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Wave speeds in wavy Taylor-vortex flow 
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The speed of travelling azimuthal waves on Taylor vortices in a circular Couette 

system (with the inner cylinder rotating and the outer cylinder at rest) has been 

determined in laboratory experiments conducted as a function of Reynolds number 

R, radius ratio of the cylinders 7,  average axial wavelength h ,  number of waves m, 

and the aspect ratio r (the ratio of the fluid height to the gap between the cylinders). 

Wave speeds have also been determined numerically for axially periodic flows in 

infinite-length cylinders by solving the Navier-Stokes equation with a pseudospectral 

technique where each Taylor-vortex pair is represented with 32 axial modes, 32 

azimuthal modes (in an azimuthal angle of 27c/m,) and 33 radial modes. Above the 

onset of wavy-vortex flow thc wave speed for a given 71 decreases with increasing R 
until i t  reaches a plateau that persists for some range in R .  In  the radius-ratio range 

examined in our experiments wc find that the wave speed in the plateau region 

increases monotonically from 0.1452 at 7 = 0.630 to 0.4552 a t  11 = 0.950 (where the 

wave speed is expressed in terms of the rotation frequency 52 of the inner cylinder). 

There is a much weaker dependence of the wavc speed on h, m, and r. For three sets 

of parameter values (R, h,  7 and m,) the wavc speeds have been measured, 

extrapolated to infinite aspect ratio, and compared with the numerically computed 

values. For each of these three cases the agreement is within 0.1 yo. 

1. Introduction 

In  1965 Coles reported measurements of the frequency of rotation (wave speed) 

of the travelling azimuthal waves in wavy vortex flow in a concentric cylinder system 

with the inner cylinder rotating and the outer cylinder a t  rest. He found that, a t  

large rotation rates L2 of the inner cylinder, the wave speed approached $2. This 

asymptotic wave speed was found to be independent of the number of waves m, or 

the axial wavelength h of the vortices. Feynman, Leighton & Sands (1974) discussed 

Coles’ results and remarkcd, ‘There’s a challenge. A simple number like $, and no 

explanation ’. 
We have measured wave speeds for radius ratios 7 ranging from 0.63 to 0.95. and 

we find that a t  large 52 the wave speed has a strong monotonic dependence on 7, 

increasing by a factor of three within the radius-ratio range studied. Thus the simple 

value of $2 is an accidental consequenw of Colcs’ choice of 0.875 for the radius ratio. 

t Present address Royal Signals and Radar Establishment, Great Malvern. WR14 3PS, England 
$, Present address Ihvision of Applied Sciences, Aikrn Hall Harv nrd Vniversit) . C’amhridgp. 

MA 02138. 
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The travelling azimuthal wave mode we have studied is usually called wavy-vortex 
flow; we will often call it  the one-travelling-wave flow to distinguish i t  from the 
two-travelling-wave flow that occurs a t  larger Reynolds number. The onset of 
wavy-vortex flow occurs only 4% above the critical Reynolds number R, for the 
Taylor instability in the narrow-gap limit (Davey, Di Prima & Stuart 1968), while 
for cylinders with a large gap the waves do not appear until well beyond the onset 
of Taylor-vortex flow-e.g. for 7 = 0.63 the waves appear a t  about 5R, (Cole 1981). 

In wavy-vortex flow both the inflow and outflow vortex boundaries are wavy; in 
addition the waves on the inflow and outflow boundaries are shifted in azimuthal 

phase angle, as figure 1 illustrates; such a flow with m, waves has an m, fold rotational 
symmetry and a ‘shift-and-reflect’ symmetry about the midplane ( z  = 0) of a vortex 
pair (Marcus 1984b) : 

1 ( 1 )  

K ( Y >  $ , z )  = V , ( Y ,  $ + x / m , ,  - - -z) ,  

VJr, $, 2) = Vg(r, $ + n/m,, - 4 ,  

K ( Y ,  $, 2) = - %(r ,  $+Elm,, - 2 ) .  

I n  an experimental study of the onset of wavy-vortex flow in systems with radius 

ratios between 0.20 and 0.95, Cole (1981) found that the ‘conventional wavy vortices’ 
of the type described above occur for all 7 0.38, but in the range 0.38 < 7 < 0.63 

other types of wavy modes were also found. Some of these other types of wavy modes 

have been studied by Snyder (1970), Mullin & Benjamin (198O), Lorenzen, Pfister & 
Mullin (1983) and L’vov, Predtechensky & Chernykh (198l).t  Furthermore, different 
types of wavy modes that occur at large R have been studied by Zhang & Swinney 
(1984) and in flows between independently rotating cylinders by Andereck, Dickman 

& Swinney (1983) and Andereck, Liu & Swinney (1984). The only wavy-vortex flows 
to be considered in this paper will be the conventional wavy vortices of the type shown 
in figure 1.  

At Reynolds numbers well beyond the onset of wavy vortex flow a second set of 
travelling waves appears, a t  least for large 7 (Shaw et al. 1982). These two- 
travelling-wave flows have usually been called modulated wavy-vortex flows 
(Gorman, Swinney & Rand 1981 ; Gorman & Swinney 1982). The two wavetrains have 
different speeds, while the numbers of waves, m, and m2, can be the same or differ- 
ent. Two-travelling-wave flows do not have the shift-and-reflect symmetry of ( 1 ) .  

We have investigated the dependence of wave speed on the control parameters 
(Reynolds number, radius ratio and aspect ratio) and on the spatial state of the flow 
(characterized by the axial wavelength and azimuthal wavenumbers). Most of our 
measurements and all of our calculations have been made for one-travelling-wave 
flows. The notation will be described in $2, and the experimental methods will be 
discussed in $3. The experimental results will be presented in 54. Kumerical and 
analytic results are presented in $5, and are compared with the experimental results 
in $6. Our work is discussed and compared with other experiments and theory in 
$ 7 .  The conclusions are presented in $8. 

2. Notation 

The system is characterized by the following control parameters : the radius ratio 
7 = a/b ,  where a and b are respectively the inner and outer radii of the annulus; the 
Reynolds number R = aQd/v,  where Q is the angular frequency of the inner 

t A photograph of one of these other wavy modes can be found in figure 8 of Burkhalter & 
Koschmieder (1973). 
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FIGURE 1. Photograph of the conventional wavy mode in wavy-vortex flow at RIR, = 7.1 ,  

7 = 0.875, m, = 5 and x / d  = 2.3. Note that  both the inflow and outflow boundaries are wavy, and 
that  the waves at the inflow and outflow boundaries are shifted in azimuthal phase angle. 

cylinder, v is the kinematic viscosity and d = b - a ;  the aspect ratio r = H / d ,  where 

H is the height of the fluid. In  this paper Reynolds numbers will be expressed 

relative to the critical Reynolds number R, for the onset of Taylor-vortex flow in an 
infinite cylinder. 

The speeds of the two travelling waves, s1 and s2, will be expressed in units of Q. 
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a Upper 

7 (cm) r m a x  R,t boundary 

0.630 1.600 26 73.5 Rigid 

0.730 1.854 36 82.9 Rigid 

0.800 4.7573; 28 94.8 Free 

0.840 2.134 38 105 2 Free 

0.868 2.205 80 115.1 Free 

0.877 2.228 80 119.1 Rigid 

0.900 2.286 42 131.6 Free 

0.950 5.6491 115 185.1 Free 

t Values for an infinite cylinder (from table 6.2 of DiPrima & Swinney 1981) 

3; Outer radius b = 5.946 em; otherwise b = 2.540 cm 

TABLE 1. Apparatus-parameter values 

Thus s1 = wl/m,SZ and s2 = w2/m,Q,  where w1 and w 2  are the frequencies 

corresponding to the passage of waves past a point of observation in the laboratory. 

The spatial state of a flow with travelling azimuthal waves is specified by, in 

addition to m, and m2, the axial wavelength A. I n  a cylinder of finite length, h varies 

as a function of z ,  the variation becoming quite pronounced for states with m, < 4, 
particularly near certain stability boundaries (Ahlers, Cannell & Dominguez Lerma 

1983; King & Swinney 1983; Park, Crawford & Donnelly 1983); in discussions of 

the experiments we will use the average axial wavelength defined by 

A = 2 H / N  = ( 2 I ' / N )  d ,  where N is the number of wavy Taylor vortices. Although h 
is a function of z ,  the wave speeds are independent of z ,  that  is, the travelling waves 

in each vortex pair are in phase (Fenstermacher, Swinney & Gollub 1979); see 

figure 1. 

3. Experimental methods 

3.1. System parameters 

The parameters for our concentric-cylinder systems are given in table 1. The lower-fluid 

horizontal boundary was a Teflon ring attached to the outer cylinder ; the upper 

boundary was left free in most of the experiments, but some measurements were made 

with a rigid upper boundary (another Teflon ring attached to the outer cylinder). All 

measurements for 71 = 0.877 were made with the cylinder system immersed in a water 

bath controlled in temperature to & 0.02 K ; measurements a t  other radius ratios were 

oonducted a t  room temperature, which was usually constant to within 0.1 K during 

a measurement. 
I n  the laser-Doppler velocimetry measurements nearly spherical titanium dioxide 

scattering particles with a diameter of 0.22 pm were suspended in a mixture of 

ethanol and methyl benzoate. (The concentrations of the fluids were adjusted so that  

the refractive index of the mixture exactly matched that of the glass outer cylinder 

at the laser wavelength, 0.488 nm. The kinematic viscosity of the mixture was 

measured to be 1.4cS at 27.5OC.) In  these measurements the concentration of 

scattering particles was sufficiently dilute so that the scattering volume (about 

30 x 30 x 100 pm) almost never contained more than one particle. Therefore the 

average separation between particles was greater than 100 particle diameters. I n  the 

other measurements of the wave speed we used a mixture of commercially prepared 
Kalliroscope polymeric-flake solution diluted to 3 yo in water; this gives a 0.03 yo 
volume fraction of solid particles in the working fluid. The average separation 
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between the large flat Kallirosoope flakes (25 x 6 x 0.07 pm) was then of the order 

of the largest particle dimension. 

Non-Newtonian effects such as shear thinning (that is, the dependence of the 

viscosity on the local shear rate) should be completely negligible in the laser-Doppler 

measurements, since the titanium dioxide particles are nearly spherical, non- 

deformable and widely separated. However, the close spacing of the Kalliroscope 

flakes requires us to show that the fluid remains Newtonian. We have varied the 

concentration of the Kalliroscope solution from 1.5 to 6 %  and have found from 

measurements of the inner-cylinder rotation rate a t  the onset of Taylor vortex flow 

that there is a Newtonian increase in the viscosity of 1 . 1  yo for each per cent increment 

in the concentration of Kalliroscope solution. The Reynolds numbers reported in this 

paper indude this Newtonian correction. 

For fixed Reynolds number and Kalliroscope concentrations in the range 1-3 yo we 

have found that within our experimental accuracy the wave speeds are independent 

of concentration ; this independence of wave speed on particle separation distance 
indicates that there is no shear thinning.? This is not surprising since shear thinning 

is usually restricted to suspensions with very long and/or easily deformable polymers 
(Berman 1978). Another non-llewtonian effect that has been observed in laminar flow 

with suspended particles causes velocity fluctuations or ‘early turbulence ’ (Zakin et 
al. 1977), which may be due to particle rotations (Jeffery 1923; Abernathy et al. 
1980) - particles tumble as they are advected in a fluid with shear. If the tumbling 

perturbs the surrounding flow so that  the perturbations influence the tumbling of 

very close neighbours, then the flow is non-Newtonian. The signature of this ‘early 

turbulence’ is the appearance in velocity power spectra of a broad band peak at  a 

frequency of the order of the local strain rate. Since the strain rate is a strong function 

of position in Taylor-Couette flow, the broad peak is also a function of position. We 

have found no evidence of this broad peak in our power spectra. We note that in 

reported observations of ‘early turbulence’ (Zakin et al. 1977; Abernathy et al. 1980) 

the strain rates were of the order of lo” s-l, while the maximum strain rate in the 

experiments reported here was of the order of 20 s-l. Throughout the remainder of 

this paper we shall assume that the fluid is Newtonian and that the flow obeys the 

Savier-Stokes equation. 

3.2. Wave-speed measurements 

We have determined the speed of the azimuthal waves from laser-Doppler veloci- 

metry measurements, scattered-light intensity spcctra, stopwatch measurements 

and measurements in a rotating reference frame in which the waves were stationary. 

The laser-Doppler technique was used on the system with 7 = 0.877 to measure 

the radial cornponcnt of the fluid velocity a t  points in the middle of the gap between 

the cylinders. The velocity power spectra for one-travelling-wave flows have a single 

instrumentally sharp frequency component ; in addition, there are sharp components 

a t  harmonics of the fundamental. Spectra for two-travelling-wave flows consist of two 

fundamental frequencies and their harmonics and combinations. 

The other methods of measuring wave speeds were performed on flows that were 

visualized by the addition of Kalliroscope polymeric-flake solution to distilled water. 

A stopwatch was used to obtain the wave speeds for radius ratios 7 = 0.630, 0.730 

and 0.800. For radius ratios 7 = 0.840,0.868 and 0.900 the intensity of scattered laser 

light was detected by a photodiode and recorded in a computer as a function of time. 

A small hut measurable non-Newtonian change in the wave speed was observed when the 

Kalliroscope concentration was increased to  8 o/k, but  this concentration is well beyond the 3 %  
concentration used in the experiments reported in this paper. 
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It has been previously shown that the fundamental frequency components obtained 
from scattering intensity measurements are identical with those obtained from laser- 
Doppler measurements (Gorman, Reith & Swinney 1980). 

Measurements in a rotating reference frame were made possible by mounting a 
television camera, focused on the flow, on a rotating table coaxial with the Couette 
system. The camera was connected through a slip ring to a video monitor in the 
laboratory frame. The table speed was adjusted until the wave pattern was motionless 
when viewed on the monitor. This method of measuring the wave speed was used 
for 7 = 0.95 because, at most Reynolds numbers studied a t  this radius ratio, there 

were defects in the flow pattern (even for r = 20), making interpretation of spectra 
difficult (defects or dislocations are discussed by Donnelly et al. 1980; Barcilon et al. 
1979). 

G. P. King, Y .  Li, W. Lee, H .  L. Swinney and P. S. Marcus 

3.3. Xtate preparation 

The initial problem that must be resolved prior to an experimental investigation of 
wave speeds for different spatial states is how to produce on demand a state with 
particular values of N ,  m, and rn2 a t  some value of R, 7, and r. This problem arises 
because the states that  can be obtained in the circular Couette system are not 

uniquely determined by the control parameters - a t  a given 7, R and r there are 
typically several different stable states N ,  m, and m2 that can be obtained, depending 
on the flow history. Some of the different states can be produced simply by using 

different acceleration rates to go from rest to the final Reynolds number; however, 
only a small fraction of the accessible states of the system can be reached in this 
manner. This procedure must be supplemented by variations in either R or r (or 
both) to obtain the other possible states. 

In  our experiments we found that the most successful method of obtaining various 
states was the following. ( 1 )  The system was started suddenly from rest to a 

predetermined Reynolds number which previous experience had shown to result in 
the desired m,. One try was usually sufficient but, if not, the system was repeatedly 
turned off and restarted until we were successful. ( 2 )  If N was less than what was 
wanted, fluid was allowed to flow in rapidly enough to increase N to the desired value. 
If N was too large, than the fluid was rapidly drained until the required number of 
vortices were obtained. (3) The aspect ratio was measured and fluid was either 
pumped in or out (slowly enough so that  N would remain unchanged) until the desired 
h = 2 r / N  was obtained. (4) When necessary, the Reynolds number was then slowly 
varied to the value a t  which the measurements were to be made. 

The domains of stability for the various spatial states are sufficiently complicated 
that some variation in the order of application of the above steps was necessary in 
order to obtain some states. I n  general, however, we found that when the above 
procedure was supplemented with experience in the operation of a system with a 
particular radius ratio, there was little difficulty in obtaining any stable state in the 
one-travelling-wave flow regime for that  radius ratio. The production of different 
states was easiest for radius ratios near 0.868, since for this radius ratio King & 
Swinney ( 1983) studied the stability of different one-travelling-wave states over 
a large range of Reynolds numbers and axial wavelengths. 

4. Experimental results 

We have found that the wave speed is a much more complicated function of the 
control parameters R, 7 and r, and the spatial state characterized by A, rn, and rn2 
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than previously realized. This suggests that wave speeds will be a sensitive test of 
theory and of numerical simulations of wavy-vortex flows. 

We now present the experimental results for the dependence of wave speed on r, 
h, m,, m2, R and 7, in that order. 

4.1. Dependence of s, on aspect ratio 

The major difficulty in comparing numerical and experimental results is that 
experiments must necessarily be performed with cylinders of finite length and real 
end boundaries, while simulations nearly always assume infinitely long cylinders 
(I‘ = 00) (i.e. periodic boundary conditions in the axial direction). It is often claimed 
that finite-length effects should be negligible if the experiments are done in long 
cylinders; however, the length of ‘sufficiently long cylinders ’ can vary greatly, 
depending on the property of interest and on R, 7,  m,, m2 and A. For example, Cole 
(1976) found that, with 7 = 0.894 and r = 20, the measured and calculated values 
for the onset of Taylor vortex flow differed by only lyo, while, in contrast, the 

measured Reynolds number for the onset of wavy-vortex flow was 15 yo higher than 
that predicted. 

We have investigated the dependence of the wave speed on aspect ratio for only 
four cases. Such an investigation was not attempted for every case reported here for 
two reasons: (1)  the time for the properties of a flow state to relax to their final values 

is already quite long for r = 32 and simply becomes prohibitively long for detailed 
studies a t  much larger r; (2) at large values of r there is an increased occurrence 
of defects and distorted flow patterns so that h, m, and m2 are no longer well defined 

(King & Swinney 1983). 
Measurements of the variation of wave speed with aspect ratio are shown for two 

cases in figure 2. The measurements of figure 2 ( a )  were not taken beyond r = 80 

because the experimental apparatus was not long enough, and the measurements of 

figure 2 (b )  extend only to r = 45 because, when r was increased further, there was 
a transition from m, = 4 to m, = 3 (that is, the domain of stability depends on aspect 
ratio; see King & Swinney 1983). 

The data suggest that the r-dependence of 5, can be described by functions that 
depend on l/r, for example, 

(2) 
01 

s y ( q  = s?(m)+- r’ 

The results of least-squares fits of data to sy and sf’ are given in table 2. Both equations 
fit the data for all cases with an r.m.s deviation of only 0.01-0.03 yo, but there are 
systematic deviations which are in the opposite directions for the two equations; see 
the deviation plots in figure 2. 

We have investigated the difference in wave speeds when the upper boundary was 
either a free surface or rigid (another Teflon ring attached to the outer cylinder) for 
a few cases and found a very weak effect, only on the order of 0.1 yo or less with r = 32 

and R/R, 2 4;  the effect should be even smaller a t  larger r. 

4.2. Dependence of s2 on aspect ratio 

The speed of  the second travelling wave was investigated only for 7 = 0.868, where 
the onset of the second wave is in the range 7 < R/R, < 12, depending on h, m, and 
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Av. The dependence of s2 on r was found to be very weak, too weak to determine 

any functional dependence from the data, as figure 3 illustrates. 

Although the aspect ratio dependenoc of the onset of two-travelling-wave flows was 

not investigated, we note from our measurements a t  RIR, = 10.95 that such a 

dependencc does indeed exist: whcnever r was reduced below r = 18, the second 

travelling wave always disappeared. 

4.3. Dependence of s,  on axial wtsvelmgth 

Figure 4 shows the wave-speed dependence on axial wavelength for a six-wave state 

in a sytem with 7 = 0.868 a t  RIB, = 3.98 and R/R, = 5.97. This figure and 

measurements for other states show that the functional dependence of s, on h varies 

considerably, but that the total variation with h is in general only a few percent for 
a given 7, R, r, m, and m2. 

4.4. Depprndencr of s1 on the number of waves (m,  and m,) 

The data shown in figures 5 ( a ,  b )  illustrate the dependence of csl on the number of 

azimuthal waves in a system with q = 0.877. Figure 5 (a) compares s1 for states that 

differ only in ml and figure 5 ( 0 )  compares s,  for states that differ only in m2. 

In figure 5 the change in s1 for Am, = 1 is only about 1.5 yo, and the change in s,  
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FIQUKE 2. The dependence ofwave speed sI nu aspect ratio for x / d  = 2.4, in a system with 7 = 0.868: 

(a) one-travelling-wave flow a t  RlR,  = 3.98, nil = 6 ;  (b) two-travelling-wave flow a t  RIR, = 10.95, 
m, = 4 and m, = 4. The dashed and solid curves are respectively least-squares fits to (2) and (3), 
and the horizontal dashed and solid lines are the corresponding values of the wave speed 
extrapolated to r = co. The lower graphs show the deviations of the data from (2). shown by the 

points ., and from (3), shown by the points X. 

for Am2 = 1 is only 0.3% or less. For other states a similar weak dependence of s1 

and s2 on m, and m2 was observed. 

Note in figure 5 ( a )  that s1 is larger for the state with the larger value of m,. This 

relationship is not generally true. For example, for R < 2R, we found that s,  decreased 
when m, was increased (also see Ahlers et al. 1983). 

4.5. Dependence of s1 on Reynolds number 

Beyond the onset of wavy vortex flow the wave speed s, decreases monotonically with 

increasing R until it reaches a plateau, which extends over a wide range in R ;  then 

there is a small gradual increase in s,  before the waves disappear. This dependence 

of s1 on R is illustrated in figure 6 with data for a system with 7 = 0.840; the same 

kind of Reynolds-number dependence was observed a t  all radius ratios studied. 

The Reynolds number a t  which the plateau begins and ends depends on m,, m2, 

and in particular on h. For example, as figure 4 illustrates with data a t  RfR, = 3.98 

and 5.97 for a state with m, = 6, s1 decreases with 11 for h f d  < 2.54 and increases for 

hfd > 2.54. 
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RIB, 

3.98 
3.98 
5.97 

10.95 

R/R,  

3.98 
3.98 
5.97 

10.95 

2 / d  

2.4 
3.0 
2.2 
2.4 

X / d  

2.4 
3.0 
2.2 
2.4 

Fit to (2) 

m1 m2 n t  $(a) a 

6 - 32 0.3432 0.116 
6 - 23 0.3340 0.106 
6 - 19 0.3368 0.025 
4 4 16 0.3216 0.036 

Fit to (3) 

m1 m2 n t  sf( 1 P 1 

6 - 32 0.3447 0.138 40.4 
6 __ 23 0.3354 0.171 28.2 
6 - 19 0.3372 0.122 11.3 

4 4 16 0.3225 0.063 13.9 

t Number of data points 

TABLE 2. Aspect-ratio dependence of the wave speed 

r.m.s. 
deviation 

Y o  
0.026 
0.021 
0.014 
0.023 

r.m.s. 
deviation 

"/o 

0.022 
0.013 
0.009 
0.019 

Aspect ratio 

FIGURE 3. The dependence of the wave speed sz on aspect ratio for A/d = 2.4, in a system with 
7 = 0.868, R/R,  = 10.95, m1 = 4 and m, = 4. When r was reduced below 18 there was a transition 
to a one-travelling-wave flow. 

A t  all radius ratios studied, the dependence of s1 on m,, m2, h and r i n  the plateau 
region was found to be small, at  most a few percent. 

4.6. Dependence of s1 on radius ratio 

In marked contrast with the weak dependence on m,, m2, h and r, the wave speed 

was found to depend very strongly on radius ratio, as figure 7 illustrates. Note that 

the data at each radius ratio exhibit the general dependence on R described in 94.5. 
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FIGURE 4. The dependence of wave speed s1 on the average axial wavelength h/d = 2 r / N  in 
a system with 71 = 0.868 for two different Reynolds numbers (with m, = 6) :  R / R ,  = 3.98 ( + )  and 
RIR, = 5.97 ( * ) .  The number of vortices and the aspect ratio were varied simultaneously to keep 
r x 33 for the different values of A. The curves are drawn to guide the eye. 

The Reynolds number RIR, x 11 is in the plateau region for the wave-speed data 

a t  h/d = 2.4 for all radius ratios, as can be seen in figure 7 ; therefore we have chosen 
this Reynolds number for a comparison of wave speeds for different radius ratios. 
This dependence on radius ratio is shown in figure 8. The curve drawn through the 
points is a best fit to Chebyshev polynomials, as will be discussed in $6. 

Summarizing the data, we find that to a good approximation the wave speed a t  
large Reynolds number depends only on radius ratio. 

5. Numerical and analytic studies 

5.1. Calculation of the wave speeds by numerical simulation 

Using an initial-value code with 33 radial Chebyshev modes, 32 Fourier azimuthal 

modes and 32 Fourier axial modes, we have numerically simulated several one- 
travelling-wave flows and determined the wave speeds. We assume a priori that the 
flow is axially periodic, and we simulate only one of the infinite array of vortex pairs. 
The calculations were performed with the primitive variables (the velocity com- 

ponents V,, V,, V+, and the pressure) rather than using a stream-function-vorticity 
representation. We used a pseudospectral method in which the multiplications were 
done by tabulating the primitive variables (which are real quantities) on a 33 x 32 x 32 

mesh of grid points in physical space, and the derivatives were computed in spectral 
space. In spectral space the velocity is represented by a set of 33 x 32 x 16 complex 

spectral coefficients an, m,  &(t)  : 

33 16 15 

V(r,  4, z ,  t )  = X Z Z un. m ,  k ( t )  Tn(r) eim$ei2Kkz’A+ c.c., (4) 
n = O  m --15 k - 0  
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FIGURE 5.  A comparison of wave speeds s1 in flows with X / d  = 2.5 and r = 20: (a)  two flows with 
the same m2 valves and different m, values (m, = 4, mz = 4 (A); m, = 5 ,  m2 = 4 (Y)); ( b )  two flows 
with the same m, values and different m2 values (m, = 4, m2 = 4 (A); m, = 4, m2 = 5 (+)). The 
vertical dashed line indicates the onset of the two-travelling-wave regime (m2 > 0) at R / R ,  z 9.6. 
The data  were obtained from laser-Doppler velocimetry measurements in a system with 7 = 0.877 

whose end boundaries were both rigid. 
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FIGURE 7. The dependenve of wave speed s, on Reynolds number for radius ratios 7 = 0.630, rn, = 1 
( + ) ;  7 = 0.730, m, = 2 (0 ) ;  7 = 0.800, rn, = 3 (A); 7 = 0.840, m, = 3 ( Y ) ;  7 = 0.868, m, = 4 and 
5 ( . ) ; ~  = 0.900,m, = 7 ( + ) ; 7  = 0.950,m,variable( x).Theaxialwavelengthwas~/d = 2.4except 
for 7 = 0.950, where it was variable (see text). The curves are drawn to guide the eye. 



378 G. P. King, Y .  Li, W .  Lee, H .  L. Swinney and P. S. Marcus 

0.6 0.7 0.8 0.9 1 .o 
Radius ratio 

FIGURE 8. The dependence of wave speed s1 on radius ratio at RIR, w 11.0, which is within the 
region of the wave-speed plateau (see figure 7 ) .  The axial wavelength was X / d  = 2.4 for all but two 
radius ratios: for 9 = 0.877, X / d  = 2 .5 ;  for 7 = 0.950, X varied owing to defects on the flow pattern. 
Each point is labelled with the number of azimuthal waves corresponding to that particular 
measurement. The curve is a best fit to the data using Chebyshev polynomials (see table 5 ) .  

where the Tn(r) are the Chebyshev polynomials and C.C. denotes the complex 
conjugate. (The m = - 16 and the m = 16 Fourier modes are indistinguishable when 
the velocity is evaluated at the collocation points; t>herefore the m = - 16 Fourier 

mode is not included in the spectral sum.) Expanding the pressure field in the same 
way as the velocity field (4), we obtain 33 x 32 x 32 x 4 nonlinear coupled real ordinary 
differential equations for the spectral coefficients. 

Often we exploit one or more symmetries of the flow to save computer time and 
storage. Some symmetries make the coefficients an, m, identically equal to zero ; 
other symmetries imply a relationship between the coefficients. For example, the m1 
fold shift-and-reflect symmetry of (1) requires an, m, E 0 for all m not integral 

multiples of m,, and 

i?r*an,m,k z ( - l )m/m~e^r*a~,-m,k,  ( 5 )  

i?$*an, m, = ( -  l ) m / m l  i?+.a:, -m, k, (6) 

We always exploit symmetries so that  the coefficients retained in the calculation are 
non-zero and represent (for each component of the velocity vector and €or the 

pressure) 33 x 32 x 32 independent pieces of information. Therefore the numerical 
calculation with the 6-fold-symmetric travelling wave presented in 8 6 includes all 
non-zero azimuthal Fourier modes of the form eim6 with - 96 < m Q 96 and all axial 
modes of the form eizXkzlA with -32 < k < 32. 

The numerical initial-value problem is solved with a fractional step method where 
the boundary conditions are satisfied by using a capacitance or Green-function 
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matrix. The details of the numerical techniques appear in Marcus ( 1 9 8 4 ~ ) .  It can 
be shown that the fractional step and time-stepping errors produce a global error 

in the velocity O[(Q3a3/d2)  (At )z ,  (Qza2/d) ( A t I R ) ] .  Unfortunately, i t  is impossible to 
predict analytically the temporal error in the wave speed s1 because the functional 
dependence of s1 on the velocity is not known; however, we have calculated the 
steady-state velocity and the wave speed for several values of At, and the errors in 
both the wave speed and the velocity decrease as O[(Q3a"/d2) (At)". (At the Reynolds 
numbers of interest here (R > loo), the error proportional to  (At)z  is greater than 
the error proportional to  A t / R . )  The smallest At used in the numerical calculations 
is At x 7/2000, where T is the inner-cylinder period. 

We have found that the behaviour of the error in the wave speed due to finite spatial 

resolution is characteristic of spectral methods. I n  numerical calculations with very 
few spectral modes, the errors in the wave speed initially decrease very slowly as the 
number of modes is increased, but, when the resolution increases beyond a critical 
value, the error abruptly decreases exponentially. For example, at R/R, = 3, m, = 6 

and 7 = 0.868 we find that the error in the wave speed decreases slowly with 

increasing numbers of modes until there are 8 axial and 8 azimuthal modes; then the 
error in the wave speed decreases exponentially as more modes are added. All of the 
wave speeds reported in this paper were computed in the exponentially converging 

regime. 
A complete discussion of the accuracy of the numerical code including comparisons 

with linear theory, internal-consistency checks and predictions of torques is given by 

Marcus ( 1 9 8 4 ~ )  and will not be repeated here. We believe that the most sensitive test 
of accuracy is the comparison between the numerically predicted and the experi- 
mentally measured wave speeds. I n  our numerical experiments we have shown that 
insufficient care in treating the boundary conditions, time-splitting, or pressure 
evaluation can shift the computed speeds by several percent, which is easily 
detectable; in contrast, plots of the stream function are insensitive to subtle 
numerical errors. Comparisons of the numerical and laboratory values of the wave 
speeds are more discriminating than comparisons of the torques due to the large 
(several percent) experimental uncertainty in laboratory torque measurements. At 

the present time we cannot make a point-by-point comparison of the numerically 
simulated velocity field with the laboratory measurements. However, in the future 
we plan to mount the laser-Doppler system on a table that can rotate a t  the speed 
of the azimuthal waves; then the numerically computed velocity field can be 

compared directly with experiment. 
Even the most accurate numerical code, one that passes all imaginable tests a t  some 

Reynolds number, will become inaccurate at sufficiently high Reynolds numbers 
where the range of excited wavelengths exceeds the range of numerical spatial 
resolution. A critical test of the spatial resolution of a spectral method is provided 
by plotting the kinetic energy as a function of wavenumber. Too severe a truncation 
in the number of modes leads to  an artificial upward curl in the high-wavenumber 
end of the spectrum (Marcus 1981). Our spectra do not exhibit any such curl. I n  fact, 
the energy decays exponentially with increasing wavenumber, resulting in an energy 
in the largest wavenumber mode that is typically times the energy in the 

smallest wavenumber mode. The energy in the highest wavenumber end of the 
spectrum is so small that  aliasing errors are negligible. We conclude that the errors 
arising from the finite spatial resolution (and aliasing) are small compared with the 
time-stepping errors. 

Some computed wave-speed values are given in table 3. These speeds were found 

13 F L M  141 
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9 

0.630 
0.868 

0.868 
0.868 

0.868 
0.875 

0.875 

0.875 

0.875 

0.875 
0.875 

0.875 
0.875 

RIR, A/d 

7.50 2.40 
2.00 2.14 
3.98 2.40 

3.98 3.00 
5.97 2.20 
2.06 2.20 

2.06 3.00 
2.06 3.00 
2.06 3.00 

2.95 3.00 
3.89 2.32 

3.89 3.00 
3.89 3.90 

4 
73.5 

115.1 
115.1 

115.1 

115.1 
118.2 

118.2 

118.2 
118.2 

118.2 

118.2 
118.2 

118.2 

1 

6 
6 

6 
6 
6 
4 

5 
6 

6 

6 

6 
6 

s1 

0.146 
0.4044 
0.3443 

0.3344 
0.3370 
0.407 

0.401 

0.3893 
0.3757 

0.352 

0.354 

0.342 

0.329 

A51/51t 

0.01 
0.001 
0.0003 
0.0003 
0.0003 
0.001 

0.005 

0.001 
0.0003 

0.005 

0.004 

0.004 

0.006 

t As, is the numerical uncertainty in the wave speed due to finite space and time resolution 

TABLE 3. Numerically computed values of the wave speed 

by extrapolating the time step to zero. The fractional uncertainty in the extrapolated 

wave speed due to the time-stepping error is coincidentally of the same order as the 
fractional difference between the wave speed computed with At % 7/2000 and the 
extrapolated wave speed with At = 0. The uncertainties given in table 3 differ because 
the computations were done with different sized time steps; in the best-determined 
cases the uncertainty is 0.03 yo. 

5 .2 .  Analytics: a marginal stability analysis for s1 at large R and q - f  1 

The experimental and numerical studies of flows in the CouetteTaylor system show 
that at large R the axially and azimuthally averaged angular momentum per unit 
mass L ( r )  is essentially independent of radius outside of the boundary layers. (In this 

section a horizontal bar written above a quantity will always mean the axially and 
azimuthally averaged component.) The value of this constant angular momentum 
can be computed from marginal stability theory and used to predict s1 at large R 
in the limit q --f 1, as we will now show. 

Figure 9 shows L ( r )  = r& as a function of radius. There is a boundary layer a t  the 

inner cylinder of thickness Sin + d and a boundary layer a t  the outer cylinder of 
thickness Sout + d.  Far from the boundary layers L(r) has a constant value Lo. The 
physical explanation for L(r )  being nearly constant comes from the observation that 
far from the boundaries the flow is well mixed. For an axisymmetric inviscid flow, 
Euler’s equation shows that the advective derivative of the angular momentum per 
unit mass is zero. I n  a viscous flow the advective derivative of the azimuthally 
averaged angular momentum per unit mass is proportional to a viscous (slow) 
timescale, so the azimuthally averaged angular momentum per unit mass in a 

Lagrangian frame is nearly constant, i.e. an adiabatic invariant. Since the fluid is well 
mixed, the adiabatic invariant is well mixed, and hence the angular momentum per 
unit mass is constant far from the boundary layers. 

Marcus (19846) has found that the one-travelling-wave flows have a comoving 
surface such that all fluid on this surface has the same azimuthal angular velocity 
as the travelling-wave speed sl. The radius of the comoving surface, although a 

function of #, z and t ,  never extends into the boundary layers. I n  numerical 
simulations the azimuthal velocity is always dominat,ed by V, ; therefore we expect 
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a b 

Radius 

FIGURE 9. The radial dependence of the axially and azimuthally averaged angular momentum per 
unit mass E(r) ,  shown schematically at  large R where L(r) is essentially constant outside of the 
narrow boundary layers of thickness Sin and Soout a t  the inner and outer cylinders respectively. 

that the angular velocity of the comoving surface (and hence the speed of the 
travelling wave) will be about E(rc)/rE, where r, is the average radius of the comoving 

surface. Assuming that Lo is constant and that rc  x +(a+ b ) ,  a numerical error of Arc 
in the calculation of rc produces a fractional error in the angular velocity of the wave 

of 
As, 4(1-q) Arc 
- x ----(T). 

$1 l + r  

For large radius ratio, the fractional error A.s,/s, approaches zero. I n  the limit 17 + 1 

the angular velocity of the comoving surface (or s,) is Lo/a2. 
The values of Lo, Sin, Sout, and the torque per unit axial length G are calculated 

in the Appendix using marginal stability theory. That analysis yields 

Sin= 1 . 1 4 ( ~ )  R , 

&= 1.47(%) R -5 , 

- _  G - 0.383 (g)', 

d 

d 

Gcc 

-- Lo - 0.563. 
QU2 

(9) 

Here G,, is the torque per unit axial length for circular Couette flow (for 7 x 1 ) :  

----=0.1517(q) Gcc R -l (1-r)i. 

pQ2a4 

13-2 
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where R, in the limit 7-f 1 is given by (Chandrasekhar 1961, p. 303) 

G. P. King, Y .  Li, W .  Lee, H .  L. Swinney and P. S. Marcus 

R, x 41.41 ( 1  - 7)-4. (14) 

Equations (9)-( 12) are only valid for + 1 and R $ R,, Sin + Sou, 4 d and GIG,, > 1 .  

Observe that the inner and outer boundary layers do not have the same thickness. 
Also note that Sin and Sout depend on R, but zo/0a2 is independent of Reynolds 

number. 
+ 1 the angular velocity of the comoving surface is the wave speed. 

Thus the marginal stability analysis leads to the prediction for R sufficiently large: 
In the limit 

(15) 
v 
a 

S, = A = 0.5630 (7 x 1) .  

If R is large enough for marginal stability theory to be valid, then s, is independent 
of R, m, and A. The same kind of analysis should apply to the second travelling wave, 

so (15) should describe s2 as well as s,. 

6. Comparison of experiments with the numerical and analytic studies 

The numerical simulations are most accurate and least costly for low values of R ;  
as R is increased, more Fourier and Chebyshev modes are needed to fully resolve the 
flow velocity. On the other hand, the laboratory measurements extrapolated to 
infinite aspect ratio are most accurate and least time-consuming a t  high values of 
R;  a t  low values of R the extrapolation to infinite aspect ratio (which is the aspect 

ratio in the numerical computations) has the most uncertainty. Furthermore, as the 
Reynolds number is decreased, the time it  takes for the fluid to relax to equilibrium 

increases; thus a t  small R i t  becomes prohibitively time-consuming to complete a 

series of measurements determining the infinite-aspect-ratio limit of s,. Therefore, as 
a compromise between numerical and laboratory convenience, we have chosen to 

compare wave speeds at two intermediate Reynolds numbers. 
The functional form of the aspect-ratio dependence of the wave speed is not known 

from theory. We have examined several possible forms of sl(T), including those given 

by (2) and (3). There are systematic departures of the data from both (2) and (3), 

but the departures are in opposite directions, leading to estimates for sl(T = 00)  that 

are probably too low (s:, equation (2)) and too high (sf, equation (3)) (see figure 2). 

However, sT(00) and sf(00) typically differ by 0.3 yo for the cases we have examined. 
Thus the best estimate we can make for the experimentally determined value of sl( 00)  

is the average of sY(00) and sf(00); the uncertainty in this average is 0.2 %. 
The computed and measured wave speeds for the cases that can be directly 

compared differ by less than 0.1 yo, which is well within the experimental uncertainty 
(see table 4). 

The three cases for which the measured and computed wave speeds can be directly 
compared all have s, x 0.33. The wave speed has also been computed for a case with 
a much smaller wave speed: s, = 0.146kO.001 a t  7 = 0.630, R/R, =7.5,  Ald = 2.4 

and m, = 1. Our measurements at this 7 cannot be directly compared with the 
computed wave speed because the aspect ratio dependence has not been measured 

(and cannot be measured with the existing apparatus); however, the wave speed 
measured at a small aspect ratio (sl = 0.149 a t  T x  26) is in good qualitative 
agreement with that computed for an infinite cylinder. 

In  order to compare the measurements with the prediction of the marginal stability 
analysis, we have extrapolated the data to 7 = 1, as shown in figure 10 (see also table 
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RIR, X / d  computed measured? 

3.98 2.4 0.3443+0.0001 0.3440f0.0008 
3.98 3.0 0.3344+0.0001 0.3347~0.0007 
5.97 2.2 0.3370+0.0001 0.3370+0.0002 

t The average of sC;( co) and co) from table 2 

TABLE 4. Comparison of computed and measured wave speeds (7 = 0.868, m, = 6) 
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FIGURE 10. A comparison of the marginal stability prediction (m) at 7 = 1 with an extrapolation 
of the data of figure 8. The data (0 )  have been fitted with Chebyshev polynomials (--) and a quartic 

polynomial (-). 

5 ) .  A fit of the data (including the wave-speed value a t  7 = 0.507 reported by 
Brandstater, Pfister & Schulz-DuBois 1982) to a quartic polynomial yields 
Sl(7 = 1) = 0.563, in excellent agreement with the predicted value s1 = 0.563! The 
agreement is not so good when the data are fitted to Chebyshev polynomials, yielding 
sl(q = 1) = 0.602; however, Chebyshev polynomials are known to be poor functions 
for extrapolation because of the heavy weight given to the endpoints. 

7. Comparison with other work 

7.1. Comparison with other experiments 

There have been very few previous studies of the dependence of the wave speed on 
the control parameters or on the spatial state (2, m,, m2), even though the wave speed 
is a rather simple quantity to measure. 

As mentioned previously, Coles found that sl+$ at large R, independently of m1 

and (r and 7 were fixed). We find that in general there is some range in R over 
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Parameters r.m.s. 
deviation 

Function a b C d e % Sl(7 = 1 )  

Quartic polynomial 3.391 -20.339 45.232 -43.510 15.789 0.35 0.563 
1 Chebyshev polynomial 0.369 0.436 -0.332 0.106 0.023 0.26 0.602 

7 s,(q) = a + b 7 t c q 2 + d q 3 + e r 4  

$ Sib) = a+bT4(7) + 4 ( 7 ) + d T s ( S )  +em71 

TABLE 5. Quartic and Chebyshev fits of c ~ l  versus 7 

which s1 is essentially constant, as figure 7 illustrates, but a t  large R there is a small 

increase in s1 before the waves disappear. The Reynolds number a t  which s, begins 
to  increase depends on 7, m, and h as well as R. 

No previous study to our knowledge has examined the dependence of s1 on aspect 
ratio, even though the aspect ratio is known to have a profound influence on the flow 
states (Cole 1976; Benjamin 1978; Donnelly et al. 1980; King & Swinney 1983). 

The dependence of s1 on 2 has been investigated in two studies done for RIR, < 2 
(Snyder 1969; Ahlers et al. 1983); s1 was found to decrease with increasing 2. Our 
experiments show that s1 can also increase with increesing A,  or, as figure 4 illustrates, 

can even exhibit an extremum. 
Ahlers et al. also found that the wave speed was a function of m,. They observed 

that when m, was increased from three to four, and, a t  a different h, from four to five, 
s1 decreased. We have also observed s1 to decrease with increasing m,, but not 
universally; figures 5 ( a )  and 6 show two instances where the opposite relationship 

occurs. 
The only previous measurements of the wave speed as a function of 7 were those 

of Cole (1981, 1983) at the onset of wavy vortex flow. He found that for 7 < 0.75 the 
wave speed at onset was much less than the often-quoted value of $0; similarly, our 

figures 7 and 8 show that the wave speed a t  large R can be quite different from the 
often quoted value of $0. 

The wave speed has been measured by Brandstater et al. (1982) at 7 = 0.507, a 
radius ratio smaller than our smallest value, 7 = 0.630; their result s1 = 0.08 is 
consistent with an extrapolation of our data in figure 8. 

7.2 .  Comparison with other numerical work 

Analytically, i t  is impossible to  calculate the wave speed with no approximations. 
Numerically, i t  is easiest to compute the speed of the one-travelling-wave flow at 
Reynolds number Ronset(h, m,), which is the Reynolds number a t  which a Taylor- 
vortex flow with axial wavelength h becomes unstable to a one-travelling-wave flow 
with azimuthal wavenumber m, and axial wavelength A. At Ronset the non-axisym- 
metric component of the velocity has infinitesimal amplitude. The wave speed is 
determined by two numerical calculations : first, the nonlinear, steady-state, axisym- 
metric Taylor-vortex flow is determined ; secondly, the eigenvalues of the non- 
axisymmetric linear perturbations of the Taylor-vortex flow are computed. The 
imaginary part of the eigenvalue is the growth rate of the linear perturbation (and 
is zero by definition a t  ROnset) and the real part of the eigenvalue is the wave speed. 
Jones (1981) has used this procedure with 14 radial Chebyshev and 7 axial Fourier 
nodes to  compute the nonlinear Taylor vortex flow to find wave speeds for flows with 
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A/d  = 2.01, 7 = 0.8756, m < 12 and R/R, < 4.0. At R/R,  = 4.0 the speeds cal- 

culated by Jones and our measured speeds differ by about 5 yo (after the appropriate 
radius ratio corrections have been made), but Jones’ numerical method is not, of 
course, applicable for R > Ronset(h,ml), where the travelling wave has finite amp- 
litude. Unfortunately, in most cases it  is not possible to make a direct comparison 

between numerical computations a t  Ronset(h, m,) and laboratory measurements, 
because a t  R = Ronset most one-travelling-wave flows are unstable to m =+ m, 
perturbations and cannot be observed experimentally. For example, the m, = 6 

one-travelling-wave flow has finite amplitude and is stable for RIR, 2.1 for 
7 = 0.868 and A / d  = 3, but when the Reynolds number is decreased to R = 

Rstab(A, m,) > Ronset(h, m,) the travelling wave still has finite amplitude but becomes 

unstable to an m, = 4 one-travelling-wave flow (Marcus 19846); hence the m, = 6 
one-travelling-wave flow cannot be experimentally observed with R < &!,,,,(A, m,). 

The small (5%) difference between the wave speeds computed by Jones and the 
experimental values shows that the wave speed is not very sensitive to the finite 
amplitude of the travelling wave. This lack of sensitivity is explained in part by the 
functional form of the azimuthal wave speed, v+ z E(r ) / r ,  shown for large R in figure 
9 and discussed in $5.2. Since z(r) is not a strong function of radius and since the 

radius of the comoving surface rc  x i (b+a) ,  (8) shows that a numerical error in the 
calculation of the comoving surface of Arc produces a fractional error of only about 
0.265Arc/d in the wave speed. A 5 % error in s, requires ArJd < i. 

8. Conclusions 

8.1. Experimental results 

We have conducted the first exploratory study of the dependence of wave speed on 

the geometry and forcing and on the intrinsic axial and azimuthal wavelengths. Our 
experiments show that the dependence of s1 on R, r, 7, h,  m, and m2 is in general 
very complex. However, a t  large R, s1 depends primarily only on 7, increasing 
monotonically threefold in the range studied (0.63 < 7 < 0.95), as shown in figure 8. 

I n  contrast, the variation of s, with r, R, h, m, and m2 is, for a given 7, only of the 
order of a few percent, as figures 2-7 illustrate. No generalization can be made about 
the weak dependence of s, on A, m,, m2 and r- in some cases s, decreases with 

increasing values of these parameters, while in other cases s, increases. 
Since s1 depends on so many variables, it has of course not been possible to survey 

completely the dependence of s, on every variable. The dependence of s, on R was 
examined at each 7 for h equal to or near 2.4d, and two or more values of m, were 
examined at each 7 except 7 = 0.630, where only the m, = 1 state was observed. 
However, the dependence of s, and s2 on r was investigated only for 7 = 0.868, and 
the dependence of s, on m2 only for 7 = 0.877. Future experiments can extend the 
study of s1 beyond the parameter ranges examined here and can examine the 
behaviour of the wave speeds of other azimuthal travelling-wave modes. 

8.2. Numerics 

We have developed a simulation of the CouetteTaylor system that is valid a t  
Reynolds numbers well beyond the onset of Taylor vortex flow. Extensive self- 
consistency tests have been applied to this code. Wave speeds determined in the 
simulations have been compared with measured wave speeds at 7 = 0.868 for several 

different values of R, m, and A. The calculated and measured wave speeds agree to 
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within 0.1 % in the best-determined cases. We know of no other simulation of any 
flow that achieves such accuracy a t  comparable Reynolds numbers. 

Now that the validity of the simulation has been demonstrated in the present work, 
i t  will be possible in the future to use the numerical code to gain insight into the 

physical mechanisms of different instabilities in the CouetteTaylor system. The 
simulations are too expensive to permit wide-ranging exploratory studies of the 
dependence of the flow on different parameters such as have been obtained in our 
measurements of the wave speeds. On the other hand, the simulations yield 
information on the entire velocity field a t  each instant of time, information not 
readily obtainable from experiments. Simulationsusing our code should be particularly 
helpful in understanding the essential differences in the variety of flows that have 
been observed with both cylinders rotating independently a t  different speeds 
(Andereck, Dickman & Swinney 1983; Andereck, Liu & Swinney 1984). 

Comparisons of the measured and calculated wave speeds and studies of energy 
spectra (Marcus 1984a) indicate that our code with 33 radial Chebyshev modes, 32 

Fourier azimuthal modes, and 32 Fourier axial modes has a sufficient number of 
modes to  prevent severe modal-truncation artifacts even a t  Reynolds numbers as 
large as R x 1400. However, a t  this large Reynolds number some numerically created 
pile-up of the energy becomes noticeable in the high-wavenumber end of the 
spectrum. Thus the previously reported codes with much smaller numbers of modes 
would produce serious errors in the wave speeds at these Reynolds numbers. The 
question of how many modes are necessary to represent the flow accurately a t  
different Reynolds numbers is an important one that should be addressed in a future 
study. 

I n  the past the contact between numerical and experimental studies has usually 

been made by comparing calculated and measured torques. We consider the wave 
speed to be a better test of numerical predictions since wave speeds can be measured 
with an accuracy of better than 0.1 yo for a given set of values of the experimental 
parameters, which is considerably better than the usual torque measurements. In  
either case, contact with theory must be made by ext)rapolating the measurements 
to infinite aspect ratio. For wave speeds this can be done straightforwardly though 
tediously, with an accuracy of 0.2 yo or better, as we have shown. 

8.3. Analytic8 

We have presented an approximate stability analysis, based on plausible but 

unproven assumptions, which predicts that the wave speed a t  large Reynolds number 
in the small gap limit (7 = 1)  should approach the value 0.563Q. This prediction 
should apply equally well to all travelling azimuthal wave modes. The agreement 
between the prediction and the extrapolation of our measured wave speeds for the 
first travelling wave is remarkably good. 
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David Andereck, Anke Brandstater and Li-Hua Zhang for helpful discussions ; and 
Mike Biggerstaff, Philip Dixon, Michael S. Brown, lgnazio Ciufolini, Steve Stotts and 
Bright Dornblaser for help in the experiments. The experiments were conducted a t  
the University of Texas with the support of National Science Foundation Grant 
MEA82-06889, and the theoretical work was conducted a t  MIT with the support of 
National Science Foundation Grant MEA82- 15695. The numerical simulations were 
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Appendix. Marginal stability theory (for R % R, and 7 M 1) 

Using marginal stability arguments in a manner analogous to their use in 

convection (Robinson 1967), we now derive relationships for the boundary-layer 
thicknesses Sin and Sout (see figure 9), the axially and azimuthally averaged angular 
momentum per unit mass L(r) and the torque per unit axial length G. The analysis 
is valid only in the limit q+ 1 and R 9 R,. 

Our principal assumption is that the thicknesses of the inner and outer boundary 

layers are determined by centrifugal instability. More specifically, i t  is assumed that 
the inner and outer boundary layers form marginally stable circular Couette flows. 
The gedanken Couette system formed by the inner boundary layer is confined between 
the real cylinder a t  radius a and an imaginary outer cylinder at a+Sin; the inner 

cylinder has an angular velocity of 52 and the imaginary outer cylinder an angular 
velocity equal to that of the fluid a t  a + Sin. Similarly, the gedanken Couette system 
formed by the outer boundary layer is confined between an imaginary outer cylinder 
a t  radius b-SoUt and the real cylinder a t  radius b ;  the imaginary inner cylinder has 
an angular velocity equal to that of the fluid a t  b-S,,, and the outer cylinder an 
angular velocity of zero. Now a circular Couette flow between rigid cylinders with 
inner and outer radii rl and r2  and inner and outer cylinder angular velocities 52, 
and 52, is marginally stable when (Chandrasekhar 1961, p. 303) 

where v is the kinematic viscosity of the fluid, and T,, the critical Taylor number, 
has the value 1715 for 0 < 52, < SZ, and 7 x 1. Although the appropriate values of 
T, would differ from 1715 since the no-slip boundary condition is not satisfied for the 
boundary-layer systems a t  the imaginary-cylinder walls formed by the fluid, this does 
not materially affect our argument. The fluid in a boundary layer, of course, does 

not have the velocity profile of circular Couette flow. Smith & Townsend (1982) have 
experimentally measured the velocity in the boundary layer and found that for very 
large R the velocity falls off approximately as logr, as in a wall-bounded shear flow. 
The exact velocity profile of the boundary layer is not of importance in this 
calculation, but we shall assume that the thickness of the boundary layer is 
determined by centrifugal instability and not by shear forces. Treating the flow in 
the inner boundary layer as if it were a marginally stable circular Couette flow, we 

have r1 = a ,  Q1 = 52, r2 = a+Si, and 52, = & / ( U + S ~ , ) ~  in (A 1 ) ;  hence 

4 = T,. 

Similarly, for the outer boundary layer we have rl = b-Sout ,  52, = Eo/(b-So,t)2, 

I n  an equilibrium flow, the torque that the inner cylinder exerts on the fluid is equal 
to the torque that the fluid exerts on the outer cylinder. The torque (per unit axial 
length) a t  the outer cylinder is 
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where p is the fluid density. The term V,/r in (A 4) is negligible compared with a V,/ar 
in the limit 7 + 1.  Therefore we have 

E 

Sout 
Gout w 2npvb 0. 

Similarly, the torque exerted a t  the inner cylinder is 

Setting G = Gin = Gout, using (A 2 ) ,  (A 3),  (A 5 )  and (A 6), and taking the limit q+ 1, 

we obtain 

R -% 
- Sin = 1 . 1 4 ( ~ )  , 
d 

&= 1 . 4 7 ( ~ , )  R -% , 

- = 0.383 (Ey, 
d 

G 

G, c 

Lo - 
Qa2 1 +Sin/Gout 

- 

= 0.563. 
1 

-- 

We have expressed the torque in (A 9) in units of G,,, the analytic value of the torque 

per unit axial length in circular Couette flow (see (13) in 55.2) .  The quantity GIG,, 

is the analogue of the Nusselt number in thermal convection. The analysis leading 

to (A 7)-(A 10) applies only when the boundary layers are well defined, that is, when 

R a R,; in this limit (A 7 )  and (A 8) yield Si,+Sout 4 d.  
Our expressions for Sin, Sout and GIG,, differ from those obtained by Batchelor 

(1960), whose derivation assumed that the boundary layers a t  the inner and outer 

cylinders were connected by boundary layers between the Taylor vortices. Batchelor’s 

estimates for the boundary-layer thicknesses (which he assumed to be equal) and 

GIG,, are proportional to  (R/R,)-i and (RIR,); respectively. Unfortunately, there 

are insufficient experimental data at high R and 9 w 1 to distinguish between 
Batchelor’s formulae and ours. 

Barcilon et al. (1979) derive relationships for the torque and boundary-layer 

thicknesses that have the same dependence on RIR, (although not the same 

dependence on 7)  as ours. Barcilon et al. assume that the boundary layer is filled with 

Gortler vortices. The boundary-layer thickness is then defined to be equal to the 
diameter of the Gortler vortices. Since the Gortler instability and the circular Couette 

instability are both centrifugally driven, it is not surprising that the diameter of the 
Gortler vortices is the same as the thickness of a marginally stable (with respect to 

centrifugal instability) boundary layer. However, to use marginal stability theory, 

i t  is not necessary that the boundary layer be actually filled with Gortler vortices. 

For example, when marginal stability analysis is used to compute boundary-layer 

thicknesses and the Eussclt number in thermal convection, the boundary layer is 
viewed as a shear layer in which an infinitesimal thermal perturbation can cause 

convective instability. The boundary layer is not filled with small convection cells. 
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Similarly, we view the boundary layer in Tayalor-Couette flow as a shear layer in 
which an infinitesimal perturbation can cause a centrifugal instability. 

Finally, both Batchelor’s assumption that the thicknesses of the boundary layers 
a t  the outer and inner cylinders are equal and the assumption of Barcilon et al. that 

the mean azimuthal velocity is v6 = iQa lead to the prediction that the wave speed 
in wavy-vortex flow would have an angular velocity of $2 in the limit 7 + 1 ,  while 

(A 10) predicts a wave speed of 0.56352. 
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