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ABSTRACT

This report presents a theory for ocean wave transmission
past breakwaters by overtopping, based on an evaluation of the
energy content of the overtopping water. While several co-
efficients are subject to further investigation, the data shows
that the general form of the equations developed is correct.
Comparison with large-scale model tests reinforces this belief,
and comparison of an intermediate theoretical regult predicting
the volume of overtopping water with published data again shows
reasonable agreementt An envelope curve for the transmission

coefficient, based on all available data, gives a simple tool for

preliminary design estimates of the transmission coefficient.
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INTRODUCTION

The design for a harbor in an exposed location generally
includes a breakwater to provide an area sheltered from the
waves. As breakwaters are usually designed to permit some over=
topping by.the waves during severe storms, it becomes necessary
to predict the characteristics of the waves so transmitted into
the harbor, to assure that the wave action in the sheltered area
is within acceptable limits. This report presents a theory for
wave transmission by overtopping, based on an evaluation of the
energy content of the bvertopping water. While the coefficients
for reflection and regeneration are open to question, the
laboratory data shows that the general form of the equations
developed is correct. Comparison with large-scale model tests
reinforces this belief, and comparison of a theoretical predic-—
tion of the volume of overtopping water with a portion of the
published data again shows reasonable agreement. An envelope curve
for the transmission coefficient, based on data from several sources,
gives a simple tool for preliminary estimates of the transmission

coefficient.

THEORY
When a wave overtops a breakwater, some of the incident wave

energy is reflected, some 1is dissipated, and some is transmitted

past the breakwater into the sheltered area. Overtopping occurs




when the wave runup on the seaward face of the breakwater exceeds
the level of the breakwater crest. A slug of water from each
incident wave overtopping the structure flows across the top

and down the lee face of‘the breakwater; the transmitted waves
are generated impulsively by this water mass, and thus the energy
content of these transmitted waves must be derived from the over-
topping water.

This energy content can be conveniently evaluated in steps:
first, the energy content of the water as it crosses the breakwater
crest must be estimated; mnext, the friction (and percolation) losses
must be determined; and finally, the regeneration process must be
studied.

The energy content of the overtopping water mass can be estimated
by assuming that the total energy content of the overtopping water is
the same as the energy of that portion of the wave runup that would lie
above the breakwater crest were the breakwater face extended to-a higher
elevation as shown in Fig. 1. At maximum runup, flow velocities are
essentially zero, and all the energy of this water is in the form of
potential energy. By knowing the shape and position of this hypothet-
ical runup wedge, this potential energy can be calculated.

With the above assumptions stated, the solution to the problem can
be outlined as follows:

I. The shape of the runup wedge is specified as an n-th

degree parabola from the first seaward wave trough to the

point of maximum runup on the extended breakwater face.




II. Mass conservation requires that the volume of runup
above the still water level (SWL) equals that '"removed"
in the trough, below the still water level, ovef the
region from the first seaward wave trough (at maximum

runup) to the breakwater.

I1T. ‘The energy contained in the runup wedge is evaluated
from the net energy flux into a control volume enclosing
the runup wedge and the partial standing wave system just
seaward of the breakwater.

IV. The overtopping energy is evaluated as the potential
energy of that portion of the runup wedge extending above
the actual breakwater crest elevation at maximum runup
on the extended face.

V. The overtopping water volume is similarly evaluated as
that portion of the runup wedge lying above the breakwater
crest at maximum runup.

VI. The transmitted wave energy is evaluated by accounting
for the net energy flux into a control volume which en-
closes the overtopping flow and the transmitted wave train.

The above grouping provides a convenient means of summarizing
the analytical details of the theory which follows.

While the analysis is for a two-dimensional section of the

Structure, with waves arriving at normal incidence to the structure,

it should apply also to waves arriving nearly perpendicular to the
\

breakwater.




I. Parabolic Runup Wedge

At maximum runup, the shape of the runup wedge is assumed to
be a parabola with its vertex at the bottom of the first wave trough.
The corresponding equation is

Y = Mx" - A

where Y is the water surface elevation above the SWL, X is distance
from the trough shoreward, and A is the amplitude at the trough

(Fig. 1). This equation satisfies the conditions of surface continuity
and slope at its vertex and approximates the shape of runup wedges
observed in the laboratory. It will be assumed that maximum runup
occurs in phase with the extremum in the partial standing wave pfofile.
Using linear wave theory to describe the wave motion seaward of the

first trough, A becomes

A= Ai + Ar
= Ai (1 + kr)
where Ai = incident wave amplitude
Ar = reflected wave amplitude
and kr = reflection coefficient#*

The runup equation may be written in dimensionless form by dividing

through by A, i.e.,

where LR is the value of X where Y = R, the runup height; thus,

# The symbol convention used throughout this paper is lower case letters
represent dimensionless quantities and capital letters represent
dimensional equivalents,




=R+ A
ML, = R

and

n
1=R+A<z<_) .
R

The following dimensionless quantities are defined to simplify

subsequent algehra: (Hb, H, Xl’ X2, and S are defined in Fig. 2).

Y R
y,r,h h,l=X, K’

b’
X,X15%,y, s,l =

As a result, the dimensionless runup surface becomes
n
y=(r+ )x -1 (1)

II. Conservation of Mass

Referring to Fig. 2, mass conservation requires that the volume

of water contained in the runup wedge between x = x. and x = 1 equal

1
volume missing from the void between x = 0 and x = Xy That 1is,
ydx - - = Q
0

Evaluating the integral yields,

re1 )

+
n = :rz -1
>t \
or 2 r-n (2)
ST T2 nF1 J
r

, . >
The physical 1imits on n are n = 1,0 for the runup surface to be con-

cave upward and n < r for positive breakwater slopes.




Equation (2) applies strictly to impermeable slopes, and
will yield conservatively high estimates for overtopping volumes
on permeable breakwaters.,

ITI. Energy Analysis - Seaward Face

As the transmitted wave energy comes from the overtopping
water, this overtopping energy, E0 is unavailable to form the
reflected wave. For the control volume of Fig. 3, the energy flux
over a wave period T can be written,

/N
Power in - Power out = Power loss (33
The power in is that of the incident wave. The power out includes
that of the reflected wave and the overtopping water. The losses
include friction losses on the slope and losses in the regeneration
of the reflected wave.

If PE is defined as the potential energy of the entire runup
wedge above SWL at maximum runup, then PE - Eo is that portion of the
runup energy which returns seaward via rundown.

Part of this returning energy is lost to surface friction and
entrance losses in the rundown process. Independent studies at
M.I.T. have enumerated the losses for a slug of fluid released down
a smooth slope, (Sy, 1969, King, 1970). These studies indicated that
reconversion of rundown energy to reflected (or transmitted) wave
energy is very inefficient: if E is the potential energy of the slug
at the onset of rundown, then the reconversion to wave energy results

in energy losses equal to kz E where k2 is a loss coefficient and

0.65 < kg < 0.85

for a smooth slope of 1:1.0.

Recalling the energy flux relationships from linear wave theory,




Equation (3) becomes

O_.
E.C. = E_C = [ — (&)
where Cg = energy propagation rate (group velocity)

Ei = incident wave energy density

=X 52
2 A

Y = specific weight of fluid

Er = reflected wave energy density

- X 2 2
2 Ai kr
Let T = L _ wave lengtk
C wave celerity
PE
pe = —5-
YA LR
E
e = =
o 2
YA LR

where pe and e, are dimensionless potential energies, and A =
Ai(l + kr) as previously defined. Substitution of the above into

Equation (4) yields

C (
1 +\._sL 1 r
pe+eo(k2—-l)—c I (5)

where kr is reflection coefficient of the overtopped structure, This
will be taken as a linear interpolation between Miches reflection co-
efficient, km, for a structure whose height exceeds maximum runup, and

zero reflection for no structure. That is,

(h + h)
k =k _____EE_
r

(6)

® (h + 1)




Equation (6) may be interpreted as a reduction in the reflection co-
efficient by a factor which is proportional to the fictitious break-
water extension. Presently available information about partial
reflection from overtopped structures does not justify a more
elaborate relationship.

The potential energy of the runup wedge must be evaluated
relative to its ability to return work to the reflected wave system.
The reconversion of runup potential energy to wave energy occurs
in two steps: (1) The potential energy of the slug is converted to
kinetic energy as the slug falls to the water surface, and (2) this
kinetic energy is converted to fluid motion in the re-entrance
vicinity. Much of the induced fluid motion is turbulent and is
eventually lost to viscous dissipation (as accounted for by the loss
coefficient, kg)' The remaining motion contributes to a component
of the reflected wave. It is important to note,however, that once
the center of gravity of the slug flow has entered the water, the
slug is neutrally bouyant and therefore has no further potential to
accelerate. The reconversion energy is limited to the kinetic energy
gained by the slug in falling to the water surface. Consequently, at
maximum runup the potential energy should be measured relative to the
water surface. Due to the uncertainty of position of the water sur-
face during re-entrance, the potential energy will be evaluated with
respect to the SWL.

It follows directly that the dimensionless potential energy of the

runup wedge at maximum runup is simply (see Fig. 2),




2 3
pe = L dx - sSY
2

At x = X

1
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and completing the above integration yields

9 ¢
1) (r+ 17 | 1
pe =5 4 om0t 11 -
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IV. Overtopping Energy

As described earlier, the overtopping energy is equal to
the potential energy of that portion of the runup wedge extending
above the breakwater crest, The potential energy is evaluated with

respect to the SWL, thus

1 y - hb s(r - hb)2 i r - hb
| @by () dx 2y
\X2
hb+1']l/][1
At = = = | ——————
X = X, y hb thus X, a— l}

Completing the above integration yields
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Substitution of Equations (7) and (8) into Equation (5) completes
the energy conservation analysis on the seaward side of the break-
water.

V. Overtopping Volume

The overtopping volume is evaluated from Fig. 2 as that
volume in the runup wedge which extends above the breakwater crest.
That is,

2
s(r - )
v = (y - hb) dx ~ ____E?jil__

Evaluating the integral yields

v 1+ 1/n

=‘r+l ]__hii_i -
v (n+1 r+ 1, .

(" 1/n" 2
hb + 1 s(r - hb)
1+ {1 (TTI .

€D

- 10 -




VI. Transmitted Wave Energy

Energy conservation requires that during each wave period
the neﬁ energy accumulated in the control volume sketched in Fig. 4
sums to zero, i.e.,

power in - power out = power loss (10)
The energy flux into the control volume is simply the overtopping
energy divided by the wave period. The power loss equals the overtopping
energy flux multiplied times the rundown loss coefficient, kz. The
energy flux passing out of the control volume is that associated with
the transmitted wave. Although the regeneration process is quite com-
plex, it repeats periodically at the frequency of the incident wave,
and thus the fundamental mode of the transmitted wave has the same fre-
quency as the incident wave. Experiments at M.I.T. indicate that this
mode contains most of the transmitted wave energy. As a first approxi-
mation, then, higher harmonics may be neglected and the power leaving

the control volume during one wave period is simply Eth where

2
S EE
t 2 t g
A
and kt =% = transmission coefficient. Substituting the above into
i
Equation (10) yields
E YA.Z 2 E
-9 _ Ik c =21
T 2 Tt g T A
2 2 e
But E =A,° (1 +k ) L.e and T = 5, where L_ = transmitted wave
o i T R o C t

length.
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ot T

If the water depth on the lee side of the breakwater is the same on

the seaward side, then Lt = L and

L
- £ R 2 -
k=2 1 @HEDT -k (11)

t o
g

The problem as defined includes five dimensionless unknowns :

n, r, kr’ kt and s (or LR). However, only four equations have been
presented to facilitate the solution to the above. The pertinent
equations are (2), (5), (6), and (11). All other quantities of inter-
est are functions of the five fundamental dependent variables listed.
A fifth relationship is needed to completely specify the problem., Two
alternative requirements have been explored to satisfy the need for a
fifth equation.

The first attempt required that the runup wedge be tangent to
the extended breakwater slope at the height of maximum runup. This is
a condition which has been observed for gentle slopes. This restraint,
however, yields runup heights exceeding those observed by a factor of
1.5 and greater.

The second attempt specified that the distance from the break-

water to the first trough be equal to half a modified wave length. The

modified wave length is computed from linear wave theory as a function

of water depth on the breakwater slope, and is defined as the integrated
average wave length in the interval between the first trough and the
intersection of the SWL with the breakwater slope. This requirement
reduces to known results for the two extreme conditions of vertical walls
and horizontal slopes. Imposing this restraint, however, yields runup

heights which fall short of those observed experimentally by a factor

- 12 -




of 0.7 and less. Corresponding transmission coefficients are
similarly low.

To satisfy the immediate need for a fifth equation, the
authors have relied on Saville's experimental results (B.E.B. T.M. #64)
as an input for runup heights. As a specific example, for a smooth
impermeable slope of 1:1.5, wave height to water depth ratios in
excess of 3.0, and wave cambers near 0.05, the appropriate runup
height is twice the incident wave height. Use of Saville's runup
ratios for high breakwater crests (hb/r > 0,5) yields good correla-
tion between experimental and theoretical transmission coefficients.
However, for relatively low breakwater crests (hb/r < 0.05) Saville's
data underestimates the equivalent runup height, and predicted trans-
mission coefficients are somewhat low. It should be pointed out that
this latter category is of little interest for practical breakwater
design.

Summarizing, the five dimensionless unknowns, n, f, kr’ kt,
and s may be solved using Saville's experimental runup heights and
Equations (2), (5), (6), and (11). Equations (7) and (8) must be
utilized to find pe and e in terms of the five unknowns. An itera-
tive procedure is employed in seeking a solution which satisfies all
five conditions simultaneously. The authors haQe found that this is
most quickly accomplished by incrementing n up from a minimum value of
unity until Equations (2), (5) and (6) are satisfied and then solving
directly for the transmission coefficient and the overtopping volume.
A simple digital computer program has been written in FORTRAN IV G to

expedite this solution.

- 13 -




EXPERIMENTAL EQUIPMENT

The experiments were performed at M.I.T. by Lamarre
(1967), using a glass-walled wave flume 2.5 feet wide and 105 feet
long, using a constant water depth of 1.5 feet. At the far end of
the flume was an impervious beach at a 5% slope.

The wave generator was of the flap type, 2.5 feet high, and
hinged at the bottom; the top was moved back and forth by a rod
attached to a crank arm having variable speed and eccentricity.

The smooth, impermeable breakwater was located 51.5 feet
from the wave generator and was 1.3 feet high. Tt could be raised by
small increments to a maximum height of 1.77 feet by adding blocking
underneath. These blockings were made of wood, shaped and installed
in such a way as to maintain constant front and rear slopes of 1 vertical
to 1.5 horizontal. The horizontal crest of the breakwater was 0.33 feet
wide. Roughness was obtained when desired by adding flattened expanded
metal lath sheets on top of the smooth surfaces.l

The instruments used in the experiment were parallel-wire
resistance type wave gages connected by a wheatstone bridge to a two-
channel Sanborn recorder. The wave gages consisted of two vertical stain-
less steel wires 1/8" in diameter and 1 foot long, mounted from above
3/4" apart, and partially immersed in the water.

EXPERIMENTAL PROCEDURE

Six different wave periods were investigated. Once the
frequency of the wave generator was adjusted to the proper value, and
before inserting the breakwater into the flume, the eccentricity of

the driver crank was set at four different positions and the corresponding

- 14 =




"incident' waves generated at each setting were recorded.

After the recording of these incident waves was completed,
the breakwater was installed, and two wave gages were mounted at
distances of one and two wavelengths respectively beyond the center-
line of the structure. The four different incident waves already
measured were then reproduced and the transmitted waves recorded.
All the experiments were repeated after adding the expanded metal
sheet for roughness.

The complete series of tests was made for each increase in
the height of the breakwater. After the breakwater was at its
maximum height, i.e., when there was no more overtopping, the struc-
ture was pulled out of the water, the frequency of the wave-maker changed,

and the process repeated for five more periods.

EXPERIMENTAL RESULTS AND DISCUSSION

The transmitted wave heights measured by gages 1 and 2 were
averaged to obtain an estimate of "the" transmitted wave height. Due
to the presence of the higher harmonics in the transmitted wave system, "
there was generally some variation between the wave heights measured
at the two locations; this variation typically amounﬁed to 5 to 15 per-
cent. The incident wave height is similarly taken as the average of
the two wave gages, but the difference only amounts to a percent or two.
Similar effects were noted by the U. S. Army Corps of Engineers (1965)

in the Dana Point model tests.

The data are shown in Figs. 5 through 10 as kt vs Hb/R for all




experimental runs., The curves plotted are solutions to Eq. 11
and depict theoretical bounds for smooth and rough surfaces. The
smooth surface curve corresponds to a runup ratio R/Hi =1.8, a

los oeffici , ..
088 coelilcient kl = 0.6, and an "intrinsic" coefficient of reflec-

tion (as described by Miche) p = 0.8, The rough surface curve cprres-

= 0.8 and p = 0.7.

ponds to R/Hi = 1.6, kz

The runup ratios used are those indicated by our own studies.
They are somewhat lower than those suggested by Saville (R/Hi = 2.0)
and probably include some scale effects as well as peculiarities of
the experimental apparatus.

The loss coefficient values follow directly from Sy's experi-
ments. He found for a smooth 1:1 slope an average kl = 0.7, It is
felt that the regeneration process is more efficient for horizontal
momentum transfer (as in a wave generator flap) than for vertical
momentum transfer. Since the horizontal component of rundown momentum
increases for decreasing slopes one might expect smaller loss co-
efficients for more gradual slopes. There is, of course, a trade off
to surface friction on very gradual slopes but for smooth 1:1.5 slopes
a loss coefficient equal to 0.6 seems appropriate. This is increased
to 0.8 for the equivalent roughened slope.

The intrinsic coefficient of reflection is a function of sur-
face roughness and permeability. Miche suggests a value o% p = 0.8
for smooth impermeable slopes, and p 2 0.33 for rubble slopes. Con-
sequently a value of 0.8 was chosen fof the smooth slope and 0.7 for

the rough slope. For deep_water wave cambers HO/Lo < 0.06 and 1:1.5

- 16 -




slopes, Miche's theory yields km = p,

For low breakwaters Hb/R < 0.3% the theory underestimates
the transmission coefficient; it appears reasonable that the
assumptions underlying the theory are least valid in this region, and
moreover, the values of Kr and kZ used may not be applicable. How-

ever, this range of Hb/R is of little practical interest, as the

transmission coefficients are typically 0.3 to 0.6.

For higher breakwaters (Hb/R >0.5%), the theory generally
overestimates the transmission coefficient, particularly for the
smaller values of relative depth, H/L. For the most of the range of
H/L however, the theory provides an 'upper envelope" for kt, and thus
is useful for preliminary design estimates.

It is interesting to note on Figs. 5 through 10 that the
incident wave steepness, Hi/L has little effect on the transmission
coefficient except at the lowest values of Hi/L'

As one might expect, adding roughness to the slopes reduces the
transmission coefficient for the laboratory data, probably by reducing
the runup and increasing kz.

There is a significant amount of scatter in the data; this
can be attributed to several sources.

1. Wave gage inaccuracies; these gages typically are only

good to 5 to 10 percent.

2, Lateral resonance effects can bias readings taken along

the channel centerline. For several runs, it was noticed

that the wave crests were not uniform across the channel.

For the 1.5 second waves, the channel width is close to a




quarter—wave—length and for the 1.0 second waves, a
half-wave-length, For the other periods, however,
especially with steeper waves, the partial breaking
occasionally observed on the structure can generate
higher harmonics capable of lateral resonance.

3.. Breaking of the waves on the structure, observed for

the steeper waves, causes an additional energy loss not
accounted for by the theory. Because of the strong

dependence of breaker characteristics on the backwash

from the preceding wave, no very uniform effect of break-

ing can be expected.

Besides the scatter, another shortcoming of the data is that the
ranges of relative depth, H/L, and wave steepness, Hi/L’ do not fully
cover those found in the prototype. Breakwaters are typically built
in 15 to 40 feet of water, and the incident waves typically have wave
lengths from 200 to 400 ft; thus H/L ranges from approximately 0.04 to
0.2 in the prototype, while H/L in the experiménts ranges from 0.16 to
0.45. Similarly the wave steepness Hi/L’ in the prototype under storm
conditions will be approximately 0.04 to 0.10, while the maximum steep-
ness available in the experiments was 0.064. These difficulties stem
from the difficulty of generating steep waves in shallow water with a
hinged~flap wave generator. The Dana Point data (Fig. 11), however,
represents prototype conditions, and agrees well with the laboratory
data, suggesting that depth is not a very important factor, except pos-
sibly for waves which break before reaching the structure,

Figure 11 provides a comparison between theory and experiment for

- 18 ~




a more realistic breakwater form. The experimental data
are from the U. S. Army Corps of Engineers Report describing a
series of scale model tests for the design of a harbor at Dana
Point, California. As the Dana Point breakwater was a permeable
structure, some wave energy was transmitted even with no over-
topping (kt < 0.1), and thus, the transmitted wave heights given
for small amounts of overtopping were not included. The runup
ratios used for the Dana Point data were R/Hi = 1.0 and 1.1 for
prototype wave periods of 12 and 18 seconds respectively. These
ratios were estimated from the data for non overtoppiné waves but

agree well with Saville's results. The theoretical points correspond

to the runqp ratios stated above, loss coefficient kl = 0.8, and
intrinsic coefficient of reflection p= 0.4,

Referring to Fig. 11 it is evident that a scale effect
exists. The 1:50 scale model yields larger transmission coefficients
than the 1:5 scale model.. This is probably a Reynolds effect wherein
the re~entrance losses for the larger, more turbulent model (and
therefore prototype) are higher than in the smaller model. The
theoretical solution lies between the two experimental results.
Extrapolating these results to prototype scale, one expects the theory
to give a conservatively high estimate for the transmission coefficient.
For engineering purposes, however, this is a desirable condition.

The theory does not account for direct transmission through
a permeable breakwater. The continuity equation, Eq. (2), neglécts
flow into the pores of the breakwater and thereby overestimates the

overtopping volume. Consequently, the transmission coefficient due
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to pure overtopping is also overestimated. The two errors are
compensating. However, the overtopping regeneration process appears
‘to be more efficient than direct transmission through breakwaters
of low permeability. The net result is that the transmission co-
efficient is slightly overestimated when the overtopping theory is
applied to rubble mound breakwaters. Again, this is a desirable
condition for engineering estimates.

All of the experimental data, including Dana Point, are
presented in gig. 12, It demonstrates the validity of using Hb/R
as the dimensionless parameter for plotting overtopping transmission
data. The envelope curve is of considerable interest as it appears
to be a fairly consistent upper bound for the transmission coefficieﬁt,

of the form

kt = 0,65 (1.10 - Hb/R), for Hb/R < 1.0 (12)

Saville (1955) has published data on flow rates associated
with the overtopping of various coastal structures, By multiplying
the given discharges (cfs/ft of crest width) by the wave period, an
overtopping volume per wave is obtained. These results can be compared
with Eq. (9). Fig. 13 shows Eq. (9) plotted dimensionlessly as
¥/(R - Hb)2 (where ¥ = LR A v, the dimensional overtopping volume per
foot of breakwater crest) vs Saville's results. The data shown are
for a structure with a smooth face on a 1:1.5 slope, for the depths
of 4.5 and 9.0 feet at the toe, wave periods of 2.96 to 6.4 seconds,
and for runup ratios, based on non-overtopping wave data, ranging from

2.54 to 3.57. Breaking waves and waves with little overtopping have
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been neglected. For the latter the heights and runups are
reported only to the nearest foot, and the small values of R - Hb
computed are not reliable, The theoretical points solved for used

the given runup ratios, k, = 0.7 and p = 0.8. The correlation

2
between theory and experiment (perfect correlation is the 45° line)
further supports the analytical assumptions. Again the theory con-

servatively overestimates the volumes, a probably consequence of

the high runup ratios used,

CONCLUSIONS
The theory preseﬁted describes the essential features of
the process of wave transmission by overtopping, for waves arriving
at the breakwater without breaking and at normal incidence. The
relationship derived is dependent on the coefficients of reflection

and loss, and the runup ratio. Further investigation of these quan-

tities would permit g refinement of the theory.

The envelope curve may be used for preliminary estimates
of the transmission coefficient. For rubble mound breakwaters this
estimate can be improved by using the theory along with a runup ratio
R/Hi = l.O; a loss coefficient kz = 0,8, and an intrinsic reflection

coefficient p = 0.4,
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LIST OF SYMBOLS

partial standing wave amplitude

incident wave amplitude

reflected wave amplitude

transmitted wave amplitude

wave celerity

energy propagation rate (group velocity)
run down energy

incident wave energy density
overtopping energy

dimensionless overtopping energy
reflected wave energy density
transmitted wave energy density

still water depth

dimensionless still water depth
breakwater crest elevation above SWL
dimensionless breakwater cresf elevation

incident wave height

rundown loss coefficient

Miche's reflection coefficient
breakwater reflection coefficient
transmission coefficient
incident, reflected wave length

horizontal distance from first trough to point of
maximum runup
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PE

pe

LIST OF SYMBOLS
(continued)

transmitted wave length

constant coefficient in parabola equation
exponent in parabola equation

potential energy of runup wedge

dimensionless potential energy of runup wedge
runup height

dimensionless runup height

breakwater slope, seaward face
"dimensionless" breakwater slope, SA/LR

wave period

overtopping volume

dimensionless overtopping volume

horizontal coordinate

horizontal distance to Y = 0, Hb’ respectively
dimensionless, X, Xl’ X2

vertical coordinate

dimensionless vertical coordinate

specific weight

Miche's intrinsic reflection coefficient
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