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Abstract 

Many applications require the management 

of spatial data. Clustering large spatial 
databases is an important problem which tries 

to find the densely populated regions in the 

feature space to be used in data mining, 

knowledge discovery, or efficient information 
retrieval. A good clustering approach should 

be efficient and detect clusters of arbitrary 

shape. It must be insensitive to the outliers 

(noise) and the order of input data. We pro- 

pose WaveCluster, a novel clustering approach 

based on wavelet transforms, which satisfies 
all the above requirements. Using multi- 
resolution property of wavelet transforms, we 

can effectively identify arbitrary shape clus- 

ters at different degrees of accuracy. We also 

demonstrate that WaveCluster is highly effi- 

cient in terms of time complexity. Experi- 

mental results on very large data sets are pre- 
sented which show the efficiency and effective- 

ness of the proposed approach compared to 
the other recent clustering methods. 
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1 Introduction 

In this paper we explore a data clustering method 
in the multidimensional spatial data mining problem. 

Spatial data mining is the discovery of interesting char- 

acteristics and patterns that may exist in large spatial 

databases. Usually the spatial relationships are im- 

plicit in nature. Because of the huge amounts of spa- 

tial data that may be obtained from satellite images, 

medical equipments, Geographic Information Systems 

(GIS), image database exploration etc., it is expensive 
and unrealistic for the users to examine spatial data 

in detail. Spatial data mining aims to automate the 

process of understanding spatial data by representing 

the data in a concise manner and reorganizing spatial 

databases to accommodate data semantics. It can be 

used in many applications such as seismology (group- 
ing earthquakes clustered along seismic faults), mine- 
field detection (grouping mines in a minefield), and 
astronomy (grouping stars in galaxies) [AF97, BR95] 

The aim of data clustering methods is to group 

the objects in spatial databases into meaningful sub- 

classes. Due to the huge amount of spatial data, 

an important challenge for clustering algorithms is to 
achieve good time efficiency. Also, due to the diverse 
nature of the spatial objects, the clusters may be of 

arbitrary shapes. They may be nested within one an- 

other, may have holes inside, or may possess concave 
shapes. A good clustering algorithm should be able 

to identify clusters irrespective of their shapes or rela- 

tive positions. Another important issue is the handling 

of noise or outliers. Outliers refer to spatial objects 
which are not contained in any cluster and should be 

discarded during the mining process. The results of 

a good clustering approach should not get affected by 
the different ordering of input data and should pro- 

duce the same clusters. In other words it should be 

order insensitive with respect to input data. 
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The complexity and enormous amount of spatial 

data may hinder the user from obtaining any knowl- 

edge about the number of clusters present. Thus, clus- 
tering algorithms should not assume to have the input 

of the number of clusters present in the spatial domain. 

To provide the user maximum effectiveness, clustering 
algorithms should classify spatial objects at different 

levels of accuracy. For example, in an image database, 
the user may pose queries like whether a particular 

image is of type agricultural or residential. Suppose 

the system identifies that the image is of agricultural 

category and the user may be just satisfied with this 

broad classification. Again the user may enquire about 

the actual type of the crop that the image shows. This 

requires clustering at hierarchical levels of coarseness 
which we call the multi-resolution property. 

In this paper, we propose a spatial data mining 

method, termed WaveCluster. We consider the multi- 

dimensional spatial data as a multidimensional signal 

and we apply signal processing techniques - wavelet 

transforms to convert the spatial data into the fre- 

quency domain. In wavelet transform, convolution 

with an appropriate kernel function results in a trans- 

formed space where the natural clusters in the data be- 

come more distinguishable. We then identify the clus- 

ters by finding the dense regions in the transformed do- 

main. WaveCluster conforms with all the requirements 

of good clustering algorithms as discussed above. It 

can handle any large spatial datasets efficiently. It 

discovers clusters of any arbitrary shape and success- 

fully handles outliers, and it is totally insensitive to the 

ordering of the input data. Also, because of the sig- 

nal processing techniques applied, the multi-resolution 

property is attributed naturally to WaveCluster. To 

our knowledge, no method currently exists which ex- 

ploits these properties of wavelet transform in the clus- 

tering problem in spatial data mining. It should be 

noted that use of WaveCluster is not limited only to 

the spatial data, and it is applicable to any collection 

of attributes with ordered numerical values. 

The rest of the paper is organized as follows. We 

first discuss the related work in Section 2. In Sec- 

tion 3, we present the motivation behind using sig- 

nal processing techniques for clustering large spatial 

databases. This is followed by a brief introduction on 
wavelet transform. Section 4 discusses our clustering 

method WaveCluster and analyzes its complexity. In 

section 5, we present the experimental evaluation of 
the effectiveness and efficiency of WaveCluster using 

very large data sets. Finally in Section 6, concluding 

remarks are offered. 

2 Related Work 

We can categorize the clustering algorithms into four 
main groups: partitioning algorithms, hierarchical al- 

gorithms, density based algorithms and grid based al- 
gorithms. 

2.1 Partitioning Algorithms 

Partitioning algorithms construct a partition of a 

database of N objects into a set of K clusters. Usu- 

ally they start with an initial partition and then use 

an iterative control strategy to optimize an objective 

function. There are mainly two approaches i) k-means 

algorithm, where each cluster is represented by the 

center of gravity of the cluster, ii) k-medoid algorithm, 

where each cluster is represented by one of the objects 

of the cluster located near the center. 

PAM [KR90] uses a k-medoid method to identify 
the clusters. PAM selects K objects arbitrarily as 

medoids and swap with other objects until all K ob- 

jects qualify as medoids. PAM compares an object 

with entire data set to find a medoid, thus it has a 

slow processing time, O(K(N - K))2. 
CLARA (Clustering LARge Applications) [KR90] 

draws a sample of data set, applies PAM on the sam- 

ple, and finds the medoids of the sample. 

Ng and Han introduced CLARANS (Clustering 

Large Applications based on RANdomaized Search) 

which is an improved k-medoid method [NH94]. This 

is the first method that introduces clustering tech- 

niques into spatial data mining problems and over- 

comes most of the disadvantages of traditional cluster- 
ing methods on large data sets. Although CLARANS 

is faster than PAM, but it is still slow and as men- 

tioned in [WYM97], its computational complexity is 

R(KN2). Moreover, because of its randomized ap- 

proach, for large values of N, quality of results cannot 

be guaranteed. 

In general, k-medoid methods do not present 
enough spatial information when the cluster structures 

are complex. 

2.2 Hierarchical Algorithms 

Hierarchical algorithms create a hierarchical decompo- 

sition of the the database. The hierarchical decompo- 

sition can be represented as a dendrogram. The algo- 

rithm iteratively splits the database into smaller sub- 
sets until some termination condition is satisfied. Hier- 

archical algorithms do not need K as an input param- 
eter, which is an obvious advantage over partitioning 
algorithms. The disadvantage is that the termination 

condition has to be specified. 

BIRCH (Balanced Iterative Reducing and Cluster- 

ing using Hierarchies) [ZRL96] uses a hierarchical data 
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structure called CF-tree for incrementally and dynam- 

ically clustering the incoming data points. CF-tree 

is a height balanced tree which stores the clustering 
features. BIRCH tries to produce the best clusters 

with the available resources. They consider that the 

amount of available memory is limited (typically much 
smaller than the data set size) and want to minimize 

the time required for I/O. In BIRCH, a single scan of 

the dataset yields a good clustering, and one or more 
additional passes can (optionally) be used to improve 

the quality further. So, the computational complexity 

of BIRCH is O(N). BIRCH is also the first clustering 

algorithm to handle noise [ZRL96]. Since each node in 

CF-tree can only hold a limited number of entries due 

to its size, it does not always correspond to a natural 

cluster [ZRL96]. Moreover, for different orders of the 

same input data, it may generate different clusters, in 
other words, it is order-sensitive. Also as our experi- 

mental results show, if the clusters are not “spherical” 

in shape, BIRCH does not perform well. This is be- 
cause it uses the notion of radius or diameter to control 

the boundary of a cluster. 

2.3 Density Based Algorithms 

Pauwels et al proposed an unsupervized clustering al- 

gorithm to locate clusters by constructing a density 

function that reflects the spatial distribution of the 

data points [PFG97]. They modified non-parametric 

density estimation problem in two ways. Firstly, they 

use cross-validation to select the appropriate width 
of convolution kernel. Secondly, they use Difference- 

of-Gaussians (DOG's) that allows for better cluster- 

ing and frees the need to choose an arbitrary cut- 

off threshold. Their method can find arbitrary shape 

clusters and does not make any assumptions about 

the underlying data distribution. They have success- 
fully applied the algorithm to color segmentation prob- 

lems. This method is computationally very expensive 
[PFG97]. So it can make the method impractical for 

very large databases. 

Ester et al presented a clustering algorithm DB- 
SCAN relying on a density-based notion of clusters. 

It is designed to discover clusters of arbitrary shapes 

[EKSX96]. The key idea in DBSCAN is that for each 
point of a cluster, the neighborhood of a given radius 
has to contain at least a minimum number of points, 

i.e. the density in the neighborhood has to exceed 
some threshold. DBSCAN can separate the noise (out- 

liers) and discover clusters of arbitrary shape. It uses 

R*-tree to achieve better performance. But the aver- 

age run time complexity of DBSCAN is O(NlogN). 

2.4 Grid-Based Algorithms 

Recently a number of algorithms have been presented 

which quantize the space into a finite number of cells 

and then do all operations on the quantized space. 
The main characteristic of these approaches is their 

fast processing time which is typically independent of 

the number of data objects. They depend only on the 
number of cells in each dimension in the quantized 
space. 

Wang et al proposed a STatistical INformation 

Grid-based method (STING) for spatial data mining 

[WYM97]. They divide the spatial area into rectangu- 
lar cells using a hierarchical structure. They store the 

statistical parameters (such as mean, variance, min- 
imum, maximum, and type of distribution) of each 

numerical feature of the objects within cells. STING 

goes through the data set once to compute the statisti- 
cal parameters of the cells, hence the time complexity 

of generating clusters is O(N). The other previously 

mentioned clustering approaches do not explain if (or 
how) the clustering information is used to search for 

queries, or how a new object is assigned to the clusters. 
In STING, the hierarchical representation of grid cells 

is used to process such cases. After generating the 

hierarchical structure, the response time for a query 
would be O(K), where K is the number of grid cells 

at the lowest level [WYM97]. Usually K << N, which 

makes this method fast. However, in their hierarchy, 
they do not consider the spatial relationship between 

the children and their neighboring cells to construct 

the parent cell. This might be the reason for the iso- 
thetic shape of resulting clusters, that is, all the cluster 

boundaries are either horizontal or vertical, and no di- 

agonal boundary is detected. It lowers the quality and 

accuracy of clusters, despite the fast processing time 

of this approach. 

We propose WaveCluster, which is a grid-based ap- 

proach. The proposed approach is very efficient, spe- 

cially for very large databases. The computational 

complexity of generating clusters in our method is 
O(N). The results are not affected by outliers and 

the method is not sensitive to the order of the num- 

ber of input objects to be processed. WaveCluster is 

well capable of finding arbitrary shape clusters with 
complex structures such as concave or nested clusters 
at different scales, and does not assume any specific 
shape for the clusters. A-priori knowledge about the 

exact number of clusters is not required in WaveClus- 

ter. However, an estimation of expected number of 

clusters, helps in choosing the appropriate resolution 

of clusters. 
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3 Relating Spatial Data To Multidi- 
mensional Signals 

In this section, we discuss the relationship between 
spatial data and multidimensional signals and show 

how to use wavelet transforms to illustrate the inherent 

relationships in spatial data. 

3.1 Spatial Data versus Multidimensional Sig- 

nals 

The primary motivation for applying signal processing 

primitives to spatial databases comes from the obser- 
vation that the multidimensional spatial data objects 

can be represented in an n-dimensional feature space. 

The numerical attributes of a spatial object can be rep- 
resented by a feature vector where each element of the 

vector corresponds to one numerical attribute, or fea- 

ture. These feature vectors of the spatial data can be 

represented in the spatial area, which is termed feature 

space, where each dimension of the feature space cor- 

responds to one of the features (numerical attributes). 

For an object with n numerical attributes, the fea- 

ture vector will be one point in the n-dimensional fea- 

ture space. The feature space is usually not uniformly 

occupied by the feature vectors. Clustering the data 

identifies the sparse and the dense places, and hence 
discovers the overall distribution of patterns of the fea- 

ture vectors. 

3.2 Wavelet-Based Clustering 

We propose to look at the feature space from a signal 

processing perspective. The collection of objects in the 
feature space composes an n-dimensional signal. The 

high frequency parts of the signal correspond to the re- 

gions of the feature space where there is a rapid change 

in the distribution of objects, that is the boundaries of 

clusters. The low frequency parts of the n-dimensional 

signal which have high amplitude correspond to the ar- 

eas of the feature space where the objects are concen- 

trated, in other words the clusters themselves. For ex- 

ample, Figure 1 shows a 2-dimensional feature space, 

where the two dimensional data points have formed 

four clusters. Note that Figure 1 and also the figures 

in Section 5 are the visualizations of the 2-dimensional 

feature spaces and each point in the images repre- 

sents the feature values of one object in the spatial 

datasets. Each row or column can be considered as a 
one-dimensional signal, so the whole feature space will 
be a 2-dimensional signal. Boundaries and edges of 

the clusters constitute the high frequency parts of this 
2-dimensional signal, whereas the clusters themselves, 
correspond to the parts of the signal which have low 

frequency with high amplitude. When the number of 

objects is high, we can apply signal processing tech- 

niques to find the high frequency and low frequency 
parts of n-dimensional signal representing the feature 

space, resulting in detecting the clusters. 

Figure 1: A sample 2-dimensional feature space. 

Wavelet transform is a signal processing technique 

that decomposes a signal into different frequency sub- 

bands (for example, high frequency subband and 

low frequency subband). The wavelet model can be 

generalized to n-dimensional signals in which one- 

dimensional transform can be applied multiple times. 

Methods have been used to compress data [HJS94], or 

to extract features from signals (images) using wavelet 
transform [SC94, SZ97, SZB97]. The key idea in our 

proposed approach is to apply wavelet transform on 
the feature space (instead of the objects themselves) 

to find the dense regions in the feature space, which 

are the clusters. The next subsection discusses the 

strategy and motivation of using wavelet transform on 

n-dimensional feature spaces. 

3.3 Applying Wavelet transform 

Wavelet transform is a type of signal representation 

that can give the frequency content of the signal 
at a particular instant of time by filtering. A one- 

dimensional signal s can be filtered by convolving the 

filter coefficients ck with the signal values: 

M 

where 14 is the number of coefficients in the filter and 

S is the result of convolution. Wavelet transform pro- 

vides us with a set of attractive filters. For example, 
Figure 2 shows the Cohen-Daubechies-Feauveau(2,2) 

biorthogonal wavelet. 

The motivation for using wavelet transform and 

thereby finding connected components in the trans- 

formed space is drawn from the following observations. 
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Figure 2: Cohen-Daubechies-Feauveau (2,2) wavelet. 

l Unsupervised Clustering: The hat-shape fil- 

ters emphasize regions where points cluster, but 

simultaneously tend to suppress weaker informa- 

tion in their boundary. Intuitively, dense regions 

in the original feature space act as attractors for 
the nearby points and at the same time as in- 

hibitors for the points that are not close enough. 

This means clusters in the data automatically 
stand out and clear regions around them, so that 

they become more distinct [PFG97]. It makes 

finding the connected components in the trans- 

formed space easier than that of the original fea- 

ture space, because the dense regions in the fea- 
ture space will be more salient. Figure 3 shows an 

example of a feature space before and after apply- 
ing Cohen-Daubechies-Feauveau(2,2) biorthogo- 

nal transform. As the figure shows, the clusters in 
the transformed space are more salient and thus 

easier to find. 

‘. 

: 

Figure 3: Feature space: a)original; b) transformed. 

l Effective Removal of Outliers: As we will 

show, we take advantage of low-pass filters used 
in the wavelet transform to automatically remove 

the outliers. Figure 3 shows that the outliers in 

the original space are removed after the transfor- 
mation. 

l Multi-resolution: Multi-resolution property of 

wavelet transform can help detecting the clusters 
at different levels of accuracy. As it will be shown 

later, we can apply wavelet transform multiple 

times which results in clusters at different scales 

from fine to coarse. 

l Cost Efficiency: Since applying wavelet trans- 

form is very fast, it makes our approach cost- 

effective. As it will be shown in the experiments, 
clustering very large datasets takes only a few sec- 

onds. Using parallel processing we can get even 

faster responses. 

Applying wavelet transform on a signal decomposes 
it into different frequency sub-bands [Ma189a]. We 

now briefly review wavelet-based multi-resolution de- 

composition. More details can be found in Mallat’s 
paper [Ma189b]. To have multi-resolution representa- 
tion of signals we can use discrete wavelet transform. 

We can compute a coarser approximation of the one- 
dimensional input signal Ao by convolving it with the 

filter fi and down sampling the signal by two [Mal89b]. 
By down sampling, we mean skipping every other sig- 

nal sample (for example one row in a 2-dimensional 
feature space). fi acts as a low pass filter. All the 

discrete approximations Aj, 1 < j < J, (J is the max- 

imum possible scale), can thus be computed from A0 
by repeating this process. Scales become coarser with 

increasing j. For example, the third approximation of 

A0 (that is As) is coarser than the second approxima- 

tion AZ. Figure 4 illustrates the method. 

ii i2 Aj 

Aj-l 

+ccE 
a +2 Dj 

. 
. . 

l - 

Figure 4: Block diagram of multi-resolution wavelet 

transform. 

We can extract the difference of information be- 
tween the approximation of signal at scale j - 1 and j. 

Dj denotes this difference of information and is called 
detail signal at the scale j. We can compute the de- 
tail signal Dj by convolving Aj-1 with the high pass 

filter 6 and returning every other sample of output. 
The wavelet representation of a discrete signal A0 can 

therefore be computed by successively decomposing Aj 

into Aj+l and Dj+l for 0 5 j < J. This representa- 

tion provides information about signal approximation 

and detail signals at different scales. 

We can easily generalize the wavelet model to 2- 

dimensional feature space, in which we can apply two 
separate one-dimensional transforms [HJS94]. We can 
represent a 2-dimensional feature space as an image 
where each pixel of image corresponds to one unit cell 

in the feature space. The two-dimensional convolution 

decomposes an image into an average signal (LL) and 
three detail signals which are directionally sensitive: 

LH emphasizes the horizontal image features, HL the 
vertical features, and HH the diagonal features. 
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Figure 5: Multi-resolution wavelet representation of the feature space in Figure 1 at a) scale 1; b) scale 2; c) 

scale 3. 
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Figure 5 shows the wavelet representation of the 

image in Figure 1 at three scales from fine to coarse. 

At each level, sub-band LL (wavelet approximation 

of original image) is shown in the upper left quad- 

rant. Sub-band LH (horizontal edges) is shown in the 

upper right quadrant, sub-band HL (vertical edges) 

is displayed in the lower left quadrant, and sub-band 

HH (corners) is in the lower right quadrant. 

The above wavelet model can similarly be gen- 

eralized for n-dimensional feature space, where one- 

dimensional wavelet transform will be applied n times. 

As mentioned earlier, we apply wavelet transform on 

the feature vectors of objects. At different scales, it 

decomposes the original feature space into an approxi- 

mation, or average subband (feature space), which has 

information about content of clusters, and detail sub- 

bands (feature spaces) which have information about 

boundaries of clusters. Next section describes how we 

use this information to detect the clusters. 

4 WaveCluster 

In this section, we introduce our proposed algorithm 
and discuss its properties. The time complexity anal- 

ysis of the algorithm is then presented. 

4.1 Algorithm 

Given a set of spatial objects oi, 1 I i 5 N, the goal 
of the algorithm is to detect clusters and assign la- 

bels to the objects based on the cluster that they be- 
long to. The main idea in WaveCluster is to transform 

the original feature space by applying wavelet trans- 
form and then find the dense regions in the new space. 
It yields sets of clusters at different resolutions and 
scales, which can be chosen based on users needs. The 

main steps of WaveCluster are shown in Algorithm 1. 

Algorithm 1 

Input: Multidimensional data objects’ feature vectors 

Output: chstered objects 

1. Quantize feature space, then assign objects to 
the units. 

2. Apply wavelet transform on the feature space. 
3. Find the connected components (clusters) in the 

subbands of transformed feature space, 
at different levels. 

4. Assign label to the units. 
5. Make the lookup table. 

6. Map the objects to the clusters. 

4.1.1 Quantization 

The first step of WaveCluster algorithm is to quan- 

tize the feature space, where each dimension i in the 
d-dimensional feature space will be divided into rni 
intervals. If we assume that rni is equal to m for all 

the dimensions, there would be md units in the feature 

space. Then the objects will be assigned to these units 

based on their feature values. Let Fk = (fi, fi, . . . , fd) 

be the feature vector of the object ok in the original 

feature space. Let &fj = (WI, 02,. . . , vd) denote a unit 

in the original feature space where vi, 1 < vi 5 mi, 

1 5 i 5 d, is the location of the unit on the axis Xi 

of the feature space. Let si be the size of each unit 

in the axis Xi. An object ok with the feature vec- 

tor Fk = (fl,fi,... , fd) will be assigned to the unit 

Mi = (VI, W2, . . . ,2)d) if 

Vi (Vi - l)Si 5 fi < ViSiy l<i<d 

The number (or size) of these units is an important is- 
sue that affects the performance of clustering. Because 

of multi-resolution property of wavelet transform, we 
consider different unit sizes at different scales of trans- 

form. 
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4.1.2 Transform 

In the second step, discrete wavelet transform will 

be applied on the quantized feature space. Applying 

wavelet transform on the units Mj results in a new 

feature space and hence new units Tk. Given the set 

of units Tk, WaveCluster detects the connected com- 

ponents in the transformed feature space. Each con- 

nected component is a set of units Tk and is consid- 

ered as a cluster. Corresponding to each resolution r 
of wavelet transform, there would be a set of clusters 

CT, where usually at the coarser resolutions, number of 
clusters is less. In the experiments, we applied wavelet 

transform three times and tried Haar, Daubechies, 

Cohen-Daubechies-Feauveau ((4,2) and (2,2)) trans- 

forms [Vai93, SN96, URB97]. Average subbands (fea- 

ture spaces) give approximations of the original fea- 

ture space at different scales, which help in finding 
clusters at different levels of details. For example, as 

shown in Figure 5, for a 2-dimensional feature space, 

the subbands LL show the clusters at different scales. 

We use the algorithm in [Hor88] to find the connected 

components in the 2-dimensional feature space (im- 

age). The same concept can be generalized for higher 

dimensions. Figure 12 in Section 5, shows the clus- 

ters that WaveCluster found at each scale in different 

colors. 

4.1.3 Label and Make Look Up Table 

Each cluster c, c E C,, will have a cluster number cn. 

In the fourth step of algorithm, WaveCluster labels 

the units in the feature space that are included in a 

cluster, with its cluster number. That is, 

where 1~~ is the label of the unit Tk. The clusters that 

are found are in the transformed feature space and 
are based on wavelet coefficients. Thus, they cannot 

be directly used to define the clusters in the original 

feature space. WaveCluster makes a lookup table LT 

to map the units in the transformed feature space to 

the units in the original feature space. Each entry in 

the table specifies the relationship between one unit in 

the transformed feature space and the corresponding 

unit(s) of the original feature space. So the label of 

each unit in the original feature space can be easily 

determined. Finally, WaveCluster assigns the label of 
each unit in the feature space to all the objects whose 
feature vector is in that unit, and thus the clusters are 
determined. Formally, 

VC VMj, VOi E Mj, lo,=cn, CEC~, lliI.N, 

where l,, is the cluster label of object oi. 

4.2 Properties of WaveCluster 

When the objects are assigned to the units of the quan- 
tized feature space at step 1 of the algorithm, the fi- 

nal content of the units is independent of the order in 

which the objects are presented. The next steps of the 
algorithm will be performed on these units. Hence, 

the algorithm will have the same results for any dif- 
ferent order of input data, so it is order insensitive 

with respect to input objects. As it will be formally 
and experimentally shown later, the required time for 
WaveCluster to detect the clusters is linear in terms 

of number of input data, and it cannot go below that, 

because all the data should be at least read. After 

reading the data, processing time will be just a func- 

tion of number of units in the feature space. Thus, 

it makes WaveCluster very efficient, specially for very 

large number of objects. WaveCluster will be specially 

very efficient for the cases where the number of units 

m and the number of feature space dimensions d are 

low. Minefield detection and some seismology applica- 

tions are examples where we have 2-dimensional fea- 
ture spaces. 

WaveCluster finds the connected components in the 

average subband (LL) of the wavelet transformed fea- 
ture space, as the output clusters. As mentioned in 

Section 3.3, average subband is constructed by con- 
volving the low pass filter along each dimension and 

down sampling by two. So a wavelet transformed unit 

will be affected by the content of units in the neighbor- 

hood covered by the filter. It means that the spatial 

relationships between neighboring units will be pre- 

served. The algorithm to find the connected compo- 

nents, labels each unit of feature space with respect to 
the cluster that it belongs to. The label of each unit 
is determined based on the labels of its neighboring 

units [Hor88]. It does not make any assumptions about 

the shape of connected components and can find con- 

vex, concave, or nested connected components. Hence 
WaveCluster can detect arbitrary shape clusters. 

WaveCluster applies wavelet transform multiple 
times. Each time we apply another transform, we ig- 

nore some details in the average subband, and effec- 

tively increase the size of a unit’s neighborhood whose 

spatial relationship is considered. This results in sets 

of clusters with different degrees of details after each 

application of wavelet transform. In other words, we 

will have multi-resolution clusters at different scales, 
from fine to coarse. For example, in Section 5, Fig- 
ure 12 shows an example where wavelet transform is 

applied three times and the output clusters after each 
transform are presented. At scale 1 we have 31 fine 
clusters, and at the next scale some of those clusters 

are merged. At scale 3, we have only two coarse clus- 

ters representing original feature space. In our ap- 
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preach, user does not have to know the exact number 

of clusters, however a good estimation of number of 

clusters helps in choosing the appropriate scale and 
the corresponding clusters. One of the effects of ap- 

plying low pass filter on the feature space is the re- 

moval of noise. WaveCluster takes advantage of this 
property, and removes the noise and outliers from the 

feature space automatically. Figure 6-d shows an ex- 

ample where about 1000 outliers are scattered in the 

feature space, but after applying wavelet transform, 

they are removed and thus WaveCluster can detect 

the clusters correctly. 

4.3 Time Complexity 

Let N be the number of objects in the database, where 

N is a very large number. Assume the feature vec- 

tors of objects are d-dimensional, resulting in a d- 
dimensional feature space. The time complexity of the 

first step of WaveCluster algorithm is O(N), because it 

scans all the database objects and assigns them to the 
corresponding units. Assuming m units in each dimen- 

sion of feature space, there would be K = md units. 
Complexity of applying wavelet transform on the fea- 

ture space (step 2) will be O(ZK) = O(K), where 1 is 

a small constant representing the length of filter used 

in the wavelet transform. To find the connected com- 

ponents in the feature space, the required time will be 

O(cK) = O(K), h w ere c is a small constant. Making 
the lookup table requires O(K) time. After reading 

data objects, the processing of data is performed in 
steps 2 to 5 of the algorithm. Thus the time complex- 

ity of processing data (without considering I/O) would 

in fact be O(K), which is independent of number of 

data objects (N). The time complexity of the last step 

of WaveCluster algorithm is O(N). Since we assume 

this algorithm is applied on very large databases, that 

is N >> K, so O(N) > O(K), thus the overall time 

complexity of the algorithm will be O(N). During 

applying wavelet transform on each dimension of the 

feature space, the required operations for each feature 

space unit can be carried out independent of the other 

units. Thus, using parallel processing we can speed up 

transforming the feature space. The connected compo- 

nent analysis can also be speeded up using parallel pro- 

cessing [NS80, SV82]. Parallel processing algorithms 

will be specially useful when the number of units m or 

the number of dimensions d is high. For large number 
of dimensions we may have N < K = md. For such 

cases, we can aiso perform principle component anal- 

ysis [Sch92], to find the most important features and 

to reduce the number of dimensions to a value f such 

that N > mf. So the required time for WaveClus- 

ter algorithm will be linear in terms of N (number of 

objects in the database). 

5 Performance Evaluation 

In this section, we evaluate the performance of 
WaveCluster and demonstrate its effectiveness on dif- 

ferent types of distributions of data. Tests were done 

on synthetic datasets generated by us and also on 
datasets used to evaluate BIRCH [ZRL96]. We mainly 

compare our clustering results with BIRCH. We first 

introduce the test datasets. 

Synthetic Datasets 

Datasets DSl,DS2 and DS3 are the same as used by 
[ZRL96]. They are shown in Figure 6 a, b, and c. Each 

dataset consists of 100,000 points. The points in DS3 

are randomly distributed while DSl and DS2 are dis- 

tributed in a grid and sine curve pattern respectively. 

The other datasets shown in Figure 6 were generated 

using our own dataset generator. Data set DS4 is the 

noisy version of DS5 that is generaterd by scattering 

1000 random noise points on the original dataset. 

Clustering Very Large Datasets 

All the datasets used in the experiments contain typ- 
ically more than 10,000 data points. DSl, DS2 and 

DS3 each has 100,000 data points. WaveCluster can 

successfully handle arbitrarily large number of data 

points. Figure 7 shows WaveCluster’s performance on 

DSl. Here a map coloring algorithm has been used 

to color the clusters. Neighboring clusters have dif- 

ferent colors. But non-neighboring clusters might be 

allc cated the same color. 1 

Figure 7: WaveCluster on DSl 

Clustering Arbitrary Shapes 

As we mentioned earlier, spatial data mining methods 

should be capable of handling any arbitrary shaped 

clusters. There are 3 arbitrary shaped clusters in 
dataset DS5. Figure 8-a shows WaveCluster cluster- 

ing of DS5. Figure 8-b shows BIRCH clustering for 
the same data set. This result emphasizes deficiency 

of the methods which assume the shape of the clusters 

a priori. 

‘The paper with the colored clusters is available in 

http://www.cs.buffalo.edu/pub/WWW/faculty/azhang/ 
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a) DSl 

c) DS3 

e) DS5 

b) DS2 

‘: 

d) DS4 

.d DS7 h) DS8 

Figure 6: The datasets used in the experiments. 
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Figure 8: a) WaveCluster on DS5; b) BIRCH on DS5 

Handling Outliers 

WaveCluster is very effective in handling outliers. Fig- 

ure 9 shows clustering achieved by WaveCluster on 

DS4 dataset (noisy version of DS5 dataset). It SUC- 

cessfully removes all random noise and produces three 

intended clusters. Also, because of O(K) (where K 

is the number of grid points), the time complexity of 

the processing phase of WaveCluster, that is, the time 

taken to find the clusters in the noisy version of the 

data is the same as that on without noise. 

Figure 9: WaveCluster on DS4. 

Clustering Nested and Concave Patterns 

WaveCluster can successfully clusterify any complex 

pattern consisting of nested or concave clusters. From 

Figure 6-f and Figure 10-a we see that WaveCluster’s 

result is very accurate on nested clusters. Figure 10-b 

shows BIRCH’s result on the same dataset. 

Figure 6-h shows DS8 as an example of a con- 

cave shape data distribution. Figures 11-a and ll- 

b compare the clustering produced by WaveCluster 

4 b) 

Figure 10: a) WaveCluster on DS6; b) BIRCH on DS6 

and BIRCH. From these results, it is evident that 

WaveCluster is very powerful in handling any type of 

sophisticated patterns. 

Figure 1 

4 

(I:; 0 
b) 

a) WaveCluster on DS8; b) BIRCH on DS8 

Clustering at Different Resolutions 

WaveCluster has the remarkable property that it can 

be used to cluster at different granularities according 

to user’s requirement. Figure 12 displays the results 

of wavelet transform on DS7. This illustrates how 

WaveCluster finds clusters at different degrees of accu- 

racy. This property of WaveCluster provides the user 

with the flexibility to modify queries based on initial 

results. BIRCH does very well on dataset DS7, but it 

generates only one set of clusters. 

Comparison of Timing Requirements 

We now compare the timing requirements of 

WaveCluster, BIRCH, and CLARANS as shown in Ta- 

ble 1. We ran BIRCH on all the datasets. CLARANS 

requires the information about all the database objects 
to be loaded into memory, and its run time is very 

large when there are large number of objects. Thus, 

we were unable to run it. Based on the comparison 
of BIRCH and CLARANS presented in [ZRL96], we 

estimate the performance of CLARANS. We observe 
that on an average CLARANS is 22 times slower than 
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Figure 12: WaveCluster output clusters of DS7 at a) scale 1; b) scale 2; c) scale 3. 

DSl DS2 DS3 DS4 DS5 DS6 DS7 DS8 
Number of data 100,000 100,000 100,000 60,266 59,266 40,000 18,509 16,928 

CLARANS 1232.0 1093.0 1089.4 258.3 255.2 369.6 92.4 308.0 

BIRCH 56.0 49.7 49.5 11.7 11.6 16.8 4.2 10.9 

WaveCluster (I/O) 3.40 3.40 3.40 1.29 1.20 0.80 0.36 0.32 

WaveCluster (processing) 1.46 1.36 1.41 0.33 0.33 0.18 0.17 0.17 

WaveCluster (Total) 4.86 4.66 4.81 1.62 1.53 0.98 0.53 0.49 

Table 1: Required time (in seconds) for the clustering approaches. 

BIRCH. Because of the sensitiveness to the ordering of efficient method with time complexity of O(N), where 
the input data, BIRCH produces different timing re- N is the number of objects in the database, which 
sults for different ordering. For example, BIRCH takes makes it specially attractive for very large databases. 
14.1 seconds to run on original DS8 dataset, but when WaveCluster is insensitive to the order of input data 
we sorted the data based on the first dimension it took to be processed. Moreover, it is not affected by the 
10.9 seconds. We use the lower time for comparisons. outliers and can handle them properly. Our exper- 
We show the time requirements for I/O and processing imental results demonstrated that WaveCluster can 
separately for WaveCluster. All the experiments were outperform the other recent clustering approaches. 
carried out on a SUN SPARC workstation using 168 WaveCluster is the first attempt to apply the prop- 
MHz UltraSparc CPU with SunOS operating system erties of wavelet transform in the clustering problem 
and 1024 MB memory. in spatial data mining. 

We observe that 1) WaveCluster outperforms 

BIRCH and CLARANS by a large margin. On an 

average it is 8 to 10 times faster than BIRCH which in 

turn is 20 to 30 times faster than CLARANS; 2) The 

processing time of WaveCluster is almost independent 

of the distribution of the spatial objects and most im- 

portantly it is even independent of number of objects 

present in the space. As Table 1 shows, the time taken 

by WaveCluster is heavily dominated by the time to 

read the input data from disk. A faster method to do 

I/O will make the algorithm a whole lot faster. The 

experimental results demonstrates WaveCluster to be 

a stable and efficient clustering method. 
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