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SUMMARY 
Geometr ic ray theory is a n  extremely efficient tool for modell ing wave propagat ion 
through heterogeneous media. Its use is, however, only justified when the inhomogeneity 
satisfies certain smoothness criteria. These criteria are often no t  satisfied, for example 
in wave propagat ion through turbulent media. I n  this paper,  the effect of velocity 
perturbat ions o n  the phase and  ampl i tude of transient wavefields is investigated for 
the situation that  the velocity perturbat ion is not necessarily smooth enough t o  justify 
the use of ray theory. It is shown that  the phase and  ampl i tude perturbat ions of 
transient arrivals can to first order  be written as weighted averages of the velocity 
perturbat ion over the first Fresnel zone. The resulting averaging integrals are derived 
for a homogeneous reference medium as well as for inhomogeneous reference media 
where the equat ions of dynamic ray tracing need to  be invoked. T h e  use of the 
averaging integrals is illustrated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH numerical example. This example also shows 
that  t he  derived averaging integrals form a useful starting point  for  further approxi- 
mat ions.  The fact t ha t  the delay time due t o  the  velocity perturbat ion can be expressed 
as a weighted average over the first Fresnel zone explains the success of tomographic 
inversions schemes that are based on ray theory in situations where ray theory is 
strictly not  justified; in that  situation o n e  merely collapses the t rue sensitivity function 
over the  first Fresnel zone t o  a line integral a long a geometric ray. 

Key words: ray theory, scattering, tomography, wave propagat ion 

1 INTRODUCTION 

Wave propagation through complex media is frequently 
modelled using geometric ray theory. The criteria for the 
validity of geometric ray theory are that the length-scale of 
the variations of the medium is much larger than: (a) the 
wavelength of the employed waves, and (b) the width of the 
first Fresnel zone (Kravtsov 1988). In many situations these 
criteria are violated. This is in particular the case for wave 
propagation through turbulent media such as the ocean or 
the atmosphere, because the heterogeneity of turbulence is 
characterized by a power spectrum that contains energy at 
all wavenumbers. Consider, for example, light propagation 
through the atmosphere. On the one hand we take it for 
granted that ray theory can be used to describe the propagation 
of light through the atmosphere, while on the other hand we 
know that the blue sky provides direct evidence of the scat- 
tering of light by small-scale perturbations that violate the 
requirements for ray theory. These two notions are clearly 
contradictory. The use of ray theory for wave propagation 
through the solid Earth can also be questioned because it has 
been speculated that the convection in the Earth’s mantle can 

also have a turbulent character (Yuen et a!. 1993). Nevertheless, 
ray theory is extensively used for both forward modelling and 
inversion of wavefields through media that can be expected 
to exhibit fluctuations on very short length-scales. Notable 
examples are ocean tomography and solid Earth traveltime 
tomography, which rely on ray theory to account for the 
observed arrival times. 

This raises the central question of this study: what properties 
of the medium determine the arrival time and amplitude of 
direct-wave arrivals for media in which the requirements for 
the validity of ray theory are violated? Since it is difficult to 
provide a general solution to this problem, we restrict ourselves 
to the case where the perturbations in the medium are weak, 
but not necessarily smooth. This makes it possible to use the 
Rytov approximation in Section 2 as a basis for accounting 
for the perturbation of the wavefield resulting from the pertur- 
bation of the medium. The Rytov approximation is derived in 
Appendix A. For the simplest case of a homogeneous reference 
medium in two dimensions, it is shown in Section 3 that the 
phase and amplitude perturbations of the wavefield can be 
written as weighted averages of the velocity perturbation. The 
connection with ray theory is established in Appendix B. The 
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delay time and amplitude perturbation for transient waves are 
derived in Section 4; i t  is shown that only the velocity 
perturbation within the first Fresnel zone contributes to these 
perturbations. The theory is illustrated with a numerical 
example in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  In Sections 6 and 7, the extension of the 
theory to an inhomogeneous smooth reference medium in 
three dimensions is shown, while in Section 8, the modifications 
for the 2-D case are presented. The extension to inhomo- 
geneous reference media is complicated because in this situation 
the relation between the geometrical spreading and the wave- 
front curvature is non-trivial; this can be handled by using the 
equations of dynamic ray tracing. In all situations, the delay 
time and amplitude perturbations can be written as weighted 
averages of the velocity perturbation over the first Fresnel 
zone, even when the requirements for ray theory are violated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 THE RYTOV APPROXIMATION 

In this paper, an averaging integral is derived for the special 
case of the Helmholtz equation: 

(2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

where u(r) denotes the wavefield and (u is the angular frequency. 
It is assumed that a reference velocity u(r) is perturbed by the 
n(r) term. The important generalization to the Schrodinger 
equation can be realized by making the following substitutions 
throughout this paper: 

d/u( r )  + k2(=constant), (2.2) 

w2n(r)/u2(r) -+ - V(r), (2.3) 

where V(r) is the potential and kZ  is the (scaled) constant 
energy of the particle. The Neumann series solution of (2.1) is 
given by 

u(r) = u,(r) + uB(r) + O ( n z ) ,  (2.4) 

where u,(r) is the incident wave and where the Born field uB(r) 
equals 

Throughout this paper, G(ro, r) is the Green’s function for the 
unperturbed medium u(r). It is assumed that the reference 
medium u(r) is sufficiently smooth to satisfy the requirements 
for ray theory to be valid. This means that the assumption is 
made that both the velocity u(r) and the amplitude of the 
unperturbed Green’s function vary little over a wavelength 
and over the first Fresnel zone. Small-scale components in the 
velocity model are included in the perturbation n(r). 

Truncating the expansion (2.4) after the second term 
gives the Born approximation. This approximation has the 
important drawback that the perturbation of the wavefield 
must be small. This implies in particular that the phase 
shift generated by the perturbation must be much less than a 
cycle. For many applications this condition is unacceptably 
restrictive. As an alternative, the Rytov field has been proposed 
(Chernov 1960; Rytov, Kravtsov & Tatarskii 1989). It is shown 
in Appendix A that the Rytov approximation uR is related to 
the Born field uB in the following way: 

The perturbation of the phase (Sp) and the amplitude (SA)  
follow immediately from this expression: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SYl= A92 { U B i U O )  > (2.7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SA =In.%‘& (uB/uo}. (2.8) 

Much has been written about the validity of the Rytov 
approximation (e.g. de Wolf 1965, 1967; Brown 1965, 1967; 
Heidbreder 1967; Keller 1969; Beydoun & Tarantola 1988). 
The following two points are important for the purpose of this 
paper. First, the Rytov approximation does handle large phase 
shifts. Second, the Rytov approximation does not account for 
the effects of ray bending on the traveltime, and hence on the 
phase. The first point follows from the fact that the Rytov 
approximation accounts only for the first-order perturbation 
to the phase of the wavefield; see eq. (A10) of Appendix A. 
This implies that, whenever the phase perturbation is linear in 
the perturbation, it is accounted for by the Rytov approxi- 
mation, regardless of whether the phase perturbation is small 
or not. As an example, consider the Helmholtz equation in 
one dimension for a constant reference velocity and for the 
special case that the perturbation n(z) is smooth on the scale 
of a wavelength. Defining k, = m/v, the Helmholtz equation is 
given by 

u,, + k ; [  1 + n(z)]u = 0 .  ( 2.9 1 
Because of the smoothness of n(z),  the solution is given by the 
WKB approximation (Bender & Orszag 1978), 

1 
exp (ik, 1: dl+ncz) dz) . (2.10) 

[ 1 + n(z,)]”4 ~ W K B ( Z 0 )  = 

Using the Green’s function G(z,, z) = ( - i / 2ko )  exp(ik,lzo - zl), 
the Rytov solution is obtained using (2.6) and (2.5): 

=exp(ikos,;” [ l + in (z ) ]dz )  (2.11) 

There are two differences from the WKB solution (2.10). First, 
the amplitude term l/[ 1 + n(~, ) ] ’ /~  is absent in the Rytov 
approximation. This term accounts for changes in the ampli- 
tude due to the perturbation of the impedance that is associated 
with the velocity perturbation. This effect is apparently not 
accounted for by the Rytov approximation. This implies that 
the amplitude computed with the Rytov approximation is 
unreliable when the velocity at  the observation point is strongly 
perturbed. Second, the exponents of the WKB solution (2.10) 
and the Rytov approximation (2.1 1) are different, but to first 
order in the perturbation n they are identical. The Rytov 
approximation does not require the phase shift to be small. As 
long as kozon2 << 1, the phase perturbation is handled well. 
This implies that the perturbation of the phase (k,zon) is not 
required to be small, and that the Rytov approximation breaks 
down when z, - l/k,n2. In contrast to this, the Born approxi- 
mation is only valid when kozoncc 1. This means that for the 
Born approximation the perturbation of the phase (kozon) is 
required to be small, which implies that this approximation 
breaks down when zo - l/k,n. Since the perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is 
assumed to be much smaller than unity, this implies that the 
Rytov approximation can be used for much greater propa- 
gation distances than the Born approximation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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In order to see that the Rytov approximation does not 
handle ray-bending effects well, consider the multidimensional 
case where the medium including the perturbation varies 
smoothly both on the scale of a wavelength and on the scale 
of the width of the first Fresnel zone. In this case, the ray- 
geometrical solution holds (Kravtsov 1988), as long as caustics 
are avoided. The perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(r) causes the rays in the 
medium to  bend. One can show that this leads to changes in 
the traveltime that are of second order (Snieder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sambridge 
1992, 1993; Snieder & Spencer 1993; Roth, Muller & Snieder 
1993; Snieder & Aldridge 1995). Since the Rytov approxi- 
mation only accounts for first-order changes of the phase, this 
implies that ray-bending effects are not described by the Rytov 
approximation. In  a similar vein, refracted waves are not 
accounted for by the Rytov approximation. 

Despite this limitation, the Rytov approximation is used to 
derive an averaging integral for the perturbations of the phase 
and amplitude. The examples given here show that the first- 
order perturbations of the phase are accounted for by the 
Rytov approximation even when these perturbations are not 
small compared to a cycle. The theory presented here therefore 
has a direct bearing on linearized tomographic inversions for 
media that  violate the smoothness properties required by ray 
theory. However, second-order phase perturbations due to ray 
bending are not taken into account. This implies that the 
results of this paper only hold for weak perturbations: the non- 
linear effects of ray bending and multipathing on tomographic 
inversions are not accounted for. 

3 THE AVERAGING T H E O R E M  FOR A 
P L A N E  I N C O M I N G  WAVE I N  T W O  
D I M E N S I O N S  

In this section, the perturbation of the phase is derived for the 
simplest case of a homogeneous reference medium in two 
dimensions. For simplicity it is assumed that the inhomogeneity 
is only non-zero for z 2 0 .  The unperturbed wavenumber is 
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, = w/u. The incident wave is a plane wave propagating 
in the direction of the z-axis: 

uo(r) = exp ik,z . (3.1) 

The Green's function for the homogeneous reference medium 
(Morse & Feshbach 1953) is given by 

where is the zeroth order Hankel function of the first kind. 
Using the far-field expression for the Hankel function, one 
finds that the Green's function in the far field (kolro - r l x  1) 
is given by 

In the following, backscattered waves will be ignored since 
they arrive late and do not contribute to the perturbation of 
the direct transmitted wave. Limiting the z-integration to the 
interval between 0 and zo, the Born field defined in ( 2 . 5 )  is 
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
UEhO) = 

exp(ik,lr, - rl)n(r) exp(ik,z) 
dxdz . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 4  
(3.4) 

As a next step, the detour D for a fixed observation point 
ro is defined by 

D(r) = Ir,- rl + z - zo, (3.5) 

where the geometric variables are defined in Fig. 1. This 
quantity is the difference between the lengths of the paths 
travelled by the single scattered wave (Ir, - rl + z) and the 
direct wave (zo). Inserting this in eq. (3.4) leads to the following 
expression for the Born field: 

(3.6) 

Note that the x-integral resembles a Fourier transform of the 
perturbation n(r) that is weighted by the geometrical spreading 
of the scattered wave (l/,,/m). The phase shift k,D(r) in 
expression (3.6) accounts for the delay of the scattered wave 
compared to the direct wave. It is shown in Section 4 that, 
when one is only interested in the phase of the first arrival, 
one can limit the x-integrations to the first Fresnel zone, which 
is defined here by the condition k,D(r) < n/2. The following 
amplitude factor is defined here for later use: 

1 
F(r, r,) = ~ (2-D, plane wave). (3.7) f i  

In general, the perturbation n(r) is not smooth compared to 
a wavelength and to the width of the first Fresnel zone. This 
implies that in general the x-integral in (3.6) cannot be solved 
in the stationary-phase approximation because the term n(r) 
may exhibit fluctuations over the range where the phase is 
stationary (the first Fresnel zone). However, the integral 
l y m  F(r, r,) exp[ik,D(r)] dx can be solved in the stationary- 
phase approximation. Expanding expression (3.5) to second 

Figure 1. Definition of the geometric variables for a plane incoming 
wave in two dimensions and a homogeneous reference velocity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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and order in x gives 

X2 

212, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 ’ 
D(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ )  = ~ (3.8) 

so that in the stationary-phase approximation (Bleistein 1984) 

F(r, r,) exp(ik,D(x, z ) )  dx = F ( z ,  z,) exp(inI4) s: 
In this paper, the quantity F(z,  2,) denotes the values of F on the 
ray in the unperturbed medium: F(z, zo) = F(x = 0, z, xo = 0, zo). 

In the last identity of (3.9), the fact that F ( z ,  z o )  = l/Jm 
has been used. Note that in the stationary-phase approxi- 
mation, only the value of F on the reference ray (the z-axis) 
contributes. In order to recast (3.6) in the form of an averaging 
integral, divide the x-integral in (3.4) by the left-hand side of 
(3.9) and multiply the x-integral in (3.4) by the right-hand side 
of (3.9). This gives, using eq. (3.1) for the direct wave and the 
definition (3.7): 

F(r, r,)n(r) exp(ikoD(r)) dx 

F(r, r,) exp(ikoD(r)) dx Idz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAik, 

(3.10) 

For a homogeneous reference medium this example is easily 
generalized to other geometries. For the following examples, 
the Born field can be written in the form of eq. (3.10) with the 
amplitude factor given by: 

1 
(2-D, point source), (3.11) 

Jizz F(r, ro) = 

1 
F(r, ro) = ~ 

Iro - rl 
(3-D, plane wave), (3.12) 

F(r, ro) = (3-D, point source), 
Ir I1 ro - r l 

(3.13) 

where it is understood that in three dimensions the x-integrals 
in (3.10) must be replaced by double integrals over both x 
and y. When one is interested only in the perturbation of the 
direct wave, one can limit the integrals over x (and y in three 
dimensions) to the first Fresnel zone, because waves scattered 
outside the first Fresnel zone have made such a large detour 
that they arrive too late to interfere with the direct wave; see 
Section 4 for further details. 

Using (2.7) and (2.8), the first-order perturbation on the 
phase and the amplitude is given by 

f r m  .I 

F(r, ro)n(r) exp(ik,D(r)) dx 

F(r, r,) exp(ik,D(r)) dx 

(3.14) 

m 

F(r, ro)n(r) exp(ik,D(r)) dx 

F(r, r,) exp(ik,D(r)) dx 

hA = In -JWL - 

(3.15) 

It can be seen that in expression (3.10) for the Born field and 
the expressions for the phase and amplitude, a weighted 
average of the perturbation n(r) is taken over the transverse 
coordinate. The weight factor follows in a natural way from 
the scattering integral, and is given by F(r, ro) exp ikoD(r). For 
this reason, expression (3.10) is referred to as the averaging 
integral. 

As mentioned earlier, the x-integral in expression (3.6) 
cannot be evaluated in the stationary-phase approximation 
when n(r) is not smooth. In general, ray theory follows from 
scattering theory by evaluating the scattering integral in the 
stationary-phase approximation (e.g. Snieder 1988). This is 
related to the fact that rays are curves that render the traveltime 
stationary; in the frequency domain this corresponds to 
the requirement that the phase is stationary. It is shown in 
Appendix B, for the special case that the perturbation n(r) 
is smooth over the first Fresnel zone, that the averaging 
integrals (3.14) and (3.15) indeed lead to the ray-geometrical 
perturbations of the phase and amplitude. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 APPLICATION OF THE AVERAGING 
THEOREM 

For monochromatic signals, one can implement eq. (3.10) or 
the equivalent expressions (3.14) and (3.15) for the phase and 
amplitude perturbations in a straightforward fashion. In this 
application, all integration points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, z) contribute. The ampli- 
tude factor F(r,r,) can vary significantly over the range of 
integration. This implies that waves scattered at every point 
(x, z)  contribute, and that the contribution depends on the 
geometry of the incident and scattered wavefield at every 
location. For monochromatic signals, the averaging integrals 
of the previous sections are nothing more than a reformulation 
of the scattering integral. 

For transient signals the averaging integrals have more 
significance. Suppose that one is interested in a transient signal. 
In such an application, only those points (x, z )  that are located 
within the first Fresnel zone contribute to the transient signal, 
because the contributions from other regions arrive too late 
to interfere with the transient arrival. This implies that for 
transient signals the x-integration can be limited to the first 
Fresnel zone. This condition limits the domain of x-integration 
in the averaging integrals. This can be seen by considering the 
Rytov approximation in the time domain for a band-limited 
pulse. A transient signal is formed by a Fourier transform to 
the time domain where frequencies in a band from wo - Aw 
to wo + Aw are taken into account. Using (2.6) and (3.10) this 
quantity can be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oo + Am 

Mo, t )  = uo(ro,cu)exp(-iw[f- Y ( w ) ] ) d o ,  (4.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1996 RAS, G J I  125, 796-812 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
5
/3

/7
9
6
/6

7
8
7
2
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



800 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Snieder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAund zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Lomux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d z .  (4.2) 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

F(r, r,)n(r) exp(ik,D(r)) dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F(r, ro) exp(ik,D(r)) d.u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( t U )  = ’ 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL’ ‘/ITrn 

For narrow-band signals, the velocity perturbation leads to a 
time shift 5 and a relative amplitude change [ of the direct 
wave; this implies that the direct wave in the Rytov field is 
approximately given by 

UR(rg, t )  = tuo(ro, f - T I ,  (4.3) 

where the time shift T and the amplitude change [ still need to 
be determined. It is shown in Appendix C that the requirement 
that the approximation (4.3) is satisfied in the least-squares 
sense leads, for narrow-band signals, to a delay time 

(4.4) 

where Yr denotes the real part of Y. 
It should be noted that the analysis of Appendix C breaks 

down when the bandwidth ACO is not small. This corresponds 
to the fact that in general the small-scale velocity perturbations 
physically lead to dispersion of the direct wave. This implies 
that in general the assumption (4.3) cannot be applied to 
broad-band signals since the dispersion caused by the small- 
scale velocity perturbations leads to changes in the shape of 
the direct arrival. In the approximation (4.3) some contri- 
butions from the original scattering integral have been lost. 
Only the change in the arrival time and amplitude of the 
transmitted wave are retained, but truly scattered waves are 
not taken into account anymore since they have been excluded 
in the approximation (4.3). 

The arguments at  the beginning of this section suggest that 
the contributions around the first Fresnel zone dominate the 
perturbation arrival time of a transient arrival. It follows from 
expression (4.4) and the examples shown in Figs 2(a) and (b) 
that this is indeed the case. To see this, note that the approxi- 
mation (4.4) and expression (4.2) effectively lead to the follow- 
ing replacement of the averaging function in the averaging 
integral (3.10): 

F(r, ro) exp(ik,D(r)) 

JIrn F(r, KO) exp(;koD(r)) d x  

(4.5) 
F(r3 ro) exp(ikoD(r)) do, 

1 w o t A w  3-1 m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1- F(r, To) exp(ikoD(r)) dx 
2Aw oo-Aw 

In Figs 2(a) and (b), the real and imaginary parts of the 
averaging function are shown as a function of transverse 
distance x (suitably normalized with the curvature D” of the 
detour). The thin lines denote the averaging function given 
by the left-hand side of (4.5) for a number of equidistant 
frequencies ranging from w0 - Atit to coo + A m  In this example, 
the value A(II/OJ~ = 0.25 is used. The thick line is the averaging 
function for a finite frequency band given by the right-hand 
side of (4.5). In the first Fresnel zone the averaging functions 
are in phase, whereas for larger transverse distances the single- 
frequency averaging functions interfere destructively. This 
causes the frequency-averaged weight function to decay for 

(4 
0.4 

0.2 

-0.0 

-0.2 

-0.4 

2.0 4.0 6.0 
( o ~ ” l c d 1 ’ 2 x  

(b) Imaginary part f (m&”f 
0.4 

0.2 

-0.0 

-0.2 

-0.4 

2.0 4.0 6.0 
(m&”f cd1’2x 

Figure 2. (a) Real part of the averaging function on the left-hand side 
of (4.5) for 10 different frequencies (thin solid lines). The broad-band 
weight function defined by the right-hand side of (4.5) is shown by 
the thick solid line. (b)  As (a), but for the imaginary part of the 
weight function. 

transverse distances appreciably larger than the first Fresnel 
zone. Effectively, this implies that only the contribution of the 
averaging integrals from the first Fresnel zone contributes to 
the perturbation of the direct arrival. 

Since the detour D(r) is stationary in the first Fresnel zone, 
exp(ikoD(r)) varies relatively little over the first Fresnel zone. 
In addition, since ray theory is assumed to hold for the 
reference medium, the amplitude factor F(r, ro) must vary little 
over the first Fresnel zone. This suggest that it is a reasonable 
approximation to make the following replacement in the 
averaging integrals for transient signals: 

I- m rn * I-,. . (4.6) 

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxrn 

n(r)W(r, ro) dx 

W(r, ro) dx 

F(r, r,)n(r) exp(ik,D(r)) dx 

I-, F k  ro) exp(ikoD(r)) d x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1996 RAS, GJ1 125, 796-812 
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Wuvefield smoothing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA801 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The finite integration limits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfx, reflect the fact that the 
integration over x for transient signals can be limited to a 
finite interval, for example the first Fresnel zone, and the 
original weight function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(r, r,) exp(ik,D(r)) is replaced by a 
simpler weight function W(r, r"). The denominator W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd . ~  in 
(4.6) ensures that for a constant perturbation (n = const.) the 
correct response i s  obtained. Alternatively. one can argue that 
the true averaging function exp(ik,D(r)) controls the timing of 
the scattered waves. However, the waves that are scattered 
within the first Fresnel zone arrive, by definition, almost in 
phasc. Hence the precise form of the averaging function is not 
too important, as long as i t  does not vary strongly over the 
first Fresnel zone. 

The replacement (4.6) was imposed in an ud hoc fashion by 
Groenenboom & Snieder (1995) for a 2-D medium with 
isotropic point scatterers. Because the exact response could be 
calculated for such a medium, the accuracy of the replacement 
(4.6) could be verified. In their results, strong scatterers were 
used that reduced the amplitude of the direct wave by about 
a factor of 3. Nevertheless, the amplitudes predicted with 
an expression similar to eq. (3.15) in combination with the 
replacetnent (4.6) agreed very well with the exact response. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An additional illustration is given in the numerical example 
presented in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 A NUMERICAL EXAMPLE 

In this section. wave propagation through the velocity model 
of Fig. 3(a) is considered. This model is a realization of a 
Gaussian random medium as described by Frankel & Clayton 
(1986). The velocity anomaly has a peak value of about f 15 
per cent. The dominant wavelength of the waves employed is 
about 200 km, and i t  follows from Fig. 3(a) that this is com- 
parable to the size of the velocity fluctuations. A plane wave 
enters the medium from the top of the model and is recorded 
on a string of receivers indicated by triangles in Fig. 3(a). The 
detour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, normalized with the background velocity u, for a 
specific receiver is shown in Fig. 3( b). The first contour line in 
Fig. 3(b) corresponds to a delay time of half a period. I t  is 
clear that the velocity model is not smooth compared to the 
size of the first Fresnel zone: the velocity model of Fig. 3(a) 
therefore violates the requirements for the validity of ray 
theory. 

The true wavefield was computed by solving the Helmholtz 
equation with a finite-difference algorithm. A snapshot of the 
wavefield just before its arrival at the receivers is shown in 
Fig. 3(c). As a source wavelet, a cosine modulated with an 
exponential has been used: 

s(t) = exp(- (z)') cos( F) , 
where the values To = 50 s, 1 = 5 have been used. From the 
finite-difference seismograms, the arrival time and amplitude 
of the first arrival were picked by locating the position and 
magnitude of the first maximum in the wavefield. The resulting 
arrival time and amplitude are shown as the thick solid lines 
in Figs 4 and 5. In addition, in Figs 4(a) and 5(a) the ray- 
geometrical arrival time is shown by the thin solid lines. (The 
ray-geometrical arrival time was computed by integrating the 
slowness anomaly over the straight rays of the homogeneous 
reference medium; it is thus the arrival time predicted by first- 
order ray theory.) It can be seen in Fig. 4(a) that, although the 

ray-geometrical arrival time follows the trend in the true arrival 
times, it exhibits oscillations that are not present in the true 
arrival time. This is due to the fact that ray theory does not 
account for the smoothing properties of a wavefield that are 
associated with a finite wavelength. 

A first examplc of the arrival-time and amplitude changes 
predicted by eqs (3.14) and (3.15) with the replacement (4.6) 
for the averaging integral is shown in Figs 4(a) and (b), with 
the weight function W defined by the exponential exp(ikD) 
modulated with the envelope of the source wavelet (5.1 ): 

The detour D(r, r,,) is normalized with the reference velocity t i  

to give a delay time. It can be seen from Fig. 4(a) that the 
traveltime perturbations thus predicted agree quite well with 
the true traveltimes. In any case, an agreement with the true 
arrival times is obtained that lacks the spurious oscillations 
that are predicted by the ray-geometrical traveltimes (shown 
by a thin line). Note that the amplitudes shown in Fig. 4( b) 
are not so well predicted by the averaging integrals: the regions 
of focusing and defocusing are well predicted, but the ampli- 
tudes in the focusing regions are underestimated by the 
averaging integrals. One should note, however, that the ampli- 
tude anomalies are about 100 per cent, so it i s  not surprising 
that a first-order theory is not very accurate. In addition, it is 
well known that modest changes in the velocity model can 
lead to drastic changes in the amplitudes (White, Nair & 
Bayliss 1988). This reflects the fact that the dynamic properties 
of a wavefield are much more sensitive to changes in the 
velocity model than the kinematic properties of a wavefield. It 
should be noted that neglecting the variation of the amplitude 
factor F(r, r,,) over the first Fresnel zone is of little consequence 
because this factor varies by less than 10 per cent over the 
first Fresnel zone, hence it cannot be the main cause of the 
discrepancies in the amplitude variations. 

When the modulation with the source wavelet is left out in 
the averaging function (5 .2) ,  one obtains arrival limes from 
the averaging integral (3.14) that are much less accurate than 
the arrival times shown by the dashed line in Fig. 4(a). In that 
situation the averaging integrals lead to errors in the arrival 
times that are comparable in size to the errors that are 
produced by first-order ray theory. This means that making 
the averaging function W in (4.6) more localized around the 
Fresnel zone leads to improved estimates of the arrival time 
of the direct wave. This is consistent with the results of 
Section 4; the arrival time of a transient arrival is, to first 
order, only influenced by the slowness perturbations in the 
first Fresnel zone. 

I t  turns out that the details of the choice of the averaging 
function W in (4.6) are not very important. This is illustrated 
in Fig. S(a), where the arrival time and the amplitude are 
shown when the weight function W =  1 has been used. In this 
example, the x-integrals in (4.6) are truncated at a value x, 
that corresponds to a detour of one-quarter of a wavelength: 
kD(x,) = x/2. I t  can be seen that the arrival times predicted 
by this averaging function (the dashed line in Fig. 5a) match 
the true arrival times as well as the arrival times obtained 
from the more sophisticated weight function (5.2) used for 
Fig. 4(a). Note, however, that this weight function does not 
account for the amplitude perturbations. It follows from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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802 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  Snieder and A.  Lomax 

3.2 

Velocitv Model 

4.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I I I 

69 I I381 2072 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(km) 

0 0  12.00 

FI-csnel Zones 
-1-- Y v -  I I 

I I 

I 1 I I 1 

69 I 1381 2072 
distance (km) 

I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

69 I 1381 2072 
distance (km) 

Figure 3. (a) The Gaussian quasi-random velocity model used for the numerical experiment of Section 5. A plane wave is incident from above, 
and the wavefield is sampled at receivers indicated by triangles. (b) Contour diagram of the detour time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD/u for the receiver indicated by the 
triangle. The first contour level corresponds to  a detour time of half a period and is hence an indication of the location of the first Fresnel zone. 
(c) The wavefield recorded at the receivers indicated by triangles in (a). 

expression (3.15) that a weight function with a non-zero 
imaginary component is needed for this. 

In Fig. 6, a finite-difference simulation of the wavefield that 
propagates through the realization of an exponential random 
medium is shown. Note that the gross features of the velocity 
perturbations in Fig. 6(a) are similar to the velocity pertur- 
bations in the realization of the Gaussian random medium in 
Fig. 3(a). The main difference is that the exponential quasi- 

random medium is much richer in short-wavelength struc- 
tures-this is due to the fact that its power spectrum decays 
algebraically with wavenumber rather than exponentially 
(Frankel & Clayton 1986). The exponential quasi-random 
medium thus imposes a stronger test on the theory presented 
here. 

The traveltime and amplitude changes computed for the 
exponential quasi-random medium of Fig. 6(a) using the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Wavqfield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmoothing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA803 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFinite difference 

__ Ray theory 
- - - -  Averaging integral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi' 

'rd\eI Time\ Itct Fre\nel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7- 7 __ 

- Finite difference 
-- __ Ray theory 
- - - - Averaging integral 1 

I 
I~ 

I ,  I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

I 

Finite difference 
- - -  Averaging integral . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

--A I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
16 32 4x 

nuin seis 

Figure 4. (a) Arrival-time perturbation for the wavefield recorded at 
the triangles in Fig. 3(a) computed from the averaging integral (3.14) 
using the replacement (4.6) with the weight function W given by (5.2). 
(b) Amplitude perturbation for the wavefield recorded at the triangles 
in Fig. 3(a) computed from the averaging integral (3.15) using the 
replacement (4.6) with the weight function W given by (5.2). 

method as used for Figs 4(a) and (b) are shown in Figs 7(a) 
and (b). A comparison with Figs 4(a) and (b) shows that the 
traveltime and amplitude anomalies obtained from the finite- 
difference experiments and the averaging integrals for both the 
Gaussian and the exponential quasi-random medium are very 
similar, despite the fact that the exponential quasi-random 
medium contains much more short-wavelength structure. This 
is due to two effects. First, the averaging properties of the 
wavefield effectively smooth the medium through the averaging 

I I 1 -  

16 32 48 
nu in  

I Finite difference 
- - -  Averaging integral 

I I I r J  
16 72 48 

nuin scis 

Figure 5. (a) Arrival-time perturbation for the wavefield recorded at 
the triangles in Fig. 3(a) computed from the averaging integral (3.14) 
using the replacement (4.6). The weight function W is equal to unity 
for kD 5 4 2  and is equal to zero for larger values of the detour. 
(b) Amplitude perturbation for the wavefield recorded at the triangles 
in Fig. 3(a) computed from the averaging integral (3.15) using the 
replacement (4.6). The weight function W is equal to unity for kD 5 1[/2 

and is equal to zero for larger values of the detour. 

integrals (3.14) and (3.1 5 ) .  Second, the traveltime perturbations 
are dominated by first-order effects in these examples. I t  is 
known that in second order, the Gaussian and exponential 
quasi-random media have dramatically different effects on the 
traveltime (Roth et al. 1993; Witte, Roth & Miiller 1996). Since 
the theory of this paper only accounts for the first-order effects 
of slowness perturbations on the traveltime, the propagation 
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804 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASnieder arid A .  Lomctx 

3.2 

Velocitv Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.3 

69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1381 2072 
distance (km) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'I 

0 0  12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 

resnel Zoner 
VI-' I I I 

\ \  \ / I /  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

L I 

1 I I I I 

69 1 1381 2072 
distance (km) 

(c) Time= 500.00sec (it=1200) 
I I I I I 

69 I 1381 207 2 
distance (km) 

Figure 6. (a) As Fig. 3(a) but for the exponential quasi-random medium. (b) As Fig. 3( b) but for the exponential quasi-random medium. (c) As 
Fig. 3(c) but for the exponential quasi-random medium. 

distance in the examples of Figs 3 and 6 is chosen in such a 
way that ray bending, and the assoclated second-order effect 
o n  the traveltime, is small. 

can be generalized for inhomogeneous reference media u(r) 
that are sufficiently smooth so that ray theory can be used to 
describe the properties of the unperturbed wave uJr) and the 
Green's function G(ro,r) of the reference medium. The deri- 

6 GENERAL SMOOTH REFERENCE 
M E D I U M  IN THREE DIMENSIONS 

vation of the averaging integral is shown in this section for 
the 3-D case. The analysis is based on the dynamic ray theory 
of CervenC & Hron ( 1980). hereafter referred to as CH. Note 

The averaging integral derived in Section 3 is for the special 
case of a homogeneous reference medium. However, the theory 

that, in contrast to the work of CH, the density is assumed to 
be constant in this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Wuuefield srnoothing 805 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ravel Times Ref Fresnel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- Finite difference 

~ Ray theory 
- - - - Averaging integral 

I 1 I I t  

16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA48 
nuin seis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s - i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI - Finite difference 

- - - Averaging integral 

I I I I 

16 32 48 
num seis 

Figure 7. (a) As Fig. 4(a) but for the exponential quasi-random 
medium. (b) As Fig. 4(b) but for the exponential quasi-random 
medium. 

According to eq.(39) of CH, the amplitude A of a 
ray-geometrical solution satisfies 

J ( , S , ) U ( . S , )  
A ( s , )  = A(S2) ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ J(.s2)t(s2) ’ 

In this expression, s ,  and s2 denote arclengths along the same 
ray and J ( s )  is the geometrical spreading. This result implies 
that the Green’s function satisfies 

where z(r , ,  r2) is the traveltime between r2 and r , ,  while 
J(r,,  r2) is the geometrical spreading in r, due to a point 
source in rz. The source parameter C follows from the require- 
ment that, when rl and rz are separated by a small distance 
q = Ir, - r21, the Green’s function is the same as if the medium 
was locally homogeneous. This implies that 

1 exp(iklr, - r21) 1 exp(ioq/v(r2)) 

471 Ir, -r2/ 471 4 
-- - G(r,, r2) = - - - 

(6.3) 

As shown by CH, the geometrical spreading for this case is 
given by 

J(r,,r2)=lrl -r2I2=q2, (6.4) 

and the traveltime is given by z(r,,  r2)  = q/v(r2). Comparing 
these results with (6.2) allows for the determination of the 
source parameter C: 

and hence the Green’s function is given by 

Similarly, the incoming wave is given by 

uo(r) = A(r) exp(itur(r)). (6.7) 

In the remainder of this paper, A@) ,  z(r) and J(r) denote 
the amplitude, arrival time and geometrical spreading of the 
direct wave, while A(rl ,  r2), z(r l ,  rz) and J(r,, r2) denote the 
corresponding quantities at location r l  for a point source in r2. 

The relations (6.6) and (6.7) can be used in the scattering 
integral (2.5). In doing so, the traveltime 7(r0,r) and the 
geometrical spreading J(ro, r) are by virtue of the principle of 
reciprocity replaced by z(r, r,) and J(r, ro) respectively. This 
gives 

uB(ro) = $ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 & JG 
u(r) exp(iw.r(r, r d )  

x n(r)A(r) exp(iwz(r)) d V .  (6.8) 

By analogy with (3 .5) ,  define the delay time T(ro, r) by 

T(ro, r) = s(r) + z(r, ro) - z(ro). (6.9) 

In this case, the delay time is used because it is this quantity 
that describes the relative timing of scattered wave arrivals. 
For the special case of a homogeneous medium, this quantity 
is proportional to the detour D. 

In order to carry out an analysis similar to that in Section 3, 
it is advantageous to convert the volume integral in (6.8) to 
ray-centred coordinates. Ray-centred coordinates (s, 4 ,  , q2)  are 
defined using a ray in the reference medium u(r) that arrives 
at the observation point rO. The first coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs denotes the 
arclength along this reference ray. The coordinates q ,  and 42 
denote two coordinates perpendicular to the reference ray. The 
reader is referred to CH for details. Using eqs (42), (43) and 
( 5 5 )  of CH, one obtains the following expression for a volume 
element dV in ray-centred coordinates: 

d V = h ( s ,  41,  q 2 )  dsdqldq2, (6.10) 
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806 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASnieder and A. L o m a x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with 

&,q,,q,)= 1+;(9-Vu) ,  (6.1 1) 

where q is the vector perpendicular to the reference ray with 
components q,  and q,  in ray-centred coordinates. Converting 
the volume integral in (6.8) with these results, using (6.6) and 
(6.9) and multiplying and dividing (6.8) by A@,)  one obtains, 
using (6.7), 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x h(s, 41, q 2 )  4 , 4 7 2  (6.12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As a next step, consider the integral 

(6.13) 

Analogous to eq. (3.9), this integral is evaluated using the 
stationary-phase approximation. Let the matrix M be defined 
as in expression (50) of CH: M , j  = (327/c?qi&rj. The reference 
ray is a curve along which the traveltime is stationary. It is 
thus sufficient to prescribe the matrix M in order to know how 
the traveltime changes when one moves away from the refer- 
ence ray. Let this matrix be denoted by Mi" for the incident 
wave. The traveltime of the incident wave to location (s, q , ,  q 2 )  
is given by 

(6.14) 

In this expression and following expressions, f ( s )  denotes a 
quantity evaluated on the reference ray: 

f ( s )  - fh 41 = 0, q 2  = 0 ) .  (6.15) 

In  a similar way, let the matrix M""' be the second-derivative 
matrix of the traveltime z(r, ro), which is equivalent to the 
traveltime from a fictitious point source at  ro to location r (see 
Fig. 6): 

1 
Tir, ro) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~(s, so) + 2qTMou'q, (6.16) 

M"' 

\ \ 

where z(s, so) is the traveltime along the reference ray from 
the point (so, 0,O) to (s, 0,O) (see Fig. 8). Using the identity 
z(so) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(S) + z(s, so) and using the definition (6.9) one finds 
that 

T(r, ro) = 5qT(M'" + Mout)q . (6.17) 

This result can be used in the stationary-phase analysis of the 
integral (6.13). The (q*Vo)/u term that is contained within the 
scale factor h(s, q l ,  q2)  gives a vanishing contribution to the 
stationary-phase approximation of the integral (6.13) because 
it leads to an integral over q from -m to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc of an integrand 
that is an odd function of q. Performing a multidimensional 
stationary-phase analysis (Bleistein 1984) of the integral (6.13) 
gives 

1 

(6.18) 

exp (: sgn(Min + ,Out) 
271 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w Jldet(Min + Mou')I Jm ' 

- _  - 

where sgn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM is the number of positive eigenvalues of M minus 
the number of negative eigenvalues of M. 

The square root of the determinant of a 2 x 2 matrix M has 
to be defined with some care. Let M have eigenvalues 1, and 
A,, then det M = ,Il&. In (6.18), the square root is taken from 
the absolute value of the determinant-this quantity is well 
defined. In general, we define the square root of a determinant 
to be 

.JdetM ~ inumber of negative eigenvalues Jm. 
For a 2 x 2 matrix, this is equivalent to 

w = i e x p  -iZsgn(M) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJldetl. (6.20) 

Using this result, the stationary-phase integral (6.18) is given 

(6.19) 

( 4  ) 
by 

,/ Jdet(Min + ,Out). 
2ni A(s) 

I ( s )  = - ~ 

w & G i  
(6.21) 

It is convenient to use the curvature matrix K = vM defined in 

M""' 

Figure 8. Definition of the geometric variables for the case of an inhomogeneous reference velocity. 
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eq. (68) of CH rather than the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. This gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,/ Jdet(K'" + KOut). 

2niu(s) A(s)  
I ( s )  = __ ~ (6.22) 

Because the integrand is evaluated in the stationary-phase 
approximation on the reference ray, the curvature matrices 
and the velocity are evaluated on the reference ray. An 
averaging integral analogous to (3.10) is obtained by multiply- 
ing and dividing the q-integrals between curly brackets in 
(6.12) by I ( s ) .  Using (6.22) for the numerator and (6.13) for 
the denominator, this gives 

(6.23) 

In deriving this expression, a term u(ro) has been factored out 
in front. 

This expression constitutes an averaging integral that can 
be used with eqs (2.7) and (2.8) for obtaining the perturbations 
of the phase and the amplitude. For monochromatic signals, 
the integral (6.23) can immediately be implemented. Similarly 
to the averaging integral (3.10) for a homogeneous reference 
medium, one averages not simply the perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(r), but a 
more complicated expression that contains amongst other 
things the amplitude of the incident wave and the geometrical 
spreading. In addition, the averaging integral also contains the 
local wavefront curvature (through the curvature matrices K'" 
and K""') as well as the velocity variations of the reference 
medium. The latter effect is due to the fact that the perturbation 
of the Helmholtz equation (2.1) is given by n(r)/u'(r), and 
hence n(r) is weighted by the velocity. 

As a consistency check with the results of Section 3, consider 
the averaging integral (6.23) for the special case of a homo- 
geneous reference medium: u(r) = v = const. Consider a point 
source at the origin; in that case, referring to Fig. 1, one 
has A(r)/A(ro) = zo/lrl, and J(r, ro) = Ir - r0('. The curvature 
matrices Kin and K O " '  are diagonal matrices with diagonal 
elements l/z and l/(zo - z) respectively, hence 

(6.24) 

Furthermore A ( s ) / d m  = l/z(zo - z). For straight reference 
rays, the scale factor h equals unity. Use of these results gives 

(6.25) 

(6.26) 

This implies that for this case both weight functions in the 

numerator and denominator of (6.23) are equal to the ampli- 
tude factor F(ro, r) for a point source in three dimensions given 
by expression (3.13). It thus follows that the averaging integral 
(6.23) reduces to the averaging integral (3.10) obtained earlier 
for the special case of a point source in a homogeneous 
reference medium in three dimensions. 

7 THE AVERAGING INTEGRAL I N  THREE 
DIMENSIONS FOR TRANSIENT SIGNALS 

In this section the effect of the perturbation n(r) on transient 
signals is considered. As argued in Section 4, in this case one 
needs to consider the contribution in the averaging integral 
(6.23) from the first Fresnel zone. It is assumed that the 
reference medium is sufficiently smooth to warrant the use of 
ray theory for the incident wave and the Green's function for 
the reference medium. This implies that it is assumed that both 
u(r) and A(r) do  not vary appreciably over the first Fresnel 
zone. It is consistent with this assumption to make the following 
replacements when one only considers the contributions from 
the first Fresnel zone to the averaging integral (6.23): 
A(r) -+ A(& u(r) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(s), J(r, ro) + J ( s ,  so), etc. This implies that 
whenever these quantities are evaluated within the first Fresnel 
zone they can be replaced by the corresponding value on the 
reference ray. Since the observation point ro is located on the 
reference ray, one can obviously carry out the substitutions 
for ro. Using (6.1) one finds that the averaging integral (6.23) 
reduces to 

This expression can be simplified further by using the 
following identity: 

J ( s ) J ( s ,  so) det(K" + KO"') = J(so)v'(s)/u'(so) (7.2) 

(see Appendix D for the derivation). Inserting this relation into 
the averaging integral (7.1) gives 

J J  

(7.3) 

This averaging integral expresses by virtue of the relations 
(2.7) and (2.8) the phase and amplitude perturbations of 
transient arrivals as weighted averages of n(r) over the first 
Fresnel zone. the dimensionless weight factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2(so)/uz(s) is 
present because the perturbation of the Helmholtz equation 
(2.1) is n(r)/v'(r) rather than n(r). The geometric term h(s, q, ,  q 2 )  
accounts for the fact that the ray-centred coordinates are not 
Cartesian. 

Expression (7.3) forms a starting point for further approxi- 
mations. In practical implementations, a substitution similar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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to (4.6) can be useful. Finally, note that the weight function in 
the averaging integral (7.3) does not depend on whether one 
has passed any caustics. At caustics, the geometrical spreading 
vanishes, and after caustics, phase shifts that are multiples of 
exp(irr/2) can occur (Chapman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Drummond 1982; Choy & 
Richards 1975). These phase shifts are implicitly present in 
expression (7.1) because the square roots of the geometrical 
spreading are taken. However, the steps leading to the averaging 
integral (7.3) show that the factors exp(in/2) due to caustics 
cancel in the final result. This reflects the fact that a slow (fast) 
anomaly within the first Fresnel Lone causcs a later (earlier) 
arrival, regardless of whether that slow anomaly is sampled by 
a wave that has travelled through a caustic or not. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 MODIFICATIONS FOR THE 2-D CASE 

The theory of Sections 6 and 7 can be reformulated for the 
case of two spatial dimensions. The derivation is simpler than 
for the 3-D case because the curvature matrix is a 1 x 1 matrix; 
the determinant, the trace and the matrix itself are identical. 
However, there are some subtle differences in the derivation. 
In this section, the modification to the theory of Sections 6 
and 7 is shown in order to drive the corresponding results for 
the case of two dimensions. 

The general form of the Green's function is given by (6.2). 
The source parameter C follows by comparing this expression 
with eq. (3.3) when the point r, is located at an infinitesimal 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 from rz. This gives, for the ray-geometrical Green's 
function in two dimensions, 

The vector q of the transverse coordinate of the ray-centred 
coordinates is replaced by a single component q, and the 
Jacobian of the ray-centred coordinates is given by 

where ii, is the derivative perpendicular to the reference ray. 
Using these results one arrives, instead of at (6.12), at the 
following expression for the Born field: 

(8.3) 

The integral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(s) can be defined analogously to (6.13). The 
matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK are replaced by scalars, hence the trace and 
the determinant are equal. By analogy to (6.18) this gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 

4 = [ exp(iw(M'n + Mout)q2) d q  

where the convention zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4% = +im is used when M < 0. 
Taking the same steps as in Section 7, one obtains the 

equivalent of expression (6.23): 

This expression can be used to compute the first-order pertur- 
bation of the phase and amplitude of monochromatic signals 
using (2.7) and (2.8). 

For transient signals, an analysis similar to the one shown 
in Section 7 can be carried out. The equivalent expression of 
(7.1) for the 2-D case is given by 

J 

(8.6) 

Note that the main difference with (7.1) for the 3-D case is the 
weight factor [ u ( . s ~ ) / u ( . s ) ] ~ / ~  in (8.6) rather than u(so)/u(s) in 
(7.1). The integral can be simplified further by using the 
following identity: 

J ( s )J ( s ,  so)(Ki" + K O u t )  = J(so)u(s ) /u(~o)  (8.7) 

(see Appendix E for the derivation). Note the change in the 
power of u(s)/u(s,) compared with (7.2) for the 3-D case. 
Inserting this result in (8.6) gives 

This averaging integral, including the weight factor u~(s,)/u~(s), 
has exactly the same functional form as (7.3) for the 3-D case. 
This must be the case, because both in two and in three 
dimensions the phase shift of transient arrivals depends on the 
average of n(r)/u2(r) over the first Fresnel zone. Note that in 
contrast to this result, the corresponding integrals (7.1) and 
(8.6) for three and two dimensions respectively appear to have 
different integrands. 

9 DISCUSSION 

The averaging integrals derived here imply that, to first order, 
the phase shift and amplitude perturbations of transient wave 
arrivals due to a velocity perturbation are given by a weighted 
average of the velocity perturbation over the first Fresnel zone. 
This explains why tomographic reconstruction methods based 
on ray theory can be used even for media where perturbations 
are present on short length-scales that violate the requirements 
for the use of ray theory. The theory of this paper implies 
that the delay time is given by a weighted average of the vel- 
ocity perturbation over the first Fresnel zone. When one uses 
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ray theory for tomographic reconstructions, one effectively 
collapses the true weight function over the first Fresnel zone 
to a line integral along a geometric ray (the centre of the first 
Fresnel zone). Given the fact that the resolution in practical 
tomographic inversions is finite and that one often regularizes 
the inverse problem with a smoothness constraint, it is not 
surprising that collapsing the true weight function to a line 
does not significantly alter the reconstructed images since the 
reconstructed images are in general blurred versions of the 
true medium anyhow. 

One should, however, be careful in over-interpreting this 
result. The theory presented here only accounts for the first- 
order changes in the phase and amplitude of the wavefield due 
to velocity perturbations. This implies that ray bending effects 
and true multiple scattering phenomena are not accounted for 
by the present theory; these effects will lead to higher-order 
changes to the phase and amplitude. This implies that the 
conclusion that the phase and amplitude perturbations can to 
first order be expressed as weighted averages of the velocity 
perturbation over the first Fresnel zone is only useful in 
situations where these higher-order effects are of minor 
importance. Fortunately, in many applications such as solid 
earth tomography, the heterogeneity is indeed only of the 
order of a few per cent (Gudmundsson, Davies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Clayton 
1990). It is thus the weakness of the heterogeneity that justifies 
the use of ray-geometric tomographic inversions in applications 
such as solid earth tomography. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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APPENDIX A: DERIVATION OF THE 
RYTOV APPROXIMATION 

The Rytov approximation is obtained by writing the wavefield 
as 

4r)  = exp(S(r)) 3 ( '41) 

and deriving the perturbation of S(r). In this way, one can 
derive the first-order perturbation of the phase of the wavefield. 
This is achieved by inserting the transformation (A I )  in (2.1 ), 
which gives 

and by inserting the perturbation series 

S(r) = S,(r) + S,(r) + ..., (A3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS j  depends on the perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(r) in j t h  order. The 
contributions of zeroth and first orders in n(r) lead to the 
following expressions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w2 
V2S,(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 2(VS0 - VS,) = - ~ n(r) . ('45) 

u2 fr) 

Eq. (A4) is equivalent to the Helmholtz equation for the 
unperturbed problem, hence 

U O W  = exP(go(r))' ('46) 

Eq. (A5) can be solved using the following substitution: 

S,(r) =fW exp(-So(r)). (A7) 

This gives, using (A6), 

Using the unperturbed Green's function G(ro, r), this equation 
can be solved to give 

f k o )  = - r)n(r)uo(r) dV= udro ) ,  (A91 

where (2.5) has been used in the last identity. 

zeroth- and first-order terms in the series (A3) into account: 

U R ( ~ )  = exp(So(r) + Sl(r)).  

Using the expressions (A6), (A7) and (A9), one obtains relation 
(2.6) between the Rytov field and the Born field. 

The Rytov approximation is obtained by taking only the 

APPENDIX B: CORRESPONDENCE WITH 
RAY-GEOMETRICAL RESULTS 

In order to  establish the correspondence with ray theory, 
consider the special case of a perturbation that is smooth both 
o n  the scale of a wavelength and on the scale of the width of 
the first Fresnel zone. In that case the requirements for ray 
theory are satisfied, and the expressions (3.14) and (3.15) 
should lead to the correct ray-geometrical results. This is 
explicitly verified in this section. Under these smoothness 
conditions, the integrals in the numerator of (3.14) and (3.15) 
can be solved in the stationary-phase approximation; this 
entails a second-order Taylor expansion of the perturbation: 

n(x, z )  = n(0, Z) + X~,TI (X  = 0, z )  + - ~ ~ d , , n ( x  = 0, z ) .  
1 

2 (B1) 

Consider the special case of a plane incoming wave in two 
dimensions: the amplitude factor F in expression (3.7) has, to 
second order in x, the following expansion: 

The  last term arises from the variation of the geometrical 
spreading with the transverse distance x. The expansions (B1 ), 
(B2) and (3.8) can be used for the stationary-phase evaluation 
of the integrals in (3.10). The term proportional to x in (B l )  
does not contribute. Taking terms up to order x2 into account 

gives 

F(r, r,)n(r) eikoD('J dx 

Setting n = 1 gives 

Note that the term l/kolzo - z (  is due to the variation of the 
amplitude factor F with the transverse distance. Using these 
results one finds that in the far field (k,lzo - zI >> 1) 

m 

F(r, r,)n(r) eik(JD(r) dx 

F(r, ro) eikoD('J dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 
= n(x = 0, z) 

' (B5) 
i Izo - zl + - axxn(x = 0, z) ~ 

2 k0 

It may have appeared to be artificial to insert the amplitude 
factor F(r, ro) in the integral ( 3 . 9 k t h e  derivation of Section 3 
could have been carried out just as well by using F ( z ,  zo) in 
(3.9). However, in that case the second term in (B4) would 
have been absent, and the final result (B5) would have contained 
an additional spurious contribution -in(x = 0, z)/4kolzo - zI. 

Using (B5) in (3.14) and (3.15) gives for smooth 
perturbations 

c3q = - n(.u = 0, z )  dz ,  k2osd" 
6 In A = - - Izo - zlaxxn(x = 0, z )  dz. : sb" 
Eq. (B6) gives the first-order phase shift of the wave: it is equal 
to the phase shift for the 1-D case given by (2.11). This shows 
that also in a 2-D medium the phase shift is handled correctly 
to first order by the Rytov approximation, even when this 
phase shift is not small compared to a period. Eq. (B7) gives 
a focusing integral that accounts for the first-order amplitude 
changes due to ray-geometrical focusing. It is similar to the 
focusing integrals derived previously (Snieder 1988; Neele, 
VanDecar & Snieder 1993). 

APPENDIX C: THE TRAVELTIME 

TRANSIENTS 

The change z in the arrival time of narrow-hand transient 
arrivals can be determined by requiring that the relation (4.3) 
is satisfied in the least-squares sense, i.e. by minimizing 

PERTURBATION FOR NARROW-BAND 

M ( 7 , 5 )  = IuR(ro, t )  - 5uo(ro, t - 7)12 d t  (C1) s 
s 

as a function of z and 5. Because of Parseval's theorem this is 
equivalent to minimizing 

M(7 ,C)  2 2n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0  + A m  

O,] - Aw 

IuR(ro, w)  - (uo(r,, w )  eiwrlZ dw.  (C2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Wavejield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmoothing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Because of (4.1) one can use the fact that uR(ro,w)= 
uo(ro, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  exp(iwY(r,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa)), with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY defined in (4.2). Inserting this 
relation into (C2), and decomposing Y into its real and 
imaginary components (Y = Yr + iYi), gives 

wo + Aw 

wo - Aw 

luo(ro, co)121e-myl eimyr- 5 eiwrlZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo. 

(C3) 

s M(T, 5) 271 

This quantity is minimized with respect to t by requiring that 
dM/& = 0. This condition leads to 

wo + A u  

luo(ro, w)lzw e-Oyi sin w(7 - Yr(ro, w))  dw = 0 .  (C4) 

For a monochromatic signal with angular frequency wo, this 
condition is satisfied when T = Yr(wo). For a narrow-band 
signal, the quantity (T  - Yr) must be close to zero in order to 
satisfy (C4). A Taylor expansion of (C4) in w ( t  - Yr) gives 

s 0 0  - Aw 

wo + Aw 

luo(ro, w)12~fi2 e-wyl(t - Yr(ro, w ) )  dw = 0 .  (C5) s coo - A m  

For a narrow-band signal, the dependence of luo(ro, w)lz x 
w2 exp(-wYi) over the frequency band can be ignored, thus 

w o + A w  

[ T  - Yr(ro, a)] dw = 0 .  s wo - Aw 

This expression can also be written as (4.4). Note that in the 
analysis it is required that l /w(t  - Yr(ro, w )  11 << 1 over the 
frequency band of interest. This requirement is much less 
restrictive than the requirement / /  w t  11 << 1 that is used by 
Gudmundsson (1996). 

APPENDIX D:  DERIVATION OF EQUATION 

In order to derive eq. (7.2) consider the following quantity: 

(7 .2 )  

F(s)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE J ( s ) J ( s ,  so) det(Kn + KO"'). (Dl1 

This quantity can be shown to be equal to J(so)vz(s)/uz(so).  

To see this, let us consider the derivative aF/as. According 
to eq. (85) of CH, and using the relations K=uM and 
a/& = u(s)a/as, the geometrical spreading of the incident wave 
satisfies 

For J ( s ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso) a similar relation holds. However, for increasing 
values of s the distance to so decreases (see Fig. 8). This implies 
that in the differential equation for J ( s ,  so) the derivative a/as 
should be given a - sign; this gives 

tr KoUtJ(s, so) 

As shown in eq. (70) of CH, the curvature matrix Kin satisfies 

where V is the matrix of second derivatives perpendicular to 
the reference ray: I / l j  = a2u/aqiaqj. The matrix KO"' satisfies a 

similar equation, but with a/as replaced by -a/&: 
aK""' 1 au 1 

as as u 
- KO"' + (Kout)' + -V  . 

Using the identities (D4) and (DS), one can readily verify that 

a 2 aU 
as as -det(Kn + KO"') = - - det(Kn + KO"') 

+ (tr KO"' - tr Kn)  det(Kin + KO"'). (D6) 

Using (D2), (D3) and (D6) it follows from the definition ( D l )  
that 

a~ 2 a u  
- F ,  

as u as 

hence 

F ( s )  = C U Z ( S ) .  

The constant C follows by evaluating F ( s )  at s = so - q, a small 
distance q from so, and by taking the limit q + 0. In that limit 
J ( s )  + J(s,), J(s ,  so) -+ qz,  K T '  = h i j / q ,  so that 

Note that this value is obtained regardless of the value of the 
curvature matrix Kin. Using this result with (D8) and (DI)  one 
finds in the limit s -+ so (i.e. q + 0) that 

c = J(so)/v ' (so) .  (D9) 

With (D8) and (D l )  this leads to expression (7.2) 

APPENDIX E: DERIVATION OF EQUATION 

In order to derive (8.7) consider the following quantity: 

(8.7) 

F(s)  = J ( s ) J ( s ,  sO)(Kin + KO"'). (El)  

This quantity can be determined by evaluating its derivative 
with respect to s. Analogous to the expressions (D2)-(D6), 
the derivatives of the geometrical spreading and the wavefront 
curvature are given by 

From these expressions, it follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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812 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Snieder und A.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALomax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a F  1 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as 

E2), (E3) and (E6) it follows with (E l )  that 

- F .  (E7) respectively. 

factor of 2 in the first term of the right-hand side for the 
expressions (D6) and (E6) for the 3-D and the 2-D cases 

The solution of the differential equation (E7) can be found 
using the technique in the previous section. For a small distance 

from so, this leads to eq. (8.7) rather than (7.2) for the 
3-D case. 

au 

as 

Note that the only difference from the corresponding equation 
(D7)  for the 3-D case is a factor of 2 on the right-hand side 
of (D7). This difference arises because of the difference of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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