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Abstract

A two-parameter nonlinear dispersive wave equation proposed by Majda, McLaughlin and Tabak is studied analytically and
numerically as a model for the study of wave turbulence in one-dimensional systems. Our ultimate goal is to test the validity
of weak turbulence theory. Although weak turbulence theory is independent on the sign of the nonlinearity of the model, the
numerical results show a strong dependence on the sign of the nonlinearity. A possible explanation for this discrepancy is
the strong influence of coherent structures — wave collapses and quasisolitons — in wave turbulence. © 2001 Published by
Elsevier Science B.V.
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1. Introduction

A wide variety of physical problems involve random nonlinear dispersive waves. The most common tool for
the statistical description of these waves is a kinetic equation for squared wave amplitudes, the so-called kinetic
wave equation. Sometimes this equation is also called Boltzmann’s equation. This terminology is in fact misleading
because the kinetic wave equation and Boltzmann’s equation are the opposite limiting cases of a more general
kinetic equation for particles which obey Bose–Einstein statistics like photons in stellar atmospheres or phonons in
liquid helium. It was first derived by Peierls in 1929 [1]. In spite of the fact that both the kinetic wave equation and
Boltzmann’s equation can be derived from the quantum kinetic equation, the kinetic wave equation was derived
independently and almost simultaneously in plasma physics and for surface waves on deep water. This was done in
the early 1960s while Boltzmann’s equation was derived in the 19th century! The derivation for surface waves is
due to Hasselmann [2,3] (see also Zakharov [4]).

Once the kinetic wave equation has been derived, the shape of wave number spectra can be predicted by the
so-called weak turbulence (WT) theory. It is called weak because it deals with resonant interactions between
small-amplitude waves. Thus, contrary to fully developed turbulence, it leads to explicit analytical solutions pro-
vided some assumptions are made. So far, there have been only a few studies to check the results of WT the-
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ory. Recently, Pushkarev and Zakharov [5] numerically solved the three-dimensional dynamical equations for the
free-surface elevation and the velocity potential in the case of capillary water waves. They obtained an isotropic
spectrum close to the theoretical power-law found by Zakharov and Filonenko [6]. Majda, McLaughlin and Tabak
[7] (hereafter referred to as MMT) considered four-wave interactions by introducing a one-dimensional model
equation. This equation can be integrated numerically quite efficiently on large inertial intervals. They examined
a family of Kolmogorov-type solutions depending on the parameters of the equation. The validity of several theo-
retical hypotheses was then assessed numerically. Namely, MMT confirmed the random phase and quasi-Gaussian
approximations. They also showed the independence of the solutions on the nature of forces, initial conditions, and
the size and level of discreteness of the computational domain. However, their simulations surprisingly displayed
spectra steeper than the predicted ones. They explained the discrepancy by proposing a new inertial range scaling
technique which seems to yield the appropriate exponents. More recently, Cai et al. [8–10] revisited their earlier
results and found some results which agree with WT theory as well. 1 They considered two kinds of Hamiltonians:
Hamiltonians which are the sum of a quadratic term and a quartic term (positive nonlinearity), as in [7], and Hamil-
tonians which are the difference between a quadratic and a quartic term (negative nonlinearity). For either sign of
nonlinearity, they found agreement with MMT theory in some cases and agreement with WT theory in some other
cases. Since their computations were performed with a dispersion relation in which the frequency varies like the
square root of the wave number, one can see an analogy with deep water waves. Incidentally, the WT theory was
recently developed for shallow water waves by Zakharov [11].

As in many other fields, numerical modeling leads to some difficulties, especially when one wants to compare
with the theory. Most of these difficulties are related to finite-size effects, i.e. the domain is discretized into a
grid of points in computations whereas one assumes an infinite medium in theory. We can mention the bottleneck
phenomenon [12] which tends to flatten the slope of the inertial range at small scales. It is commonly observed
in problems with a dissipative cutoff. In addition, Pushkarev [13] revealed the phenomenon of frozen turbulence
at very low levels of nonlinearity. In this situation, the resonance conditions have very few solutions (or may not
be fulfilled at all!) because of the discrete values of wave numbers. As a consequence, there is no energy flux due
to the lack of resonating wave vectors. The power-law regime only takes place at moderate levels of nonlinearity
where quasi-resonant interactions come into play. Pushkarev concluded that WT in bounded systems combines the
features of both frozen and Kolmogorov-type turbulence. The beauty of the MMT model equation is that the above
mentioned difficulties can be controlled completely.

After introducing the model equation, the paper is divided into two parts. In the first part (Sections 3–11), the MMT
equation is studied analytically. A WT description of the equation is provided (see [7]). We find the Kolmogorov
solutions of the kinetic equation and determine the set of parameters for which such solutions can be realized. Then
we discuss the coherent structures which can compete with WT. The most simple coherent structures are solitons
similar to the soliton solutions of the nonlinear Schrödinger equation (NLS).

Solitons for the MMT equation exist only if nonlinearity is negative. In the cases of interest, they are shown to
be unstable (see Section 7) and cannot play an important role in the wave dynamics.

As an alternative to soliton coherent structures, there are wave collapses described by self-similar solutions of the
MMT equation. These solutions can exist in a certain parameter regime for both signs of nonlinearity. Theoretically
speaking, both solitons and collapses can coexist with WT.

Another type of coherent structures are quasisolitons, or envelope solitons. They were discussed recently by
Zakharov and Kuznetsov [14]. In the MMT model quasisolitons exist at positive nonlinearity only. Their stability
remains an open question.

1 These three papers were kindly given to us when the present manuscript was essentially completed. Some of the results are similar to ours,
but their interpretation is different.
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The main new theoretical results of the first part are a careful tabulation of the signs of the fluxes for the MMT
model equation, the existence and possible role of quasisolitons for positive nonlinearity, and an analogy with
Phillips spectrum associated with the formation of collapses.

In the second part (Sections 12–14), we describe the results of the numerical study of the MMT equation. We find
that the wave turbulence described by the MMT equation is different both quantitatively and qualitatively for both
signs of nonlinearity. Since the predictions of WT theory are identical for both signs of nonlinearity, WT theory can
be applied at best for one sign of nonlinearity. Our analysis of the results leads to somewhat contradictory results.

For positive nonlinearity the balance of energy and particle fluxes as well as the level of turbulence are in good
agreement with WT theory. Meanwhile the slope of the spectrum in the window of transparency is steeper than
predicted by WT theory.

In the case of negative nonlinearity the picture of turbulence is quite different from the WT predictions, both
qualitatively and quantitatively. First of all, the turbulence is stabilized on a level which is one order of magnitude
less than predicted by WT theory. Then the sign of the flux of particles is opposite to the one predicted by WT
theory. Both these facts lead to a conjecture on the existence of a strong and essentially nonlinear mechanism which
competes successfully with WT quartic resonances. In our opinion, this mechanism is the wave collapse, described
by self-similar solutions of the MMT equations. At the same time, the high-frequency tail of the spectrum has a
slope which coincides exactly with the slope predicted by WT theory. This leads to the conclusion that in spite of
the presence of wave collapses, the high-frequency asymptotics of spectra is governed by the WT processes which
are responsible for carrying only a small part of the energy. The coexistence of wave collapses and WT was already
described in the context of the 2D NLS [15].

Wave collapse is an example of an essentially nonlinear coherent structure arising in wave turbulence under certain
conditions. As said above, another important type of coherent structures are quasisolitons or envelope solitons living
for a finite time. Such structures can arise in the MMT model in the case of positive nonlinearity. We believe that
these structures are responsible for the deviation of the spectra from the ones predicted by WT theory.

2. Model equation

We investigate the family of dynamical equations

i
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
 , λ = ±1, (2.1)

where ψ(x, t) denotes a complex wave field and α, β are real parameters.
If λ = +1, one exactly recovers the MMT model which was treated in [7]. Note that our parameter β is the

opposite of the parameter β in MMT. The extension λ = ±1 in Eq. (2.1), which was also treated in [8–10], raises
an interesting problem because the balance between nonlinear and dispersive effects may change according to λ.

Besides the Hamiltonian
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the system (2.1) preserves two other integrals of motion: wave action and momentum, respectively

N =
∫

|ψ |2 dx and M = i
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As usual, it is convenient to work in Fourier space. Let us write Eq. (2.1) as

i
∂ψ̂k

∂t
= ω(k)ψ̂k +

∫
T123kψ̂1ψ̂2ψ̂

∗
3 δ(k1 + k2 − k3 − k) dk1 dk2 dk3, (2.3)

where ψ̂k = ψ̂(k, t) denotes the kth component in the Fourier decomposition ofψ(x, t) and (∗) stands for complex
conjugation.

In this form, Eq. (2.3) looks like the so-called one-dimensional Zakharov’s equation determined by the linear
dispersion relation

ω(k) = |k|α, α > 0, (2.4)

and the simple interaction coefficient

T123k = T (k1, k2, k3, k) = λ|k1k2k3k|β/4. (2.5)

One easily sees that the kernel T123k possesses the symmetry required by the Hamiltonian property

T123k = T213k = T12k3 = T3k12. (2.6)

Moreover, the absolute values in Eqs. (2.4) and (2.5) ensure the basic assumptions of isotropy and scale invariance.
In other words,ω(k) and T123k are invariant with respect to rotations (k → −k) and they are homogeneous functions
of their arguments with degrees α and β, respectively, i.e.

T (ξk1, ξk2, ξk3, ξk) = ξβT (k1, k2, k3, k), ξ > 0. (2.7)

Following MMT, we fix α = 1
2 by analogy with gravity waves whose dispersion relation reads as ω(k) = (gk)1/2

(g being the acceleration due to gravity). The power β takes the value +3 if the analogy is extended to the nonlinear
term but we will consider a wider range of values for β.

Eq. (2.3) describes four-wave interaction processes obeying the resonant conditions

k1 + k2 = k3 + k, (2.8)

ω1 + ω2 = ω3 + ω. (2.9)

For α > 1 these equations only have the trivial solution k3 = k1, k = k2 or k3 = k2, k = k1. For α < 1 there is also
a non-trivial solution. Note that in this case the signs of ki must be different. For instance, k1 < 0 and k2, k3, k > 0.
If α = 1

2 , Eqs. (2.8) and (2.9) can be parameterized by two parameters A and ξ

k1 = −A2ξ2, k2 = A2(1 + ξ + ξ2)2, k3 = A2(1 + ξ)2, k = A2ξ2(1 + ξ)2. (2.10)

In the case α = 2 and β = 0, Eq. (2.1) becomes the NLS equation

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ λ|ψ |2ψ (2.11)

(note here that |∂/∂x|2 = −∂2/∂x2).
Positive nonlinearity λ = +1 corresponds to the defocusing NLS, while negative nonlinearity corresponds to the

focusing NLS.
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3. Weak turbulence description of the model equation

If one only considers small nonlinear effects, then the statistical behavior can be mainly described by the evolution
of the two-point correlation function

〈ψ̂(k, t)ψ̂∗(k′, t)〉 = n(k, t) δ(k − k′),
where brackets denote ensemble averaging. We introduce also the four-wave correlation function

〈ψ̂(k1, t)ψ̂(k2, t)ψ̂
∗(k3, t)ψ̂

∗(k, t)〉 = J123kδ(k1 + k2 − k3 − k). (3.1)

On this basis, WT theory leads to the kinetic equation for n(k, t) and provides tools for finding stationary
power-law solutions (for details, see [7]). Here we explain the main steps of the procedure applied to our model.

The starting point is the original equation for n(k, t). From Eq. (2.3), we have

∂nk

∂t
= 2

∫
Im J123kT123kδ(k1 + k2 − k3 − k) dk1 dk2 dk3. (3.2)

Due to the quasi-Gaussian random phase approximation

Re J123k � n1n2[δ(k1 − k3)+ δ(k1 − k)]. (3.3)

The imaginary part of J123k can be found through an approximate solution of the equation imposed on this correlator.
The result is (see [16])

Im J123k � 2πT ∗
123kδ(ω1 + ω2 − ω3 − ω)(n1n2n3 + n1n2nk − n1n3nk − n2n3nk). (3.4)

This gives

∂nk

∂t
= 4π

∫
|T123k|2(n1n2n3 + n1n2nk − n1n3nk − n2n3nk)δ(ω1 + ω2 − ω3 − ω)

×δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (3.5)

Since the square norm cancels the sign of T123k , it is clear that the WT approach is independent on λ. Here we point
out that MMT mistakenly wrote a factor 12π instead of 4π in Eq. (3.5) and the right-hand side of Eq. (3.5) with
the opposite sign. This fact is particularly important when determining the fluxes of wave action and energy.

Assuming that n(−k) = n(k) (similarly to an angle averaging in higher dimensions), one gets

∂N (ω)

∂t
= 4π

α4

∫
(ω1ω2ω3ω)

(β/2−α+1)/α(n1n2n3 + n1n2nω − n1n3nω − n2n3nω)δ(ω1 + ω2 − ω3 − ω)

×[δ(ω1/α
1 + ω1/α

2 − ω1/α
3 + ω1/α)+ δ(ω1/α

1 + ω1/α
2 + ω1/α

3 − ω1/α)

+δ(ω1/α
1 − ω1/α

2 − ω1/α
3 − ω1/α)+ δ(−ω1/α

1 + ω1/α
2 − ω1/α

3 − ω1/α)] dω1 dω2 dω3, (3.6)

where N (ω) = n(k(ω)) dk/dω, nω stands for n(k(ω)) and ω is given by Eq. (2.4).
The next step consists in inserting the power-law ansatz

n(ω) ∝ ω−γ , (3.7)

and then performing the Zakharov’s conformal transformations [7,15,16]. Finally, the kinetic equation becomes

∂N (ω)

∂t
∝ ω−y−1I (α, β, γ ), (3.8)
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where

I (α, β, γ ) = 4π

α4

∫
∆

(ξ1ξ2ξ3)
((β/2+1)/α)−1−γ (1 + ξγ3 − ξγ1 − ξγ2 )δ(1 + ξ3 − ξ1 − ξ2)

×δ(ξ1/α
1 + ξ1/α

2 + ξ1/α
3 − 1)(1 + ξy3 − ξy1 − ξy2 ) dξ1 dξ2 dξ3 (3.9)

with

∆ = {0 < ξ1 < 1, 0 < ξ2 < 1, ξ1 + ξ2 > 1} and y = 3γ + 1 − 2β + 3

α
.

The non-dimensionalized integral I (α, β, γ ) is obtained by using the change of variables ωj → ωξj (j = 1, 2, 3).
The ansatz (3.7) makes sense if the integral in (3.6) converges. It could diverge both at low and high frequencies.

The condition of convergence at low frequencies coincides with the condition of convergence of the integral in (3.9)
and can be easily found. It reads

2γ < −1 + β + 4

α
. (3.10)

The condition of convergence at high frequencies can be found after substituting (3.7) into (3.6). Omitting the
details, we get the result

γ >
β + α − 1

α
. (3.11)

In all the cases discussed in this paper, both conditions (3.10) and (3.11) are satisfied.
For the case α = 1

2 , one can transform Eq. (3.6) into the form

∂N (ω)

∂t
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S4 =
∫ 1

0

(1 + u+ u2)β+1

u2β+3(1 + u)2β+2

[
n
(ω
u

)
n

(
1 + u+ u2

u(1 + u) ω
)
n

(
ω

1 + uω
)

+ n(ω)n
(

1 + u+ u2

u(1 + u) ω
)
n
(ω
u

)

−n(ω)n
(ω
u

)
n

(
ω

1 + u
)

− n(ω)n
(ω
u
ω
)
n

(
1 + u+ u2

u(1 + u) ω
)]

du.

This equation can be used for the numerical simulation of WT.

4. Kolmogorov solutions

The aim is to look for stationary solutions of the kinetic equation. From Eqs. (3.8) and (3.9) we easily find that
the stationarity condition

∂N (ω)

∂t
= 0 ⇔ I (α, β, γ ) = 0 (4.1)

is satisfied only for γ = 0, 1 and y = 0, 1.
In terms borrowed from statistical mechanics, the cases γ = 0, 1 represent the thermodynamic equilibrium

solutions

n(ω) = c, (4.2)

where c is an arbitrary constant and

n(ω) ∝ ω−1 ∝ |k|−α, (4.3)

which stem from the more general Rayleigh–Jeans distribution

nRJ(ω) = c1

c2 + ω . (4.4)

They correspond respectively to equipartition of particle number N and quadratic energy E

N =
∫
n(k) dk =

∫
N (ω) dω, (4.5)

E =
∫
ω(k)n(k) dk =

∫
ωN (ω) dω. (4.6)

The cases y = 0, 1 give the non-equilibrium Kolmogorov-type solutions, respectively

n(ω) ∝ ω(−2β/3−1+α/3)/α ∝ |k|−2β/3−1+α/3, (4.7)

and

n(ω) ∝ ω−(2β/3+1)/α ∝ |k|−2β/3−1, (4.8)

which exhibit typical dependence on the parameter β of the interaction coefficient. The latter solutions are more
interesting since realistic sea spectra are of Kolmogorov-type by analogy.

For the case α = 1
2 and β = 0, the Kolmogorov-type solutions are

n(ω) ∝ ω−5/3 ∝ |k|−5/6, (4.9)

n(ω) ∝ ω−2 ∝ |k|−1. (4.10)

Both exponents satisfy the conditions of locality (3.10) and (3.11).
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5. Nature and sign of the fluxes

The stationary non-equilibrium states are related to fluxes of integrals of motion, namely the quantities N and E
in our four-wave interaction problem. We define the flux of particles (or wave action) and energy as, respectively

Q(ω) = −
∫ ω

0

∂N (ω′)
∂t

dω′, (5.1)

P(ω) = −
∫ ω

0
ω′ ∂N (ω′)

∂t
dω′. (5.2)

Here, Eq. (4.7), respectively Eq. (4.8), is associated with a constant mean flux Q0, respectively P0, of particles,
respectively energy. Let us now mention a physical argument which plays a crucial role in deciding the realizability
of the Kolmogorov-type spectra. A more detailed justification is provided in Section 11 (see also [7,16]). Suppose
that pumping is performed at some frequencies around ω = ωf and damping at ω near zero and ω � ωf . Weak
turbulence theory then states that the energy is expected to flow from ωf to higher ω’s (direct cascade with P0 > 0)
while the particles mainly head for lower ω’s (inverse cascade withQ0 < 0). Accordingly, we need to evaluate the
fluxes in order to select, among the rich family of power laws (4.7) and (4.8), those which are likely to result from
numerical simulations of Eq. (2.1) with damping and forcing.

By inserting Eq. (3.8) into Eqs. (5.1) and (5.2), we obtain

Q0 ∝ lim
y→0

ω−y

y
I, P0 ∝ lim

y→1

ω−y+1

1 − y I (5.3)

which become

Q0 ∝ ∂I

∂y

∣∣∣∣
y=0

, P0 ∝ ∂I

∂y

∣∣∣∣
y=1

. (5.4)

Using Eq. (3.9), the derivatives in Eq. (5.4) can be expressed as

− ∂I

∂y

∣∣∣∣
y=0

=
∫
∆

S(ξ1, ξ2, ξ3)(1 + ξγ3 − ξγ1 − ξγ2 )δ(1 + ξ3 − ξ1 − ξ2)

×ln

(
ξ1ξ2

ξ3

)
δ(ξ

1/α
1 + ξ1/α

2 + ξ1/α
3 − 1) dξ1 dξ2 dξ3,

∂I

∂y

∣∣∣∣
y=1

=
∫
∆

S(ξ1, ξ2, ξ3)(1 + ξγ3 − ξγ1 − ξγ2 )δ(1 + ξ3 − ξ1 − ξ2)

×
[
ξ1 ln

(
1

ξ1

)
+ ξ2 ln

(
1

ξ2

)
− ξ3 ln

(
1

ξ3

)]
δ(ξ

1/α
1 + ξ1/α

2 + ξ1/α
3 − 1) dξ1 dξ2 dξ3

with

S(ξ1, ξ2, ξ3) = 4π

α4
(ξ1ξ2ξ3)

((β/2+1)/α)−1−γ .

The sign of each integral above is determined by the factor (see [15])

f (γ ) = 1 + ξγ3 − ξγ1 − ξγ2 .
It is found that f (γ ) is positive when

γ < 0 or γ > 1. (5.5)
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Table 1
Signs of the fluxes for the Kolmogorov-type solutions, α = 1

2

β −1 − 3
4 − 1

2 − 1
4 0 +3

γQ
1
3

2
3 1 4

3
5
3

17
3

Sign ofQ0 + + 0 − − −
γP

2
3 1 4

3
5
3 2 6

Sign of P0 − 0 + + + +

For the same values of β as those considered by MMT and the additional value β = +3, Table 1 displays the
corresponding frequency slopes from Eqs. (4.7) and (4.8) and the signs ofQ0, P0 according to the criterion (5.5).

Our calculations show that WT theory should work most successfully for β = 0 (instead of β = −1 in [7]) at
which they yield both Q0 < 0 and P0 > 0. Incidentally, MMT reported the smallest difference between numerics
and theory for β = 0. The cases with spectral slopes less steep than the Rayleigh–Jeans distribution (i.e. γ < 1)
are non-physical. At best, a thermodynamic equilibrium is expected in the conservative regime. Hence, we cannot
strictly rely on the Kolmogorov-type exponents for β = −1,− 3

4 to compare with the numerical results in forced
regimes. Note that for β = − 1

2 , although we find P0 > 0, a pure thermodynamic equilibrium state (i.e. γ = 1)
is predicted instead of the inverse cascade. This is however not valid because of the necessity for a finite flux of
particles towards ω = 0. The direct cascade may then be influenced one way or another, possibly making the theory
not applicable to the whole spectrum. Using both criteria (5.5), we deduce that the fluxes of particles and energy
simultaneously have the correct signs in the region of parameter

β < − 3
2 and β > 2α − 3

2 , (5.6)

or

β < − 3
2 and β > − 1

2 if α = 1
2 . (5.7)

Since the strength of nonlinearity decreases with β, the case β < − 3
2 , which is close to a linear problem, is not

interesting from a general viewpoint and may raise some difficulties in numerical studies.
Restricting again to α = 1

2 and β = 0, one has for the spectrum

n(ω) = aP 1/3 ω−2, (5.8)

where P is the flux of energy towards high frequencies and

a =
(
∂I

∂y

∣∣∣∣
y=1

)−1/3

(5.9)

is the Kolmogorov constant. Numerical calculations give for a

a = 0.376. (5.10)

An important question is the stability of the stationary spectra. This question was studied by Balk and Zakharov
in [17] from a general point of view. The particular situation discussed in the present paper requires an additional
study based on the work [17]. However, one should note that instability of the present spectra is unlikely. The reason
is that the stationary spectra are solutions of the kinetic equation, which is not sensitive to changing the sign of
the nonlinearity in the dynamical equation. In other words, if the Kolmogorov solution was unstable, it would be
unstable in both cases. Since, we observe the Kolmogorov spectrum in the numerical simulation for one of the signs
of nonlinearity, instability is unlikely.
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6. Solitons and quasisolitons

Besides random radiative waves, solitons are the most interesting features of nonlinear Hamiltonian models such
as the focusing NLS. These localized coherent structures can naturally emerge and persist as the result of the stable
competition between nonlinear and dispersive mechanisms. It is known that they act as statistical attractors to which
the system relaxes and they can influence the dynamics in a substantial way.

Equally important coherent structures are quasisolitons. They could be defined as solitons having finite but
long enough life time. Solitons and quasisolitons can be compared with stable and unstable elementary particles.
Formally, both solitons and quasisolitons are defined as solutions of Eq. (2.3) of the form

ψ̂k(t) = ei(Ω−kV )t φ̂k. (6.1)

Here Ω and V are constants. In the x-space,

ψ(x, t) = eiΩtξ(x − Vt), (6.2)

where ξ(x) is the inverse Fourier transform of φ̂k and V is the soliton velocity. The amplitude φ̂k satisfies the integral
equation

φ̂k = − 1

Ω − kV + ω(k)
∫
T123k φ̂1φ̂2φ̂

∗
3δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (6.3)

The “classical” or “true” soliton is a localized solution of Eq. (6.3). In this case,

|ξ(x)|2 → 0 as |x| → ∞. (6.4)

This implies that φ̂k is a continuous function which has no singularities for real k. Thus the denominator in Eq. (6.3)
should not vanish on the real axis

Ω − kV + ω(k) �= 0, −∞ < k < +∞. (6.5)

For ω(k) = |k|α and α < 1, the last condition is violated for any V �= 0. So “true solitons” can exist only if V = 0.
Next, we show that “true” solitons can only exist for λ = −1. Eq. (6.3) can be rewritten in the variational form

δ(H +ΩN) = 0. (6.6)

Obviously, Ω > 0 should hold (otherwise, the denominator (6.5) has zeroes). Since

T123k = λ|k1k2k3k|β/4, λ = ±1, (6.7)

the Hamiltonian is positive for λ = +1 and Eq. (6.6) can be satisfied only if φ̂k ≡ 0. There are no solitons in this
case. Meanwhile, solitons can exist for λ = −1. A rigorous proof of existence is beyond the frame of this paper.

Quasisolitons are a more sophisticated object. Let us allow the denominator (6.5) to have a zero at k = k0 and
suppose that φ̂k is a function which is sharply localized near the wave number k = km. Let the width of φ̂k near
k = km be κ . One can introduce

T (k) =
∫
T123kφ̂1φ̂2φ̂

∗
3δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (6.8)

We might expect that

T (k0) � e−C(|k0−km|/κ)|φ̂(km)|2φ̂(km). (6.9)
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In other words, φ̂k has a pole at k = k0 but the residue at this pole is exponentially small. It means that the soliton
(6.2) is not exactly localized and goes to a very small-amplitude monochromatic wave with wave number k = k0

as x → −∞.
If one eliminates the pole from φ̂k , one gets a quasisoliton, which is a stationary solution of (2.3) only approx-

imately. Such a quasisoliton lives for a finite time. If this time is long enough, the quasisoliton could become the
basic unit of wave turbulence. This is what we believe may happen in the MMT model with positive nonlinearity.

7. Soliton stability and collapse

Coherent structures can play a role in wave turbulence only if they are stable. For λ = −1, a soliton satisfies the
equation

(Ω + |k|α)φ̂k =
∫

|k1k2k3k|β/4φ̂1φ̂2φ̂
∗
3δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (7.1)

The free parameter Ω can be eliminated by the scaling

φ̂k = Ω−(β−α+2)/2αχ(Ω−1/αk), (7.2)

where χ(ξ) satisfies the equation

(1 + |ξ |α)χ(ξ) =
∫

|ξ1ξ2ξ3ξ |β/4χ1χ2χ
∗
3 δ(ξ1 + ξ2 − ξ3 − ξ) dξ1 dξ2 dξ3. (7.3)

Let us calculate the total wave action in the soliton

N =
∫

|φ̂k|2 dk = Ω−(β−α+1)/αN0, (7.4)

where

N0 =
∫

|χ |2 dξ. (7.5)

The stability question can be answered by computing ∂N/∂Ω . As is well-known (see [18]), a soliton is stable if
∂N/∂Ω > 0. In our case,

∂N

∂Ω
= −

(
β − α + 1

α

)
N

Ω
. (7.6)

The soliton is stable if

β < α − 1, (7.7)

otherwise the soliton is unstable. For α = 1
2 , the condition of soliton instability reads

β > − 1
2 . (7.8)

This condition is satisfied in all the cases we studied.
The soliton instability leads us to guess that the typical coherent structure in the case of negative nonlinearity is

a collapsing singularity. Typically, the formation of such singularities is described by self-similar solutions of the
initial equations. Eq. (2.3) has the following family of self-similar solutions

ψ̂(k, t) = (t0 − t)p+iεχ [k(t0 − t)1/α], (7.9)
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where p = (β − α + 2)/2α and ε is an arbitrary constant. χ(ξ) satisfies the equation

i(p + iε)χ + i

α
ξχ ′ + |ξ |αχ + λ

∫
|ξ1ξ2ξ3ξ |β/4χ1χ2χ

∗
3 δ(ξ1 + ξ2 − ξ3 − ξ) dξ1 dξ2 dξ3 = 0. (7.10)

The soliton (7.9) should stay finite when t → t0. This requirement imposes the following asymptotic behavior
on χ(ξ)

χ(ξ)→ Cξ(−β+α−2)/2, ξ → 0. (7.11)

At time t = t0, Eq. (7.9) turns to the powerlike function

ψ̂k → Ck−ν, ν = 1
2 (β − α + 2). (7.12)

In reality, the self-similar solution is realized in x-space in a finite domain of order L. Hence, the solution (7.12)
should be cut off at k � 1/L. In k-space, Eq. (7.9) represents the formation of a powerlike “tail” (7.12). The wave
action concentrated in this tail must be finite. Therefore the integral∫ ∞

0
|ψ̂k|2 dk (7.13)

should converge as k → ∞. It leads to the condition on parameters

β > α − 1, (7.14)

which coincides with the condition for soliton instability.
Let us plug (7.9) into the Hamiltonian in Fourier space

H =
∫
ω(k)|ψ̂k|2 dk +

∫
T123kψ̂1ψ̂2ψ̂

∗
3 ψ̂

∗
k δ(k1 + k2 − k3 − k) dk1 dk2 dk3 dk

= (t0 − t)(β−2α+1)/αH0,

where

H0 =
∫

|ξ |α|χ |2 dξ + λ
∫

|ξ1ξ2ξ3ξ |β/4χ1χ2χ
∗
3χ

∗δ(ξ1 + ξ2 − ξ3 − ξ) dξ1 dξ2 dξ3 dξ. (7.15)

If α − 1 < β < 2α − 1, then H → ∞ as t → t0, unless

H0 = 0. (7.16)

Apparently, this condition can be satisfied only for λ = −1 (negative nonlinearity). The condition (7.16) imposes
implicitly a constraint on the constant ε. In fact, it can be realized only at one specific value of ε, which is an
eigenvalue of the boundary problem (7.10) with the boundary conditions

χ(ξ)→ Cξ(−β+α−2)/2, ξ → 0, |χ(ξ)| → ∞, |ξ | → ∞.
In the case β > 2α − 1, H → 0 as t → t0. There is no limitation on the value of H0 and the singularity can take
place for either sign of λ. If ν < 1 in Eq. (7.12) or α − 1 < β < α, a collapse is the formation of an integrable
singularity in x-space. If ν > 1 or β > α, the singularity is the formation of a discontinuity of the function ψ(x)
or its derivatives.

The formation of singularities leads to the formation in k-space of a powerlike spectrum

nk � |ψ̂k|2 � |k|−2ν � |k|−β+α−2. (7.17)
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For α = 1
2 and β = 0, one obtains

nk � |k|−3/2 � ω−3. (7.18)

This spectrum can be called Phillips spectrum by analogy to the well-known “ω−5 spectrum” for deep water waves
[19]. As ω → ∞, it decays faster than Kolmogorov spectra.

8. More on quasisolitons

Let us consider again the case of negative nonlinearity λ = −1 and denote

F = −Ω + kV − ω(k) = −Ω + kV − |k|α. (8.1)

If V = 0 and Ω > 0, |F | has a minimum at k = 0. The Fourier transform of the solution φ̂k is concentrated near
this minimum in a domain of width

κ � Ω1/α. (8.2)

Assuming that the soliton is smooth in x-space, φ̂k decays very fast outside of the domain (8.2). So far we assumed
that V = 0. Let now V be positive but very small. Then the denominator F has a zero at k = k0 � V 1/(α−1). For
small V , the wave number k0 is much larger than κ and this zero occurs very far from the domain which supports
the soliton. This means that φ̂k has a pole at k = k0, but the residue at this pole is very small. The presence of this
pole means that the stationary solution (6.3) looks in the x-space like a soliton, which is not completely localized.
As x → +∞, it becomes a monochromatic wave with wave number k0 and negligibly small amplitude.

If this “wave tail” is cut off in the initial data, one has a “quasisoliton” which slowly decays due to radiation of
energy in the right direction. If V is small enough, the lifetime of the quasisoliton is very long and its shape is close
to the shape of “real” solitons.

It is unlikely that quasisolitons play an important role in wave turbulence at negative nonlinearity. If V is not
small, their lifetime is too short; if V is small, they are unstable like real solitons. Quasisolitons are more relevant
in the case of positive nonlinearity λ = +1.

Let us choose an arbitrary k = km > 0 and plug in Eq. (6.3)

V = αkα−1
m , Ω = −(1 − α)kαm − 1

2α(1 − α)kα−2
m q2. (8.3)

Then

F = kαm − |k|α + αkα−1
m (k − km)+ 1

2α(1 − α)kα−2
m q2. (8.4)

Note that if α < 1 then F has a zero at k = k0 < 0 for any km. Hence, 1/F always has a pole on the negative
real axis, and the soliton (6.3) cannot be a real soliton. But if q2 � k2

m, 1/F has a sharp maximum at k � km.
Introducing

κ = |k − km|, (8.5)

one has approximately

F � 1
2α(1 − α)kα−2

m [κ2 + q2], (8.6)

and one gets for the width of the maximum of 1/F

κ � q. (8.7)
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If κ � |k0|, one can construct a quasisoliton which is supported in k-space near km. In the general case, |k0| � km.
If α = 1

2 and q = 0, one can easily find

k0 = −(
√

2 − 1)2km. (8.8)

The quasisoliton moves to the right direction with the velocity V (km) and radiates backward monochromatic
waves of wave number k0. The shape of the quasisoliton can be found explicitly in the limit q → 0. Now κ � km

and one has approximately∫
|k1k2k3k|β/4φ̂1φ̂2φ̂

∗
3δ(k1 + k2 − k3 − k) dk1 dk2 dk3 � kβm

∫
φ̂1φ̂2φ̂

∗
3δ(κ1 + κ2 − κ3 − κ) dκ1 dκ2 dκ3.

(8.9)

Taking into account Eq. (8.6), one can rewrite Eq. (6.3) as

1

2
α(1 − α)kα−2

m (κ2 + q2)φ̂κ = kβm
∫
φ̂1φ̂2φ̂

∗
3δ(κ1 + κ2 − κ3 − κ) dκ1 dκ2 dκ3. (8.10)

With the help of inverse Fourier transform, one can transform (8.10) into the stationary NLS

1

2
α(1 − α)kα−2

m

[
−∂

2φ

∂x2
+ q2φ

]
= kβm|φ|2φ (8.11)

which has the soliton solution

φ(x) =
√
α(1 − α)
k
β−α+2
m

q

cosh qx
. (8.12)

It gives the following approximate quasisoliton solution of Eq. (2.1) with λ = +1:

ψ(x, t) = φ(x − Vt) eiΩt+ikm(x−Vt), Ω = −(1 − α)kαm − 1
2α(1 − α)kα−2

m q2, V = αkα−1
m . (8.13)

The quasisoliton (8.13) is an “envelope soliton”, which can be obtained directly from Eq. (2.1). Simply inject

ψ(x, t) = U(x, t) e−i(1−α)kαmt+ikm(x−Vt), (8.14)

and use the binomial expansion∣∣∣∣ ∂∂x
∣∣∣∣
a

eikxU = eikx

[
|k|aU + a|k|a−1

(
−i
∂

∂x

)
U + 1

2
a(a − 1)|k|a−2

(
−i
∂

∂x

)2

U + · · ·
]
. (8.15)

Plugging Eq. (8.15) into Eq. (2.1) with λ = +1, one obtains a differential equation of infinite order

i

(
∂U

∂t
+ V ∂U

∂x

)
= L2U + L3U + · · · , V = αkα−1

m . (8.16)

Here

L2U = 1

2
α(1 − α)kα−2

m

∂2U

∂x2
+ kβm|U |2U, (8.17)

L3U = i

[
1

6
α(α − 1)(α − 2)kα−3

m

∂3U

∂x3
− βkβ−1

m |U |2 ∂U
∂x

]
. (8.18)
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Taking into consideration only the first non-trivial term L2U , one gets the non-stationary NLS

i

(
∂U

∂t
+ V ∂U

∂x

)
= 1

2
α(1 − α)kα−2

m

∂2U

∂x2
+ kβm|U |2U. (8.19)

It has a soliton solution

U(x, t) = φ(x − Vt) e−(1/2)iα(1−α)kα−2
m q2t . (8.20)

To find the shape of the quasisoliton more accurately, one should keep in the right-hand side of Eq. (8.15) a finite
(but necessary odd!) number of terms. The expansion in Eq. (8.16) runs in powers of the parameter q/km. Note
that one cannot find the lifetime of the quasisoliton. The lifetime grows as e|k0|/q and its calculation is beyond the
perturbation expansion.

As a matter of fact, the parameter

ε = q

km
(8.21)

is crucial for quasisolitons. The smaller it is, the closer the quasisoliton is to a “real soliton”. The amplitude of a
quasisoliton is proportional to ε. Quasisolitons of small amplitude satisfy the integrable NLS and are stable. It is
not obvious for quasisolitons of finite amplitude. One can guess that at least in the case β > 0, when collapse is
not forbidden, there is a critical value of the amplitude of a quasisoliton εc such that for ε > εc it is unstable and
generates a singularity at a finite time. Our numerical experiments confirm this conjecture for β = +3.

Quasisolitons move with different velocities and collide. If the amplitudes of the quasisolitons are small and
their velocities are close, they obey the NLS and their interaction is elastic. One can guess that the same holds for
small-amplitude quasisolitons even if their velocities are quite different. This is not obvious for quasisolitons of
moderate amplitude. One can think that their interaction is inelastic and leads to the merging and formation of a
quasisoliton of larger amplitude.

9. Nonlinear frequency shift

Let us consider one more important nonlinear effect. In a linear system, the harmonic of wave number k oscillates
with the frequency ω(k). In the presence of nonlinearity, the frequency changes due to the interaction with other
harmonics. In a weakly nonlinear system, the frequency is modified by a functional depending linearly on the
spectrum

ω(k)→ ω(k)+
∫
T1kn1 dk1. (9.1)

It is easy to show that T1k can be expressed in terms of the coefficient T123k in Eq. (2.3) as

T1k = 2T1k1k. (9.2)

For the MMT model,

T1k = 2λ(k1k)
β/2. (9.3)

For β = 0,

T1k = 2λ = ±2, (9.4)
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and

ω±(k) = ω(k)± 2N, (9.5)

where N = ∫ |ψ̂k|2 dk is the total number of particles.
In the general case β �= 0, renormalization of the frequency leads to modified resonance conditions (2.8) and

(2.9). But in the particular case β = 0, renormalization terms in Eq. (2.9) cancel and the resonance conditions in
the first nonlinear approximation remain unchanged. At the same time, the difference of frequencies for different
signs of nonlinearity has the form

ω+(k)− ω−(k) = 4N. (9.6)

In our case, it does not depend on the wave number.

10. On the MMT model spectrum

In [7], MMT found that in the case of positive nonlinearity the spectrum of wave turbulence is well described by
the formula (MMT spectrum)

nk � |k|−1−(β+α)/2. (10.1)

They checked this result for α = 1
2 and different values of β. Our experiments are in agreement with (10.1). In

[8–10], it was found that the MMT spectrum can appear for either sign of nonlinearity. So far there is no proper
theoretical derivation of the MMT spectrum. In this section, we offer some heuristic derivation of (10.1).

Assuming formula (3.2) to be exact, the problem of closure for the equation on particle number lies in the
expression of Im J123k in terms of nk . This expression should a priori satisfy the conditions of symmetry

Im J123k = Im J213k = Im J12k3 = −Im J3k12. (10.2)

Moreover, one can assume that the nonlinearity is weak and that the wave energy is roughly

E �
∫
ω(k)nk dk. (10.3)

From conservation of energy, one obtains∫
T123k(ω1 + ω2 − ω3 − ω) Im J123k dk1 dk2 dk3 dk = 0. (10.4)

Hence, one must have

Im J123k � δ(ω1 + ω2 − ω3 − ω). (10.5)

For Gaussian wave turbulence, the real part of J123k is given by Eq. (3.3) and dimensional analysis gives

Re J123k � n2
k

k
. (10.6)

Up to this point, our consideration was more or less rigorous. Now, we present a heuristic conjecture. We suppose
that the imaginary part of the four-wave correlator has the same scaling as the real part. In other words, it is quadratic
in nk .
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If one takes into account the necessary conditions (10.2) and (10.4) and the scaling (10.6) for Im J123k , there are
only a few possibilities for the construction of Im J123k . We offer the following closure:

Im J123k = a
(
∂ω1

∂k1
+ ∂ω2

∂k2
+ ∂ω3

∂k3
+ ∂ω

∂k

)
δ(ω1 + ω2 − ω3 − ω)(n1n2 − n3nk), (10.7)

where a � 1 is a dimensionless constant. The closure leads to the kinetic equation

∂nk

∂t
= 2a

∫
T123k(n1n2 − n3nk)

(
∂ω1

∂k1
+ ∂ω2

∂k2
+ ∂ω3

∂k3
+ ∂ω

∂k

)
δ(ω1 + ω2 − ω3 − ω)

×δ(k1 + k2 − k3 − k) dk1 dk2 dk3. (10.8)

It is easy to check that the Kolmogorov solution of Eq. (10.8) leads to the MMT spectrum. Eq. (10.8) resembles
the Boltzmann’s equation for interacting particles. Apparently, it can make sense only if aT123k > 0. Otherwise,
the H-theorem and the second law of thermodynamics will be violated. We must stress that the formula (10.7) is
heuristic and has no rigorous justification.

11. Particle and energy balance

In the presence of damping and linear instability, Eq. (2.3) can be written in the form

i
∂ψ̂k

∂t
= δH

δψ̂∗
k

+ iD(k)ψ̂k, (11.1)

where

H =
∫
ω(k)|ψ̂k|2 dk + 1

2

∫
T123kψ̂1ψ̂2ψ̂

∗
3 ψ̂

∗
k δ(k1 + k2 − k3 − k) dk1 dk2 dk3 dk, (11.2)

is the Hamiltonian, D(k) is the damping or the growth rate of instability depending on its sign.
LetN = ∫ |ψ̂k|2 dk be the total number of particles in the system. From (11.1), one can obtain the exact equation

for the particle balance

dN

dt
= Q = 2

∫
D(k)|ψ̂k|2 dk. (11.3)

After averaging, one has

d〈N〉
dt

= 2
∫
D(k)nk dk = 〈Q〉. (11.4)

The total mean flux of particles 〈Q〉 is a linear functional of nk at any level of nonlinearity.
For the total flux of energy, one has the exact identity

P = dH

dt
= 2

∫
ω(k)D(k)|ψ̂k|2 dk + 1

2

∫
[D(k1)+D(k2)+D(k3)+D(k)]T123kψ̂1ψ̂2ψ̂

∗
3 ψ̂

∗
k

×δ(k1 + k2 − k3 − k) dk1 dk2 dk3 dk. (11.5)

For the averaged density of energy, one has

〈P 〉 = 2
∫
ω(k)D(k)nk dk + 1

2

∫
[D(k1)+D(k2)+D(k3)+D(k)]T123k Re J123k

×δ(k1 + k2 − k3 − k) dk1 dk2 dk3 dk. (11.6)
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Assuming that Gaussian statistics holds, one can write

Re J123k � n1n2[δ(k1 − k3)+ δ(k1 − k)], (11.7)

and one obtains after simple calculations

〈P 〉 = 2
∫
ω̃(k)D(k)nk dk, (11.8)

where ω̃(k) = ω(k)+ ∫
T1kn1 dk1 is the renormalized frequency.

In the case β = 0 and T1k = ±2,

〈P 〉 = 2
∫
ω(k)D(k)nk dk + 2λN〈Q〉. (11.9)

In the stationary state, 〈Q〉 = 0, 〈P 〉 = 0 and the balance equations are∫
D(k)nk dk = 0, (11.10)

∫
ω(k)D(k)nk dk = 0. (11.11)

In this particular case, renormalization of the frequency does not influence the balance equations.
The balance equations (11.10) and (11.11) can be rewritten as

Q0 = Q+ +Q−, (11.12)

P0 = P+ + P−, (11.13)

where Q0 and P0 are the input of particles and energy in the area of instability ω � ω0. Q+ and P+ are the sinks
of particles and energy in the high frequency region ω ∼ ω+.Q− and P− are the sinks in the low frequency region
ω ∼ ω−.

Roughly speaking,

P0 � ω0Q0, (11.14)

P+ � ω+Q+, (11.15)

P− � ω−Q−, (11.16)

and the balance equations can be written as

Q0 = Q+ +Q−, (11.17)

ω0Q0 � ω+Q+ + ω−Q−. (11.18)

Hence

Q+

Q− � ω0 − ω−

ω+ − ω0
,

P+

P− � ω+

ω−
ω0 − ω−

ω+ − ω0
. (11.19)

For ω− ∼ ω0 � ω+, one has

Q+

Q− � ω0 − ω−

ω+ ,
P+

P− � ω0 − ω−

ω− . (11.20)
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In other words, ifω0 � ω+, almost all particles are absorbed at low frequencies. The amounts of energy absorbed in
both ranges have the same order of magnitude. These conclusions are valid only under the hypothesis of approximate
Gaussianity of wave turbulence.

12. Numerical integration scheme

The direct method employed to simulate the model is similar to that in [7]. With the aim of observing direct and
inverse cascades, the complete equation to be integrated reads

i
∂ψ̂k

∂t
= ω(k)ψ̂k +

∫
T123kψ̂1ψ̂2ψ̂

∗
3 δ(k1 + k2 − k3 − k) dk1 dk2 dk3 + i[F(k)+D(k)]ψ̂k (12.1)

with

F(k) =
∑
j

fj δ(k − kj ) and D(k) = −ν−|k|−d− − ν+|k|d+
.

The forcing term F(k) denotes an instability localized in a narrow spectral band. The damping part D(k) contains
a wave action sink at large scales and an energy sink at small scales. The presence of these two sinks is necessary
to reach a stationary regime if two different fluxes are assumed to flow in opposite k-directions from the stirred
zone. In our experiments, we set d− = 8 and d+ = 16 unless other values are specified. The purpose of using
high-order viscosity (also referred to as hyperviscosity), which separates sharply the inertial and dissipative ranges,
is to minimize the effects of dissipation at intermediate scales of the simulated spectrum.

A pseudospectral code solves Eq. (12.1) in a periodic interval of Fourier modes. We define the discrete direct
Fourier transform (FT) as

ψ̂(kn) = ψ̂n = FT(ψj ) = 1

Nd

Nd−1∑
j=0

ψj e−iknxj , (12.2)

and the discrete inverse Fourier transform (FT−1) as

ψ(xj ) = ψj = FT−1(ψ̂n) =
Nd/2∑

n=−(Nd/2)+1

ψ̂n eiknxj , (12.3)

where Nd is the number of grid points, kn = 2πn/L the nth wave number, xj = jL/Nd the location of the j th
grid point and L the size of the computational domain 0 < x < L. We usually choose L = 2π so that the kns
are integers and the spacing in Fourier space is :k = 1. In our experiments, quantities defined as integrals along
the spectral interval are computed in their discrete forms without any renormalization. For instance, we use for the
number of particles the formula

N =
Nd/2∑

n=−(Nd/2)+1

|ψ̂n|2, (12.4)

and for the quadratic part of energy

E = HL =
Nd/2∑

n=−(Nd/2)+1

ω(kn)|ψ̂n|2. (12.5)
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The linear frequency term is treated exactly by an integrating factor technique, removing it from the timestepping
procedure. As emphasized by MMT, we thus avoid the natural stiffness of the problem as well as possible numerical
instabilities. Consequently, we do not need to shorten the inertial interval by downshifting the cutoff of ultraviolet
absorption (as in [5]). The nonlinear term is calculated through the Fast Fourier Transform by first transforming to
real space where a multiplication is computed and then transforming back to spectral space. For the multiplication
operation, twice the effective number of grid points are required in order to avoid aliasing errors. A fourth-order
Runge–Kutta scheme integrates the conservative model in time, giving a solution to which the diagonal factor
e[F(k)+D(k)]:t is applied at each time step :t .

13. Numerical results for β = 0, λ = ±1β = 0, λ = ±1β = 0, λ = ±1

A series of numerical simulations of Eq. (12.1) with resolution up to Nd = 2048 de-aliased modes has been
performed. We choose the case β = 0 as the candidate for testing WT in our experiments. Both cases λ = ±1
are examined, providing an additional test of the theory, and the study is focused on the direct cascade. Forcing is
located at large scales and the inertial interval is defined by the right transparency window kf � k � kd (where
kf and kd are the characteristic wave numbers of forcing and ultraviolet damping, respectively). As displayed in
Table 1, the theoretical spectrum which can be realized in this window is

nk ∝ k−1. (13.1)

Typically, initial conditions are given by the random noise in the spectral space. Simulations are run until a
quasi-steady regime is established which is characterized by small fluctuations of the energy and the number
of particles around some mean value. Then time averaging begins and continues for a length of time which signifi-
cantly exceeds the characteristic time scale of the slowest harmonic from the inertial range (free of the source and
the sink). In turn, the time-step of the integration has to provide, at least, accurate enough resolution of the fastest
harmonic in the system. As our experiments show, one has to use an even smaller time-step than defined by the last
condition: the presence of fast nonlinear events in the system requires the use of a time-step :t = 0.005, which is
40 times smaller than the smallest linear frequency period. Time averaging with such a small time step leads to a
computationally time consuming procedure despite the one-dimensionality of the problem.

From now on, we will present numerical results in the specific situations ν− = 196.61(λ = ±1), ν+ =
5.39 × 10−48(λ = +1) or ν+ = 2.1 × 10−47(λ = −1), and fj = 0.2, non-zero only for kj ∈ [6, 9](λ = ±1).

The numerical simulations clearly display the development of dynamical chaos and statistically uniform turbu-
lence. Both the amplitude and the phase of each harmonic fluctuate independently of each other. Figs. 1–4 show the
behavior of the seventh and eighth harmonics.

Figs. 5–8 show the behavior of the real and imaginary parts of the amplitude of the harmonic k = 200. One
sees amplitude-modulated oscillations with carrying frequency close to the corresponding linear frequency of the
harmonic ω � 14.

Figs. 9–12 represent FTs in time of the evolution of the harmonic k = 200 from the previous pictures. One can
see that the maximum of the spectra corresponds to the linear frequency shifted in accordance with the nonlinearity
sign λ = ±1.

Figs. 13 and 14 demonstrate the behavior of the fourth- and sixth-order moments as functions of the second-order
moment. They fit the Gaussian laws very well. They provide a justification of the initial conjecture that the statistics
of the turbulence is close to Gaussian.

Fig. 15 represents the time evolution of the quadratic energy E for λ = ±1 with the same amplitude of forcing.
The curves are plotted over the interval t ∈ [5000, 10 000] where the time averaging actually takes place. One
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Fig. 1. β = 0, λ = −1. Amplitude of the mode k = 7 vs. time.

Fig. 2. β = 0, λ = −1. Amplitude of the mode k = 8 vs. time.
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Fig. 3. β = 0, λ = −1. Time evolution of the real part of the amplitude for the mode k = 8.

Fig. 4. β = 0, λ = −1. Time evolution of the imaginary part of the amplitude for the mode k = 8.
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Fig. 5. β = 0, λ = −1. Time evolution of the real part of the amplitude for the mode k = 200 (time resolution τ = 0.015).

Fig. 6. β = 0, λ = +1. Time evolution of the real part of the amplitude for the mode k = 200 (time resolution τ = 0.015).
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Fig. 7. β = 0, λ = −1. Time evolution of the imaginary part of the amplitude for the mode k = 200 (time resolution τ = 0.015).

Fig. 8. β = 0, λ = +1. Time evolution of the imaginary part of the amplitude for the mode k = 200 (time resolution τ = 0.015).
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Fig. 9. β = 0, λ = −1. Square amplitude of the FT for the mode k = 200 vs. frequency (time resolution τ = 0.015).

Fig. 10. β = 0, λ = −1. Same as before but with a zoom on a smaller frequency window.
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Fig. 11. β = 0, λ = +1. Square amplitude of the FT for the mode k = 200 vs. frequency (time resolution τ = 0.015).

Fig. 12. β = 0, λ = +1. Same as before but with a zoom on a smaller frequency window.
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Fig. 13. β = 0, λ = +1. Fourth-order (crosses) and sixth-order (circles) moments as functions of the second-order moments. The straight lines
are the fitted Gaussian laws.

Fig. 14. β = 0, λ = −1. Fourth-order (crosses) and sixth-order (circles) moments as functions of the second-order moments. The straight lines
are the fitted Gaussian laws.
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Fig. 15. β = 0. Quadratic energy vs. time. λ = +1 (solid line), λ = −1 (dashed line).

Fig. 16. β = 0. Number of particles vs. time. λ = +1 (solid line), λ = −1 (dashed line).
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Fig. 17. β = 0. Average nonlinearity ε = |HNL/HL| vs. time. λ = +1 (solid line), λ = −1 (dashed line).

obviously sees that the systems have already reached the steady state. Their energies moderately fluctuate about
mean values which are E � 19 (λ = +1) and E � 9 (λ = −1). This significant difference with respect to the sign
of λ is quite unexpected from the viewpoint of the WT theory since the same rate of forcing is imposed in both
systems. We can make the same remarks about the evolution of the number of particles N . In Fig. 16, the mean
values stay near N � 3 (λ = +1) and N � 1 (λ = −1) so that their relative difference is even bigger than for
E. Fluctuations also spread much more in the case λ = +1.

In Fig. 17, the stationarity as well as the gap between both signs of λ are verified again in the time evolu-
tion of the average nonlinearity ε. We define the average nonlinearity in the system as the ratio of the nonlinear
part to the linear part of the Hamiltonian ε = |HNL/HL|, each part being calculated over the whole field. Of
course, this definition does not really make sense when external forces are applied but it provides a relatively good
estimation of the level of nonlinearity once the systems reach the steady state. Note here that the mean values
ε � 0.4(λ = +1) and ε � 0.2(λ = −1) are relatively small. Thus, the condition of small nonlinearity required
by the theory holds for both systems. This conclusion is also supported by comparing Figs. 10 and 12. It is seen
that the difference of frequencies caused by nonlinearity is relatively small. We point out that in our numerical

Table 2
Time-averaged values of the wave action, quadratic energy and corresponding fluxes in the stationary state, α = 1

2 , β = 0

λ N E Q− Q+ P− P+

+1 3 19 0.1957 0.0090 0.276 0.258
−1 1 9 0.0098 0.0478 0.014 1.430



602 V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619



V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619 603



604 V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619



V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619 605



606 V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619



V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619 607

Fig. 23. β = 0, λ = −1. Evolution towards a collapsing peak of the isolated solution for the initial amplitude ψ0 = 2. Dotted line t = 0, dashed
line t = 0.55, solid line t = 1.1.

Fig. 24. β = 0, λ = +1. Evolution towards decay of the isolated solution for the initial amplitude ψ0 = 2. Dotted line t = 0, dashed line
t = 1.65, solid line t = 3.85.
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Fig. 25. β = 0, λ = −1. Computed spectrum vs. wave number. The theoretical slopes are shown as well (k−1 for WT and k−5/4 for MMT).

experiments ε could not be taken too small (i.e. ε ≤ 10−3) for two reasons. First, the nonlinear turnover time
grows longer and the energy flux is too weak to act effectively. Second, one may catch the undesirable frozen
turbulence [13] due to the disappearance of quasi-resonances. One should note that, in general, frozen turbu-
lence arises more easily in one-dimensional problems due to fewer degrees of freedom than in higher-dimensional
problems.

The difference between the cases λ = ±1 is especially conspicuous if one considers the dissipation rates of
particles and quadratic energy for small wave numbers

Q− = 2
∫
k<kf

ν−|k|−d−|ψ̂k|2 dk, P− = 2
∫
k<kf

ν−|k|−d−
ω(k)|ψ̂k|2 dk,

and for large wave numbers

Q+ = 2
∫
k>kf

ν+|k|d+|ψ̂k|2 dk, P+ = 2
∫
k>kf

ν+|k|d+
ω(k)|ψ̂k|2 dk,

where kf is the characteristic wave number of forcing. Figs. 18–21 represent the time evolution of these quantities
and their time-averaged values are collected in Table 2.

One can see that the case λ = +1 quantitatively fits WT theory. Indeed, in this case Q+/Q− � 0.046 � 1
and P+/P− � 0.94. But in the case of negative nonlinearity λ = −1 the situation is opposite. In this case
Q+/Q− � 4.9 and P+/P− � 102 which means that most of both quadratic energy and particles are transported
to high frequencies.
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Fig. 26. β = 0, λ = +1. Computed spectrum vs. wave number. The theoretical slopes are shown as well (k−1 for WT and k−5/4 for MMT).

Comparison of the turbulence levels and fluxes of particlesQ+ for both signs of nonlinearity leads to a paradoxal
result. At λ = −1 the total number of particles is three times less than at λ = +1, while the dissipation rate of
particles is higher by one order of magnitude. It can be explained only by the presence in this case of a much
more powerful mechanism of nonlinear interactions, which provides very fast wave particles transport to high
frequencies. In our opinion, this mechanism is wave collapse, studied theoretically in Section 7. Sporadic collapsing
events developing on top of the WT background could send most of particles to high wave numbers without violation
of energy conservation, because in each self-similar collapse structure the amount of total energy is zero.

We observed such collapsing events in our numerical experiments. Fig. 22 displays the collapse event taking
place at the point x = 1.006 at time t = 5000.19. One can conjecture that the collapses are described by self-similar
solutions. For such solutions H ≡ 0. It means that the collapse can carry particles to high frequencies, without
carrying any energy at that time! As far as the Hamiltonian is the difference of quadratic and quartic terms and both
of them go to infinity, it becomes possible to explain the apparent contradictions of the dissipation rates.

The hypothesis related to the prevailing role of collapses at λ = −1 is corroborated by the following facts:

1. Intermittency in dissipation rates of quadratic energy and particles for λ = −1 is much higher than for λ = +1
in the region of large wave numbers. This intermittency can be explained by outbursts of dissipation when wave
collapses occur.

2. The analysis of time FTs of separate harmonics (we take k = 200) shows the presence of two components,
see Fig. 9. The peak at ω � 13 corresponds to a linear wave with a moderate nonlinear shift of frequency.
This is the “WT” component of the wave field. Another component is roughly symmetrical with respect to the
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Fig. 27. β = 0, λ = −1. Computed spectrum and WT spectrum vs. wave number. The WT spectrum (straight line) is given by n(k) = ck−1

with c = aP1/3 � 0.42.

reflection ω → −ω with the maximum at ω = 0. This is certainly a strongly nonlinear component which could
be associated with wave collapses.

Another indication of the difference of the wave dynamics in the cases λ = +1 and λ = −1 follows from the
following experiment. Figs. 23 and 24 show the early stages in the conservative evolution of the same isolated initial
condition

ψ(x) = ψ0 e−(x−π)2/2σ 2
, σ = 0.5.

In the case λ = −1, a sufficiently large initial condition collapses into a sharp spike, while in the case λ = +1 it
decays. This experiment could serve as an evidence of the finite-time singularity formation for the case λ = −1.

Now, we discuss the stationary isotropic spectra of turbulence which are displayed in Figs. 25–28. We plotted
on the same pictures the Kolmogorov spectra calculated by putting either P = P+ = 1.430 (λ = −1) or P =
P+ = 0.258 (λ = +1) and a = 0.376 in Eq. (5.8). In Figs. 27 and 28, one can see that for both cases this spectrum
provides a higher level of turbulence than the observed one. For λ = −1 this difference is almost of one order of
magnitude. For λ = +1, the observed spectrum almost coincides with the WT one at low frequencies and then
decays faster at higher wave numbers (approximately as MMT spectrum in Fig. 26).

It is interesting that for λ = −1 the high frequency asymptotics is fairly close to the one predicted by WT theory
(Fig. 25). One can explain this fact as follows. In this case, the turbulence is the coexistence of collapsing events and
WT. Collapses carry most of the fluxes of particles and quadratic energy to high frequencies. But their contribution
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Fig. 28. β = 0, λ = +1. Computed spectrum and WT spectrum vs. wave number. The WT spectrum (straight line) is given by n(k) = ck−1

with c = aP1/3 � 0.24.

to the high-frequency part of the spectrum is weak, because they produce Phillips-type spectra, decaying very fast
as k → ∞. In our case, this spectrum is

nk � k−3/2. (13.2)

Hence as k → ∞, only the WT component survives. Even P � 10−2P+ is enough to provide an observable tail in
the WT Kolmogorov spectrum.

We should stress out again that at λ = +1 the picture of turbulence matches the WT prediction both quantitatively
and qualitatively. Meanwhile, the spectrum at high ks is steeper and closer to the MMT formula. So far we cannot give
a consistent explanation of this fact. We can just guess that it is somehow connected with quasisolitons. As an illus-
tration, Fig. 29 shows the conservative evolution of the initial quasisoliton (8.13) with parameter q/km = 0.1, which
is small enough to justify the Taylor expansion used in its derivation. As expected, we observe that the solution prop-
agates and persists over a relatively long time. This similarity between quasisolitons and real solitons is verified even
better in Figs. 30–33 where two initial quasisolitons with q/km = 0.2 for the smaller one and q/km = 0.25 for the
bigger one collide almost elastically. Note here that the solution with smaller amplitude moves with a greater velocity.

14. Numerical results for β = +3β = +3β = +3 and λ = +1λ = +1λ = +1

Another series of experiments has been performed for the case β = +3 and λ = +1. This case is especially
attractive due to the fact that the intensity of interaction grows with characteristic wave number in Fourier space
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Fig. 29. β = 0, λ = +1. Evolution of the initial quasisoliton for q/km = 0.1. Solid line t = 0, dotted line t = 1250, dashed line t = 2500.

and one can expect reduced “frozen” turbulence effects compared to the case β = 0. Another motivation is the fact
that the scaling of the interaction kernel reproduces the kernel for gravity water waves. Therefore, Eq. (12.1) with
α = 1

2 , β = +3 can be considered as a model of turbulence of the ocean surface.
The numerical simulation of Eq. (12.1) was performed on a grid of 2048 points in the real space domain of length

2π . Parameters of the forcing are defined by

F(k) =
{

0.001 if 30 < k < 42,

0 otherwise,

and parameters of damping in the “hyperviscosity” form by

D(k) =




−0.05(k − 4)8 if 0 < k < 4,

−0.1(k − 824)2 if 824 < k < 1024,

0 otherwise.

Aliasing effects were not of concern due to the run-time control of the fastness of the spectrum decay toward high
wave numbers.

The time-step of integration was equal to 1
50 of the inverse fastest linear frequency in the problem. Such a small

value was chosen due to the fact that the time dependence of the individual Fourier harmonics corresponding to
intermediate range wave numbers showed the presence of processes of time scale smaller than the smallest linear
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Fig. 30. β = 0, λ = +1. Interaction of two initial quasisolitons at t = 0. The smaller and bigger ones correspond to q/km = 0.2 and 0.25,
respectively.

time in the system. This observation was an initial indication of the significant role of nonlinearity in the problem
under consideration.

Eq. (12.1) was integrated numerically over long times for different kinds of initial conditions: low level random
noise and single harmonic excitation (k = 30) initial conditions. While initial stages of computations were quan-
titatively different, the later stages of evolution were strikingly similar. Starting from big enough times, the wave
system was separated into several soliton-like moving structures and low-amplitude quasi-linear waves. Processes
of interaction of solitons and waves slowly redistributed the number of waves in a way leading to the growth of
initially bigger solitons and the collapse of initially smaller solitons. Finally, the system was clearly separated into
a state with one moving soliton and quasi-linear waves.

We interpret the observed phenomenon as similar to the “droplet” effect observed earlier in non-integrable NLS
equation [20]. The soliton solution turns out to be the statistical attractor for nonlinear non-integrable wave systems:
long time evolution leads to the condensation of the integral of total number of waves into the single soliton which
minimizes the Hamiltonian.

Figs. 34 and 35 show snapshots of the final state of the system: the single soliton is moving with constant speed on
the background of quasi-linear waves. A quantitative comparison shows that the parameters of the observed object
are close to the parameters of the quasisoliton solution (8.13).

One should emphasize that there is a difference between the situation observed in the present work and former
observations of “droplet” effects in non-integrable NLS equations. Solitons observed in [20] were exact stable
solutions of the corresponding NLS equation. Solitary solutions observed in the present work are “quasisolitons”
which are unstable at least in a certain range of parameters.
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Fig. 31. β = 0, λ = +1. Interaction of two initial quasisolitons at t = 37.5.

Fig. 32. β = 0, λ = +1. Interaction of two initial quasisolitons at t = 50.
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Fig. 33. β = 0, λ = +1. Interaction of two initial quasisolitons at t = 100.

Fig. 34. β = 3, λ = +1. Single moving soliton, t = 6915.



616 V.E. Zakharov et al. / Physica D 152–153 (2001) 573–619

Fig. 35. β = 3, λ = +1. Single moving soliton, t = 10 880.

Fig. 36. β = 3, λ = +1. Evolution of the initial quasisoliton for q/km = 0.1. Solid line t = 0, dotted line t = 23.6, dashed line t = 47.1.
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Fig. 37. β = 3, λ = +1. Evolution of the initial quasisoliton for q/km = 0.3. Solid line t = 0, dotted line t = 23.6, dashed line t = 47.1.

In Fig. 36 the initial condition is the quasisoliton (8.13) with parameter q/km = 0.1. Here again, it behaves as the
soliton should: it moves without any detectable change of shape. Fig. 37 shows the evolution for q/km = 0.3. One
can interpret such initial condition as a “deformed” quasisoliton. This initial condition rapidly develops moving
singularity collapsing, presumably, in finite time.

15. Conclusion

The MMT model with α < 1 and either sign of nonlinearity exhibits coherent structures. In the case of negative
nonlinearity these structures are weak collapses. These collapses are a powerful mechanism of energy dissipation,
which dominates in all our numerical experiments. Weak turbulence coexists with collapses, and is responsible for
the formation of Kolmogorov-type tails of wave spectra. But it carries to high wave numbers just a small part of the
energy (less than 5%).

One may hope to get “pure” WT by decreasing the level of nonlinearity. But to achieve an adequate modeling
of the continuous medium, one should take a very fine mesh (at least 104 harmonics) and apply forcing in a broad
range (say 10 < k < 100). Otherwise effects of “frozen turbulence” will blur the picture. Such experiments would
be very time consuming.

The case of positive nonlinearity is less clear. In this case the picture of turbulence is qualitatively similar to WT,
but the slope of the spectrum fits better the MMT spectrum. So far we do not have a satisfactory explanation of
this phenomenon. Probably it could be explained by the presence of interacting quasisolitons. In this case again,
experiments with a larger number of harmonics could give a result closer to WT predictions.
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The relative “suppression” of WT in the MMT model can be explained by a peculiarity of the resonant conditions.
In the one-dimensional case with α = 1

2 , only well-separated waves interact. Indeed, one can see from (2.10)
that ∣∣∣∣k2

k1

∣∣∣∣ =
(

1

ξ
+ 1 + ξ

)2

, ξ > 0, (15.1)

and therefore min|k2/k1| = 9 is reached at ξ = 1. This phenomenon can be called “sparsity of resonances”.
Due to this sparsity, four-wave resonances easily lose the competition with coherent structures — collapses and
quasisolitons. In this sense the MMT model is not an optimal object for checking the validity of WT theory. We can
offer the following model, which includes the interaction of two types of waves

H =
∫

|k|α(|ak|2 + s|bk|2) dk +
∫

|kk1k2k3|β/4(a∗
k a

∗
1a2a3 + 2p1a

∗
k b

∗
1a2b3 + p2b

∗
kb

∗
1b2b3)

×δ(k + k1 − k2 − k3) dk dk1 dk2 dk3. (15.2)

If α > 1 and β < 2α − 1, the corresponding dynamical system does not describe any coherent structures which
could compete with four-wave resonances. Meanwhile, for s �= 1, it describes non-trivial resonant interactions for
different waves propagating in the same direction. The system (15.2) looks like a possible object for the simulation
of wave turbulence. In the special case α = 2 and β = 0, it describes coupled NLS equations.
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