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WAVE SOLUTIONS TRAVELLING ALONG QUADRATIC PATHS
FOR THE EQUATION (du/dl) - (k(u)ux)x = 0*
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I. Introduction. In this paper we discuss some aspects of the asymptotic behavior
of the following initial-boundary value problem:

(<du/dt) = {k(u)ux)x = (/8(m))„ , t > 0, 0 < X < 00

w(0, x) = /(x), 0 < x < oo ; u(t, 0) = a > 0, u(t, oo) = 0, t > 0

where we assume that k(s) > 0, k(0) = 0 (with other assumptions later as needed), and

/3(m) = [ k(s) ds. (2)
Jo

Problem (1) can describe the flow of a fluid through a porous medium with the density
(essentially u) being kept constant at one edge of the medium. The non-negative function
k(u) is often called a diffusion coefficient. Further details can be found in the literature
referenced. Apart from this problem of filtration, there are doubtless other physical and
biological settings for the problem.

The initial value problem for the DE in (1) was discussed by Oleinik [11]. In general
there is a unique weak solution u(t, x) > 0 for suitably prescribed f(x) > 0, — <» < x <
co, which is a "classical" solution at any point where u(t, x) > 0. The transition from a
region where u > 0 to a region where u = 0 need not be smooth since with k(0) =0
the DE in (1) changes type. For the case 0(u) = um, m > 1, Aronson [1] discusses the
global continuity and differentiability properties ofxthe solution. Again when m > 1,
L. A. Peletier [13] treats problem (1) by conventional "weak" methods, obtaining a
complete result in this case for the asymptotic behavior (see also the work of Shampine
[15]). Finally Craven and Peletier [6] and Atkinson and Peletier [2], in papers that directly
stimulated this present work, assume that the solution of problem (1) has the form
u(t, x) = F(tj) where tj = x(t + l)"1'2. Then it is found that F(??) must satisfy the problem

(k(F)F')' + aVF' = 0, 0 < v < oo, F(0) = a > 0, F(») = 0. (3)

Under the conditions

k(0) = 0, k(s) >0, s > 0, and f ds < <*>,
J0 S

problem (3) is shown to have a unique weak solution.

* Received March 19, 1976; revised version received September 22, 1976. Work performed under the
auspices of the U. S. Energy Research and Development Administration.
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Further references, particularly to Soviet literature, may be found in the various
papers listed at the^end of this paper.

The author undertook this work partly because it is a vehicle for use of the nonlinear
semigroup methods of Brezis, Crandall, Dorroh, Kato, and Pazy [3,4, 5, 7,8, 12]. Applica-
tion of these methods seems to result in more conciseness than was previously obtainable
with the nonlinear initial-boundary value problem, and it may be fruitful for generaliza-
tions.

2. Main results. As I —> °°, the solution of problem (1) evidently does not approach
a steady state. To produce a problem with a steady state we introduce moving coordinates
as follows:

= (fqTflp , T = log (1 + t), v(t, Q = .(log (1 + t), ^^172) = U(t, f) (4)

whence we arrive at a new problem:

dv/dr = (/c(i>>£)£ + = (P(v))u + > r>0, 0 < £ < R ^

f(0, £) = /ft), 0 < Z <R, v(t, 0) = a > 0, v(t, R) = 0, r > 0.
The choice of the finite interval 0 < £ < R for problem (5) is deliberate to simplify

the analysis. The corresponding region in problem (1) would be 0 < x < R( 1 + t)'/2,
t > 0.

One sees immediately that the operator on the right in the DE of problem (5) i
the same as the operator in the DE of problem (3). If we solve problem (3), obtaining the
unique weak solution of Atkinson and Peletier [2] (which is positive on an interval
0 < v < a, and vanishes on the interval a < v < 00 for some a > 0), then this solution
is the steady-state solution of problem (5). This supposes, however, that we take R > a.

Accordingly, we take R > a where a is the first vanishing point of the weak solution
of (3) [2, pp. 370, 379],

The idea in solving problem (5) is to show that the solution of problem (1) tends
as t —» 00 asymptotically to a wave travelling in the r-direction along the quadratic
curves x/(l + t)l/2 = £,■ = const of Fig. 1.

Thus our attention is focused on problem (5). We make the following definitions:

A,v = -(/3(i>)){{ , K0) = a, v(R) = 0 (6)
A2v = , v(R) = 0 (7)

and we consider A j to be multivalued. We propose to show that the non-linear operato1"
A, is the subdifferential [4, p. 21, ex. 2.1.4] of a convex lower semicontinuous functional
in a suitable Hilbert space, and is thus maximal monotone. Next we show that the
linear operator A2 is maximal monotone on the same space, and is also strongly monotone
[4, p. 88]. The correct Hilbert space turns out to be H~l; this is the distributional dual
of the Sobolev space Ho1 C H1 = W2{0, R), [3, pp. 123, 146; 9, pp. 59, 79],

Using these facts and the theory of nonlinear semigroups essentially as given by
H. Brezis [3, 4], we prove the following results. The restrictions on k(s) in the following
statement are due partly to the requirements of Atkinson and Peletier in the steady state.

Theorem: Suppose /c(s) > 0 is real and continuous, that /c(0) = 0 and that /c(s) > 0
for s > 0; that
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f k(s) ds = °° , f k(s) ds = co , but that f —— i
•'—00 J 1 «'o S

< 00.

Suppose that /(s) £ is such that /(0) = a > 0, /(A) = 0, and that /3(/(s)) £ //'.
Suppose that R > a, where a > 0 is the first vanishing point in the solution of (3). Then
initial-boundary value problem (5) has a unique generalized solution v(t, £) £ C([0, °°);
//') (in the sense of Brezis [3, p. 54]) which tends exponentially to the unique solution of
problem (3) as r —* , in terms of the norm of H'1 (and thus pointwise a.e. since the
solution is in -D(^i) D(A2)).

Corollary: The solution of problem (1) approaches a quadratically travelling wave.

3. Proof of the theorem. The proof takes place in several parts. We write problem
(5) simply as follows:

du/dr + (Ax -f- A2) u E3 0, w(0) = / (8)

where Ax + A2 is multivalued.

A. The nonlinear operator At is the subdifferential of a convex lower semicontinuous
(1l.s.c.) junction on H~\ Reviewing definitions, let Hnl be the completion of the Co^O, R)
functions under the//1 norm, where H1 is the Sobolev space WV(0, R). Then H~l is the
Hilbert space of distributions using //,,' as the test space; i.e., //"' is the distributional
dual of H,,1 under the duality relationship (u, v) = j0R u(£)v(£) d£, u £ H0', v £ H1.

Fig. 1. Quadratic propagation.
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The space H~l has inner product (/, g)H-> = (A-1/, g), where A = — A = — (-)£{ is an
isomorphism of H01 onto H_1 [9, Th. 9.1].

We employ the following convex l.s.c. functional on H'1 [3, p. 123]:

01 (u) = [ j(u) dk, u e v(0, ft) r\ H~l 3 j(u) G i'(0, ft) n ff"1
J()

= +00 otherwise.

Here ;'(r) is a convex l.s.c. functional from ft1 into (— <*>, oo], and has as subdifferential
the operator dj = /3, where (3(r) is given by (2). From the conditions on k(s) given in the
theorem, (R(/3) = ft1, and therefore

lim yj = + 0° .
lrl-0 M

Suppose that / G Aw, i.e., suppose 3 u G ^ H and / G such that

-/ G C3(u))« , 0(u(O)) = /3(a), /3(w(ft)) = 0 (9)
where we transform the boundary conditions, using /3(r) G /"• Noting that ?«(£) =
Moft) + <;(£) solves the linear problem

—= /, tt'(O) = /3(a), u!(ft) = 0,

where iv„ = A~7 G and g = (/3(a)/ft)(ft — £) G we see that (9) states that
w G /3(m). Therefore let us define the domain:

D(A,) = [u | u G V r\ H~\ 3 wo G tfo1 9 w{$) = u>„(£) + ?($) G 0(u(Q) a.e.]. (10)

Now m;(J) G /3(m(£)) a.e. implies that

j(i>(£)) - i(w(£)) > M£)-(v(£) - u(z)) a.e. in (0, ft), (11)
where u G -D(-4i) and v ^ Ll C\ H 1 3 j(v) ££ Ll H '. Since j(r) is bounded below
by an affine function: j(r) > —C, |r| — C2 , C\ > 0, C2 > 0 (see [3, p. 125]), and since
w(£) G is continuous [9, p. 51], j'(w) G Lx C\ H~l by (11), so that

[ j(v) d£ - f j(u) d£ > [ iv(0-(v(£) - u(0) = f (A-1/ + f/)(i>(£) - «(£)) d£.
•'O «^0 *^0 •'O

This means that / G d<f>, where we define the functional

*(«)= [ (j(u(Q) - giZMO) dt, u G 1/(0, ft) C\ H~' 3 j(u) G L\0,R) f~\ H~l
Jo

= + oo otherwise. (12)

The functional </> is proper, convex l.s.c. on H~l. Thus 4, C
We show now that A, = d<f> by proving that Ax is maximal monotone. Monotonicity

of A i in H'1 follows from the monotonicity of /3(r). To show maximal monotonicity,
one solves the following problem in L1 Pi H'1:

+ u 3 f, P(u(0)) = /3(a), /3(u(ft)) = 0,

where / G H'1 is arbitrary. This problem is convertible to the form

w + A~xu = A"7 + g, w(£) G 0 («(£)) a.e. (13)
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Let 7 = /8-1, so that D(y) = R1. Then (13) can be written as a Hammerstein equation
in H0l:

w0 + A~1y(w0 + g) 3 A"1/, «(£) £ y(w0(0 + g) a.e.

If j3(w) in (2) is single-valued, this is the case of Hammerstein's equation for which there
is an existence theorem [17, p. 208], Otherwise one uses the Yosida approximation in the
manner of Brezis [3, pp. 125-127], This completes the proof of proposition A.

B. The operator A 2 is a maximal monotone operator, which is a strongly monotone
operator. The operator A2u = — with u(R) = 0 is linear, and D(A2) certainly contains
the absolutely continuous functions defined on (0, R) which vanish at £ = R. The latter
functions being dense in L'(0, R), D(A2) is dense in H~l. So as to include the generalized
derivatives we write

D(A,) = [u | u E H l H H\ u(R) = 0] (14)

Let us solve explicitly the following DE problem:

u, — = 0, u(t, R) = 0 (15)

with m(0, £) = /(£) £ D(A2). The characteristics satisfy the DE d£/dt = — Thus
£(0 = £o exp ( —t/2), for various values of £0 > 0, represents the characteristics in the
t, £ plane. Also u(t, £) = w(0, £0) = const along the curve £(<) = £0 exp ( — t/2) for given
£0 • Through any point (t, £) in (0, R) X (0, R) we can pass a characteristic leading to
the initial or boundary data, and thus find u(t, £) (see Fig. 2). Beginning with , all
characteristics bear the value u = 0.

The explicit solution has the semigroup property. If we let u(t, £; t, ^(£)) represent

u=no e0—> f
Fig. 2. Characteristic curves.
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the solution based on initial conditions u = at some time t, then the semigroup
property satisfied is as follows:

u(t 1 + t2 , 0, /({)) = u(t2 u(t, , (; 0, /(())) (16)

The same semigroup solution is produced on (0, R) by solving the DE problem
Ut ~ h&k ~ 0) co) = 0; i.e., by using the entire infinite interval. We simply restate
the initial data as follows:

m = u(0, Q = /(€), 0 < { < R
= 0 , R < t < 00. (17)

The characteristic curves are the same as in Fig. 2, but they are extended to the £-axis
where the extended trivial initial data is defined.

Thus we have a semigroup, and we expect that the operator — A2 is its generator
in H\

The norm of an element /, £ H_1 is defined as follows:

11/, II*-.2 = (/. ,/,)»- = f (A-'/OMS
Jo

= [ f <?(*, rdltnMQ dt] di (18)
Jo *'o

where

v) = jj; £(R — v), 0 < £ < v

= jjv(£-&, v < £ < R (19)

is the kernel of the linear integral operator A-1.
The semigroup solution of problem (15) is strongly continuous in H1. We have

for / £ D(A2), where / is the initial function,

liu(t, ■) - /(•)||„-.2 = \f [ G(£, v){u(t, v) - f(v)} Iu(t, 0 - /(£)} dv d£
I ̂ 0 J0

< m[J' \u(t, q - m)\
where

M = max I G(£, r;)| = j-
0<{<« *
0 <V<R

Now, however, putting ij = £0 exp ( —1/2), d£ = d£0-exp ( —1/2), we get

f W, Q - m\ dt = r Iu(t, - m«e',/2)\ d£„-exp (-</2)
J0 J 0

= f' MO, ?„) - /«„e-/2) | dfc, • exp (- </2)•'()

= exp (—</2) ["' |/°tt„) - /°(So<r'/2)| d?o -» 0
Jo

as < —> 0 by continuity and a known result [16, p. 396, ex. 18]. Here we have used extended
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initial data (17) and the constancy of the solution along characteristics. Thus, our
semigroup has strong continuity.

The semigroup happens to be contracting in H" = L2(0, R). In H'1, however, it
seems only to be uniformly bounded [12, p. 349], We have, making the substitutions
£ = £o exp ( —</2), t) = tjo exp { — t/2) in the integration:

r*R s*R

\\u(t, -)li//-'2 = / / <*(£, v)u(t, r))u(t, £) cln d£
Jo Jo

Jr*R /*R
/ G'(£o exp (-«/2), 7)„ exp (-dVo d£0 ,

0 •'O

which quantity vanishes at t —» Here we have again used extended initial data (17)
and the constancy of u on characteristics.

Another semigroup, related to (16), is formed of the family of functions given by
Ui(t, £; 0, /) = exp (t/2)u(t, £; 0, /), as can be seen by using the linearity of problem (15)
and the semigroup property possessed by the function exp (</2). This latter semigroup
is likewise strongly continuous, and

>(*, •)Ii//->2 = [ I G(Zo exp (-</2), t)0 exp (-</2))/(ij0)/({„) dv0 d£0
Jo "0

(20)

which of course vanishes as t —» &. Let us denote this semigroup as follows: Ui = Si(t)f
(with the property <S,(<i + t2)j = (Si(<i)&i(i2)/).

Both of these semigroups are uniformly bounded. By introducing the equivalent
norm ||/||«-.<u = sup,>0 ||<Si(<)/||//-> , where Ui = $,(<)/, the semigroup Si is made to
be contracting on the Banach space consisting of the elements of H'1 normed by || • ||w-iU).

Since the norms ||*||w-. and ||• ||w-«(1> are equivalent:

ll/IU- < ||/IU-(1) < M, II/IU-., /er1, jiv, > 1,
Si is strongly continuous as well as contracting in terms of the new norm. However, we
pay for these benefits in that H~l is no longer a Hilbert space. We still have A2 densely
defined, and a result of Phillips [10, p. 686] is applicable: "A necessary and sufficient
condition that a linear operator (in our case A2 — jl on Banach space H~l) with dense
domain generate a strongly continuous semi-group of contraction operators is that it
be maximal accretive." The parallel theorem of Hille-Yosida (see [14, p. 203], setting
to = 0) equates this maximal accretiveness of A2 — §/ with the condition:

Mr1 ui/ - ma2 - ior'iu-. < ui/ - ha2 - i/)]-,iU-'<,> < i, x < o.
This boundedness of the resolvent for (ReX < 0 means, however, that the numerical
range of A2 — §/ in the real Hilbert space H~' is positive, i.e. ((A2 — %I)f, /)w-> > 0,
/ E H~\

Thus the operator {A2 — %I)u = —%ui,u( — §m, with u(R) = 0, is maximal monotone
along with the operator A2 itself (see, for example, Pazy [12, p. 353] with w = — §).
Also we have

((A2 - \I)u, u)H-> = ((-£&<{ - 3«), u)> 0

which implies strong monotonicity for A2 :

( — , u)H-> > l(«, u)h-> . (21)
This concludes the proof of proposition B.
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C. The operator A} -\- A2 is a maximal monotone operator ichich is strongly monotone.
The operator A,u = — (/3(m)){£ , 0(u(O)) = /3(a), 0(u(R)) = 0, is the subdifferential of
the convex proper l.s.c. functional <j> on H~l given by (12), and therefore is maximal
monotone [4, p. 25, ex. 2.3.4], The set D(Ai) is given by (10) and the set D(A2) is given by
(14). It is easy to see that with j3(u) as given in (2), D(Ai) P\ D(A2) is not void.

We assume that j(r) > 0 and <f>(u) > 0; otherwise, in view of the property that
j(r)/\r\ —> °° as r —> one could merely add a constant (see section A of this proof).

The idea of the proof is to show that </>(/2Xm) < + c\, c > 0, V u E Hand
V X > 0, where J2X = (/ + X/l2)_1 is the (linear) resolvent of A2 . Then recourse can
be had to known results [3, p. 108, Th. 9; 4, p. 48, Prop. 2.17] to show that A, + A2 =
dcf> + A2 is maximal monotone.

We let j„(r) be the Yosida approximation, with a > 0, of the convex l.s.c. function
j(r) mapping Rx into (— °°, °°] given in the first section of this proof [3, p. 104, Th. 4;
4, p. 39, Prop. 2.11], We have for u £ H~' C\ L'(0, R), with notation from (12)

]«&(£)) ~ J c((J 2X«)(f)) = ja(u(Q) - gu(£) - j a((J 2\u)(£)) + g( </2xw)(£)

> Wa((J2\uW) - </][«(£) - (</2Xw)(£)] a.e. in (0, R)

= [dja((J2xU)(£)) - f/][-5^((^2xM)©)£]

= -5*£[i«((«/2*w)(£)) - ?(^2XW)©]£ = -5^[ja((^2XM)©)]£ (22)

where dja is the Frechet derivative of ja and we have used the property .42X = -42./2X
valid if A2 is linear, where /12X = (1/X)[/ — J2X].

Next with regard for the function <f> defined in (12), we write for the Yosida approx-
imation <j>„ , a > 0, with u G D(<f>),

<t>a(J2xu) = I ja((J2\u)(0) d$ < [ ja(u(0) d£ + £ f tlj«((J2\u)(t))]e (It
J0 Jo & 0

= ^ j« («(£)) d$ + | |y„((/2XM)ft))|o* - ^ ]ai(J2\U)($) di,j

= </>„(«) + | /0*..(('/2Xw)W) — |

where use has been made of the inequality in (22). Then

(l + |)«„(J2xM) < 4>Ju) + | Rja(0) < 4>(u) + | Rj(0) (23)

since ja < j and <j>a < 4> [3, p. 104, Th. 4; 4, p. 39, Prop. 2.11], and since v = J2\U is the
solution of the DE problem

— | + v = u, v(R) = 0.

Finally noting the (23) holds for all a > 0, we have

<t>(J2\U) < <f>(u) + | Rj( 0) V X > 0, Vu£ D(<t>)

as was desired; i.e., c = %Rj(0) > 0.
The strong monotonicity of Ax + A2 is immediate from the monotonicity of A,

and ^42 , and inequality (21).
This ends the proof of Statement C.
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D. There exists a unique strongly continuous semigroup of contractions which provides
the solution of problem (5) provided f G I)(A ,) C'\ D{A2). The solution remains in I)(A,) C\
D{A2) C H'1, and converges exponentially in norm to the unique solution of problem (3).
We again appeal to a theorem given by Brezis [4, p. 54, Th. 3.1]. By (Ai + A 2)° below
we mean the principal section consisting of the graph of elements in H1 X H1 of least
norm of the sets (^4, + A2)u, u G D(A{) C\ D(A2). Accordingly we can say on the basis
of the foregoing propositions applied to problem (8) that to the problem

Vr - (j8(»))« - 3 0, T > 0, 0 < { < R,

/3(v(T, 0)) = /3(a), /3(v(t, R)) =0, r > 0,

f(0, {) = /($) G D(A>) n D(At) c H-1 (24)

there corresponds a unique function v{r) on [0, °°] into H~\ such that v(j) G D(Ai) C\
D(A2), (dv/dr) + (At + A2)v 3 Oa.e. on (0, +<*>), f(0) = /, (d+v/dr) + 041 + A2)av = 0,
V r G [0, +<*>). The mapping r —> (4, + A2)°v(t) is continuous on the right, and the
mapping r —» ||04, + is decreasing. Also

|Mr) - l>2(r)||„-i < ||v,(0) - ®2(0)||«- = ||/i - /2||h->

V r G [0, + oo), where v,(t) = S(r)f, , v2(t) = S(r)f2, and where S(t) is the semigroup
generated by A, + A 2 .

We present this function as the solution of initial value problem (5) in the strong
sense of Brezis [4, pp. 54, 64],

By two results of Atkinson and Peletier [3, pp. 375, 37S], under conditions on k(s)
set forth in the main theorem of this paper, for any a > 0 there exists a unique weak
solution y„(£), of steady state problem (3), positive on an interval [0, a) and vanishing
on the interval [a, oo). This is a classical solution except at £ = a; at the latter point
it remains continuous, but may have a discontinuity in the (classical) derivative, depend-
ing on further assumptions one can make about k(s) at s = 0. In fact, if lim„_0+ k'(v) =
k'(0) > 0, then lim£^,a_ i'„'(£) = ~h(oi/k'(0)). If limt^0+ k'(v) = 0, then lim{^a^ i'»'(£) =
— oo (see [6, pp. 80, 81]). We note also that «„(£) is in D(A,) H D{A2) C H~l r\ L'(0, R)
if R > a as we suppose.

By the strong monotonicity of A, + A2, and by another theroem of Brezis on asymp-
totic behavior [4, p. 88, Th. 3.9], since the function v„(£) G H~' satisfies the steady
state problem a.e. uniquely, we have

IKr, £) - i>»(£)||h-. < exp ( —r/2) ||d(0, £) - v.(£)||ff-. . (25)

Hence the solution i>(r, Q of problem (5) approaches the steady-state solution of
problem (3) in norm, and exponentially in r as r —> + oo. This implies convergence
pointwise a.e. as can be shown by contradiction using expression (18) and the fact that
v(t, £) stays in D(A,) D(A2) and is thus in H1. This proves proposition D and the
theorem.

4. Remarks. By the theorem, and because of the exponential decay of the transient
part of the solution of problem (5), after a short interval in the T-variable the solution
settles down essentially to the solution va(£) of steady state problem (3). For 0 < £ < a,
it tends pointwise a.e. to the positive part of f„(£); for a < £ < R it tends to zero point-
wise a.e.
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The solution v(t, £) of problem (5) remains in D(Ai) r\ D(A2). Thus it is continuous
in £, has first generalized derivatives in £, and v(r, 0) = a, v(t, R) = 0. In terms of the
variable r it is continuous and right-differentiable, with decreasing H 1 norm. The
full derivative exists almost everywhere.

When we use transformation (4) to go back to x, t coordinates, we see that arbitrary
initial data in D(A,) Pi D(A2) reuslts through evolution in a wave-like solution, travelling
along the quadratic curves of Fig. 1. The speed of propagation is thus finite and decreas-
ing, and the asymptotic wave form is that of Atkinson and Peletier [2],

If, instead of the conditions of our theorem in Sec. 2, we set k(v) = 1 in problem (5),
there results the familiar linear heat flow problem transformed via Eqs. (4). Problem (5)
has a steady state solution in this case, namelv

v(t) = «j^l - exp (-I2/4) di (26)

which is unique. This is approached by the transient solution as r —> °= for more or less
arbitrary initial data in H \ One might claim a wave-like phenomenon here also. As an
asymptotic solution, (26) is so smooth that no travelling disturbance is perceptible.
It is when lc(v) > 0 vanishes somewhere, and the DE changes type, that there is an abrupt
travelling disturbance. We conjecture that if k(v) merely becomes "small," this situation
is approached.

If one transforms the asymptotic estimate (25) back to I, x coordinates through
Eqs. (4), the result is seen to be comparable to that of Peletier [13, p. 546, Th. 1] in
1971. Of course the present work uses a less rigid hypotheses about the function fc(s).
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