenbrock (1963) who conducted additional tests in order to de-
termine the maximum berm width for which Saville's method is reliable.
They found that the boundary lies at a berm width (B) of approx.

1/7 L. For greater berm width, the run—-up still diminishes but less
rapidly than suggested by Saville's method.

Herbich et al also found that Saville's method was not always
applicable. Let us assume that on an initially plane slope, a berm
is provided at approximately half way between the water level and the
maximum run-up. With increasing berm width both the gradient of the
equivalent slope and the run—up diminish. With a sufficiently large
berm width the theoretical run—up becomes so small that the berm is
not reached. The gradient of the equivalent slope to be used in the
subsequent iteration then increases suddenly to the gradient of the
original slope. Clearly the iterative method is not satisfactory in
such cases to determine the equivalent gradient. This can also be
demonstrated analytically.

The slopes used by Saville (figure II.5.18) are not represen—
tative of non-plane slopes. The method was not tested by him against
measurements on convex slopes or slopes with a continuously varying
gradient. Model measurements by Hensen (1955) are suitable for a
test of this kind. The results of comparison of these measurements
with the run-up height determined by Saville's method are given in
figure II.5.19. The concordance is good for the plane and convex
slopes. This is, however, not the case for the concave slope where
the calculation gives values which are too low.

Kato (1959) carried out tests relating to wave run-up on a
number of walls and dikes of Japanese origin and he compared his
measurements with the results obtained by using Saville's method.
Kato found that "the results were as expected". He also indicated
an extension of Saville's method for instances in which the waves
do not break on the slope. The seaward limit of the equivalent plane
slope then lies at a point which is one half of a wave length removed
from the dike instead of at the breaking point of the wave. Kato does
not specify which wave length is referred to (at what depth) or from

which point on the dike a distance of one half of the wave length
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must be measured.

Savage (1962) indicates a graphic method of checking whether
the run-up reaches the crest of the dike for a given water level,
dike profile and wave steepness in deep water. For this purpose he
uses Saville's methed.

In conclusion, it may be stated that the eguivalent gradient
method outlined by Saville to determine the run-up of regular waves
on non-plane slopes has its merits although there is some uncertain-
ty as to the limits of its validity. In view of the strongly empirical
nature of the method, considerable caution is necessary in applying
it to slope shapes which differ clearly from the shapes for which
the method has been found to be valid. This is all the more true
since the real run—up tends to be underestimated rather than over-

estimated.

Slopes without berm
The model study by Hensen (1955) referred to earlier was inten-

ded to examine the influence of the dike shape on run—up. A concave

slope, a plane slope and two convex slopes were compared at different
water levels and wave periods. The results show that the run-up on
the convex slopes was lower than the run-up on the plane or concave
slope at a high water level, and higher at a low water level. Hensen
concludes from this that the slope gradient above the mean water
level is largely decisive in determining wave run-up.

The slopes examined by Hensen had no berms. His conclusion
that the slope gradient above the water line is decisive for run—up
cannot therefore be taken to refer to slopes with a berm just below
or above the water level. The question also arises as to what the
slope gradient is above the water level in the case of a slope with
variable gradient. In Hensen's experiments, the gradient did not
vary continuously but in a discrete number of steps. Hensen's figures
show that the gradient is chosen for that part of the slope on which
the greatest proportion of run—-up took place. If the gradient varies
continuously, it is even more difficult to give a clear a priori
definition of the gradient above the water line, especially if the
local gradient changes considerably over that part of the slope

where the run-up is anticipated. This will be the case if the run-up
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length along the slope i1s not small in relation to the average radius

of courvature of the slope.
For a slope with a sharp bend, Drogosz-Wawrzyniak (1965) gives

the following formula, derived by Pishkin:

d
tand gq=tandy+2~F- ( tandp—tand,) (I1.5.41)

Qeq is the gradient angle of an equivalent plane slope on which
the same run~up takes place as on the slope with the sharp change in
angle. The significance of the other symbols is indicated in figure
I1.5.20. It 1s not known what the limits of validity are of equation

I1.5.41 but an inspection shows directly that there must be some

limitations.

FiG. I.5. 20

1. If dB approaches d, or if dB/L > | approximately, the run-up

must become independent of &

This does not follow from equation I1.5.41.
2. 1f dB = 0, it follows from equation II1.5.41 that tan q eq

= tan @, regardless of Q- This 1s not correct,
The special examples show quite clearly that the range of validity
of equation I1.5.41 must be properly defined. As long as this range

is unknown, use of Pishkin's formula is not advisable.

Slope with berm

Various experiments have shown that the effect of a berm with
a constant width is maximum when the berm is situated approximately
at the average water level. It has furthermore been found that run—-up
diminishes with increasing berm width although the reduction rapidly
falls off once a certain minimum width is passed. Quantitative data

on this aspect are, however, incomplete and there is wide scatter.
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Before presenting these data with a view to their interpretation
a dimensional analysis of the problem will be carried out.

Let us consider the instance of perpendicular incidence, a
slope adjoining a horizontal foreshore, a horizontal berm at a
depth dB below the average water level, and identical gradients for

the lower and upper slope sections (figure I1I.5.21).The influence

FIG. T .5. 2%

of viscosity and surface tension will be disregarded. We then have

the following expressions for z the run—up in the presence of a

B’
berm:
zp=t(H,T,g,d,a,B,dp) (11.5.42)
or
ZB=f(H’d)B )—d—g"a) :
" g2’ 9T’ g2’ 912 (I1.5.43)
If B = 0, it follows that
zZ _y H , d ,Q (I1.5.44)
=G e
so that
z2g _ ._gqH  _d B 98 o (I1.5.45)
= =r=1(Gz 32 g1z’ g2’ )
or
- B B B B
r=fl{gr e e ) (I1.5.46)

It follows that the value of r is dependent on a number of parameters.
As will be seen from the data presented below, r is, however, general-

ly considered dependent on one parameter only, representing a relative
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berm width. The wide scatter which occurs in the results shows
clearly that the influence of the other parameters is not neglig-
ible. This is also apparent from the results of the tests already
referred to by Herbich, Sorensen and Willenbrock (1963) shown in
figure II1.5.22. In the tests in question, the berm was situated
3.5 cm below the mean water level with a wave height between 2.7 and
and 10 cm. The dispersion in the measured r values is approximately
40% of the average value at a fixed B/L. This dispersion is too
great to bé attributed to inaccuracies. It is therefore not sufficient
to use B/L only as an independent parameter.

To gain a clearer picture of this phenomenon, the findings of
Herbich et al were re-examined on the basis of equation II.5.46,
This showed that r was better correlated to the product of the terms
B/gT2 and B/H0 than to each of the two terms separately. The result
of this calculation supplemented by some data from the Delft Hydrau-
lics Laboratory (M 544), is shown in figure I1.5.23. The ratio between

the water depth above the berm d_, and the breaking depth of the on-

coming wave db has been includedBin the graph as parameter. The
breaking depth db has been calculated with the aid of equation II.S5,
40. For constant values of B/vfﬁ;Z;, high r values (low reduction)
seem to correspond to high values of the factor dB/db (relatively
deep berm location). In addition it i1s striking that r is practically
constant for constant values of dB/db if B/ V?iﬁ:) > 1.

Figure II.5.24 shows the results of the experiments conducted
by Herbich et al in which the berm was located 2.5 cm above the mean
water level. It is apparent that the reduction in wave run—up does
not decrease sharply with increasing relative berm width. Herbich et
al ascribed this to the fact that a water cushion is formed on the
high-lying berm and held in reciprocating movement by the oncoming
waves.

In almost all the tests r does not reduce monotonically with
increasing relative berm width. In a number of instances r shows a
minimum at B/vfﬁgig = 0.25.

Drogosz—Wawrzyniak (1965) presents two Russian formulae by
Shankin and Pishkin respectively for determining the effect of a

horizontal berm on run—up. According to Shankin

B da
r:{"‘”ﬁ*‘“' V=) (11.5.47)
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Pishkin gives a formula for unequal gradients of the lower and

upper sections, a, and a, respectively:

d
1(9‘ B 02)B
tan Q eq-_-(1_Q2 H)tqnaﬁ-z-r_—{tcnag-(l O.Z)thna,} (11.5.48)

The version of Pishkin's formula presented by Drogosz-Wawrzyniak
clearly contains an error in the factor (1-0.2)B/H of the second
term in the righthand expression. This factor must become 1 when
B = 0, see equation II.5.41. In Shankin and Pishkin's experiments
the wave steepness was varied between approx. 0.04 and 0.10.

When dB = 0, equation IL.5.47 becomes

B
- 032/
r=e W (I1.5.49)

while it may be concluded from equation II.5.48, if in addition we

take Ctl = C(2 =Q,  that

= 1= B
r=1 0'21/: (I1.5.50)

According to both formulae the factor r depends in this instance
solely on B/H. The above remarks have shown that this cannot be exact.
Nevertheless it is significant that in these formulae the berm width
is expressed in wave height rather than in wave length. Since the wave
steepness was varied in the study, it may be concluded that the wave
height is also an independent variable for r.

A graphic presentation of equation II1.5.49 and II.5.50 is given
in figure II.5.25. For B/H < 10, Pishkin's formula appears to give

rather higher r values than Shankin's formula.

To sum up it may be stated that present knowledge of the influ-
ence of a berm on wave run-up is slight. Accurate quantitative data
are lacking and it is insufficiently clear what influence the para-
meters B/gTz, B/H, B/dB, B/d and d have on r. The indicated rela-

tionships cannot therefore be assumed to have any general validity.

11.5.6 Oblique incidence

Data on run-up of regular waves with oblique incidence are very
scarce. Data of this kind were found in two sources only.
Drogosz-Wawrzyniak (1965) reports that Djounkowski expresses

the influence of the direction of incidence on the run-up of breaking
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waves on a plane slope in a multiplication factor cos f , in which
B is the angle between the wave propagation direction and the ho-
ricontal component of the normal to the slope. For breaking waves
with perpendicular incidence, run-up is proportional to the slope
gradient tan @ . For incidence at an angle  , the component of the
gradient in the propagation direction is equal to tan & cos B . It
is not known whether Djounkowski determined the factor cos § on
this basis or in the light of measurements.

Hosoi and Shuto (1964) present experimental data relating to
the influence of the direction of incidence on the run-up of regular
waves on a plane slope. The angle of incidence f3 was 0°, 30°, 45°
and 600; the slope gradient was 1:2. Figure II.5.26 shows the results
of the measurements. The direction of incidence clearly has a greater
influence on run-up when the waves are steeper. It should be noted
that the lines partly relate to non-breaking and partly to breaking
waves. According to figure II.3.1 the critical steepness is approx.
4% for perpendicular incidence on a slope with gradient 1:2. On this
basis it should be expected that only the two lines shown in figure
I1.5.26 for steepness values greater than 47 relate to breaking waves.
For 3<approx. 500, the corresponding r values appear to be approxima-

tely equal to cos @ .
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PART III
RUN-UP OF IRREGULAR WAVES

INTRODUCTION

The structure of Part III, dealing with the run-up of
irregular waves, coincides with that of Part I1. In a number
of instances the content of a section of Part III will consist
solely of an indication of the fact that no data are available

for irregular waves under that particular heading.
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PARAMETERS

The independent parameters which determine the run—up of

irregular waves on a slope can be divided into those which charac-

terize:

a)
b)
c)
d)

a)

c)

the construction;
the water
the wave movement and

the wind .

and b) The parameters in question are identical to those referred

to in chapter II.2.

A first approximation to a description of irregular waves is
obtained by assuming that the wave phenomenon is linear, in
which case the wave pattern may be inferpreted as the sum of

a large number of waves each with a given frequency, propagation
direction and energy, behaving independently of each other. This
approximation may only be used if the steepness is sufficiently
low. The otherwise arbitrary wave pattern is then statistically
determined 1f the energy per unit of area is known as a function
of the propagation direction and frequency. This function is
known as the two dimensional energy density spectrum. This spec-
trum 1s difficult to measure because it 1s necessary not only to
know the wave pattern at a fixed point but also the correlation
between the latter and the wave pattern in the environment.

If we confine ourselves to the wave pattern at a fixed point,
the direction in space ceases to be an independent variable; the
wave pattern is considered solely as a function of time. All ener-—
gies which are associated with components of a given frequency but
of different directions are added together. The total is considered
solely as a function of frequency and the two dimensional energy
density spectrum reduces to a one dimensional energy density spec-
trum, known simply as the energy spectrum.

The energy spectrum for an arbitrary irregular wave pattern
of sufficiently low steepness therefore indicates the quantity
of energy which must be attributed to respective component waves
for the statistical characteristics of the sum of the components

to be identical to those of the wave pattern in question, as a
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function of time. To describe a wave pattern of this kind
statistically, it is therefore sufficient to know the energy
spectrum. In practice this may give difficulties because the
spectrum cannot be determined precisely in a finite measuring
time but only estimated. In such cases it is useful to measure
in addition a number of other characteristic parameters of the
wave pattern such as the distributions of the instantaneous
water level, wave heights and periods and the correlation be-
tween height and period.

Waves which are relevant for design purposes are generally
so steep that a linear theory is not adequate to describe them.
The energy spectrum can then be determined but the component
waves are not completely independent because they are partly
coupled by non-linear influences. This coupling is clearly reflec-
ted in the fact that the crests become more peaked and the troughs
flatter as the wave steepness increases. The consequence of this
reciprocal influence of the different components is that the energy
spectrum is no longer sufficient to describe an irregular wave
pattern statistically. In these cases, it is necessary to deter-
mine in addition a number of other characteristic parameters of
the wave pattern such as the distributions and correlation refer-
red to in the previous paragraph.

Both the energy spectrum and the distributions of wave
height, period etc. are completely determined by a length scale,

a time scale and their shape. In general, a characteristic wave

height H, may be chosen for the length scale and a characteristic

k
period T. for the time scale. The definitions of these parameters

k

may differ from case to case. It 1s not necessary to give the
definitions in this chapter. When two parameters of identical
type are defined in different manners, the one can always be
determined from the other, as long as the forms of the spectrum
and of the distribution functions are known.

The above considerations indicate how the wave movement
at a particular point may be described as a function of time.
The wave lengths can be approximately determined from this,
provided that g, the gravitational acceleration, and d, the depth,

are known. With respect to the distribution of the wave energy in
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V_JIO’
andtﬁw, the average wind direction. If necessary a number of
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different directions, we shall content ourselves with indicating

B, an average direction of incidence in relation to the dike.

The wind is partly characterized by Py, the air density,

the time-averaged velocity at 10 m above the water level,

paraneters may be added giving a more detailed description of
the variation of the mean wind speed as a function of height

and the instantaneous wind speed as a function of time.

The dependent variable is the run—up height z, the maximum height

above the water level reached by a wave tongue running up against

the slope. The run-up height is a stochastic variable. If n is the

exceedance frequency, then Z(n) is the dependent variable for a

given or chosen n value.

or

The above may be summarized as follows:

z=f(P, L, 0. He, T g, d, B, P, Wos P, .form tactors, n, A )

—2 H
Z . -‘:‘_k .[i’.‘. po. Wio n -~ n —k
Hk_ f< p 'ngZ' Re, ,We,, -rxv-rg—g—‘: ’B ' Pw, form factors. M A )

(I11.2.2)

Before presenting and discussing qualitative and quantitative

experimental data concerning the influence of the dimensionless

groups referred to above, the following chapter indicates non-

experimental work which has been done.
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THEORIES

Introduction

No theories are known concerning the run—up of irregular waves
working on the basis of the laws of mechanics and probability theory.
Some work of a non—experimental nature has been done by Saville (1962),
who calculated the distribution of the wave run-up from the joint
distribution of wave height and period assuming that individual waves
in an irregular wave movement on average generate the same run-up as
when they form part of a regular wave movement with corresponding
height and period.

The run-up of an oncoming wave on a given slope does not depend
only on the wave itself but also on the preceding wave movement. It
may be expected that waves with the same H and T values will sometimes
run up higher than the corresponding regular wave and sometimes less
high. The assumption 1s that on average these effects cancel each
other out. The validity of this assumption should be checked by com-
parison with measurements. This will be discussed in chapter III.5.

In Part II it was noted that the run-up of regular waves is
influenced to a great extent by the fact whether the waves break
on the slope, which is determined by the wave steepness H/LO and
the slope gradienta. It may be expected that this will also be the
case with irregular waves. The steepness of individual waves is,
however, variable for a given wave train so that some of the waves
will break and others not. In his calculations, Saville makes no
explicit distinction between breaking and non-breaking waves. The
problem becomes much simpler if all waves can be considered in an
approximation to be either of the breaking or non-breaking variety.
On the one hand the wave steepness in wind-driven waves is such
that with slopes at a gradient of 1:3 or less, practically all
waves break, while most waves run up without breaking at a gradient
of 1:1} or steeper.

Some results are given below for calculated run up distributions
assuming that:

- no distinction is made between breaking and non-breaking

(Saville, 1962);

- the waves are considered to break (Battjes, 1971); and

- the waves are considered not to break.
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IIT1.3.2  Run-up distributions

Working on the basis of the joint distribution of wave height
and period as indicated by Bretschneider (1959) where the correla-
tion between height and period is zero, Saville (1962) calculated
numerically the distributions of run—~up for plane slopes with
gradients varying from 1:1} to 1:6, and for wave steepnesses
H+ /gi‘2 of 6.8:»(10—3 and 1.9x10"3. Hy is the mean height of the
highest third of the waves and T the arithmetic mean of the wave
periods. The two steepness values used by Saville give practically
identical results. Figure II1.3.1 shows the distributions of z/z% R
where 21 is the run-up of a regular wave with H% as its height
and T as its period, for the given slope gradients and a wave
steepness of H1 /g%2 = 6»8x10_3.

To apply Saville's hypothesis it is necessary to know the
run~up of a regular wave on a plane slope. For this purpose Saville
uses the results shown in figures II.5.1 and II.5.2,from which he
calculated the run-up distributions numerically. His hypothesis may,
however, be used and elaborated analytically (Battjes, 1971) by
considering only waves which break on the slope, in which case
Hunt's formula (equation II.5.8) is applicable. Some results of

this calculation are given below.

Hunt's formula is as follows:

z=)/HL, tanC
° (I1.5.8)

The run-up height z is normalized by dividing by the factor ¥ ﬁiotan a
in which a bar indicates the arithmetic mean. The run-up
normalized in this way is referred to as z':
L S (I1I.3.1)
HL, tanQl

which, after substituting equation II1.5.8, becomes

z'=1/=-‘“‘_‘:_g (111.3.2)
Alo

The probability P that the normalized run-up z' will be exceeded
can be calculated from the joint distribution of the height and period
of individual waves. P(z') has been determined for two forms of this

distribution:
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It is assumed in this case that L, is constant and that H is
Rayleigh-distributed. This model is applicable, in an approximation,

to swell; the probability of exceedance is given by

NI L (I11.3.3)
This relationship is presented graphicaily in figure III.3.2.

In this case it is assumed that H and LO have a joint Rayleigh
distribution with the correlation coefficient P as a parameter

(O< P €1). A formula has been derived for the run-up distribution
in which P may assume any value between 0 and !. Here the results
are only shown for the limiting cases P = 0 and p = l. According

to Bretschnieder (1959) P = 0 applies to a fully-developed sea
while P = 1 is considered by him as a limit value associated with

a young sea (with high wind speed and short fetch). In these in-

stances the probability of exceedance is given by

P(z.)=32z'2 K1(n;'2 ) when p= O (I1I.3.4)

(K1 is the modified Bessel function of the third kind and
first order) and
2

_I
p)

P(z')=c when £ = 1 (ITI.3.5)

These relationships are also shown in figure III.3.2,

In his calculation of run-up distributions, Saville assumes
that H and L_ have a joint Reyleigh distribution with P= 0. It is
therefore useful to compare his results with equation III.3.4. For
this purpose the relationship must be known between z' and the

parameter z/z3y used by Saville. It may be shown that in this case
3

7' =1.22 ~§§ (I11.3.6)

Only one of Saville's curves, i.e. that for tana = 1:6, is shown
in figure III1.3.2. This coincides well with equation III.3.4. The
other curves defined by Saville apply to relatively steep slopes
(see figure III.3.1) and coincide less well with equation III.3.4,
probably as a result of the fact that under the circumstances Hunt's
formula is not entirely representative of the data used by Saville

for the run-up of regular waves.
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A number of important conclusions can be drawn from figure
I11.3.2:
The older the wave movement causing the run-up, the smaller the
dispersion of the run-up values.
In view of the above conclusion it seems reasonable to assume that
the distributions of run-up associated with a young sea on the one
hand and old swell on the other will be extreme values since these
wave types may be considered as two extremes of the type of wave
movement encountered under natural conditions.
The nature of the irregularity of the waves has the greatest influence
on the larger run-up heights, i.e. those with the lower exceedance
percentages. It is therefore necessary to have full information on
the stochastic character of the wave movement, particularly for the
run-up which is important for design purposes. This holds good regard-
less of whether the run-up distribution is determined analytically or
by a scale model.
The values of z'(z) for the cases (a) and (b) referred to on page 101

and the corresponding formulae for 27 run-up are shown below:

(a) 2(,y=15 or 2(,)=15)/AL, tanQ (I11.3.7)
o) p=0 z{p,=18 or z(,,= 18/ HL, tana (I11.3.8)
b<

p=1 2»=225 or H2F225Vﬁiot°na (1I11.3.9)

The experimental data concerning the run-up of non-breaking
waves are so scanty that no relationship between the different
variables can be derived from them, as was done in the case of
breaking waves. The calculation of the run-up distribution can,
however, be based on theoretical results for regular waves. Here

we may work from Keller's formula (equation II.3.14):

CH/SE (I11.3.10)

z= >q

S
Ks
K, is the shoaling coefficient defined by equation II.3.7.

In calculating the run-up of non-breaking waves allowance must be

made for a non-linear effect, i.e. that the wave crest extends up to
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more than half the wave height above the average water level. This
effect is not considered in equation III.3.10. It may be expressed

by a correction factor §

149 T
Z::-—K—S—H ‘é"&' (III.B-]I)

The value of O , which increases with H/Lo and above all with Lo/d,
may be as high as 30 or 40 per cent.

According to Saville's hypothesis, the run-up distribution of
irregular, non-breaking waves can be calculated by attributing to
individual waves a run—up according to equation III.3.1l. If the
relative variation of (1+§ ) /KS is disregarded, the run—up has the

same distribution as the wave height:

z(n)=l§_§_ Ho |/ 24 (IT1.3.12)

If this common distribution is identical to the Rayleigh distribution

equation III.3.12 can be converted to

2(2)=1_4l}€_§ Hy -QT%- (I11.3.13)
-3

The derivations and conclusions given in this chapter are based
partly on assumptions. Accordingly their importance lies in the fact
that they can be used as guidelines in interpreting experimental data,
considered in chapter III.5, and possibly also in further experimental

research.
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QUALITATIVE EXPERIMENTAL RESULTS

Introduction

In most of the studies carried out up to now of wave run-up,
regular waves have been used because the facilities required for
this purpose are fairly simple. Only in the Netherlands have studies
been carried out with irregular waves for decades. In other countries
work of this nature has begun very recently (Carstens et al,

1966, Webber and Bullock, 1968), with one exception (Sibul and Tickner,
1955). Most of the data indicated below therefore come from the
Netherlands.

As to the influence of the various parameters discussed in
chapter III.2, less is known than in the case of regular waves. This
is a consequence of the fact that in general less attention has been
given to irregular waves and also of the circumstance that this is a
more complicated phenomenon in which it is less easy to recognize

certain relationships. Moreover, when working with laboratory waves

generated by wind it is only possible to a very limited extent to
vary wave heights, periods and wind speed independently of each
other, so that in the case of these waves it is difficult to inves—
tigate the influence of the variation of one of these parameters
only. In this respect the more recent possibility of a combination
of wind and mechanically generated irregular waves offers greater
prospects.

The influence of different parameters on run—up of irregular
waves on a smooth, plane slope is discussed from the qualitative
angle below, in so far as data are available. Non-breaking waves

cannot be considered because relevant data are lacking.

Slope angle &

Run-up increases with greater steepness of the slope. The same
tendency is noted in the case of run-up of regular waves breaking

on the slope.

Angle of incidence B

Run-up diminishes as the angle of incidence of the waves becomes
more oblique. Initially the reduction is very slow; only with very
oblique incidence ( 3 >approx. 40°) does the influence become signi-

ficant.
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III.4.4 Wave steepness Hk/gTzk

Run-up diminishes with increasing steepness, as in the case

of breaking regular waves.

IIT1.4.5 Ratio Hk/d

No data.

IT1.4.6 Reynolds number Rek

No data.

11T1.4.7 Weber number Wek

No data.

IIT.4.8 Form of energy spectrum

It has been found that the form of the energy spectrum has a
not insignificant influence on run-up. Two wave movements with the
same total energy and characteristic period but with a different
spectrum shape may cause run-up heights which differ both in regard to
to the mean value and to the distribution. There are indications
that this influence is connected with the changes undergone by the
H-T distribution when the spectrum shape varies.

It should be noted that the choice of a characteristic period
Tk is not unambiguous; two wave fields may have the same T, value in
one definition but two different Tk values if a different definition
is chosen. In this connection there is therefore a degree of sub-
jectivity in comparing two irregular wave movements. In regard to
the characteristic wave height the uncertainty is much smaller be-

cause wave height distributions differ far less in shape than period

distributions or spectra.

I11.4.9 Wind speed parameter QZIO/ng

The wind may influence the run-up through the oncoming waves
and also through its direct effect on the water running up the slope.
The two effects have not been studied individually because it is
difficult to separate them experimentally. In so far as conclusions
have been drawn in literature concerning the wind influence these
relate to the sum of the two effects, In this way the wind influence

is also implicitly a function of the fetch.




III1.4.10

A third consequence of the wind influence, namely the change
in the average water level, can generally be taken into account,

however.

One possible result of the wind effect is the change in the
run~up distribution, which seems to assume a wider dispersion the
stronger the gusts of wind. Even if the mean run-up value remains
the same, the value exceeded by e.g. 27 of the number of run—ups

may increase with the gustiness of the wind.

Wind direction ©xv

No data.
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II1.5 QUANTITATIVE EXPERIMENTAL RESULTS

I1I.5.1 Introduction

Before presenting and discussing experimental data a short
summary will be given of the corresponding measurements.

The oldest observations were taken under natural conditions
and relate primarily to the flood mark. Since in the early days it
was impossible to make accurate wave measurements, the run-up data
could not be correlated with the characteristics of the oncoming
waves. Partly as a result of this, the data were primarily of local
validity. The Lorentz Commission (1926) generalized these data to
some extent by correlating run-up with the water depth in front of
the dike (figure III.5.1). This procedure made sense because the
commission's terms of reference were ''to investigate the extent to
which closure of the Zuiderzee may lead to higher water levels and

a greater wave run-up during stormy weather than is at present the

"
case.

Flood mark observations were subsequently supplemented by
run-up distribution measurements conducted mainly by the Zuiderzee
Project Department. However, in this case too, knowledge of the
incident waves left much to be desired.

In order to obtain more detailed knowledge of the run-up
phenomenon, the Delft Hydraulics Laboratory carried out a series
of systematic model studies of wave growth under the influence of

"wind, and the resulting run-up on a slope with a gradient of 1:34
(M 101, 1936), the influence of the shape and roughness of the slope
(M 151, 1939) and the influence of the slope gradient (M 202, 1942).
Apart from these systematic experiments, measurements were also made
to determine the wave run-up in incidental cases. The principal test
results are summarized in report M 544-1 (1957) and by Wassing (1958).

In the model the waves were generated either by wind alone or
by a combination of wave board (with periodic movement) and wind.

In both instances, the irregularity of the waves is considerably less
than under natural conditions. This leads to problems when the model
results must be used to predict wave run—up under natural conditions.
A programmed wave generator combined with wind, as used by van Oor-

schot and d'Angremond (1968), should be given preference in this con-

nection.
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The above considerations show that the number of systematic
measurements of the run-up of irregular waves is still fairly small.
The available data will be dealt with in some detail below. The

flood mark observations will not, however, be considered.

Field measurements

In 1943 and 1944 the Zuiderzee Project Department carried out
measurements of wave run-up distributions on the North East Polder
dike. The data are stored in the archives of the Delft Hydraulics
Laboratory under reference number M 202. Good measurements of the
incident waves were not available. Only in some cases was a visual
estimate given of the "mean of the highest waves''. The measurements
are therefore used here only in so far as they relate to the shape
of the run—up distribution. No attrention is given to the magnitude
of run-up.

Measurements were taken in two sectors, i.e. No II and No III,
to the North and South of Urk respectively. These locations are
shown in figure III.5.2, as is the cross-section of the dike.

Table III.5.] contains data relating to the circumstances in

ten measurements chosen on the basis of the criterion that the water

level and wind speed must not change too greatly during the measure-

ment Section II Section III
Wind speed hm 183 hm 292
No Date Value [Direction| h(m) 2(50§m) h(m) z(SOSm)
(m/s)
1 9~ 8-"43 13 WNW-W -0.12 | 0.34 |-0.18 0.24
2 30— 8-"43]15 10 18 | WSW t.W |-0.10| 0.31 [-0.05 0.38
3 15- 9-'43 13 SW -0.07 { 0.36 |-0.09 0.46
4 15~ 9-'43 13 WSW -0.21 0.36 §-0.21 0.36
5. 20 9-'43113 to 17 WSW t.S | -0.05 0.40 -0.10 0.65
6. 22— 1-'44120 to 25 SSW +0,05 0.45 +0.05 0.50
7 13- 3-'44}15 toZO' WNW -0.05 0.48 -0,05 0.50
8 3= 5-"44115 to 20 WNW t.W | +0.20 0.43 - -
9 7-11=-"744120 to 25 W +0.40 0.85 +0.40 1,00
10 7-11-"44 20%5 25 W +0.50 1.02 +0.50 1,08
) Very gusty; repeatedly greater than 25 to 30 m/s,

TABLE III.5.1
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The results of the measurements in which run-up remained
below the upper berm are shown in figures III.5.3 and III1.5.4 for
section II and section III respectively, and the remainder in
figure III.5.5. In the latter figure the influence of the upper
berm on the shape of the run-up distribution is clear. Distribu-
tions 9 and 10 show a sharp bend at the level of the berm so that
the dispersion is much less than in the case of the distributions
shown in figures III1.5.3 and III.5.4.

In the case of the latter run—up distributions it is striking
that they all have approximately the same shape. An exception is
provided by measurement 7 in section IT which shows a wider disper-
sion than the others. An explanation of this may be given by the
fact that the wind was very gusty during this measurement (see
table III.S5.1).

Figures I171.5.3 and III.5.4 show that the measured distribu-
tions differ only slightly from a Rayleigh distribution. With the
exception of measurement 7 for section II the deviations are such
that the Rayleigh distribution gives an upper limit for the dis-
persion.

The Vlissingen Study Department of the Rijkswaterstaat conduc-
ted visual wave run-up observations in the years 1947 to 1954 at
the Westkapelse sea dike. Wave observations are not available. In
the relevant report (Rijkswaterstaat, 1955) a comparison is given
of the run-up heights measured simultaneously on adjacent dikes
sections with different roughness and slope gradient. The average
of the highest five observations in a series of 10 minutes was taken
as a measure of the run-up. The results were used to test the hypo-
thesis that run—up is proportional to tan & . The measurements did
not conflict with this assumption. Because of the wide dispersion of

the results, a more positive conclusion is difficult to arrive at.

Plane, smooth slope

The first systematic experiments to determine the run-up of
wind generated waves were carried out in 1936 (M 101). Both the
generation of waves by wind and the resulting run~up on a plane
smooth slope of 1:34 were examined. In presenting the measured
results, the stagnation pressure of the wind was used as the inde-

pendent variable. The measured dependent variables were the mean
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wave period, length and height, and the run-up distributions. The
water depth was 0.32 m.

In measuring the characteristics of the waves associated with
a given wind speed and wave generating system, a wave damping struc-
ture was present at the downwind end of the channel. In this way the
disturbing influence of reflection off the 1:3} slope on the oncoming
waves was eliminated as far as possible. The waves were produced
either by wind alone or, to eliminate the drawback of a limited fetch
(19 m), by a combination of wind and a wave board: 'Waves produced
with an infinitely large fetch, so-called equilibrium waves, are genera-
ted by adjusting the wave machine experimentally in such a way that
under the influence of the wind the dimensions of the waves do not
change” (Report M 101).

Measurements of these equilibrium waves showed the following

relationship between run-up and dynamic pressure (see also Wassing,
1958):

2= 41]/'5_‘

{Z in cm (111.5.1)

s in cm water column
or

Zpy = 3.3W z in cm, w in m/s, (111.5.2)

in which w is the wind speed calculated from the stagnation pressure
s measured 43 cm above the mean water level.

A dimensional analysis of the problem of the run—-up on a plane
slope with gradient & , of equilibrium waves generated in water with
a depth d, by wind of average speed w at a height y above the mean

water level, gives

Zo1(& 3 a.n) (I11.5.3)

W
Vad

This relationship can be specified further if we assume that the

wind speed increases with the distance above the water surface to

the power 1/7. In this case w and y only occur in the combination w
!

wy ﬁ

<|a

- 1
%:f{v%( )7:Cl-n} (111.5-4)



Equation III.5.2 shows that Z () is proportional to w so that

_ 1
_sta= .v_éw_g(_‘;_ff(a) (II1.5.5)

From equation III.5.2 and the data d = 0.32 mand vy = 0.43 m it
follows finally that:

1
Z<2>=0-19Wl/—§—'(§—)’ for tan @ = 1:3}  (III.5.6)

This formula is equivalent to

9 1 1
= 5 -3 I11.5.7
2 =7.5d%s%y ’ ( )

The above is a formalized version of the derivation given in report
M 101 which led to the following expression , also quoted by

Wassing:

N
,us

1
2= 7d3s%y 7

(I11.5.8)

In equation III.5.8, which is not dimensionally homogeneous,

all measurements must formally be quoted in cm. However, the coef-
ficient 7 has the dimension [L]nfi ; the small exponent means that
only a minor error will be made if units other than cm are used.

The assumption that the waves are equilibrium waves is an
essential feature of this approximation. The adjustment of the wave
generator and the fetch of the wind must be introduced as additional
parameters if this assumption is not applicable. The model waves
described were not an identical imitation of equilibrium waves in
natural conditions. It is not known to what extent the indicated
run-up formulae are valid under natural conditions.

In the foregoing, run-up has been correlated with wind speed
and water depth. An'attempt can also be made to correlate run-up
with the incident wave. In the case of the equilibrium waves
described above, both the height and length were approximately
proportional to the wind speed. The wawve steepness was therefore
practically constant {approx. 0.07) as was the relationship between

run-up and wave height:

2(2):: 2.1 ﬁ (III.S.Q)

For a comparison with wave run-up formulae it is desirable
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to determine the values of the parameters z,., cotdQ /ﬁ and z
— . (2) (2)
cot o / VHLO. These are indicated in table II.5.2 both for waves

generated by wind alone and for equilibrium waves.

WAVE TYPE W H L/H 2(2) z(g%cata 1(2153;9_
(m/s) lcm) - lcm) KL,
WIND-GENERAT
ED WAVE 5.7 3 8.6 bk 5.14 1.75
“ 7.6 L 9.7 5.4 5.60 1,80
's 9,8 5 11.0 9.0 5.30 1,90
. 1.4 § 12,5 1.5 §.70 1.90
EQUILIBRIUM | 5 g5 | 7-13 | =14 | 16-28 7.35 | 175 - 1.95

TABEL II.5.2

The value of z cot @ /H varies considerably more than that of

2
cota / ﬁio. The latter is identical to the Z'(Z) value

z,
dé%ined by equation III.3.1. According to the hypothesis outlined
in chapter III.3, its value is only dependent on the form of the
joint distribution of H and L_. This is not known for the experi-
ments concerned. It will simply be noted that the measured values
fall within the range of 1.5 to 2.25 indicated in conclusion 4 in
chapter III.3 (page 103).

In 1942 a series of experiments were carried out (M 202) to
examine the influence of the slope gradient. The waves were gene-
rated by a combination of a wave machine and wind. Two wave heights

of nominally 0.07 m and 0.10 m were used; they were designated low

and high respectively. The period was practically constant, amoun—

ting to approx. | sec. The water depth was 0.35 m. The wave length
was approx. 1.40 m so that the nominal wave steepness was 0.05
or 0.07.

Of two adjacent slopes, one with a gradient of 1:34 served

as a reference while the gradient of the other was varied. The
influence of the gradient alone was found by dividing z(A) by
z(ref.) for each experiment. In this way variations in wave height
etc. were eliminated. In figures I1I1.5.6 and I11.5.7, 2(50)(a)
/z

(50>(ref.) is plotted against tan @ and sin 20 on a linear scale.
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As indicated by Wassing (1958) the run-up for low slope gradients
(up to tana = 1:3) is provmortional to both tand@ and sin 2d .
These are then in a ratio of approx. !:2 to each other. With steeper
slopes, the run-up increases less rapidly than according to tan Q
but remains approximately proportional to sin 20 in the measurement
range (tan o0 <€ 1:2). A formula in which z is proportional to sin 2Q
therefore has a wider range of validity than one with tan @ . Use of
the latter has the advantage that it is closer to the normal manner

of indicating the slope gradient. In addition, the more limited

range of validity of a tand-formula is not a disadvantage in practice

in the Netherlands, where there are practically no sea dikes with a
slope gradient in excess of 1:3.

A relationship between wave run-up, wave height and slope
gradient derived from the experimental results in M 202 is indicated
by Wassing as

z,,=7.5Htana for H/L=005 (I11.5.10)
35gcotALi10

zy=7 Htana for H/L=007
(III.5.11)

Here H is the average of the wave heights, "which did not vary
greatly'.

Because these expressions were used as one of the bases of

a rather different run-up formula which has since become better
known, it appears desirable to quote in full the reasons indicated
by Wassing:

"Since the waves in the model were proportionally too steep
(resulting in too small values of 2(2)), the difficulty
arose how to transfer the model results to the prototype.
After considering all the factors involved, it was decided
to increase the factor 7.5 in the model to 8 in the proto-
type, for the 2% run-up on a dike with a stone revetment
and waves of a steepness of 0.05. The run—-up 1is thereby
expressed in the "significant wave height" H% . In this way

the following formula was obtained:

2)=8Hy tanQ (for B =005)" (I11.5.12)
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Quite apart from the question of the extent to which equations
II1.5.10 and III.5.11 are representative of the results of M 202
(considered on page 122), it is clear that the reasons indicated
for the transition to equation III1.5.12 are rather weak '). No
quantitative data were available on:

- the difference in stochastic nature of the waves in the model
and prototype;
- the transition from H to Hy, and
- the difference in roughness of the slope in the model and
prototype.
Observations under natural conditions made during storms by the
Zuiderzee Project Department gave some indications on the basis of
which the factor 8 was finally chosen. These observations were,
however, limited in number and inaccurate. For the validity of the
resulting relationship a wave steepness of 0.05 is indicated (the
steepﬁess is not further specified) but there was some uncertainty
as to the accuracy of the formula, even with this steepness. The
formula was therefore merely provisional and indicative in nature').
In the meantime the formula itself has become more widely known in
the Netherlands than the fact that it can only be considered valid
for a wave steepness of approximately 0.05 and that even then its
validity cannot be considered proven.

Perhaps unnecessarily, attention is drawn to the fact that
the above observations do not imply or prove that equation III.5.]2
is incorrect; it is simply indicated that the necessary evidence to
the contrary is not available.

Uncertainty concerning the reliability of the run-up formula
I1I.5.12 is not only due to the transfer of the model results to the
prototype, as explained above, but also to the interpretation of the
model results themselves, in particular with regard to wave heights.
The nominal height of the low and high waves was 0.07 and 0.10 m
respectively but it is not clear which height is referred to here.
The consideration of the original data did not elucidate this fact.
Both the exceedance percentage and the influence of reflection are
unknown. Uncertainty concerning the measurements is also apparent

from the fact that at a measurement point close to the slove the

') The observations between ') and ') are based on oral and written

information given by Prof. J.Th. Thijsse and Mr. F. Wassing.
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"high" wave is lower than the "low'" wave in 4 out of 5 cases. From
the data available at present, it is difficult to reach any conclu-
sions on the absolute significance of the nominal wave heights of
0.07 m or 0.10 m respectively. It seems reasonable, however, to
assume that the ratio of the wave heights in both cases was 10/7 =
1.43.

As we shall see, the data in M 202 are suitable for a partial
verification of the hypothesis introduced in chapter III1.3. According
to this hypothesis, the run—up distribution can be calculated by at-
tributing to each individual wave in the wave train a run-up corres-—
ponding to Hunt's formula. In model M 202 the period was practically
constant (waves generated by regular movement of a wave board and
modified by wind) so that the proportionality between run-up and
period cannot be verified. The assumed proportionality between run-
up and tan @ has already been confirmed. It remains to be seen that
the measured run-up distribution corresponds in terms of size and
form with the distribution of JH. For this purpose it is first de-
termined whether Z(50) is proportional to X/i;;;' The ratio ofr__ﬁ

for the "high" waves to that of the "low" waves is V10/7
= 1.20. According to the hypothesis to be tested this should also be
the ratio between the corresponding values of z<50>. These are indi-
cated in column 4 of table III.5.3. They show a moderate dispersion

around a mean of 1.20.

i 12) 13 14)
2 {em) tor
na bromnal = n
0.10m 007m
0.1 47 3.7 1,27
8.15 6.9 57 1.2
0.2 9.3 8.1 1,15
6.25 1.8 8.3 1.27
0.288 15.4 13.4 1.15
0,333 15.8 13.2 1,20
0.4 17.5 15.4 1.14

TABLE TI.5.3




The 50% run-up therefore proves to be approximately proportional to

JH tan@ . This will also be the case for run-up values with a

diff if § i \/ H
ifferent exceedance percentage 1 z<n)/z(50) is equal to H(n)/ (50)

for all n values. To test this, the wave height distribution measured
at the measuring point‘situated closest to the slope at a distance of
4 m is used. The form of this distribution was not always the same
from test to test with different @ values, However, because the
gradient angle should not influence the distribution of the waves,

it is sensible to take the average over the different & values. These
averages are shown in table III.5.4 together with the ratios of

z<n>/z(50) to v/é(n)/H(SD) for different values of n. These ratios
differ only by a few percent if at all from 1, both for low and high

waves.
Homm 0.07m W =010m
(:‘M iy Moy 26y [2(s0) I LIOH Zgn)/zgsog
2(50) Hiso) Vi Moy Z50) Heso) Vi /Moy

50 1 1 1 1 1 i

40 1 1.04 1.09 1,00 1,06 IR} 1.01
307 1.08 1.18 1,00 1.12 1.26 1.00
201 1.13 1.30 0.99 1.18 1,461 1.00
101 1.20 1.48 .99 1,28 1,58 1.03

51 1.27 1.60 1.00 1.37 1.77 1.03
21133 1.1 1.02 1,46 1.96 1.04

TABLE T .5.4

From these data it is concluded that a reasonable approxima-
tion to the measured run-up distributions mav be obtained by attri-
buting to each individual wave a run—up proportional to ~%ﬁﬂtanc1‘
The coefficient of proportionality, which was practically constant
in the experiments, is generally a variable, as explained in chapter

III.3. It is not possible to make any observations on the magnitude
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of this parameter on the basis of the measurements in view of the
reported uncertainties in the wave heights.

Greater significance is attached to the arguments which led
to the above conclusions than to those which resulted in equations
I111.5.10 and III.5.1]1 because in the latter case only one point of
the run-up distribution was used (z(z)) in place of the entire
measured distribution; moreover in a majority of cases this point
was determined by extrapolation from the measured data.

In 1955 Sibul and Tickner carried out experiments to determine
the run-up of wind-generated waves on plane slopes with gradients
of 1:3 and 1:6 adjoining a foreshore with a gradient of 1:10. The
transition between the foreshore and slope was situated at a depth
of 4.5 em, i.e. 1 to 2.5 times the H% value used. The maximum
water depth in the model was 11 cm. The results are considered
qualitative by Sibul and Tickner in view of the strongly exaggerated
wind speeds. In addition, the dispersion is very great (sometimes
a difference of more than 100% in run—up for the same w and d values),
and the measurements are influenced by reflection because the slope
took up the whole width of the channel. The results are therefore
not reproduced here.

In the context of studies preceding the design of the cross-
section of the Veerse Gat dam, in the Netherlands, systematic measu-
rements were made of the overtopping of wind-generated waves and
regular waves over the crest of a dike with a smooth, plane slope
(M 544, 1959; Paape, 1960). In addition to the quantity of overtop-
ping, the percentage of overtopping waves was also determined. From

these measurements, the following relationship was determined between

#*

H(SO)’ @ and h a’ the crest height at which 27 of the waves passed
over the crest:
h* 3 3gcotas 8
4 _ =(205+£25)(tan )2 for Hiro) (ITI.5.13)
His0) 0034 —32 <0062

This value for h*d could be equated with the 27 run-up. This defini-
tion of run-up is, however, different from the definition of run-up
where overtopping does not occur. By equating Z ) with the crest
height at which n% of the waves overtop the crest, Z(0) also becomes
a function of the form and width of the dike crest, quite apart from

the independent variables already referred to in chaper III.2. The
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results of this procedure are therefore not directly comparable with
the results of run-up measurements in which overtopping does not

occur. The fact that h', is proportional to (tan @ )% need not then

d
contradict the measurements showing that z is proportional to tan Q.
An evaluation of the relative merits of the two methods of determining
wave run-up would fall outside the scope of this chapter.

Van Oorschot and d'Angremond (1968) measured the run-up of
irregular waves produced by a programmed wave generator. By directing
wind over the waves a shear stress was exerted on the water surface.
The average wind speed did not exceed 3m/sec. In one case the waves
were generated entirely by wind, with an average speed of approxi-
mately 8 m/ s. The slope was plane and smooth with a gradient of
1:4 or 1:6. The water depth was 0.40 m. The wave steepnessAH% /gT2
was varied between the limits 3.9 x 10_3 and 12.2 x 10_3. T is defined
as the period of the spectral component with maximum energy density.

In interpreting the measurements particular attention was given
to the influence of the width of the spectrum,expressed in terms of €.
In calculating € , the high frequency part of the spectrum was cut
off from the point at which the energy density corresponded to 57 of
the maximum. The experimental values for € were between 0.22 to 0.59.

The measurements showed no influence of wave steepness and
relative water depth on the form of the run-up distribution. However,
the dispersion of the measured run-up values seemed to increase with
increasing € values. Expressed differently: a broader spectral energy
density function of the waves results in a broader probability den~—
sity function of the run—up values. An example of this is given in
figure I11.5.8 where a number of measured points are shown. The lower
run-up values ( P> approx. 0.5) are not reliable because of the
measuring method used.

Van Oorschot and d'Angremond suggest the following formula for

run-up by analogy with Hunt's formula:

Zny = Ceny (E) I/H% g2 tana (I11.5.14)

The values for C(Z) calculated from the measurements are plotted in
figure II1.5.9 against € . The maximum dispersion (at constant € )
is approx. 15%. Apart from this, the measurements can therefore be

seen as a confirmation of the validity of equation III.5.14.
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Figure III1.5.9 shows a clear tendency for C(2) to increase with €
When interpreting and using equation III.5.14 it must not be for-
gotten that the C values shown in figure III.5.9 relate to 27 run-
up. For smaller exceedance percentages, i.e. greater run-up, C in-
creases more sharply with € , and vice-versa. This is a consequence
of the fact that a variation in € leads far more to a different
dispersion of the run-up values around the mean than to a change

in the mean itself.

Van Oorschot and d'Angremond have applied Saville's hypothe-
sis to two measurements, using the measured H-T distribution. There
seems to be a good concordance with the measured run—up distributions,
with maximum deviations of approximately 10%. These calculations
have also shown that the influence of € on the run-up distribution
may be attributed to the influence of € on the H-T distribution.

The conclusion that the run-up distribution is dependent on
the H-T distribution coincides with the hypothesis indicated in
chapter III.3 for calculation of the run-up distribution of

breaking waves. According to these hypotheses

Z(ny= 2y )/ ALg tana (I11.5.15)

in which z'(n) i1s entirely determined by the joint distribution of
H and T.

If the wave steepness is sufficiently low, the spectrum deter-—
mines all the statistical characteristics of the wave pattern. The
form of the H~T distribution is then only dependent on the £orm of
the spectrum, and the same applies to the ratios H% /H and Tz/fz.

In this case equation III.3.1 may be converted to

zm)zfm){form of SPeCtrum}]/H%gthuna (1I11.5.16)

If we also assume that the influence of the form of the spectrum is
entirely determined by € , then equation III.5.16 becomes equation
III.5.14. However, there are spectrum forms where this does not
apply, such as bimodal spectra.

It follows from the agreement between equations III.5.14 and

I11.5.15 that there must be a link between Z'(n) and C According

(n)’
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to the definitions

A -
Cw _ Zm/ VgHYs Ttana _ 1 Eix ]/—I-E (111.5.17)
Zoy ~ Zo[\ /AT, tana Y2 Y HL VTR

For a very narrow spectrum ( E— 0 ) this becomes

1
nﬁ\lz_ﬁ-]/o.m 1/'1".—:0,32 (I11.5.18)

If the spectrum is not very narrow, C/z' may assume other values
than 0.32 but deviations will be small because V@i@? . TZ/E2
generally varies little with € .

With the aid of equations III.5.18 and III.3.3, C<2) can
be calculated if € =0 . In this case z'(z) = 1.5 (conclusion 4,
page 103 ) so that C(2) = 0.32 x 1.50 = 0.48. This value is shown
in figure II1.5.9; it appears compatible with the trend of the
measured results. A comparison of the measured results given by
Van Oorschot and d'Angremond with the distributions referred to
in chapter III.3 for waves with P = O or p= 1, will be found in
figure IT1.5.10. The measurement points cover approximately the
whole calculated interval.

Webber and Bullock (1968) measured run~up on a plane, smooth
slope with a gradient of 1:2, 1:4 or 1:10. The waves were generated
by wind in water with a depth of 0.25 m in a channel with a length of
12 m. The results contain the forms of the measured distributions
of wave heights and run-up heights. Both appeared to follow almost
a Gaussian function. The measurements are, however, presented in a

form which is not suitable for more detailed quantitative analysis.

Plane slope with roughness elements

As far as 1is known, studies of the influence of roughness
elements on the run—up of wind-generated waves has only been carried
out in the Netherlands. The first experiments of this nature were
already conducted in 1939 (M 151). The data obtained in these and
subsequent experiments are summarized in report M 544/1 (1957) and
also by Wassing (1958). Some data are described below.

Research project M 151 concentrated on the effect of roughness
elements. The measurements were taken in a wind flume with a water
depth of 0.32 m. The stagnation pressure of the wind was 0.25 cm

water column at 0.4 m above the water surface, corresponding to a
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velocity of 6.35 m/s, The corresponding mean wave height and length
were 0.08 m and 1.30 m. The slope gradient was 1:3}.

The effect of roughness is expressed in the factor r defined
in section II.5.3. The r values indicated here relate to the 27 run-
up.

In designing the.roughness elements it was initially assumed
that the elements should function optimally when the running up water
was subject to the greatest possible resistance and the water flowing
down to the least possible resistance. This led to elements with a
triangular cross—section with its base in the plane of the slope,
the seaward side perpendicular thereto or vertical, and the top
horizontal. The simplest example of this is provided by the stepped
slope (Leendertse system) shown in figure III.5.11. In the model the
corresponding r value appeared to be approximately 0.8 both for k =

0.9 cm and for k = 2.25 cm.

CROSS -SECTION

PLAN VIEW

.

FlGe. Ir.5. N

Studies have also been made of the effect of roughness elements with

a similar cross-section but limited length, placed in a specific

pattern on the slopes. The r values varied between 0.76 and 0.84.
Elements with a rectangular cross—section have also been studied.

An r value of approximately 0.85 seemed to be appropriate for the

block pattern indicated in fig. III.5.12.
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FIG. TL. 5.12,

It was felt that a greater reduction might be obtained by

providing traps on the slope. These did in fact
ment; the minimum r values were approx. 0.6. To
sult, however, a relatively large channel depth
large size of these traps and their complicated
a very expensive solution.

The reduction obtainable by means of ribs
model M 568 in which both regular and irregular

H% and T for the irregular waves were equal to

give an improve-
achieve this re-—
was needed. The

shape make them

is examined in
waves are used.

H and T for the regular

waves. In regard to the results of the experiments with the irregu-

lar waves the report is very brief; only the ratios of the 27 run-

up heights for irregular and regular waves are given. It is not,

however, explicitly stated whether these ratios
slope, the rough slope or both. Presumably both

This would mean that the r value for ribs under

apply to the smooth
are referred to.

irregular waves

is the same as that for regular waves, i.e. a minimum of 0.5 to 0.6.

A number of measurements have also been made oﬁ the reduction

in run-up caused by rows of piles. An example is quoted in M 544/1

where r = 0.80 to 0.85.
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Section II.5.3 contains a number of observations of a qualita-
tive nature concerning the effect of roughness elements. These ob-
servations are also considered applicable in the case of irregular
waves. Because of the lack of comparative material, it is not known

to what extent this is permissible for the quantitative results.

Rough and permeable slope

Very little quantitative data are available on the run-up of
irregular waves and slopes with natural roughness and permeability.

For basalt and block coverings an r value of 0.85 to 0.90 is
indicated for the 2% run-up (M 544/1). From certain unpublished measure-
ments by the Delft Hydraulics Laboratory of run—up on a plane rubble
slope, an r value of 0.5 to 0.6 may be derived.

The above values coincide with those for regular waves. It is
not known to what extent this also holds good for other types of

slope covering.

Non—-plane, smooth slope

Over the years a considerable number of model studies have
been made with a view to determining the run-up of irregular waves
on non-plane slopes. Most have concentrated on specific instances
so that the results cannot easily be generalized quantitatively.

The influence of berms has, however, been studied in a general sense
and the results are discussed below.

In project M 10! measurements were taken on a slope with
gradient 1:3} with a berm. The wave characteristics were the same
as in table II11.5.2 ( page 118).

Berms of different widths were used, with dB, i.e. the berm
depth below the mean water level, corresponding to 6.5 cm, 3.0 cm,
-0.6 cm, ~4.3 cm or -8.0 cm. In most instances the reduction was
greatest for dB = 3,0 tm or dB = -(0).6.cm. It was therefore concluded
that a berm is most effective if it is situated approximately at the
mean water level. In the following paragraphs we shall only consider
the experiments in which dB = 3,0 cm or -0.6 cm.

The berm width was 16 cm, 32 cm or 48 cm in the experiments
with pure wind-generated waves and 32 cm, 48 cm or 64 cm in the expe-
riments with the (longer and higher) equilibrium waves. Since in

addition the wave dimensions were varied for a constant berm width,
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an impression was obtained of the influence of the relative berm
width on the wave run-up reduction.

In report M 10! the berm width is exnressed in terms of wave
length. In the text both the value of B/L and that of the corres-
ponding reduction are indicated for a small number of cases. These
appear approximately identical up to a value of approx. 0.3. At
greater relative berm width, the reduction increases less rapidly
than the value of B/L. These observations are probably the basis

for the formula introduced subsequently.

< approx. 03 (I11.5.19)

1
fi
T

rﬂw
iy,
0
-3

rﬂm

To show the relationship between r and B/L more clearly, they
are plotted against each other in figure III.5.13 (solid circles)
The r value again relates to 27 run-up. As already indicated, report
M 101 compares the run-up reduction with B/L for a small number of
points only. There is, however,no priori reason why all the measure-
ment points should not be included in this comparison. Figure III1.5.13
therefore also shows the other measured results in project M 101,
with the proviso that dB = 3,0 cm or -0.6 cm (open circles). For the
solid circles there is clearer evidence of a linear relationship
between r and B/L than for the others, even if we only consider the
points in the interval 0<B/L < 0.4.

The berm width has so far been expressed in terms of wave length.
Since the wave steepness varied somewhat in the experiments it is de-
sirable to consider the relationship between r and B/H or, for in-
stance, between r and B/quif This relationship is shown in figures
ITIT.5.14 and II1.5.15. The dispersion is lowest in figure III.5.15
where r is plotted against B/ ﬁio’ although this does not differ greatly
from the dispersion in the two other figures. Be that as it may, it
is clear that these data provide no evidence to support the choice of
B/L as an independent variable.

The influence of the berm on the 2% run-up was investigated
above. It 1s, however, sensible to consider the effect of a berm
on the shape of the run-up distribution as well. It may be expected
that the elevation of the berm will play an important part in this.

If the berm is situated at approximately mean water level, all

run-ups will be influenced by the berm but not to an identical extent.
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The berm has a greater effect on smaller waves than on larger ones
so that it may be exvected that run-up of the smaller waves will be
reduced the most. In this way the distribution will become wider
and show a greater dispersion.

If the berm is not located at mean water level, its width will
still be greater in relation to the small waves than to the large
ones, which will tend to result in greater reduction but it will
also be at a relatively deeper or higher level, which will have
precisely the opposite effect. This is particularly clear in the
case of a berm situated at a high level, because the smaller run-
ups will not even reach the berm in this instance.

In order to quantify this effect the value has been determined

from the measurements in project M 101 of the expression

z
x_—._[;_‘Lﬁ.LS_OJ.]_B__. (I11.5.20)
2
[ (2) moﬂazo
x <} indicates a narrower distribution (less dispersion) and x>1 a
broader distribution (more dispersion) than for a plane slope. For

the tests in which the berm was situated only just above the mean

water level, if at all, (dB 6.5 cm, 3.0 cm or ~0.6 cm), x varied
from approx. 0.8 to approx. 1.2 in a non—systematic manner. For the
experiments with a high-lying berm (dB = -4.3 ¢cm or -8.0 c¢m) x was
generally smaller than | with a minimum of 0.65. This observation
corresponds qualitatively with the anticipated results.

In the above-mentioned measurements in project M 10! the berm
was horizontal and the upper and lower sections at the same gradient
(1:31). A number of measurements were carried out with different
shapes and a nominal berm width of 64 cm. The variants studied are
shown in figure III.5.16. The corresponding r values are also shown
in the figure. This indicates that the provision of a cap (b) brings
about a slight improvement. A berm gradient of 1:7 (c) seems unfavour-—
able: the reduction is only half that for a horizontal berm. The
steeper uppelr section (d) also suggests a greater r value.

In the model study M 277 (1946) relating to the Westkapelse
Seadike, the effect of a smooth transition between the berm and the
upper section was studied. In.general the run-up was increased
slightly and the intensity of the wave impact on the upper section

reduced.
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Oblique incidence

The influence of the direction of incidence of the waves on
run—up was examined in model project M 101. The wind channel used
had a width of 4 m. The angle of incidence 3 was varied by placing
the slope obliquely in the channel; the B values considered were
0° (perpendicular incidence), 30°, 45°, 529 and 60°. In order to
counteract undesirable reflection effects, the slope facing the
acute angle between the outer slope and the channel wall was made
of netting,up to a distance of 1.5 m perpendicular from the channel
wall. The measurements were carried out with equilibrium waves (see
table I1I.5.2) running up against the plane slope or against the
slope with a 32 cm wide berm situated 0.6 cm above the mean water
level.

Before presenting the results of these tests, the test set-up

described above will be considered.
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Disturbances are introduced at the end of the slope. Diffrac-
tion occurs in the vicinity of the transition between the closed
and open (netting) slope sections; under the given conditions, the
relative order of magnitude of the disturbance introduced in this
way is estimated at 0.1 VFE7E at points at a distance of R=>approx.
0.5 L from the transition. In order to eliminate sufficiently the
effect of these interfering factors on the measured result, the
measuring line must therefore be set back from the ends by a mini-
mum number of wave lengths. Considered in this way, the test slope
used is on the short side; the length is e.g. only approx. 1.5 L
at B = 30° and L = 1.8 m. It would have been interesting to carry
out tests also with a partially open slope as well as a completely
closed slope under perpendicular wave incidence. This would have
given an impression of the extent of the disturbance introduced in
this way.

In addition to the finite length of the test section, reflection
may also have an undesirable influence, at least in so far as the
(primary) incident waves, after reflection against the slope, are
re-reflected at some other point in the flume and then impinge on
the test slope once more. This problem often plays a part in two-
dimensional studies in wave channels when the waves are reflected
off the wave generator. In this case it is, however, of more than
usual significance because reflection already occurs against the
channel wall close to the slope on account of its oblique situation.
An angle of about 45° seems particularly unfavourable in this respect.
This perhaps explains why the run-up with @ = 45° appeared equally
large as with 8 = 0n° (perpendicular incidence) and even greater than
with B = 30°.

On the basis of the above considerations it is concluded that
the test arrangement used was not particularly sultable to measure
the influence of oblique incidence on wave run—up. The results refer-
red to below must therefore be treated with the necessary degree of
caution.

On the plane slope the reduction in relation to perpendicular
incidence was only about 10% for Q‘<450. In report M 101 it is stated
that for B > 45° the nature of the phenomenon changes: ''The waves
run up less against the dike but sween along it and the crests do

not reach a great height. The change occurs particularly when B
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increases from 45° to 60° and the wave run-up is then reduced to less
than one half of the original value".

The influence of oblique incidence on the value of Z(2) is
often taken into account by multiplying by a factor cos 8 . The mea-
sured r values for a plane slope (B = 0) are therefore plotted in
figure III.5.17 against cos § . Only with B = 52° is there a concor-
dance between the two values.

On the slope with a berm there was a considerable reduction in
run-up for B = 30° and 45°, in contrast to what was observed for the
plane slope. This may be attributed to the iﬁcrease in the apparent
berm width in the wave propagation direction, i.e. of B /cosf , the
greater the angle of incidence of the waves becomes. If the effect
of a berm under perpendicular incidence were expressed by (I—B/i),
the effect of a berm under oblique incidence could be expressed by
(1-BftL cos B)). If in addition the influence of the reduction in the
apparent slope gradient is taken into account by multiplying with
cos B , we arrive at the factor (cos 8 - B/L) which is often used.
The values for this are plotted in figure III.5.17 against the mea-
sured r values. There appears to be a good agreement between these
values, much better than between r and cos $ for B = 0 and also
better than between r and (1-B/L) for B = 0° (figure III.5.13). It
is not known to what extent this is fortuitous.

In connection with the question as to the accuracy of the
factor (cos B -B/L) reference is also made to the observation in
section III.5.6 that it is not clear that berm width should be
expressed in wave length. This is particularly true for the results
shown in figure II1.5.17 since in this case the wave steepness was
constant (1/14). A factor (cos § - B/14 H), or more generally {cosf
—(B/i)f(ﬁ/i)L where the function f corresponds to £(1/14) = 1 but
is completely arbitrary in other respects, would also coincide well
with the measurements. It must not be forgotten, either, that r
does not reduce to an unlimited extent with increasing relative berm
width; the minimum r value is approximately 0.6 (see figure III1.5.13).
Under oblique incidence and in the presence of a berm this would
imply that r could not fall below approx. 0.6 cos 8 . This correction
has been made in figure III.5.17. Six points are shifted over to the
right as a result, generally closer to the line of complete agreement

between the formula and measured values.
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wWind influence

As indicated in section III1.4.9, the wind influences run-up
through the mean water level and the oncoming waves as well as
through its direct effect on the mass of water running up the slope.

In this section, only the latter effect will be considered. Various
efforts have been made to study this influence in a model.

One aim of the experiments conducted by Sibul and Tickner (1955),
referred to in III.5.3 above, was to determine the effect of wind on
wave run-up. For the reasons indicated at that point no further atten-
tion will be given to these experiments.

Report M 544/1 of the Delft Hydraulics Laboratory (1957) gives
some data for the influence of wind on wave run-up. In the experiments
to which reference is made, the wind speed was 0 m/sec, 3.3 m/sec,

9 m/sec and 12 m/sec respectively at 0.2 m above the mean water level.
Only one wave height, period and length is referred to. This probably
relates to the waves produced by the wave generator. No data are repor-
ted on the influence of wind on waves. On the basis of the information
referred to above, it is therefore impossible to draw any conclusion

as to wind influence on run-up.

In subsequent experiments in the Delft Hydraulics Laboratory (M
872, 1968) both the run-up heights and various wave characteristics
were measured at different wind speeds w varying from O m/sec to 17 m/
sec at a height of 0.4 m above the mean water level. A number of com-—
binations of wave generator adjustment (regular), water depth (0.5 m
and 0.8 m) and slope gradient (1:3, 1:4,1:8) were used. To limit the
influence of wind on the oncoming waves, the slope was placed at only
a few metres from the wave generator. Despite this precaution, the

wave height increased significantly as the wind speed rose. An attempt

can be made to eliminate this effect by normalizing run-up e.g. with

the aid of equation II1.5.14.. In the case in point the period was prac-
tically constant and €=z 0 so that T may be equated to the period T of

the wave generator. In addition H(]5> was used instead of H% . If the

wave heights follow a Rayleigh distribution these two parameters will
be practically identical. Making these substitutions, equation I11.5.14

becomes

Z(n) (111.5.21)
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In order to investigate the wind influence on wave run-up, C(]) and
C(15> have been plotted against w with constantvd,a and wave gene-—
rator setting. Of the resulting graphs, figure III.5.18 shows those
which relate to C(IS) for slope gradients of 1:3 and 1:8. These are
representative of the entire group since C(l) has the same charac-
teristics as C<]5) and because in both cases the results for a slope
gradient of 1:4 do not differ significantly from those for a slope
gradient of 1:3. In the majority of the experiments, the difference
between C(l) and C(IS) was relatively small and practically unaffec-
ted by w. The following conclusions may be drawn from these data:

For constant T and O values, the variation of C with w is greater

the smaller the value of T. For the highest T value (1.8 sec) C is
practically constant. In this connection it should be noted that

the wave heights have been varied as a function of the period in

such a way that H(IS) increased with T. A statistical relationship
with T therefore definitely does not imply a causal relationship.

For a slope gradient 1:3 no trend of C with w can be noted but with
that of 1:8 there is a slight increase in C with w.

For the slope gradient 1:3 the variation of C with T is practically
independent of w.

The high wind speeds used in the model may be said to be exaggerated
if it is assumed that Froude's scale law must be complied with for
true-to—scale representation of wind influence on run-up. This is
apparent from a comparison of the model values of w (max. approx.

17 m/sec ) and H(IS) (approx. 0.05 m with T = 0.7 sec to approx.

0.25 m with T = 1.8 sec) with the respective values in the prototype,
under conditions in which it is interesting to know the wind influence
on run-up. Viewed in this way wind speeds of more than 5 m/sec in the
model must practically always be considered exaggerated. In the range

w=0m/sec tow=>5m/sec no trend of C with w will be noted in these

measurements.

An attempt may be made to determine the influence of wind by
calculation as well as by tests. An estimate is given below of the
otder of magnitude of this influence. For this purpose the equilibrium
of a section of running up water is considered. The forces acting on

the latter in the direction parallel to the slope result from:
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wind (a)

gravity (b)

resistance (c)

pressure gradients (d)

The relative influence of the wind is equated to the ratio between
wind force and the sum of the other forces. It is assumed that the
resistance and pressure force are negligible in relation to the
weight component. This leads to an overestimate and an under—estimate

of the wind influence, respectively.

Let us assume that the wind force ver unit of surface area is equal
to Cpaaz. The coefficient C is a function of a Froude number based
on w and the height y above the water surface at which w is measured.
For w = 15 m/sec and y=0.4m C= 4 x IO_-3 (Wu, 1970).

Let us as;ume that the height of the section is KH in which H is the
height of the oncoming wave and K a coefficient with a representative
value between 0.05 and 0.1. The component parallel to the slope of

the weight per unit area is

PgKHsinQ

The relative wind influence is then

C Paw®

K P gH sina

wn

or, substituting the numerical calues,

-2
W

-5
(5t010)10 —-—————-gH Sind

In the experiments referred to az/gH(IS) amounted to a maximum of
230 (!) and sinq@ to a minimum of 0.12 so that the upper limit of
the above ratio was approximately 0.18.

The experiments discussed above and the estimate described
indicate that the direct wind influence is not very significant on
run-up. Comparative experiments would be necessary to obtain greater
certainty in this respect, with the wind acting on the running up
water in one instance and not in the other, while in both cases the

oncoming waves would be exposed in an identical manner to wind.
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IV.

1

PART 1V

WAVE OVERTOPPING

INTRODUCTION
The structure of Part IV, dealing with wave overtopping,

coincides largely with that of Parts II and III. An important
difference lies in the fact that only one part is devoted to
wave overtopping in which both regular and irregular waves are
discussed. A division into two parts for the purpose of clarity

did not seem necessary here because of the limited quantity of

wave overtopping data.
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PARAMETERS

The independent parameters which determine the overtopping
of waves coincide entirely with those for wave run-up referred to
in chapters II.2 and III.2. It is desirable in this case to choose
the crest height (hd) of the dike above the mean water level as the
characteristic length A of the cross-section.

The dependent parameter is wave overtopping, which may be
expressed quantitatively in a variety of ways. Often the discharge
over the crest is determined per unit of width, averaged over time
(q). Sometimes also the overtopping volume per wave is considered.

By using parameter q only, it is not possible to obtain
anything more than a rough description of wave overtopping. The
temporal variation of the instantaneous flow and of the velocities
and layer thicknesses of the overtopping water will then not be
considered. Little is known about these variables. This is due in
part to the fact that they are difficult to measure. In view of
this fact they will not be referred to below and only a will be
used as a measure of the overtopping. The expression aTk/HkLk or
a/ ng3 is often used as a dimensionless parameter for q, so that
by analogy with the results of the dimensional analysis in Chapters

I1.2 and III.2 the following expressions are obtained:

jklkk = 7‘(% ’ﬂ&"("%%?’ Rey, Wey, %» _‘;%9'_( B, Pw, formfactors)
(Iv.2.1)
or
———fgﬁ.:fz(% ,etC e ) (1V.2.2)

Before presenting and discussing qualitative and quantitative
experimental data on the influence of the dimensionless groups
referred to above, the next chapter indicates work done in the

non-experimental area.
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THEORIES

An analytical approach to the problem of overtopping of
regular waves has been described by Kikkawa et al (1968). Shi-igai
and Kono (1970) give an almost literal repetition of this work.
They consider the flow pattern as a succession of different states
of steady flow so that for the instantaneous discharge over the

crest a weir—discharge formula may be used:
q=2 m)/2g (y-hq)? (1v.3.1)

in which y is the upstream energy level and hd the crest height, both
measured above the mean water level, and m is a discharge coefficient.

The energy level y is written as:

y(t)=KHF (1) (IV.3.2)

in which H is a wave height and F(t) a periodic function of time
with period T and a maximum of 1, and K is a coefficient which may
depend on the slope gradient and the wave steepness. Substitution

in equation IV.3.1 and averaging gives

2
2

t
5=§—m]/'£—g‘+f {KHF(t)-hd} dt (1V.3.3)
to

in which tO and t1 are the limits of the time interval for which

Y(t)BJ%F For an analytical determination of the integral,a piece-

wise linear form function F(t) is taken, as shown in figure IV.3.1:

f‘”: ~ N .
\/

Fie., I™.3.1

Equation IV.3.3 then becomes

q . 2 2 h
Vagw - 15 MK (=) (1V.3.4)

Kikkawa et al choose the value of 0.5 for the discharge coefficient
m. There then remains only one unknown coefficient K which may be

calculated from measurements. For this purpose Kikkawa et al




use their own measurements and results published by Saville (1955)
and Sibul and Tickner (1956). K shows little correlation with the
wave steepness H/LO but a close correlation with the slope gradient

o ,» as is apparent from figure IV.3.2,
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K reaches a maximum value for a = 20°. Kikkawa et al relate this
to the critical value of & at which the wave just breaks on the
slope. Qualitatively, the influence of ¢ on overtopping is there-—
fore identical to that on run-up.

In figure IV.3.3, q/ ZgH3 is plotted against hd/H according
to equation IV.3.4, for a number of K values. The measurement results
are also given for four slopes. The trend of the measurement points
coincides reasonably well with that of the calculated curves (K
being chosen in such a way that the coincidence is optimal).

The simplifications introduced in the above derivation are
fairly drastic. This is particularly true for the use of a dis-
charge formula for permanent flows. It is therefore important for
the relationships found to be tested against measurements before
they can be considered usable.

The overtopping of irregular waves over vertical sea walls
with or without stone covering at the base has been calculated by
Tsuruta and Goda (1968) from the occurring or assumed wave height
distribution on the one hand and from the relationship between a

and H known from measurements with regular waves on the other.
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Model experiments showed that overtopping per wave in an irregular

wave train depended on H in much the same manner as in a regular

wave train. The result of their calculations is shown in figures

IV.3.4

and IV.3.5.
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For a number of cases without stone covering Tsuruta and Goda

compared their calculations with model measurements. The calculated

values of q appeared to be approximately twice the measured values.

Tsuruta and Goda accepted the difference as a safety factor.
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A calculation of the kind described above cannot be carried
out for gentle slopes because too little data are available on the
overtopping of regular waves on such slopes. There is also less
need for this because the overtopping of irregular waves on gentle
slopes has been measured in considerable detail (M 544, 1959; Paape,
1960). In this connection the following points may be noted,

Paape (1960) observed that there is no direct relationship
between the dimensions of individual waves and the fact as to
whether or not they overtop the crest. He considers the existence
of a relationship of this kind as a condition for calculation of the
total overtopping of irregular waves on the basis of data for regular
waves. However, this condition is not necessary. Individual waves
may give an overtopping which differs from that in regular waves,
provided the differences cancel on average. This same concept was
the basis of the methods indicated in chapter III.3 for calculating

wave run-up distributions.



IV.4 QUALITATIVE EXPERIMENTAL RESULTS

IV.4.1 Introduction

Measurements of wave overtopping have been made primarily in
Japan, the Netherlands and the United States. The relevant publi-
cations prior to 1960 are all American; in 1960 Paape published
the results of a detailed series of tests in the Delft Hydraulics
Laboratory; and the publications which have appeared since 1960
are almost all of Japanese origin. The Japanese and American measu-
rements are generally concerned with overtopping over steep and
often vertical walls. The Delft Hydraulics 'Laboratory used slope
gradients of 1:8 to 1:2 for its measurements.

The influence of various independent parameters on wave over-—
topping is considered from the qualitative angle below. No explicit
distinction is made between regular and irregular waves. Only plane
smooth slopes are discussed with or without a sloping foreshore
(1:10 or less). Qualitatively, the influence of various parameters
on wave overtopping appeared altogether identical to that on wave

run-up.

IV.4.2 Slope angle

For waves breaking on a slope overtopping increases with a .
The overtopping reaches a maximum value for the slope gradient at

which the wave just ceases to break on the slope.

IV.4.3 Relative crest height hd/Hk

Overtopping reduces when the crest is situated relatively

higher above the mean water level.

IV.4.4  Angle of incidence

Overtopping of oblique waves has only been measured for Bo =

45° and @ = 90° (Ishihara and co-workers, 1960). Overtopping was
lower than with B = 0°.

IV.4.5  Wave steepness Hk/ng2

Japanese measurements on fairly steep slopes showed that

a/ Vng3 was practically independent on the wave steepness Hk/ng2

or Hk/Lk' A number of American measurements showed that on slopes of
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- 3 . . . 2 .
less than 1:3 g/ gH, diminished as Hk/ng or Hk/Lk increased.

IV.4.6 Ratio Hk/d

Data on this ratio are known only for vertical walls with a
sloping foreshore. Overtopping is maximum for Hk/d values at which
the wave breaks just in front of the vertical wall (where d is

defined as the depth at the wall).

IV.4.7 Reynolds number Rek

No data.

IV.4.8 Weber number We

k
No data.
IV.4.9 Form of energy spectrum
No data.

IV.4.10 Wind velocity parameter w lO/ng

Overtopping generally increases with wind velocity. For
vertical walls the extent of the increase depends on whether the
waves break in front or against the wall. For a vertical wall with
its base at the mean water level a reduction in overtopning has

been noted with an increase in wind velocity.

IV.4.11  Wind direction g

No data.
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Iv.5 QUANTITATIVE EXPERIMENTAL RESULTS

IV.5.1 Introduction

A summary of all published laboratory measurements, known
to the writers,of overtopping over dikes with plane, smooth slones
is given in table IV.5.1. In addition, some data are available on
rough and non-plane slopes.

In compiling a summary of quantitative data for use in the
Netherlands, it is desirable to give relatively much attention to
measurements of overtopping of irregular waves over dikes in which
the outer slopes have a gradient of less than 1:3. According to
table IV.5.1 only the measurements by Sibul and Tickner (1956) and
the Delft Hydraulics Laboratory (M 544, 1959, Paape, 1960) qualify.

Iv.5.2 Field measurements

As far as is known, field measurements of wave overtopping
have only been carried ocut in Japan. Shiraishi et al (1968) des-
cribe measurements at a wall with a gradient of 2:1 with a top-
most section concave on the seaward side. The results as such are
not considered here because of the incidental nature of the measure-
ments. Similarly, no analysis is given of the results in order to
inyestigate_scale effects or the influence of wind for instance,
because of the lack of comparative material. Shiraishi et al
compare the field measurements with measurements in a model using

regular waves. However, this procedure is not considered useful.

IV.5.3 Vertical seawall

As is apparent from table IV.5.1, a considerable proportion
of the publications listed concern overtopping over a vertical
seawall. The results are discussed briefly in this section. Use
is made here of the study by Tsuruta and Goda (1968) who, as indicated
in chapter IV.3, calculated the overtopping of irregular waves on
the basis of data for regular waves. For this purpose they re-analyzed
and re-grouped practically all the measurements published prior to
1968 on the overtopping of regular waves over a vertical seawall
(Saville and Caldwell, 1953, Saville, 1955; Ishihara et al, 1960 and
a number of Japanese publications which are not listed in this report).

They worked on the basis of the following equation:

q _¢(H hg d
-\/;g—da"‘f(f’ Lo teny) (1V.5.1)
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MEASUREMENTS OF OVERTOPPING OVER DIKES WITH PLANE, SMOOTH SLOPES

NATURE OF WAVES

SLOPE ANGLE OF
FORESHORE
AUTHOR (S) YEAR IRREGULAR GRADIENT GRADIENT INCIDENCE
REGULAR | GENERATED (a or tan @) By
BY.
Saville and Coldwell 1953 4 1:10 g0* 0°
Saville 1955 X 1:10 80’ 0*
1:15
1:3
1:6
Sibul 1955 X hor. 1:2 0°
1:3
Sibul + Tickner, .
also contains dato 1956 Wind 1:10 1:3 0
by : 1:8
W.E.S. Vicksburg X 1:10 1.3 0°
1: 6
H.L.-Delft M-544 1958 Wind hor. 1:2 0°
Paape 1960 1:13
1:3.5
1. 4
1: 58
1:86.5
1.8
X her. 1:5 g°
Ishihara et al 1960 X 1:10 90° 45°
90° - 0°
60°
L0*
30°
20°
Iwagaki et al 19686 X Regular waves 1:15 90° 0°
+ wind
Tominoga et al 1966 X 1:30 111 0°
Shiraishi et al 1968 X 1:10 90° 0*
Tsurute and Goda 1968 X Wove machine 1:20 90° 0°
{10 frequencies)
Kikkowa et al 1968 30° .
X hor. 0
Shi- igai and Kono 1970 30°

TABLE I . 5.1
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in which d is the mean water depth immediately in front of the wall,
HO the wave height on deep water and tan Yy the gradient of the
foreshore, which varied from 1:10 to 1:30. The result is shown in
figure IV.5.1, in which q/ l/2gd3 is plotted against Ho/d with

hd/d as a parameter. Only the measurement points corresponding to
hy/d = 1 are shown in the figure. The corresponding values of the

parameters d/Lo and y are not explicitly indicated.

=
0.01 € & € 0.1

—_

According to Tsuruta and Goda the influence of d/LO is insignificant
provided that HO/Lo is greater than 0.0l. The influence of the fore-
shore gradient was not perceptible. According to Tsuruta and Goda
the lines of constant hd/d’ drawn through the centres of the respec-—
tive point systems, give a good reflection of the trend of all
measurements although in individual cases deviations are possible
such that the points may be situated on adjacent curves.

Ishihara et al (1960) carried out measurements which they
compared with those of Saville and Caldwell (1953) in order to inves—
tigate possible scale effects. They concluded that "the experimental
results obtained by the authors (Ishihara et al) using comparatively
small models are approximately in agreement with those for as large
scale model as the shorestructure in the field by the Beach Erosion
Board. This fact is considered to verify the validity of the dimension-

less expression of the quantity of overtopping described previously'.
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The interpretation given by Ishihara et al is, however, based on a
misconception. The measurements by Saville and Caldwell were in fact
carried out on practically the same scale as those of -Ishihara et al,
but, "for convenience', Saville and Caldwell converted all their model
measurements into equivalent prototype measurements on the basis of

a 1:17 scale, and all the values are given in these prototype dimen-
sions only. They indicate e.g. d =9 ft and hy = 12 ft as "structure
test conditions'". This is misleading because these dimensions are not
valid for the test conditions.

The study by Ishihara et al is the only known attempt to study
scale effects in the quantity of overtopping. The conclusion is
therefore that no quantitative data are available on this aspect.

A comparison of the measurements by Ishihara et al with those
of Saville and Caldwell can give an indication of reproducibility
of the results. In an example quoted by Ishihara et al, deviations
in overtopping occur corresponding to a factor 2. However, the trend
in both series is exactly the same. The difference is less than in
the results obtained by Iwagaki et al (1966) who repeated earlier
tests made by themselves; deviations occurred corresponding to a

factor 4.

The data referred to above all relate to regular waves. The
overtopping of irregular waves over a vertical sea wall was measured
by Tsuruta and Goda (1968). The movement of the wave generator was
the sum of 10 sinusoidal components. The resulting energy spectrum
of the waves represented to some extent a line spectrum. The measure-
ments were carried out in the framework of the calculations referred
to in chapter IV.3, page 152 and were intended to compare the overtop-
ping of irregular waves with those of regular waves for a very limit-
ed number of cases and not to measure overtopping for a wide range
of independent parameters. Only 8 measurements are reported. The
result is summarized in table IV.5.2. The depth d was 35 cm and the

gradient of the foreshore 1:20.
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ﬁ(cmz/sec)
Hy, (cm) T (sec)
hy=9.bcm hy=12.8cm
7.5 1.43 -_ 0
10.5 1.51 - 1.2
12.6 1.51 5.5 5.9
14.8 1,60 10.8 7.3
16,4 1,58 16.9 12.8
TABLE IT .5.2

IV.5.4 Plane, smooth slope

The Delft Hydraulics Laboratory measured the overtopping of
irregular waves over dikes with plane, smooth slopes and a horizon-
tal foreshore (M 544, 1959; Paape, 1960). Seven slope gradients were
applied, varying from 1:2 to 1:8 (see table IV.5.1). The waves were
generated by wind in all cases. The average wind velocity W was
8 m/sec or 10 m/sec in combination with all slope gradients. In
addition a number of tests were carried out with w = 4 m/sec and
6 m/sec for a slope gradient of 1:5. In practically all cases the
depth was 0.30 m.

The dimensionless overtopping 2 T aT/H(50>z is plotted in
figure Iy.5.2 against hy/H
(cot a )? /H(50

parameters. The value T is the mean duration between two subsequent

(50) and in figure IV.5.3 against hd

X with tan @ and the wave steepness H(SO)/E as
wave crests. No indication is given of the way in which the wave
crests are defined. The wave length T is calculated from the depth
d and the period T on the basis of the conventional formula for
periodic waves (equation II.5.5). Figure IV.5.2 also indicates the
percentage of waves which overtonped. It is apparent that this per-
centage is almost exclusively a function of the dimensionless over-—
topping and not of wave steepness and slope gradient. Run-up formula
ITI.5.13 was based on these data.

The measurement points in figure IV.5.3 all seem to fall within
a fairly narrow range, with the exception of the points for tana =

1:2, to which we shall return later (page 165). Overtopping diminishes

in a more or less exponential manner with increasing crest height.
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For a fixed hy (cot(i)%/H(SO) the dispersion in overtopping
corresponds to a factor of 3 to 4. This is of the same order of
magnitude as in the case of overtopping of irregular waves over a
vertical seawall, in which all important parameters were considered.
This suggests that this dispersion is the consequence of random
factors. To the extent that this is in fact the case, it follows
that there is no possibility of reducing the dispersion by choosing
other parameters. Neverthéless an attemnt can be made to obtain an
equally good result by choosing simpler parameters as described
below.

The average volume of overtopping water per wave is qT per
unit of width. This factor is rendered dimensionless by dividing by
the surface area of the wave ahove the average water level; for a
sinusoidal wave with height H and length L this is HL/2T . This may
also be interpreted as the volume (per unit of width) which is carried
forward in a time interval of half a wave period throughout which
the water level is above the mean level (Ishihara et al, 1960). In
this way we obtain Ffe dimensionless parameter 2Ttaf/H(50§i. This
contains both T and L, which are coupled through the depth. A simpler
expression is obtained by not using T but‘iO defined by

=2
0, = 3% (1V.5.4)

In this case the overtopping parameters becomes

.?lc_il__:(gn)?.__ﬂ_:. (IV.5.5)
H(so)lo gH(so) T

which can be obtained from the original expression by multiplying
by i/fo. This ratio was greater than 0.95 in all the cases reported
in M 544, with one exception where the value corresponded to 0.90.
Having regard to the dispersion of the results it may be concluded
that on the basis of these experiments no preference can be given
to T in place of EO. The opposite is perhaps also the case but ib
should be given preference a priori because the period, and there-
fore Eo’ is always a characteristic parameter of the wave movement,
also on the slope, while T is a local parameter which is only impor-—
tant at a certain depth.

In order to see the influence of the wave steepness H<50>/£0

on overtopping, the parameters H and Lo must not both occur in

(50)
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the dimensionless overtopping. We have

_ 3 _
(2102 — 3L — = (212 g |/ Hie (1IV.5.6)
gHs0 T VgH (505 Lo

(50)

and this parameter is almost solely dependent on h, (cot(l)%/H(50>

as follows from equation IV.5.5 and figure IV.5.3. From this it would
appear that the dimensionless overtopping a/ gH(SO) is inversely
proportional to ]/H(SOS/EO (as is the dimensionless wave run-up
Z/H(SO))' However, this conclusion must be treated with some caution
in view of the dispersion of the points in figure IV.5.3 and the

fact that the wave steepness was varied by a factor of less than 2

only. .
As an alternative treatment of the measured results, a/llgH(SO)

is plotted in figure IV.5.4 against hd<COt‘a)%/H(50)' All the points

£ i .5. . , ]/ 3
rom figure IV.5.3 are also shown. The parameter q/ gH(SO) has

been multiplied by a constant for easier comparison of the two
systems of points. These show practically the same pattern. This
means that no conclusion can be drawn from these experiments in
regard to the influence of the wave steepness. However, on the basis
of the relationship with the wave run-up, on which wave steepness
certainly has an influence, it may be anticipated that this will
also be the case for overtopping, in which case the parameter

6 / gH T deserves preference over G/ gH(SO) .

(50

As already indicated (page 160 ), the measured points for tan Q
= ]:2 differ completely from the others. This difference is attributed
in report M 544 to the fact that waves generally no longer break at
this slope angle, but are reflected to a considerable extent. An
estimate of the percentage of non-breaking waves may be made on the
basis of the assumptions that the breaking criterion defined by
Iribarren and Nogales (equation II.3.4) is applicable to the indivi-
dual waves in an irregular wave train, that the steepness H/Lo‘is
approximately Rayleigh-distributed, and that H(50>/fo = 0.05 (figure
IV.5.3). The results are given in figure IV.5.5 showing that between
cot @ = 2 and cot @ = 3 there is a sudden transition in the percentage

of non-breaking waves.
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This agrees with the model observations.

IV.5.5 Plane slope with roughness elements

Few measurements have been made of overtopping on artificial-

ly roughened plane slopes. A summary is given in table IV.5. 3.

NATURE
AUTHOR YEAR OF tan Q TYPE OF ROUGH-
WAVES NESS
Sibul 1955 regular i:g laths
Saville 1955 regular 1:1.5 } stepped slope
D.H.L. 1963 irregular | 1:3.5 | stepped slope
(=657 (wind) ribs
blocks
stakes
TABLE I¥.5.3

The influence of roughness on wave overtopping is more compli-
cated than that on wave run-un. In the latter instance only those
situations are considered in which no overtopping occurs (a = 0).
The factor r, a cuantitative measure of the effect of roughness on
run-up, then seems dependent almost solely on the form of the rough-
ness elements and their relative size. In the case of wave overtop-
ping (al>0), r is, however, also dependent on the relative crest
height or, in other words, on the relative overtopping which would
occur in the presence of roughness. This can be most easily seen
in the case of regular waves. When overtopping is reduced to zero

by the provision of roughness elements, r becomes O. For the same
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roughness and a lower crest height overtopping may still occur,

in which case r> 0
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Figure IV.5.6 shows the results of a number of measurements
made by Sibul where the crest height varied from high values where
r = 0, to negative values, where r @ 1. For the crest height at
which the relative overtopping aT/H2 is maximum, the r value was
0.8 to 0.9. The roughness used by Sibul consisted of laths with
the flat side secured to the slope and a thickness of 1/10 to 1/4 of
the wave height.

In measurements carried out by the Delft Hydraulics Laboratory
(M 657), in which the relative crest height was varied, r was
between 0.45 and 0.25 for ribs and between 0.35 and 0.12 for stakes
as the roughness elements.

The available data on the influence of roughness on wave
overtopping are too limited for a quantitative generalization to
be possible. Data on incidental cases are not fully reproduced here.
This also applies to the parameters discussed in the following sec-

tions. Generally reference is only made to measurements which were
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carried out without considering the results.

IV.5.6 Rough and permeable slope

Saville (1955) measured overtopping of regular waves on a
plane slope with a gradient of 1:1} covered with rubble. Shiraishi
et al examined the influence of a tetrapod system in front of a
vertical seawall. Tsuruta and Goda (1968) did the same for different
types of concrete blocks, the shape of which was not specified in
detail. Their analysis was based on 8 reports (in Japanese) by
various authors. The results for regular waves is shown in figure
IV.5.7. The gradient of the covering is not indicated but was probably

approx. l:lj.
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IV.5.7 Non-plane, smooth slope
Saville (1955), Merkens (1964) and Tominaga et al (1966)

measured overtopping over seawalls of various shapes, generally
with a gradient in excess of 1:1 and a concave surface towards”
the sea. Saville also gives results for a composite slope with a
gradient of 1:3 below the mean water level and 1:6 above, and for
a slope with a gradient of 1:3 and a berm at the mean water level.
Model reports published by the Delft Hydraulics Laboratory also
indicate data for wave overtopping over dikes with different

cross sections, sometimes including a berm (M 657). This shows
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that a berm gives the greatest reduction in overtopping when it is
situated approximately at mean water level or just above. Overtop-
ping generally diminishes exponentially with increasing crest height,

as in the case of plane slopes.

Oblique incidence

Data on the overtopping of oblique waves have been published
by Ishihara et al (1960) for a vertical seawall and a foreshore
gradient of 1:10. The angle of incidence was 45° in deep water and
20° to 40° at the wall itself. The overtopping is reduced more than
in proportion to the factor (1 - cosf), even when the influence

of refraction on the wave height is taken into account.

Wind influence

The overtopping of regular waves over a dike with a slope
gradient of 1:3 or 1:6 has been compared by Sibul and Tickner (1956)
with that of waves generated in a fairly small flume by a wind of
exaggerated velocity. Sibul and Tickner considered the measurements
to be qualitative. In the model, wind begins to exert a significant
influence on overtopping at wa5 m/sec with tand = 1:6 and at w =
10 m/sec with tana= 1:3. Qualitatively this agrees with the obser-
vations in section III.5.8, showing that the wind has a greater
influence on wave run-up the lower the slope gradient.

Iwagaki et al (1966) investigated the influence of wind on
overtopping over a vertical seawall with a foreshore gradient of 1:15.
For this purpose they directed wind over initially regular waves.
The results therefore not only reflect the influence of wind on

overtopping of a given wave train but also on the wave train itself.

With increasing wind velocity overtopping appeared to increase
considerably when the waves did not break and only slightly when
the waves broke before reaching the wall. If the point at which the
fore;hore reaches the wall is situated above the mean water level,

the overtopping even appears to reduce with increasing wind speed.
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LIST OF SYMBOLS

Symbol Description Dimension

a distance from waterline to lower limit L
of roughened area (positive upward)

b width of roughened area, measured in a L
vertical plane normal to the slope

bm smallest value of b for which the run-up L
does not exceed the roughened area

B width of berm L

c phase velocity LT—1

. . - bo-1

c coefficient of Chézy L2T

d waterdepth L

db breaker depth L

dB depth of berm below mean water level L

D absolute roughness L

F(t) shape function (eq.IV.3.2) -

. . . -2

g gravitational acceleration LT

h water level above a reference level L

hd height of dike crest above mean water level | L

hé height of a rubble protection above mean L
water level

hg value of h, for which 2% of the waves over- | L
top the crest

H wave height (between zero-crossings) L
value exceeded by 507 of the wave heights L
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Symbol Description Dimension
H% mean value of the highest one-third of the L
wave heights
Ho root~mean-square wave height L
k height of roughness elements L
ks Nikuradse-roughness L
K, shoaling coefficient -
K, modified Bessel function of the third kind -
of first order
1 distance between adjacent roughness elements| L
L wave length L
L theoretical length of a periodic wave with L
period T
m discharge coefficient =
m wave number (= Efl ) !
n ratio of group velocity to phase velocity -
1
n Manning coefficient LS
n subscript: exceedance percentage (100P) -
0 fictitious run—-up height above dike crest L
P probability of exceedance -
. . . 21
q instantaneous overtopping discharge per L T
unit width
r ratio of run-up reduced by some means to -

run-up without reduction;

applies to overtopping

l

the same definition
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Symbol Description Dimension

ro value of r in the case of a roughened -
slope where the run-up does not reach
beyond the roughened area

R distance between two points L

Re Reynolds number -

s stagnation pressure of wind, expressed in L
cm water column

t time T

T wave period T

T period of spectral component with maximum T
energy density

U particle velocity in run—up bore if this
bore is at the still water line LT—]

- . . . =1

Y10 mean wind velocity at a height of 10 m above| LT
MWL

We Weber number -

X height of water level above design level L

y determining thickness of water running up L
the slope

y energy level L

z run-up height: maximum height above MWL L
reached by a wave which runs up against a
slope

z' normalised run-up {(eq. III1.3.1) -

z value of z on a slope with a berm of width B| L




Symbol Description Dimension
zg design run-up height on smooth slope L
z, design run-up height on roughened slope L
«a slope angle of dike or seawall with respect -
to horizontal
Aep critical value of @ for which a given inci- | -
dent wave train is in the transition of
breaking and non-breaking
B angle of incidence: acute angle between wave | -~
propagation direction and the normal to the
depth contours
% slope angle of foreshore with respect to =
horizontal
b correction factor in formula for run-up of -
non-breaking waves (eq. III.3.11)
A relative super-elevation of a wave crest -
caused by non-linear effects
€ measure of the relative width of energy spec—| -
trum
A characteristic length of cross-sectional L
profile
. . . -1 -1
T dynamic viscosity of water ML T
£ exponent in formula for run-up of solitary -
waves
p coefficient of linear correlation of H and T | -
Pa mass density of air ML—3
mass density of water ML—3

Pw
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Symbo1l Description Dimension

. . . -2
o surface tension at air-water interface MT

wind direction with respect to some reference -

Pw

direction |

An overbar denotes an average value.

A subscript "o" refers to deep water.

1

A subscript "k" means '"characteristic value'.




