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ABSTRACT

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other
as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wave-wave
interaction in the dynamics of vacillation and aperiodicity in unstable systems.

It is shown that the form of the dissipation mechanism as well as the overall dissipation timescale determines
the nature of the dynamics. In particular, dissipation proportional to potential vorticity is shown to expunge
amplitude vacillation due to wave-mean flow interaction.

Wave-wave interaction, however, can yield amplitude vacillation. As the dissipation is decreased, the solutions
evolve from steady waves (although propagating) to periodic vacillation until finally at small dissipation rates,

chaotic behavior is obtained.

This occurs in a range of relative growth rates of the two waves which depends on the strength of the wave-

wave and wave-mean flow interactions.

1. Introduction

Unstable baroclinic currents can spawn unstable,
wavelike disturbances which, in finite amplitude, may
be either steady (aside from a simple translation of
phase) or exhibit vacillatory behavior. The appearance
of vacillatory behavior has been observed in carefully
controlled laboratory experiments (e.g., Hart, 1972,
1973) but the mechanism causing the observed vacil-
lation is still imperfectly understood. Yet the general
phenomenon is so interesting that it presents itself as
an obvious theoretical challenge.

Part of the fascination of the phenomenon of vac-
illation is its connection with aperiodic or chaotic be-
havior. Ever since the pioneering work of Lorenz
(1963), it has been clear that the phenomenon of vac-
illation embraces two types of behavior, i.e., periodic,
limit-cycle oscillations and aperiodic or chaotic vacil-
lation. The connection between steady, periodic, and
chaotic behavior as a function of the parameters of a
baroclinic flow remains poorly understood and the
“route to chaos” may depend sensitively on perplex-
ingly delicate aspects of the physical system not, at first
sight, of obvious importance. It is thus probably fair
10 say that as a preliminary to a complete understand-
ing of the dynamics of vacillation we are first presented
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with the challenge of describing and delimiting various
mechanisms which may give rise to such behavior and
to test the robustness of the dynamics to alterations in
the underlying physics.

One of the earliest theoretical models of baroclinic
instability which exhibited the full range of steady, pe-
riodic and chaotic behavior was described by Pedlosky
and Frenzen (1980). This was a two-layer model on
an f-plane in which the basic flow had only vertical
shear. Friction acted on both upper and lower layers
by virtue of Ekman layers on the two rigid horizontal
boundary surfaces. Interfacial friction was not included
since the model was meant to at least crudely represent
a continuous flow for which an interior zone of high
viscous dissipation seemed inappropriate. The model
so analyzed was shown to be qualitatively similar to
the original Lorenz equations (see below) and, indeed,
the behavior of the systems exhibited the transition to
chaos found for some parameters in the Lorenz system.
Namely, the amplitude of the baroclinic wave pulsated
in a periodic way when dissipation was very small and
then exhibited a period-doubling sequence leading to
chaos as the dissipation slightly increased. Finally, for
larger dissipation, steady solutions were obtained.

However, it has been shown (Pedlosky, 1981) that
this behavior is very sensitive to relatively minor
changes in the physics of the model. The inclusion of
a small S-effect or slightly differing parameterizations
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of dissipation in the two layers is sufficient to expunge
the so-called strange attractor and render all finite-am-
plitude solutions steady. The dynamics is thus struc-
turally unstable; small, seemingly innocuous alterations
in the physical model lead to O(1) changes in the long-
time behavior of the wave field. Furthermore, the more
recent experiments of Hart (e.g., 1986) indicate that
the observed route to chaos is not similar to that pre-
dicted by the model of Pedlosky and Frenzen except
perhaps in a small domain of parameter space.

The models mentioned above are fundamentally
wave-mean flow interaction models. Although these
systems are not truncated, initial conditions are chosen
so that only a single wave is present in the initial data
and the wave evolves and is limited in its amplitude

by interaction solely with the mean zonal flow. Al-
“though such models are entirely sclf-consistent, they
do not include any wave-wave interactions. It is natural
to wonder whether such interactions might lead to vac-
illatory behavior of a type different to the Lorenz sce-
nario and more like the observed transitions.

There have been a small number of investigations
of wave-wave interactions in baroclinic flows already
carried out (e.g., Hart, 1981; Mansbridge, 1984; Moroz
and Holmes, 1984), but these have been at values of
the dissipation sufficiently high so that only steady so-
lutions are obtained. Thus, they have been unable to
address the problem of vacillation. A more recent study
by Mak (1986) uses a severe truncation of the quasi-
geostrophic equations and suggests that wave-wave in-
teraction may indeed be a mechanism to produce per-
petual vacillation.

The present study was undertaken independently to
also examine the role of wave-wave interaction in the
dynamics of vacillation. The goal of the study was to
produce an internally self-consistent, nontruncated
model in which a pair of unstable waves interacted
with one another as well as with the mean flow.

The model we choose is the classical Phillips model
of baroclinic instability on the beta plane. Figure 1
shows the curve of marginal stability, in this case, §
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FI1G. 1. A schematic rendering of the two-layer marginal stability
curve in the 8, k plane. § is the planetary vorticity gradient, U is
the vertical shear, and F*? is the ratio of the channel-width to the
deformation radius. At values of 8 less than the maximum critical
8, two zonal wavenumbers k, and k; are just marginally stable.
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versus zonal wavenumber, k, in the inviscid limit. Note
that for each value of 3 below the maximum critical
value, there are two wavenumbers k; and k, which are
marginally stable. The theory developed in this paper
treats the evolution of two interacting waves, each of
which is near the marginal waves k; and k,. That is,
the initial spectrum is restricted to just two slightly
unstable waves. Although the resulting theory is con-
sistent, one might wonder why the interval in k between
k, and k;, occupied by more unstable waves, can be
ignored. Our fundamental attitude is that although it
might seem natural to include such waves, we simply
cannot within the limitations of the weakly nonlinear
theory to be developed, and our overriding coricern is
to produce a consistent dynamical system with inter-
acting waves rather than the fullest and most general
theory. Furthermore, it is not difficult to imagine cases
where the allowable zonal wavenumbers are quantized
by a zonal periodicity condition such that k; and k;
are the only allowable unstable modes, the intervening
interval being denied by the quantization condition.

Thus our basic system will consist of the two waves,
their nonlinearly generated harmonics (k, £ k) and
the evolving mean zonal flow. '

Even this problem has some very subtle features
which will become more evident in the subsequent
technical development, but about which we wish to
comment in these introductory remarks. It has been
known for quite some time (Holopainen, 1961; Romea,
1977) that in the presence of very small Ekman layer
dissipation, i.e., precisely the parameter range of in-
terest for vacillation theories, the curve of marginal
stability is shifted by an O(1) amount in the direction
of destabilization. The parameter domain opened up
by this order one shift contains only very weakly grow-
ing waves (growth rates of the order of the dissipation),
but this is enough to seriously complicate the nonlinear
problem. For, in this case, although the physically sig-
nificant marginal curve is still the inviscid curve, any
point on the marginal curve has an O(1) supercriticality
with respect to the problem’s first bifurcation point at
the shifted marginal curve found by Holopainen. To
avoid this technical difficulty, we adopt the following
approach in the present paper. We alter the dissipation
mechanism so that the dissipation of potential vorticity
in each layer is directly proportional to the potential
vorticity in each layer rather than the relative vorticity
as in the case of Ekman dissipation. This is a device
often used in theoretical models and in some ways has
the advantage of representing a dissipation of the ther-
mal as well as the momentum fields. The consequence
of this substitution is striking. First of all, it renders
the effect of dissipation on the marginal curve nonsin-
gular, i.e., the marginal curve is shifted by only a small
amount so that for small dissipation a perturbation
theory hinged around the inviscid curve can be suc-
cessfully carried out.

The other consequence of this change in the repre-
sentation of dissipation turns out to be far more pro-
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found for it will be shown below that potential vorticity
dissipation, no matter how small its size, never allows
for single-wave vacillation. That is, this apparently in-
nocuous alteration of the dissipation mechanism com-
pletely expunges, for a single wave state, the Lorenzian
chaotic behavior and the associated limit cycles. This
is, of course, somewhat disturbing since the form of
the dissipation is likely to be the least certain element
of the dynamics. Again, this is another example of the
structural instability of the original, baroclinic model
of Pedlosky and Frenzen. This astonishingly sensitive
reaction of the model can now be turned to conceptual
advantage for it allows us to conclude that the vacil-
lation which is indeed found in the present model can
be due only to wave-wave interaction. Furthermore,
the route to chaos found in this model is opposite to
that found in the Lorenz model and in that of Pedlosky
and Frenzen. Namely, in the present case chaotic be-
havior occurs as an end state when the dissipation is
reduced with steady solutions giving way to periodic
solutions which, in turn, are transformed to aperiodic
solutions as dissipation is decreased.

In section 2 we describe the development of the am-
plitude equations in the present model and their re-
lation to the Lorenz set. Section 3 forms a parenthesis
in which a brief discussion is given of the role of in-
terfacial friction in the £plane model. It is shown there
that for weakly unstable disturbances, the inclusion of
interfacial friction leads to a form of dissipation indis-
tinguishable from potential vorticity dissipation. In
view of the remarks made above, this has profound
and unexpected implications for models of fplane
vacillation.

In section 4 we briefly review Hart’s (1981) analysis
of steady mixed wave solutions which we find an in-
valuable guide for our numerical calculations in the
vacillatory domain. Section 5 describes our numerical
results illustrating the diverse parametric domains of
behavior and the dependence on initial conditions. We
also describe the linear stability of the mixed wave re-
gime showing a narrow parameter range wherein the
mixed steady solutions are rendered unstable by wave—
wave interaction enforcing perpetual unsteadiness. The
observed domain of vacillation in the model far exceeds
the region of linear instability and is nearly coincident
with the interval of allowed steady mixed solutions al-
though in some cases we find vacillating solutions out-
side this interval.

Our overall conclusion is that the interaction be-
tween unstable waves provides a clear mechanism for
vacillation, both periodic and chaotic. Moreover, it acts
in cases, such as the one studied here, where wave-
mean flow interaction alone leads to asymptotically
steady solutions.

2. Derivation of the amplitude equations

We consider the basic flow to have only vertical
shear, and we represent the dynamics of the pertur-
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bations with the use of the two-layer quasi-geostrophic
model on the 8-plane. The flow is contained in a chan-
nel of width L. The basic model is well known and
readers are referred to Pedlosky (1970) for a derivation
and discussion of the governing nondimensional po-
tential vorticity equations. The equations for the per-
turbation geostrophic streamfunctions ¢,, n = 1, 2, are

9 d n
(a—t +U, &)[Vzd’” + F(¢1 — $2)(—1)7]

36,
+[ﬂ—F(Ul—U2)(—1)"1—§;

= —J$n, Vb + Flb1 — $2)(—1)"]
— [V, + Flgy—¢:X—1)", n=1,2. (2.1)

The basic shear flow is U,,. The parameter F is the ratio
of the channel width L to the deformation radius,
Vg'D/ f, where D is the undisturbed depth of each layer.
The parameter § is 3, L2/ U where 8, is the dimensional
planetary vorticity gradient and U is the scale for the
horizontal velocity field.

The parameter r is introduced to parameterize the
dissipation which in (2.1) is taken as linearly propor-
tional to the perturbation potential vorticity.

For the inviscid normal mode problem, linear in-
stability occurs when

B<FU,—U))=0u. (2.2)
The critical curve in Fig. 1 is given by
Bi= W= B2 g — gty 2.3)

2F

where a? is square of the total wavenumber, i.e., k2
+ 12

Thus for each 8 < B, there are two values of a? for
which a wavelike mode is just marginally stable, viz.:

a*=2"2F(1+{1-B¥[FXU, - U 1}'"52.  (2.4)

The minus sign yields the long wave solution, a;, to
the left of 8, in Fig. 1, while the plus sign yields the
short marginal wave, a,, at the same value of §. For
each a2, the zonal wavenumber k2 is given by

k=(a*-13'? 2.5)

hence only those solutions to (2.4) with g > [ are phys-
ically meaningful where / is a multiple of =. Without
exception in this paper, we will consider marginal waves
which consist of the gravest cross-stream mode (the
most unstable) for which / = =.

For each (8, a?) pair, the phase speed of the marginal
wave is given by

_U1+U2_ ;3(a2+F)
2 aX(a*+2F)

C (2.6)

which, with (2.3) may be used to show that the long
wave always travels with a phase speed less than U,
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while the shorter wave always travels with a speed
greater than U,. Hence, the marginal pair consists of
a short, fast wave and a long, slow wave (note that the
slower wave lies outside the range of the basic velocity).

We shall examine the evolution of the wave pair for
values of # slightly less than the critical value for a
given shear. In the presence of the potential vorticity
dissipation given in (2.1), the marginal curve is shifted
only slightly from its inviscid value, namely

a¥a*+ 2F)
k2F2 28,
In distinction to the case with Ekman friction damping,

Br = B. as r = 0. Solutions to the problem will be
sought for values of 8 such that

Be=Br— 2.7)

B8=8.~ (2.8)
where 8, is given by (2.7) and where
r=0(A?), 2.9)

a parameter setting for which the dissipative time scale
is of the same order as the e-folding development time
for unstable baroclinic waves. We shall also allow k;
and k; to shift slightly from the values given by (2.5)
so that our actual parameter setting lies in some neigh-
borhood near the critical points. For the purposes of

ease of presentation, we defer for the moment the tech- .

nical device used to allow a small change of k.

In the neighborhood of the critical points, ¢, will be
a function of the advective time ¢ and the slow, devel-
opment time
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as discussed in Pedlosky (1970). Thus in (2.1)
3 8 9
DRETAE

The solution to (2.1) is sought in the form of an
asymptotic series.

Gn= e(qb,,(‘“) + f‘f’n(l) + €2¢n(2) +e0)

where e is found to be O(A'?).

The insertion of (2.8), (2.10b) and (2.11) into (2.1)
yields a sequence of linear problems for the ¢, after
terms of like order in e are balanced.

The lowest order solution, at O(e), yields

V= (46" + A6™) sinly++
629 = (vid1€” + v,4,6™) sinly + «

where -

(2.10b)

(2.11)

(2.12a,b)

On=kn(x—cnt), m=1,2. (2.13)

In (2.13), the subscript m labels each of the two mar-
ginal waves, i.e., solutions which satisfy (2.4), (2.5) and
(2.6). As a convention, m = 1 will refer to the longer,
slower wave, For each marginal wave, v,, is the ratio
between the amplitude in the lower and upper layers.
It follows from the linear theory that +,,,, which is real,
is given by -

_@+F_[f+ FU =~ Uy)]
"TTF T AU

The asterisks in (2.12a,b) denote the complex conjugate
of the preceding term.

(2.14)

T=¢t, c=0(A"% (2.10a) The next order problem for ¢, " involves a forcing
produced by the interaction between the two marginal
waves. Some algebra yields

Bq, 6(;[),“) 4 r A,ei"‘ aq, d r Azei"z 6q1 .
2, (1) _ W) 4 () bl PRI Pl L. (Y ST Piie”\ B4 L] PR
( U )[V O A W T o)(U—c) v " T o) (Ui~c) ay ™"
il 9q, sin2ly ) . L
frto— Ky — ko)A, 4,670 + (k) + ko)A A%+ %, (2.15a
+ 3 9y W~ Us = Cz) —c)llky — ko)A, Aze (ky + kp)A A%e 1++ ( )
ad 9q> 34,2(1) of( 8  r\vid.e” 8 | r\v:4:22"18q,
+ V24,0 — F(¢," — ¢, )]+ == -~ ——+ RS A sin/,
( 2+ 0, )[ 80— R0~ 6.0+ 222 ) (G ) s sy
+x+— il aqz _______s_1n_2_lz__( cl)'YI'YZ[(kl kz)A 1A2€‘(O'+02) + (kl + kz)A 1A3‘€'(0‘~02)] stly + % (2 1 Sb)
20y (Ua—e)(Uz—¢2)
where interaction between the two marginal waves introduces
g, =B8—(—1Y'F(U,— Uy (2.16) into the solution, at this order, contributions with the
ay ! o ’ sum and difference wave numbers and frequencies. A

The solution for ¢, consists of three parts. First,
there are terms which represent a phase shift in each
of the two marginal waves due to growth and dissi-
pation. Second, there is, at this order, a correction to
the mean flow in each layer. Both of these parts are
familiar from the analysis of the single wave. theory
(e.g., Pedlosky, 1970). Now, however, the wave-wave

considerable amount of algebra allows us to write the
solutions as :

#1(1) = A1 4:R €™ sin2ly + * |
C+ 4,430,167 sin2ly + # + @y, T)

af 9qi/dy

94 .
w=2 CA LT 4 e sinly+
¢2 e(ikl(Ul cl)2F)(aT )e Siniy T *
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'3 9q,/dy 04, s -
+ 2 22 4+~ 4, |6 sinly +
e(ikz(Uz oy F)( A’) Sy #

+ &y(y, T) + A1 A2Rpe™ % sin2ly + »
+ 4,430, sin2ly++.  (2.17a,b)

where R,, R;, Q; and @, are real constants given in
Appendix A.

The forced wave solutions have zonal wavenumbers
ki, = ki + k; and a;; = ky — k, with associated fre-
quencies ky¢; £ kyc;. The y wavenumber is 2/. These
solutions will be valid unless either of these sum and
difference frequency-wavenumber pairs are themselves
free solutions of the homogeneous part of (2.15a,b).
The exceptional behavior does occur, but at only one
value of § along the marginal curve. At that point alone,
the forced solution is, in fact, a free solution and the
problem must be rescaled by elevating the forced so-
lution to a larger amplitude (¢ instead of ¢?) and treating
it, along with the marginal solutions, as the lowest order
perturbation. Although this is an interesting circum-
stance, it is an isolated and uncharacteristic parameter
one, and in this paper we shall simply avoid that prob-
lem by excluding that single value of 8.

The solutions given by (2.17a,b) then combine with
the two marginal waves to provide inhomogeneities
for the O(¢%) problem. As is usually the case, the in-
homogeneities fall into two categories. One category is
nonresonant and provides only an O(€) correction to
the O(¢) wave field and is inconsequential. There are
two portions to the resonant inhomogeneities. One part
is independent of x and ¢ and the suppression of this
resonance provides the equation describing how the
potential vorticity fluxes in the wave field alter the mean
flow.

After a good deal of algebra, it can be shown that

&, T)=—-%,(0, T)=2 (2.18)

where ® satisfies

o+ 2o

2 [sin2ly dq,

2F @]

Tl apkr2lik] @19

_1(Ul cn)2
with
%/3y=0 at y=0,1. (2.20)
Let
Pd g, F?
5—2}*@ Q(T)lsm21y 3 B (2.21)
then
d r _Z (B/FY [dA,P "
(dT+a)Q(T)‘,,§(U,— )[dT +27 'A"']
(2.22)
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while from (2.20) and (2.21)

oqy UF/Br)?
3y (41*+2F)

221 sinh(2F)4(y— 1/2)

x[sin 2= FT T cosn(F/)

Note that the use of potential vorticity dissipation
has allowed us to find the spatial structure of ® sepa-
rately from the determination of its time evolution as
determined by (2.22)—a great simplification.

The remaining resonant forcing terms are wavelike
where each has the horizontal structure of one of the
two marginal waves. When each of the potentially sec-
ular terms are eliminated, two equations result, one
for 4)(T) and the other for 4,(T). The details are la-
borious but standard (e.g., see Pedlosky, 1970), and we
quote only the result, namely that 4; and 4, must be

—Q(T)—-

]. (2.23)

- solutions of

d’4 dA
77 H Wt XA+ AQY: + Al 2 =0
d4 dA,
dT; + 2[1 4T “XzAz +A2QY2 +A2‘A |2221 =0.

(2.24a,b)

In obtaining (2.24a,b) we have chosen the time scale
o (see 2.10a) such that

= A3, F)'"

€= (AB/FY)"

and have made use of (2.21) and (2.23). The dissipation
parameter u = r/o. The constants X, Y,,, Z,,, are real
and given in Appendix B. The analytical expressions
are very complex but the interpretation of (2.24a,b) is
very straightforward. The first three terms in each
equation represent the linear theory for each wave and,
if X, is greater than zero, then 4, will grow exponen-
tially according to linear theory. The fourth term in
each equation represents the wave-mean flow inter-
action where the parameter Y, given by (B4), measures
the strength of that interaction for each wave. For all
points along the marginal curve, the Y, are positive
(see Fig. 2a) so that the wave-mean flow interaction is
always stabilizing.

The last term in (2.24a,b) represents the wave-wave
interaction. When each O(¢) fundamental wave with
phase 8, interacts with the O(e?) forced waves with
phases 8, + 8,, an O(¢®) forcing term with the same
frequency and wavenumber as one of the two funda-
mental waves occurs. This leads to the coupling term
in (2.24a,b) between the two waves. If the Z,,,, are neg-
ative, the wave~wave interaction consists of each wave
destabilizing the other. Were they both positive, the
waves would act as mutual stabilizers. If one is negative
and the other positive, a strong asymmetry occurs in
the wave-wave transfer.

Figure 2b shows the calculated values of Z,,,, as a
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FIG. 2. (a) The wave~mean flow interaction coefficients as a function of 8 in the range for which k%> > 0 for F = 2%
(b) The wave-wave interaction coefficients for the same case as in (a).

function of 8 along the neutral curve for the case F
= 2x%, U, — U, = 1. For this case the maximum 8 is
2w or about 19.74. The minimum value of 8 for which
ky is real, occurs when 8 = 9.556. Note that, as Fig. 2b
shows, both Z,; and Z,, are negative for 8= 14.3 below
which Z,, changes sign. The singularity in the calcu-
lated Z,,, at about 8 = 8y ~ 13.5 occurs at that single
point, where one of the forced solutions happens to be
also a free solution. As remarked earlier, in the neigh-
borhood of this point, the problem must be recast and
the O(¢) perturbation must include the formerly forced

solution in the fundamental perturbation field. We will -

avoid that complexity entirely by not allowing 8 to
take on that particular value which renders Z,,, infinite.

For the most part we shall focus attention in the
range Bmax > B > Bo where both Z,,,, are negative. Since
this is the range contiguous to the maximum critical
8 (or the minimum critical shear) for instability, it is
of obvious interest. We shall, however, comment below
on the behavior of (2.24a,b) for 8 < B.

Define
o 2ByFY
"= (Ul cn)z

Then the final set of amplitude equations consist of
(2.24a,b) along with (2 22) rewritten as

d Qp d)Anl
[+~ 25

(2.25)

+ ZulA,,lz] (2.26)

If the form of (2.24a,b) is examined carefully, an .
apparently innocuous difference is evident between the
linear dissipation term, 2u(d4,/dT), in the present
problem and its form in the fplane, Ekman dissipation
problem (Pedlosky and Frenzen, 1980) in which the
dissipation term goes like 3 u(dA/dT). In both problems
the frictional term in the nonlinear forcing of the mean
field goes like 2u)4,}2. This small difference has a dra-
matic effect which can be appreciated by considering
the relation of each problem to the Lorenz equations
(Lorenz, 1963)

dy _ _
dT—a(x y)

?=Ry—x—yz -

dz
7 xy—bz

(2.27a,b,9)

J

Let us make the following transformation of the
Lorenz set. Let

(2.28)
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then 4 and 0 satisfy

~

d’4

de+(¢1+ l)sﬁ—a(R— 1)s24 + 0522004 =0

dg

1y [dd
Setbs Q—E— [——-—+203A

aT ] (2.29a,b)

Consider now the case where in the wave problem
(2.24a,b) only one wave is present in the initial data;
for example, consider the solution which has 4, = 0
and only 4, # 0. Then the equation for 4, can be put
exactly in the form of the Lorenz set with the proper
choices of g, 5, b, zp, Yo and Ry. The amplitude scales
Yo and z, are inconsequential. The crucial fact is that
the equivalence of the single wave form of (2.24a,b)
and the Lorenz set requires ¢ = | and » = 1 indepen-
dent of any other parameter. On the other hand, when
Ekman friction is responsible for the dissipation, it is
easy to show that the equivalence requires ¢ = 2 while
b is a number less than 1. The importance of this fol-
lows from the fact that when ¢ = b = |, the steady
solutions of the Lorenz equations are stable for all val-
ues of R (i.e. u) to both infinitesimal and finite pertur-
bations. All solutions tend with time to the steady so-
lutions and vacillating behavior, both periodic and
chaotic, is absent. This can be verified by direct nu-
merical integrations of the Lorenz set and the analysis
of the stability of the steady solutions.

Thus, for all u, no matter how small, the introduction
of dissipation proportional to the potential vorticity
rather than the relative vorticity, completely expunges
the phenomenon of wave-mean flow vacillation. It was
noted in Pedlosky and Frenzen (1980) that the wave~
mean flow dynamics was very sensitive to the value of
dissipation. It now appears that the amplitude dynam-
ics is also exquisitely sensitive to the fype of dissipation
as well as just the overall dissipation time scale. Since
the particular representation of dissipation is one of
the least certain aspects of atmospheric and oceano-
graphic modeling, this is a disturbing result and it gives
greater urgency to our goals of examining whether the
two-wave system which contains wave-wave interac-
tion can restore the possibility of vacillation which po-
tential vorticity dissipation excludes from the more
simple wave-mean flow dynamics.

To some extent we have stumbled onto this result.
Recall, that we originally chose a representation of the
dissipation of this form only 10 avoid a technical dif-
ficulty present in the O(1) linear problem, i.e., the sin-
gular shift of the marginal curve when the S-effect in-
teracts with Ekman damping. It is, however, easy to
return to the original fplane model of Pedlosky and
Frenzen (1980) where that difficulty does not occur. It
is a simple matter in that case to show that, if dissi-
pation is similarly parameterized in terms of potential
vorticity, the resulting amplitude equations have their
Lorenz equivalence also requiring ¢ = b = 1. Thus,
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the suppression of the vacillating behavior for wave-
mean flow interaction is due entirely to the form of the
dissipation and not its relation to the 8-effect. Once
again the structural instability of the wave-mean flow
problem has been exposed.

Before proceeding to the wave~wave problem as de-
scribed by (2.24) and (2.26), we will make a short pa-
renthesis in section 3 to discuss the implications of the
result described above for the f~plane problem including
interfacial friction. Readers who would prefer to pro-
ceed directly to the two-wave problem may turn di-
rectly to section 4.

3. Wave-mean flow interaction on the f~plane: Inter-
facial friction

The earliest models of finite amplitude baroclinic
instability which included Ekman dissipation were for
the two-layer model (Pedlosky, 1970) in which the ef-
fect of the Ekman layers was included only at the rigid
horizontal boundaries. The effect of interfacial Ekman
layers was purposely ignored for two reasons. First,
simply to reduce the amount of algebra and second,
and more importantly, to try to mimic better the con-
tinuous model in which, of course, internal dissipation
of the Ekman type is not possible. Thus, it is fair to
characterize the earliest f~-plane, two-layer models as
crude attempts to model a continuous system in which
dissipation acts only on the boundaries of the fluid. .

However, it then becomes apt to ask how well such
a model will do in representing the physically realizable
two-layer model studied in the laboratory, ¢.g., the very
careful experiments of Hart (1972). In such a case, in-
terfacial friction must be included to represent the dis-
sipative mechanism at the interface of the two layers.
Using standard boundary layer analysis, one can show
that (Hart, 1972) the form of the potential vorticity
equation in this case is simply

d l n
;itqn g- n ( )
where g, is the potential vorticity in each layer and ¢,
is the relative vorticity in each layer.

For the f~plane model, instability occurs for a plane
wave, with total wavenumber, g, when (Pedlosky, 1970)

=2F, 3.2)

and this will be true for the horizontal plan form of
the entire wave field in the asymptotic théory. However,

(fl_g-Z) s n=l’2

3.1)

_since §, = V¢, it follows that for such a wave
1 i -
=S5 6- 1 =70, + S a9~ 00
=V2¢,+ (=1 F(p1 — ¢)

=gn. (3.3)
Thus on the f~plane, for a weakly unstable wave, the
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effect of including interfacial friction in the two-layer
model is equivalent to assuming that the dissipation
of potential vorticity is proportional to the potential
vorticity itself, as in section 2. The implications are
. striking if the arguments of section 2 are now applied.
Although it has long been thought that adding inter-
facial friction would do nothing more than serve to
increase the effective value of u, in fact the structural
change in the governing equations as manifested by
the change in the Lorenz equivalent of o, will com-
pletely alter the behavior of finite amplitude waves, at
least in weakly nonlinear theory, by expunging the
vacillation springing from wave-mean flow interaction.
Paradoxically, the two-layer, wave-mean flow inter-
action model without Ekman friction at the interface
is a better model of the continuous Eady model than
the actual two-layer physical system in which Hart has
found vacillation and chaotic behavior. Indeed, cal-
culations of the Eady model, not given here, yield a
Lorenz equivalent ¢ of about 1.44 and b < 1 for which
vacillation does indeed exist. This astonishing turn of
events, namely, the unexpectedly immense sensitivity
of the finite amplitude dynamics to the form of the
dissipation, suggests further examination of the f~plane
problem. Such work is underway in cooperation with
P. Klein and will be reported upon separately. We have
felt it important though to report on this development
which has come to light unexpectedly during our study
of the wave~wave interaction problem, to whose dis-
cussion we now return in Section 4.

4. The steady mixed wave regime

Before proceeding to the discussion of time-depen-
dent wave states, it is useful to consider the nature of
the possible steady solutions, in particular, to discover
the parametric requirements for mixed wave states in
which both waves may be present simultaneously. Al-
though the basic physical models are quite different, it
turns out that the discussion of the steady solutions in
our case parallels Hart’s (1981) analysis in which he
described the wave-wave interaction of two modes on
the f-plane for r = O(1) for which value of r the gov-
erning amplitude equations are each first order. To
ease a comparison with Hart’s treatment, we introduce
the following variables

2 3
P=Q- E anlAnlz

n=1

ay Zy

== ¢ (41ab,
d, oY, (4.1a,b,c)

ar, Zxn
d =—+._.—_
2 (24) a2Y2

i
in terms of which (2.24a,b) and (2.26) may be rewritten
as
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d?*A dA
del“"z#d I—XxAl+A1a1Y1[|A,(2+dl1A2|2] 1
» » +A4,PY, =0
4
: de + 2;;—&?2—)(2142 + A Yol AP+ oA b
dP 2 +A2PY2 =0
&
—3 O -0 " 2
atH T e " ]
(4.2a,b,c)

Steady solutions of (4.2a,b,c) fall into two classes;
either single wave solutions (4; # 0, 4, = 0 or vice
versa) or mixed wave solutions in which both 4, and
A, are different from zero. Define A4, as the “stand
alone” amplitude for the single-wave solution. It fol-
lows from (4.2a,b,c) that for the steady single-wave so-
lution, either

lAil*=Xy/a Yy, |AofP= 4.3)
or

|421* = Xo/ar Y2, 14;* =0, 4.9)

and these solutions are possible (though not necessarily
stable) for all values of

_&a1Y1_|A2|2

- Xy oY) |A 1 lz
Mixed, steady wave solutions are also possible. Solv-

ing (4.2a,b,c) in the case when both 4, and A4, are dif-
ferent from zero, yields

(4.5)

!A 12_.

(1 —di1S)/(1 —dd>)

|42 lz— (S d)/(1 —dydy).  (4.6a,b)

For the mixed wave solution to be possible d,d,
# 1 and reference to (4.1b,c) shows that this will be
true only due to Z,,, # 0, i.e., only as a consequence
of wave-wave interaction. Direct calculation of ¢; and
d, along the marginal curve (see Fig. 3) shows that not
only is did, # 1 but that d\d, < 1. In this case, as Hart
demonstrates, mixed-wave, steady solutions are pos-
sible in the parameter range '

dy<S<d™! .7

and they will certainly be linearly stable when p is large
enough for each of (4.2a,b,c) to be approximated by
its first order form. We shall discuss the linear instability
of the steady solutions for arbitrary u below, but for
the present, the important result is the description of
an interval in parameter space, given by (4.7) in which
it is natural to search for mixed steady, and by exten-
sion, mixed vacillating solutions. N

Note that as S — d;, |45> = 0 and |4, — |4,
while as S—> d, !, |4;* = 0 and |4,]*> > |4,}? so that
there is cormnulty across the boundaries of the steady
solutions.
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FIG. 3. (a) The coefficients d,~! and 4, for F = 2 as a function

of B. Note that'd, < d,™*. (b) The factor d,d,. Note that dyd; < 1.

Of course, it remains to be seen whether the interval
(4.7) holds as the domain for mixed time-dependent
solutions but, anticipating our results of section 5, we
find that roughly it is, so that it provides excellent guid-
ance for the search in parameter space.

For given values of 8 and F, the coefficients X, .,
Yn, Zma and, thus, d, are fixed. Thus, S is the only
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variable for fixed 3 aside from the dissipation u. Here
S may be arbitrarily placed in the interval (ds, d;™")
by simply altering the relative linear growth rates of
the two waves, i.e., X»/X;. This can be achieved for a
fixed A by independently altering, by an O(A) amount,
the wavenumbers of the two marginal waves as de-
scribed in Appendix B [see especially Eqs. (B7) and
(B8), and Fig. 4]. This device lets us scan the entire
range in S in a search for vacillating solutions.

We would also like to point out the difference be-
tween our results and those of Hart’s for the fplane
case and Mansbridge’s for the S-plane case [for which
Ekman dissipation was taken to be O(1)]. In each of
those calculations d,d, was greater than one and so
implies a hysteresis behavior between two single wave
states rather than mixed wave states. The different is
clearly related to the differing structures of the waves
and their interactions in these three separate parameter
regimes.

Even for the steady case, the time dependence of the
total solution is not trivial since ¢; # ¢s, i.e., the waves,
although separately steady, move past each other so
that at any fixed point the observed wave disturbance
amplitude will oscillate with both frequencies k¢, and
kyc,. Such an oscillation must be distinguished, how-
ever, from the case where each of 4, and 4, separately
pulsate on a long time scale. The difference is especially
important when the pulsation is aperiodic.

5. Numerical results

The system (2.24a,b), (2.26) which governs the be-
havior of the two-wave dynamics was integrated nu-
merically at several values of 8. For each value of 8,
i.e., for each setting below the maximum critical 8 for
instability, the relative growth rates of the two waves
were altered by small adjustments to the wavenumber
in order to allow the parameter S, defined by (4.5), to
span an interval which included the range (4.7) in which
mixed steady solutions (4.6a,b) are possible. We quickly
discovered that the range d, < S < d;™! was a good
rough indicator of the domain of mixed solutions of
all types, vacillatory as well as steady, although there

FIG. 4. A schematic shows the neighborhoods in the 8, k plane in
which slightly unstable waves occur. 8 is O(A) less than its critical
value while k; and k, can both be simultaneously shifted with respect
to their marginal values.
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FIG. 5. A map of the S, u parameter space for 8 = 15.79 and F = 22% U, = 1 (i.e., 8/FU,
= 0.8). Points labeled S, Sz, S;2 show where steady solutions comprised of only wave one, only
wave two, or a mixture, respectively, are found. Points marked LC represent mixed, periodic
wave vacillation, LC, represents a periodic solution of doubled period. The arrow pointing to C
describes the transition to chaotic behavior described in the text. The bar at the bottom shows
the interval d, < S < d;™! where the steady mixed solutions are possible.

are examples in which mixed-wave time-dependent
solutions occur somewhat outside the range given by
(4.7). Time dependence slightly enlarges the mixed
wave domain. Calculations presented in section 6
demonstrate that the steady solutions are linearly stable
except for very small p within a very narrow range of
S [much smaller than (d;, d,™")). Thus as in the wave—
mean flow vacillations described by Pedlosky and
Frenzen (1980), finite amplitude vacillation will be seen
to occur in domains where the steady solutions are
linearly stable but with an obviously finite attractor
basin, which does not include the initial data. The ini-
tial data for all the examples to be described have QO
equal to zero, i.e., no initial correction to the zonal'
flow; and A, and (dA4,/d!) are either zero or one.
Most of our attention has been focussed on the re-
gion in which both Z,, and Z,, are negative, i.e., for
B = 14.31, for F = 27%(19.739). A typical example of
our results is shown in Fig. 5, which is a map of results
of the calculations. The map shows the z and S domain
in which the calculations were done. Each point is la-
beled according to the asymptotic character of the so-

lutions. It must be understood that if only a single wave
is present in the initial data, only that wave exists in
the solution, and it must be ultimately steady. Thus,
Fig. 5 implicitly assumes mixed initial data. Usually
both 4, and A, were unity at the initial instant. Points
labeled S, (n = 1 or 2) denote steady solutions in which
wave # (1 or 2) is the only wave ultimately remaining,.
Points marked S, denote a steady final wave state in
which both waves were present. Points labeled LC refer
to asymptotic states in which both wave amplitudes
pulsate periodically. Not shown on the map in detail,
but described below, is a fine survey in p along the line
S = 0.38390 where, for quite small u, aperiodic mixed
wave vacillation is observed.

Figure 6 shows a typical evolution sequence for high
u, e.g., p =1, for S < d;. As predicted, wave 1 equil-
ibrates to its stand-alone value 4, given by (4.3) while
Ay = 0. Figure 7 shows a similar evolution to a mixed-
wave regime for S within the range (d,, d,”") for
=1

Figure 8 shows a portion of the mixed-wave periodic
vacillation at u = 0.002 and S = 0.27392 < d,, i.e.,
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FIG. 6. The amplitude evolution for 8 = 15.79, F =27, u = 1
showing the evolution to a single wave solution. S lies outside the
(ds, d,7") interval. '

outside the interval of steady mixed-wave solutions.
Since this vacillation occurs at such small values of u
for which the dissipation time scale, ¢!, is 500 in these
units (about 500 linear e-folding times for the unstable
waves), we decided it would be prudent to continue
the calculation for several times the dissipation time
scale. It should thus be noted that the periodic solution
persists at least to T = 7 X 10° which is about 14 times
the dissipation time scale. Note that in this solution 4,
is always positive and considerably greater than A,,
which changes sign during the vacillation. Recall that

E
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FIG. 7. As in Fig. 6 but S lies within (d,, d,™"), and a mixed steady
solution is obtained. Note that A, is asymptotic to 4, ~ 0.4,
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this vacillation exists in addition to the nontrivial time
dependence possessed by the pair of waves due to the
fact that ¢, # ¢,. A similar oscillation, not shown, also
occurs at S = 0.3179, i.e., within the interval (d>, d; ~').

Figure 9 shows an example, at S = 0.4938, where
both A4, and A4, pulsate without change of sign. Figure
10, on the other hand, shows that at .S = 0.9338 both
amplitudes pass through zero during their vacillation
cycle. Hence each of the possible combinations of vac-
illation is possible. We have been unable, even for small
u, to construct a theory to determine a priori the nature
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FIG. 9. As in Fig. 8 but S = 0.49387. Both 4, and 4,
vacillate periodically without change of sign.
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F1G. 10. As in Fig. 9 but § = 0.9379. Both 4, and 4,
vacillate periodically and both pass through zero.

of the vacillation cycle for each amplitude as a function
of S that parallels the theory for single wave limit cycles
(Pedlosky, 1972) and so our results are limited to our
numerical calculations.

Nor in lowering g could we find chaotic behavior or
period doubling in any interval between these periodic
solutions and the steady solutions, in distinction to the
wave-mean flow model of Pedlosky and Frenzen
(1980).

We chose one value of S, S = 0.38390, for a fine-
scale investigation of the u line for small u. The qual-
itative results are shown in Table 1. There is no com-
pletely uniform progression in type as u is decreased,
but there is a distinct qualitative change. As u is de-
creased, we observe a transition from the type of pe-

TABLE 1. Shows the solution behavior at S = 0.3839 for 0.0002
< u < 0.0025. The notation is as in Fig. 5. Note the progression from
periodic to aperiodic solutions as u is decreased. For some inter-
mediate values of x, a double period solution is found.

1 =0.0002 o
0.0005 o
0.001 , LC
0.0012 - LC
0.0015 c
0.0018 LC
0.00185 LG
0.00186 LC
0.00188 . LC,
0.00189 LC
0.0019 - LG,
0.00195 LC
0.00198 ' LC
0.002 LG,
0.00205 LC
0.0021 LC
0.0025 LC
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FiG. 11. As in Fig. 10 but S = 0.3839. Note that 4, and Q
oscillated with a doubled period.

7000

riodic solution shown in Fig. 10 to an oscillation shown
in Fig. 11, referred to in the table as LC,, where one
of the waves, in this case A, suffers a period-doubling
while 4, appears to maintain its period. This behavior
is common but not realized uniformly as u decreases,
for at smaller u the original limit cycle (Fig. 10) reap-
pears as shown in Table 1. It is interesting to note that
the period of A4; is nearly precisely double that of 4,
so the period-doubling of 4, locks high amplitude levels

-of A; with crests of 4, and low amplitudes of 4, to

troughs of 4,.

At much smaller values of u, as in the case shown
in Fig. 12, the solution is chaotic for 4,, 4, and Q.
Again, the solution has been run until 7' = 7000. How-
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FiG. 12. The chaotic solution at u = 0.0005, S = 0.3839.
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ever, in this case, this represents only 3.5 dissipation
time scales, and it is conceivable that the solution might
ultimately settle into a more regular state. The form
of the solution is nevertheless unlike those of any pre-
periodic transition interval at higher x, and we are far
from the larger u steady solutions. We therefore, at
least tentatively, identify the progression with decreas-
ing u as being from steady to periodic to chaotic be-
havior with some hint of period doubling but no evi-
dence of the complete Feigenbaum sequence present
in the study of Pedlosky and Frenzen (1980). We em-
phasize again that this chaotic behavior, as well as the
limit cycle behavior at larger y, is due solely to the
presence of wave-wave interaction, without which in
this model, wave-mean flow interaction would yield
ultimately only a steady wave. Although the detailed
physics of the model is quite different from those of
the experiments of Hart (1986), we suggest that wave—
wave interaction can lead to the same qualitative route
to chaos found in the experiments. Furthermore, it ap-
pears, at least in this study, that the wave interaction
mechanism may be a more robust mechanism for cha-
otic behavior than wave-mean flow interaction.

6. Linear stability of steady solutions

Although the finite-amplitude dynamics is not very
sensitive to stability of the steady wave solutions with
respect to small perturbations, there are some inter-
esting aspects to this problem to which we would like
to refer. Again, the key differences are related to the
wave-wave interaction mechanism.

We denote the steady mixed wave solutions as A4,
and the small perturbations as a,(T) so that

A,=A,+a, 6.1)

where 4, is given by (4.6a,b). Furthermore, we may
write

a,=d,e". 6.2)
Similarly, we write

Qn=0Ont+qne". (6.3)

If these forms are inserted in (2.24) and (2.26), we

obtain the following equations for d@,:

aa
ot+u

d1[02+2ﬂ.0’+2a1Y1A_12—' Ylfilz]

+ a2[20t1Y1d1 - L‘izY] ad }A-lfiz =
ct+pu

ﬁz[dz + Zua + 20[2Y2/1-22 - %2d YzA_zz]
ot u
+ 61[21:12 dez — Q) Y2 a }/L/Iz =(. (64a,b)
otu

The characteristic equation for o, obtained by setting
the determinant of (6.4a,b) to zero, determines the
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growth rate, o, of the perturbations. The resulting
equation is fifth order in ¢, and we have solved it nu-
merically. Some results are shown in Table 2. First, we
note that the steady solutions are stable for small u for
nearly all S in the interval (¢, d;™"), where the mixed
solution is possible. This is quite different than the sin-
gle wave-mean flow case. In that case, the steady so-
lutions became unstable for small g through a Hopf
bifurcation whenever k > V3/.
As u = 0, the equation for ¢ reduces to a quantic

o* + oMo Y AP+ ;Y240 = 2 Z e Yo + Zyja0 Y)
X/LZA_gz - 421222111124222 = 0 (65)

Note that if the Z,,, are zero, i.e., no wave~-wave in-
teraction, o? would be negative and ¢ purely imaginary
as u ~> 0. In that case, the growth rate of any instability
becomes O(u) as u is increased from zero. However,
the presence of wave-wave interaction alters this be-
havior and, in a narrow range of S, an inviscid insta-
bility of the steady mixed waves is assured. Note that
the steady, single-wave solutions are also unstable in
this interval, so that for at least this slender range of
S, all solutions must remain time dependent.

A comparison of Fig. 5 with Table 1 shows that at
a fixed value of S, in this case, S = 0.49387, the tran-
sition from stable to unstable steady solutions occurs

TABLE 2. (a) The most unstable root of (5.4) as a function of S for
# = 0. Note that ¢ is only positive for d; < § < d,™! within a very
narrow range of S. (b) o as a function of u showing the linear sta-
bilization of the steady solutions for u 2 0.025.

(@)

p=0,F=19.74, d,=0.3084 4 =12654, 8=15.19

S T
0.3179 0
0.3839 0
0.4718 0
0.4938 0.0038
0.5158 0.001
0.537 0
0.625 0
0.80 0
1.1 0
124 0

(b)
S=4.9387
I I
10 4.5 X107
1 —-4.6 X 1072
0.1 =16 X102
0.03 -1.6 x10™
0.025 2.4 X107
0,01 1.35%x 1072
1074 3.75x 1073
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F1G. 13. For a smaller value of 8, i.e., 8 = 14.11, where Z;; < 0.and Z;; > 0, a long relaxation oscillation
occurs in which a relatively wave-free interval is separated by a burst of wave activity. The characteristic
time scale for the burst is ¢, the dissipation time scale, while each burst is separated by a much larger

interval (here, about 8 x~'). Here u = 0.002.

at values of x in the range 0.025 < u < 0.03 and is
consistent with the occurrence of limit cycle behavior
in this parameter range. It is important, however, to
emphasize that persistent time-dependent solutions
occur at other values of S, e.g., 0.9 < .S < 1.0, in which
the steady solutions are stable. ]

We also found that for S outside the range (d>, d, "),
the steady waves are linearly stable where they exist
for all values of u. Within the range of mixed wave
states, the single waves are unstable for all u.

7. Conclusions and discussions

Qur principal goal in this paper was to obtain in a
deductive, nontruncated fashion a model for wave-
wave interaction, between unstable baroclinic waves,
that is valid for small rates of dissipation where vacil-
lation might be expected. From that point of view, the
set (2.24a,b) and (2.26) are presented as a model for
wave-mean flow and wave-wave interaction, which
we hope transcends the particular limitations and as-
sumptions of the S-plane model we have considered.

The model turns out to be very sensitive to two fea-
tures of the analysis. First, and perhaps least expected,
the nonlinear dynamics depends-importantly on the
Jform as well as the level of the dissipation. As we have
found, dissipation, when modeled as being proportional
to the perturbation of potential vorticity, acts to ex-
punge amplitude vacillation, both periodic and chaotic,

at all values of the dissipation parameter. Hence, the
vacillations we have found in the current model are
due entirely to the presence of wave-wave interaction.
We also argued in section 3 that this requires a pains-
taking reappraisal of the f£plane layer models when
interfacial friction is added, a reappraisal which is now
underway and which will be reported on separately.
Obviously, the model is also sensitive to the sign and
magnitude of the interaction coefficients, Z,,,,, and the
derived parameters, (d;, d»), which measure in a gross
way the strength of the wave-wave interaction with
respect to wave-mean flow interaction. In this model
we have found did> < 0, implying the possibility of
mixed-wave regimes and, by numerical integrations of
the amplitude equations, we have verified the existence -
of mixed, pulsating solutions. For the cases studied in
detail, chaotic behavior was found as the endpoint in
parameter space when p is decreased, whereas in the
f~-plane model of Pedlosky and Frenzen (1980), it was
found sandwiched between steady solutions at high
dissipation and periodic solutions at low dissipation.
The appearance of chaotic behavior in the wave-
wave model in the limit of vanishing u is no doubt
related to the tendency of higher-order Hamiltonian
systems to be nonintegrable and exhibit aperiodic be-
havior naturally. When u = 0 our system can be written
as a fourth-order Hamiltonian system whose mixed
“potential” disallows exact integration. The one-wave

s
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inviscid problem, on the other hand, can always be
integrated exactly in the inviscid limit (Pedlosky, 1970)
so that the inviscid limit for the one-wave problem is
periodic. -

We have restricted our attention in this study almost
entirely to the parameter domain in which the shear
is only moderately greater than the minimum critical
shear in the two-layer model, i.e., when the nondi-
mensional 8 is only moderately smaller than its max-
imum, F(U, — U,). In particular, we have discussed
so far only those cases where  is large enough to avoid
the resonance point where the forced solutions are sin-
gular. For the values of 8 presented here, both Z,, and
Z, are negative, representing a mutual destabilization
of each wave by its interacting sister wave.

For much smaller values of 8, i.e., as the two wave-
numbers k; and k, become widely separated, one of
the Z,,, becomes positive (Fig. 2b). This asymmetry
yields a somewhat bizarre history for the wave ampli-
tudes which we, as yet, do not understand. A long-
term nonlinear instability of the system occurs giving
rise to the solution shown in Fig. 13. The 4, and 4,
vacillate initially with rather high amplitude values
(compare with Fig. 12) and then at T ~ p™" a steep
rise in the amplitude levels of 4; and 4, occurs. The
Q also rises precipitously (like 4,7) and the amplitudes
are quickly quenched and decay to near zero levels.
Although this feature of the solution is uncertain, see
below for numerical details. In fact, 4,, the amplitude
of the wave for which wave-wave interaction is sta-

- bilizing (Z,, > 0), is indistinguishable from zero while
A, slowly decays towards zero. Meanwhile, Q decays
like 7 from its high value at the amplitude burst
until, about four dissipation time scales later, the mean
flow is once again unstable and the process reoccurs
with another burst of wave activity. When Q relaxes
back to zero, the mean flow is again unstable and even
A,, never exactly zero, grows again to finite amplitude.
We are frankly puzzled about the mechanism for the
original burst, but its subsequent reappearance is to be
expected. This relaxation oscillation of burst and decay
will require further study. The time for the burst to
occur seems to depend on the time step used in the
calculation. We have not been able to establish nu-
merical convergence even for a time step Az = 1073,
Therefore, we cannot be. certain our numerical solution
remains valid through the burst episode since the fre-
quency of the oscillation becomes commensurate with
the time step.
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APPENDIX A
Parameters of the Forced Solutions

Straightforward algebra shows that the constants ap-
pearing in the forced solutions in (2.17a,b) may be
written:
=l (€2=€1)391/0y

2k [(Ur ~ XUy — e2) (U — wia/ki)

( 9¢,/dy
Us—wia/kiz

R,

-(a.22+F))

_fie (2—ca)viya ]
© 8y (U= ) (U= ))(Uz~ wialkna)
XD '(ki2, 2L wi2) (Ala)b)

R =f_1_z£[ (2= €1)342/9y
27 2kpa [(Us = 61X Uz — e Us — w1ofky2)

( dq,/dy
U —wiafky2

—(ail? +F))‘)’172

_F3_4_1 (=) ]
Ay (U, — e WUy = ) (Uy — wia/k2)
XD—l(kIZs 219 (012)

"kl

o (¢, — c)dq /Ay

" 2ay, [( Us — e)lUy — &)Uy — a12/a1z)

( dg,/dy
(U —oa/an2)

_ 9q: (e2—cdniy2 ]
ay (Ua— e ) Us— oX(Us— o1afasy)

XD Na,2l,012) (Alc)

—(dl22+F))

_ kul[ (¢~ €1)0q2/dy

20 [(Uy— o, XU — (U — a1/ aty)
( d¢,/0y
(Ul“(’lz/alz)

_ % (2—c1) ]
ay (U~ e XUy — XUy — op/ar)

1))

—(di’ +F))“/1’Yz

XD-I(aIZaZL 0'12) (Ald)

where
ap=k—k
ku = k1 + kz

cu=kici— ko

(A2)

wi=kic1 + ke
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and
a]22 = (k] + k2)2 + 4[2
di? = (k1 — k2> + 412 (A3)

The function D is the critical function for the linear
operator. It is defined as

D(k,l,w)E[%—(a%F)]
3q2/dy 2 2
x[U2_w/ —(a +F)] —F> (A4)

and vanishes only when (w, [, k) are the frequencies
and wavenumbers of a free wave. The D is generally
different from zero when (k, /, w) are the sum and dif-
. ference quantities of the forced waves in (2.17a,b). The
exceptional case is discussed in the text.

APPENDIX B

Constants in the Amplitude Equations

The coefficients appearing in (2.24a,b) are obtained
by eliminating wavelike secular forcing terms at O(e®)
in the usual manner. We give here the results of that
lengthy calculation.

We first define

22t 26 (a2 + F)+moF]

M= =
2k2

—[~(di?? +F)Q1+FQ2]}+1

X {Ri[~(az® + F) + y2F ]~ [—(a122 + F)R, + FRy]}
(B1)

a12+2kz

nyp = —1————={[~(d\/’ +F)Q:+ FQilv:

—[—vxa* + F)+ F1Q,} — 1“12‘—;_2&

X {[~(@i2 + F)Ry+ FRy]y2— [~vaa* + F)+ F]Ry}

where the amn, Kmny Qmns Amns Rn, On are defined in
Appendix A. The numbers m,; and ny, are given by
the above expression in which

ap > —an
ki —>kiz
Y2V
kz "’kl

(B2)

In terms of these constants
k_m Mpmp Y rilmn
F2 Ul —Cm Uz —Cm
v [( Ut — ) (Us = cm)(Uz — Cr) 2F2
(U, — U,)8q,/3y am'

Zpn=

] . (B3)
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while

kAP 2 (U= (Ui~ e)(Uz—¢n)
a* (Bi/F?) U~ Uy

1 o 1
X . —_
U—c¢, Us—cs] QF+4P

Y,=—

( 3G1/3y _ ¥n'942/9 ( 812 tanh(F/2)'”
(Ui—c)? (Ua—cay @’ +2F )(F/Z)”z)]
| ‘ (B4)
and
X, = 0,/(B)/F). (B5)

The o, are the linear growth rates scaled by a factor
of AY? of the two marginal waves when 8 is decreased
by O(A) from the critical value for the wavenumbers
(ki, 1) and (k,, ]). In that case, the g, are given by

2 2k,*8F?
a,’2F+ a2

This makes the relative growth rates of the two waves
fixed as A is increased. In order to allow ourselves the
freedom of altering the relative growth rates of the two
waves, we allow each of the wave numbers 1o be in-
dependently perturbed. Formally, to accomplish this,
we need to introduce new “slow” space scales, etc.
However, when it is realized that an O(A) shift in the
wavenumber of either wave will affect only the growth
rates in (2.24a,b) the result may be obtained directly
from the linear dispersion relation for the inviscid

Op

problem, i.e., >
o? U, - U, :
ar| e -a-grf

a*(a®*+2F):. (B6)
We now let

B=8—A4
and, for each wave
a’=az2+40, (B7)
from which it follows that
2 2 2 2

On 28.F 2F*—a,’
L A—— = )| (B8
k.2 A aMa?+ 2F)2[ *+26 ( ) Z(4F—at (B8)

which, after removing the factor of A due to the scaling
of T, yields the relation

X = 0B/ F)

where

0,(2F*—a,)

2 2B A 2E” = ay)
a,X(4F*—a

= B9
I M@l + 2F) (B9)

[1+26,
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and where 8, = ,/A is an arbitrary, O(1) number. Thus,
for each A, we can alter the relative linear growth rates
at will by moving the parameter points in Fig. 4 “hor-
izontally” in k as well as vertically in 8.
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