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Waveform Design for Wireless Power Transfer
Bruno Clerckx and Ekaterina Bayguzina

Abstract—Far-field Wireless Power Transfer (WPT) has at-
tracted significant attention in recent years. Despite the rapid
progress, the emphasis of the research community in the last
decade has remained largely concentrated on improving the
design of energy harvester (so-called rectenna) and has left
aside the effect of transmitter design. In this paper, we study
the design of transmit waveform so as to enhance the DC
power at the output of the rectenna. We derive a tractable
model of the non-linearity of the rectenna and compare with
a linear model conventionally used in the literature. We then
use those models to design novel multisine waveforms that are
adaptive to the channel state information (CSI). Interestingly,
while the linear model favours narrowband transmission with
all the power allocated to a single frequency, the non-linear
model favours a power allocation over multiple frequencies.
Through realistic simulations, waveforms designed based on the
non-linear model are shown to provide significant gains (in
terms of harvested DC power) over those designed based on
the linear model and over non-adaptive waveforms. We also
compute analytically the theoretical scaling laws of the harvested
energy for various waveforms as a function of the number of
sinewaves and transmit antennas. Those scaling laws highlight
the benefits of CSI knowledge at the transmitter in WPT and of a
WPT design based on a non-linear rectenna model over a linear
model. Results also motivate the study of a promising architecture
relying on large-scale multisine multi-antenna waveforms for
WPT. As a final note, results stress the importance of modeling
and accounting for the non-linearity of the rectenna in any system
design involving wireless power.

I. INTRODUCTION

W
IRELESS Power Transfer (WPT) via radio-frequency

radiation has a long history that is nowadays attracting

more and more attention. RF radiation has indeed become

a viable source for energy harvesting with clear applications

in Wireless Sensor Networks (WSN) and Internet of Things

(IoT) [2]. The major challenge facing far-field wireless power

designers is to find ways to increase the DC power level at the

output of the rectenna without increasing the transmit power,

and for devices located tens to hundreds of meters away from

the transmitter. To that end, the vast majority of the technical

efforts in the literature have been devoted to the design of

efficient rectennas, a.o. [2]–[4]. A rectenna harvests ambient

electromagnetic energy, then rectifies and filters it (using a

diode and a low pass filter). The recovered DC power then

either powers a low power device directly, or is stored in a

super capacitor for higher power low duty-cycle operation.
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Interestingly, the overall RF-to-DC conversion efficiency of

the rectenna is not only a function of its design but also of its

input waveform. However, the waveform design has received

less attention [5]–[7]. In [5], [6], a multisine signal excitation

is shown through analysis, simulations and measurements to

enhance the DC power and RF-to-DC conversion efficiency

over a single sinewave signal. In [7], various input waveforms

(OFDM, white noise, chaotic) are considered and experiments

show that waveforms with high peak to average power ratio

(PAPR) increase RF-to-DC conversion efficiency. Even though

those papers provide some useful insights into the impact

of waveform design onto WPT performance, there are many

limitations in the WPT waveform design literature: 1) there has

not been any formal tool to design and optimize waveforms

for WPT so far, 2) multipath fading (well known in wireless

communications) has been ignored despite its tremendous

impact on the received waveform at the input of the rectenna,

3) the Channel State Information (CSI) is assumed unknown

to the transmitter, 4) the transmitter is commonly equipped

with a single antenna and 5) a single rectenna is considered.

In this paper we address the important problem of waveform

design for WPT and tackle all the aforementioned limitations.

We focus on multisine waveforms due to their tractability and

usefulness in wireless communication systems. The contribu-

tions of the paper are summarized as follows.

First, we introduce a simple and tractable analytical model

of the rectenna non-linearity through the second and higher or-

der terms in the Taylor expansion of the diode characteristics.

Comparison is made with a linear model, first introduced in [8]

and nowadays popular in Simultaneous Wireless Information

and Power Transfer (SWIPT), e.g. [9] and subsequent works,

that only accounts for the second order term.

Second, assuming perfect CSI at the Transmitter (CSIT) can

be attained and making use of the rectenna model, we design

multi-antenna multisine WPT waveform for transmission over

a multipath channel. We formulate an optimization problem to

adaptively change the waveform weights as a function of the

CSI so as to maximize the rectenna output DC current. The

global optimal phases of the multisine waveform weights are

obtained in closed form while the amplitudes (not guaranteed

to be global optimal) result from a non-convex posynomial

maximization problem subject to a power constraint.

Third, the use of a linear or non-linear model of the rectenna

is shown to lead to very different WPT system design. While

the linear model favours a narrowband power allocation (over

a single frequency), the non-linear model favours a wideband

power allocation (over multiple frequencies).

Fourth, the waveform design is generalized to multi-

rectenna WPT and to account for PAPR constraints. The

design results from a signomial maximization problem.

Fifth, scaling laws of the harvested energy with various
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waveforms are analytically derived as a function of the number

of sinewaves N , the number of transmit antennas M and

the progagation conditions. We show for instance that in

frequency-flat and frequency-selective channels and for a fixed

transmit power constraint, the DC current at the output of

the rectifier theoretically increases linearly with N if the non-

linear model is used for waveform design. Interestingly, while

such a scaling law is achievable in frequency-flat channels

without CSIT, it is achievable in frequency-selective channels

only in the presence of CSIT. On the other hand, with a

design based on the linear model, the DC current increases

at most logarithmically with N . The results also motivate the

usefulness of transmitting multisine waveforms and acquiring

CSIT in WPT, especially in frequency-selective channels.

Sixth, the waveforms designed for WPT, adaptive to the

CSI and accounting for the rectifier non-linearity, are shown

through realistic circuit evaluations to provide significant gains

over state-of-the-art waveforms and over those optimized

based on the linear model of the rectifier. Moreover, while

the non-linear model is validated by circuit simulations, the

linear model is shown to be inaccurate and unable to predict

correctly the multisine waveform performance.

As a main takeaway observation, the results highlight the

importance of modeling and accounting for the non-linearity of

the rectenna in any design and evaluations of system involving

wireless power.

Organization: Section II introduces the system model and

section III models the rectenna. Section IV tackles the wave-

form optimization for a single and multiple rectennas, with

and without PAPR constraints. Section V analytically derives

the scaling laws of the harvested energy. Section VI evaluates

the performance and section VII concludes the work.

Notations: Bold lower and upper case letters stand for

vectors and matrices respectively. A symbol not in bold font

represents a scalar. ‖.‖ and ‖.‖F refer to the norm and

Frobenius norm of a vector and matrix, respectively. E {.}
is the expectation/averaging operator. .∗, .T and .H refer to

the conjugate, transpose and conjugate transpose of a matrix,

respectively. 1N and 0N refer to the N×1 vector with entries

equal to 1 and 0, respectively. λmax refers to the largest

eigenvalue of a matrix. log is in base e. |S| is the cardinality

of set S.
Nր≈ means approximately equal as N grows large.

II. WPT SYSTEM MODEL

Consider a transmitter with M antennas and N sinewaves

whose transmit signal at time t on antenna m is given by

xm(t) = ℜ
{

N−1
∑

n=0

wn,me
jwnt

}

(1)

with wn,m = sn,me
jφn,m where sn,m and φn,m refer to the

amplitude and phase of the nth sinewave at frequency wn on

transmit antenna m, respectively. We assume for simplicity

that the frequencies are evenly spaced, i.e. wn = w0 + n∆w

with ∆w = 2π∆f the frequency spacing. The magnitudes

and phases of the sinewaves can be collected into matrices

S and Φ. The (n,m) entry of S and Φ write as sn,m
and φn,m, respectively. The mth column of S is denoted as

sm. The transmitter is subject to a transmit power constraint
∑M
m=1 E

{

|xm|2
}

= 1
2 ‖S‖

2
F ≤ P . Stacking up all transmit

signals, we can write the transmit signal vector as x(t) =

ℜ
{
∑N−1

n=0 wne
jwnt

}

where wn =
[

wn,1 . . . wn,M
]T 1.

The multi-antenna transmitted sinewaves propagate through

a multipath channel, characterized by L paths whose delay,

amplitude, phase and direction of departure (chosen with

respect to the array axis) are respectively denoted as τl, αl, ξl
and θl, l = 1, . . . , L. We assume transmit antennas are closely

located so that τl, αl and ξl are the same for all transmit

antennas (assumption of a narrowband balanced array) [10].

Denoting ζn,m,l = ξl + ∆n,m,l with ∆n,m,l the phase shift

between the mth transmit antenna and the first one2, the signal

transmitted by antenna m and received at the single-antenna

receiver after multipath propagation can be written as

ym(t) =
N−1
∑

n=0

L−1
∑

l=0

sn,mαl cos(wn(t− τl) + ζn,m,l + φn,m)

=

N−1
∑

n=0

sn,mAn,m cos(wnt+ ψn,m) (2)

where the amplitude An,m and the phase ψn,m are such that

An,me
jψn,m = An,me

j(φn,m+ψ̄n,m) = ejφn,mhn,m (3)

with hn,m = An,me
jψ̄n,m =

∑L−1
l=0 αle

j(−wnτl+ζn,m,l) the

frequency response of the channel of antenna m at wn. The

vector channel is defined as hn =
[

hn,1 . . . hn,M
]

.

The total received signal comprises the sum of (2) over all

transmit antennas, namely

y(t) =

N−1
∑

n=0

Xn cos(wnt+ δn) = ℜ
{

N−1
∑

n=0

hnwne
jwnt

}

(4)

where Xne
jδn =

∑M
m=1 sn,mAn,me

jψn,m = hnwn.

III. ANALYTICAL MODEL OF THE RECTENNA

We derive a simple and tractable model of the rectenna

circuit and express the output DC current as a function of the

waveform parameters. The model relies on several assump-

tions made to make the model tractable and be able to optimize

the waveforms. Performance evaluations will be conducted in

Section VI using a more accurate circuit simulator.

A. Antenna Equivalent Circuit

Assume a rectenna whose input impedanceRin is connected

to a receiving antenna as in Fig 1. The signal y(t) impinging

on the antenna has an average power Pav = E
{

|y(t)|2
}

. Fol-

lowing [11], the antenna is assumed lossless and modeled as

an equivalent voltage source vs(t) in series with an impedance

Rant = 50Ω, as illustrated in Fig 1.

With perfect matching (Rin = Rant), the received

power Pav is completely transferred to the rectenna’s input

impedance such that Pav = E
{

|vin(t)|2
}

/Rin where vin(t)

1Note that wn and wn,m should not be confused with wn.
2For a Uniform Linear Array (ULA), ∆n,m,l = 2π(m − 1) d

λn
cos(θl)

where d is the inter-element spacing, λn the wavelength of the nth sinewave.
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Fig. 1. Antenna equivalent circuit (left) and a single diode rectifier (right).

is the rectifier’s input voltage. Under perfect matching, vin(t)
is half of vs(t) and both can be related to the received signal

y(t) as vs(t) = 2y(t)
√
Rant and vin(t) = y(t)

√
Rant, such

that Pav = E
{

|vin(t)|2
}

/Rin = E
{

|y(t)|2
}

Rant/Rin =

E
{

|y(t)|2
}

. We also assume that the antenna noise is too

small to be harvested so as no antenna noise term is added

and vin(t) is delivered as such to the rectifier.

B. Rectifier and Diode Non-Linearity

A rectifier is always made of a non-linear device (e.g. diode)

followed by a low pass filter (LPF) with load [3], [5], [6]. A

simplified rectifier circuit is illustrated in Fig 1. We assume

that its input impedance has been perfectly matched to the

antenna impedance.

The current id(t) flowing through an ideal diode (neglecting

its series resistance) relates to the voltage drop across the diode

vd(t) = vin(t) − vout(t) as id(t) = is
(

e
vd(t)

nvt − 1
)

where

is is the reverse bias saturation current, vt is the thermal

voltage, n is the ideality factor (assumed equal to 1.05). In

order to express the non-linearity of the diode, we take a

Taylor expansion of the exponential function around a fixed

operating voltage drop vd = a such that the diode current can

be equivalently written as

id(t) =

∞
∑

i=0

ki(vd(t)−a)i =
∞
∑

i=0

ki(vin(t)−vout(t)−a)i, (5)

where k0 = is
(

e
a

nvt − 1
)

and ki = is
e

a
nvt

i!(nvt)
i , i = 1, . . . ,∞.

The Taylor series expansion model is a small signal model

that is valid only for the non-linear operation region of the

diode. If the input voltage amplitude becomes large, the diode

will be driven into the large signal operation region where the

diode behaviour is dominated by the diode series resistance

and the I-V relationship is linear [12].

As such, it is not easy to infer from (5) the exact depen-

dencies of the diode current on the waveform parameters since

both vin(t) and vout(t) will depend and fluctuate over time as

a function of the waveform. Nevertheless, assuming a steady-

state response, an ideal rectifier would deliver a constant (over

time) output voltage vout whose level would depend on the

peaks of the input voltage vin(t) [11]. As a consequence,

the output current delivered to the load iout would also be

constant. In this ideal rectifier, since vout is a constant (we

drop the time dependency), a suitable choice of the operating

voltage drop a would be a = E {vin(t)− vout} = −vout since

E {vin(t)} =
√
RantE {y(t)} = 0. Under such assumptions,

(5) can simply be written as

id(t) =

∞
∑

i=0

kivin(t)
i =

∞
∑

i=0

kiR
i/2
anty(t)

i, (6)

which makes the dependency between the diode current id(t),
the received waveform y(t) and therefore the transmitted

waveforms {xm(t)} much more explicit.

The problem at hand will be the design of {xm(t)} such that

the output DC current is maximized. Under the ideal rectifier

assumption, the current delivered to the load in a steady-state

response is constant and given by iout = E {id(t)}, i.e. the

average over time of the current flowing through the diode.

In order to make the optimization tractable, we truncate the

Taylor expansion to the ntho order. We consider two models:

a non-linear model that truncates the Taylor expansion to the

ntho order but retains the fundamental non-linear behaviour of

the diode and a linear model that truncates to the second order

term and ignores the non-linearity.

C. A Non-Linear Model

After truncation, the output DC current approximates as

iout = E {id(t)} ≈
no
∑

i=0

kiR
i/2
antE

{

y(t)i
}

. (7)

Applying (4) to (7) involves the computation of y(t)i,
illustrated in (8), (9) and (10) for i = 2, 3, 4. In order to

simplify the notations, (8) makes use of w++ and δ++ to

denote wn0 +wn1 and δn0 + δn1 , respectively. Hence the sign

of {wn0 , wn1} and {δn0 , δn1} is reflected as a superscript.

Similarly, w+− = wn0 − wn1 and δ+− = δn0 − δn1 . In

(9) and (10), we use the same convention, e.g. w++++ =
wn0 +wn1 +wn2 +wn3 , w++−− = wn0 +wn1 −wn2 −wn3 ,

etc. Averaging over time, we get an approximation of the DC

component of the current at the output of the rectifier (and the

low-pass filter) with a multisine excitation over a multipath

channel as

iout ≈ k0 +
no
∑

i even,i≥2

kiR
i/2
antE

{

y(t)i
}

(11)

with E
{

y(t)2
}

, E
{

y(t)4
}

and E
{

y(t)6
}

detailed in (12),

(14) and (16), respectively (at the top of next page). There

is no odd (first, third, fifth, etc) order terms since E
{

y(t)i
}

=
E
{

y(t)i
}

= 0 for i odd. In (8) and (10), only terms with an

equal number of + and − lead to a DC component in (12) and

(14) following the assumption on evenly spaced frequencies.

We note that the second order term (12) is linear, with the

DC power being the sum of the power harvested on each

frequency. On the other hand, even terms with i ≥ 4 such

as (14) and (16) are responsible for the non-linear behaviour

of the diode since they are function of terms expressed as the

product of contributions from different frequencies.

D. A Linear Model

The linear model was first introduced a few decades ago

in [8] and recently became popular in the SWIPT literature

[9]. It could be argued that if y(t) is very small (i.e. for a
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y(t)2 =
1

2

∑

n0,n1

Xn0Xn1

[

cos(w++t+ δ++) + cos(w+−t+ δ+−)
]

, (8)

y(t)3 =
1

4

∑

n0,n1,n2

Xn0Xn1Xn2

[

cos(w+++t+ δ+++) + cos(w++−t+ δ++−) + cos(w+−+t+ δ+−+) + cos(w+−−t+ δ+−−)
]

, (9)

y(t)4 =
1

8

∑

n0,n1,
n2,n3

Xn0Xn1Xn2Xn3

[

cos(w++++t+ δ++++) + cos(w++−−t+ δ++−−) + cos(w+++−t+ δ+++−) + cos(w++−+t+ δ++−+)

+ cos(w+−++t+ δ+−++) + cos(w+−−−t+ δ+−−−) + cos(w+−+−t+ δ+−+−) + cos(w+−−+t+ δ+−−+)
]

. (10)

E
{

y(t)2
}

=
1

2

[

N−1
∑

n=0

X2
n

]

=
1

2

[

N−1
∑

n=0

|hnwn|
2

]

=
1

2





N−1
∑

n=0

∑

m0,m1

sn,m0sn,m1An,m0An,m1 cos (ψn,m0 − ψn,m1 )



 , (12)

E
{

y(t)4
}

=
3

8







∑

n0,n1,n2,n3
n0+n1=n2+n3

Xn0Xn1Xn2Xn3 cos(δn0 + δn1 − δn2 − δn3 )






=

3

8
ℜ











∑

n0,n1,n2,n3
n0+n1=n2+n3

hn0wn0hn1wn1 (hn2wn2 )
∗ (hn3wn3)

∗











,

(13)

=
3

8







∑

n0,n1,n2,n3
n0+n1=n2+n3

∑

m0,m1,
m2,m3

[

3
∏

j=0

snj ,mj
Anj ,mj

]

cos(ψn0 ,m0 + ψn1,m1 − ψn2,m2 − ψn3,m3 )






. (14)

E
{

y(t)6
}

=
5

16
ℜ











∑

n0,n1,n2,n3,n4,n5
n0+n1+n2=n3+n4+n5

hn0wn0hn1wn1hn2wn2 (hn3wn3)
∗ (hn4wn4 )

∗ (hn5wn5 )
∗











, (15)

=
5

16







∑

n0,n1,n2,n3,n4,n5
n0+n1+n2=n3+n4+n5

∑

m0,m1,m2,
m3,m4,m5

[

5
∏

j=0

snj ,mj
Anj ,mj

]

cos(ψn0 ,m0 + ψn1,m1 + ψn2,m2 − ψn3,m3 − ψn4,m4 − ψn5,m5 )






.

(16)

very low input power), the high order (> 2) terms would not

contribute much to iout. Hence, the linear model truncates

the Taylor expansion to the second order no = 2 such

that iout ≈ k0 + k2RantE
{

y(t)2
}

. It therefore completely

omits the non-linearity behavior of the rectifier. The linear

model is motivated by its simplicity rather than its accuracy.

Its accuracy is actually questionable in the RF literature

with experiments demonstrating that the non-linearity is an

essential property of the rectenna and that a second order

truncation of the Taylor expansion does not accurately model

the rectification behavior of the diode [13]. Nevertheless, the

loss incurred by using a linear vs a non-linear model in the

WPT waveform and system design has never been addressed

so far.

In the next section, we derive tools to design waveforms

under the assumption of a linear and non-linear model.

IV. WPT WAVEFORM OPTIMIZATION

Assuming the CSI (in the form of frequency response hn,m)

is known to the transmitter, we aim at finding the optimal set

of amplitudes and phases S,Φ that maximizes iout, i.e.

max
S,Φ

iout(S,Φ) subject to
1

2
‖S‖2F ≤ P. (17)

From the previous section, we however note that the rectifier

characteristics ki are functions of a. Since we chose a =
−vout = −RLiout in the Taylor expansion, ki are therefore

a function of the output DC current. Making this dependence

explicit, we can write iout from (11) as

iout ≈ k0 (iout) +
no
∑

i even,i≥2

ki (iout)R
i/2
antE

{

y(t)i
}

. (18)

Soving Problem (17) with iout given in (18) may seem

challenging because of the occurence of iout on both sides

of the equality in (18). Denoting k′0 = e
a

nvt = e
−RLiout

nvt and

k0 = is (k
′
0 − 1), we write (18) equivalently as

e
RLiout

nvt (iout + is) ≈ is +
no
∑

i even,i≥2

ki
k′0
R
i/2
antE

{

y(t)i
}

. (19)

Interestingly, this leads to an expression where the r.h.s of

(19) is independent of a (and iout) since ki/k
′
0 = is

i!(nvt)
i ,

with i even and i ≥ 2. The l.h.s of (19) is on the other

hand a monotonic increasing function of iout. Hence the

maximization of iout is equivalent to maximizing the r.h.s of

(19), which is equivalent to maximizing the quantity

zDC(S,Φ) =

no
∑

i even,i≥2

kiR
i/2
antE

{

y(t)i
}

(20)

since is is a constant. In (20), we define ki =
is

i!(nvt)
i with a

slight abuse of notation. Assuming is = 5µA, a diode ideality

factor n = 1.05 and vt = 25.86mV , typical values of those

parameters for second and fourth order are given by k2 =
0.0034 and k4 = 0.3829 (and will be used as such in any
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evaluation in the sequel). Hence, maxS,Φ iout is equivalent to

maxS,Φ zDC and problem (17) can equivalently be written as

max
S,Φ

zDC(S,Φ) subject to
1

2
‖S‖2F ≤ P. (21)

A. Linear Model-based Design

With the linear model, problem (21) is equivalent to

max
wn

N−1
∑

n=0

|hnwn|2 s.t.
1

2

[

N−1
∑

n=0

‖wn‖2
]

≤ P. (22)

The solution simply consists in performing a matched beam-

former on a single sinewave, namely the one corresponding to

the strongest channel n̄ = argmaxi ‖hi‖2. Hence,

w
⋆
n =

{ √
2P h

H
n / ‖hn‖ , n = n̄,

0, n 6= n̄.
(23)

We denote solution (23) as the adaptive single sinewave (ASS)

strategy. With such a linear model, a single-sine waveform is

favoured over a multisine waveform. Such a strategy has also

appeared in the SWIPT literature with OFDM transmission,

e.g. [14], [15].

Remark 1: For the extreme case where the channel is

perfectly flat magnitude-wise, i.e. ‖hn‖ = ‖h‖ ∀n, ASS is not

the only solution to problem (22). Allocating power uniformly

over any non-empty subset S of the N sinewaves, i.e.

w
⋆
n =

{ √

2P
|S| h

H
n / ‖h‖ , n ∈ S,

0, n /∈ S,
(24)

leads to the same objective value. If the channel is not perfectly

flat, ASS would be the unique solution to problem (22).

B. Towards a Non-Linear Model-based Design

To get some insights into the necessity to account for the

non-linear terms (e.g. 4th,6th) and into the impact of multipath

on the waveform design, let us consider a toy example with the

simplest multisine: N = 2, M = 1. We also assume no = 4.

For readibility, we drop the antenna index and assume real

frequency domain channel hn. Since ψ̄n = 0, let us choose

φn = 0 so that ψn = 0 (and all cos(.) = 1) in (12) and (14)

∀n,m. Since for N = 2, indices n0, n1, n2, n3 in (14) can

take either value 0 or 1, we can easily identify cases for which

n0 + n1 = n2 + n3 and then write from (20)

zDC(s0, s1) = k̃2
(

s20A
2
0 + s21A

2
1

)

+ k̃4

[

(

s20A
2
0 + s21A

2
1

)2
+ 2s20s

2
1A

2
0A

2
1

]

(25)

where k̃2 = k2Rant/2 and k̃4 = 3k4R
2
ant/8. From (25), we

note that zDC(s0, s1) is a function of the term s20A
2
0 + s21A

2
1,

whose maximization subject to the sum power constraint s20+
s21 ≤ 2P would lead to the ASS strategy (23), i.e. allocate

all the power to sinewave 1 if A1 > A0 and to sinewave

0 otherwise. However the presence of the term 2s20s
2
1A

2
0A

2
1

suggests that such a single-sinewave strategy is in general sub-

optimal for the maximization of zDC . In problem (21) with

s
0

2
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Fig. 2. zDC as a function of A1 and contours of zDC as a function of s2
0

and s2
1

. The straight line refers to the power constraint and the circle to the
optimal power allocation strategy. P = −40dBW .

N = 2 and M = 1, we note that equality 1
2 ‖S‖

2
F = P is

satisfied at optimality and we write the Lagrangian as

L = k̃2
(

s20A
2
0 + s21A

2
1

)

+ k̃4
(

s40A
4
0 + s41A

4
1 + 4s20s

2
1A

2
0A

2
1

)

+ λ
(

s20 + s21 − 2P
)

. (26)

Differentiating w.r.t. s0, s1, λ and equating to 0, we find three

valid stationary points (s20, s
2
1) (such that 0 ≤ s20 ≤ 2P and

0 ≤ s21 ≤ 2P ) given by (2P, 0), (0, 2P ) and (s⋆20 , s
⋆2
1 ) where

s⋆20 =
8P k̃4A

2
0A

2
1 + k̃2A

2
0 − 4P k̃4A

4
1 − k̃2A2

1

8k̃4A2
0A

2
1 − 2k̃4A4

0 − 2k̃4A4
1

, (27)

s⋆21 = 2P − s⋆20 . (28)

For given A0, A1, the global optimum strategy is given by

one of those three stationary points. The maximum achievable

z⋆DC = max
{

zDC(
√
2P, 0), zDC(0,

√
2P ), zDC(s

⋆
0, s

⋆
1)
}

.

The first two points correspond to the ASS strategy, allocating

transmit power to sinewave 0 and 1, respectively. Fig 2

illustrates zDC as a function of A1 for A0 = 1 with three

strategies: single-sinewave transmission (i.e. s0 = 0 and

s1 = 0) and the optimal transmission leading to z⋆DC . The

contours of zDC as a function of s20 and s21 are also illustrated

for A0 = 1 and A1 = 0.75, 1, 1.15. We note that the ASS

strategy is optimal if A0 is sufficiently larger than A1 or

inversely. However, when the channel is frequency flat, i.e.

A1 ≈ A0, the optimal strategy would allocate power to the

two sinewaves and the ASS strategy is suboptimal.

The results, though based on a very simple scenario, high-

light that depending on the CSI, the transmission waveform

should be adapted if we aim at maximizing the output DC

power. Moreover, it also shows the benefits of allocating power

over multiple sinewaves for some channel states, which is in

sharp contrast with the ASS strategy (23) originating from

the linear model. More generally, looking at (14), the ASS

strategy would unlikely be a right strategy if we account

for the non-linearity of the diode, due to the presence of
∏3
j=0 snj ,mj

Anj ,mj
in the fourth order term.

Remark 2: It should be noted that RF experiments in [5]–

[7] have shown the benefits of allocating power uniformly

across multiple sinewaves. The above discussion highlights
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theoretically the benefits of allocating power over multiple

sinewaves for some channel states and therefore backs up

the experimental results. On the other hand, the linear model

motivates the use of a single sinewave (ASS) for all channel

states, and therefore contradicts the RF experiment results.

Deriving a formal algorithm that can generate optimized

waveforms for any multipath configuration and any N , M ,

no so as to maximize the DC output current is a non-trivial

problem that is discussed in the next section.

C. Non-Linear Model-based Design

We aim at deriving a waveform design strategy that is

general enough to cope with any Taylor expansion order no
3.

The optimal phases Φ can be obtained first in closed form and

the optimal amplitudes S can then be computed numerically.

To maximize zDC(S,Φ), we should guaranteee all cos(.)
to be equal to 1 in (12), (14) and (16). This can be satisfied by

choosing ψn,m = 0 ∀n,m (and therefore δn = 0 ∀n), which

implies from (3) to choose the optimal sinewave phases as

φ⋆n,m = −ψ̄n,m. (29)

Φ
⋆ is obtained by collecting φ⋆n,m ∀n,m into matrix. With

such a phase choice, all sinewaves in (4) are in-phase

at the rectenna input. Moreover, ψn,m = 0 and Xn =
∑M

m=1 sn,mAn,m such that zDC(S,Φ
⋆) is simply obtained

from (20) with all cos(.) replaced by 1 in (12), (14) and (16).

Recall from [17] that a monomial is defined as the function

g : RN++ → R : g(x) = cxa11 x
a2
2 . . . xaNN where c > 0 and

ai ∈ R. A sum of K monomials is called a posynomial

and can be written as f(x) =
∑K
k=1 gk(x) with gk(x) =

ckx
a1k
1 xa2k2 . . . xaNk

N where ck > 0. As we can see from (12),

(14) and (16), zDC(S,Φ
⋆) is a posynomial, and so it is for

any order no in the Taylor expansion. The higher the order,

the larger the number of terms in the posynomial.

The optimization problem becomes maxS zDC(S,Φ
⋆) sub-

ject to 1
2 ‖S‖

2
F ≤ P . It therefore consists in maximizing

a posynomial subject to a power constraint (which itself is

written as a posynomial). This problem is not a standard

Geometric Program (GP) but it can be transformed to an

equivalent problem by introducing an auxiliary variable t0

min
S,t0

1/t0 (30)

subject to
1

2
‖S‖2F ≤ P, (31)

zDC(S,Φ
⋆)/t0 ≥ 1. (32)

This is known as a Reverse Geometric Program due to

the minimization of a posynomial subject to upper and

lower bounds inequality constraints [17], [18]. Note that

zDC(S,Φ
⋆)/t0 ≥ 1 is equivalent to t0/zDC(S,Φ

⋆) ≤
1. However 1/zDC(S,Φ

⋆) is not a posynomial, therefore

preventing the use of standard GP tools. The idea is to

lower bound zDC(S,Φ
⋆) by a monomial z̄DC(S), i.e. upper

bound 1/zDC(S,Φ
⋆) by the monomial 1/z̄DC(S) (since

the inverse of a monomial is still a monomial) [18]. Let

{gk(S,Φ⋆)} be the monomial terms in the posynomial

3We display terms for no ≤ 6 but the derived algorithm works for any no.

zDC(S,Φ
⋆) =

∑K
k=1 gk(S,Φ

⋆). The choice of the lower

bound relies on the fact that an arithmetic mean (AM)

is greater or equal to the geometric mean (GM). Hence,

zDC(S,Φ
⋆) ≥

∏K
k=1

(

gk(S,Φ
⋆)

γk

)γk
= z̄DC(S), where γk ≥ 0

and
∑K
k=1 γk = 1. Since

1/zDC(S,Φ
⋆) ≤ 1/z̄DC(S), (33)

we can replace (in a conservative way) in-

equality t0/zDC(S,Φ
⋆) ≤ 1 by t0/z̄DC(S) =

t0
∏K
k=1 (gk(S,Φ

⋆)/γk)
−γk ≤ 1. For a given choice of

{γk}, problem (30)-(32) is now replaced by the standard GP

min
S,t0

1/t0 (34)

subject to
1

2
‖S‖2F ≤ P, (35)

t0

K
∏

k=1

(

gk(S,Φ
⋆)

γk

)−γk

≤ 1, (36)

that can be solved using existing software, e.g. CVX [20].

Note that the tightness of the upper bound (33) heav-

ily depends on the choice of {γk}. Following [17], [19],

an iterative procedure can be used to tighten the bound,

where at each iteration the standard GP (34)-(36) is solved

for an updated set of {γk}. Assuming a feasible set of

magnitude S
(i−1) at iteration i − 1, compute at iteration i

γk = gk(S
(i−1),Φ⋆)/zDC(S

(i−1),Φ⋆) ∀k and solve problem

(34)-(36) to obtain S
(i). Repeat the iterations till convergence.

Algorithm 1 summarizes the procedure.

Algorithm 1 WPT Waveform

1: Initialize: i← 0, Φ⋆ in (29), S, z
(0)
DC = 0

2: repeat

3: i← i+ 1, S̈← S

4: γk ← gk(S̈,Φ
⋆)/zDC(S̈,Φ

⋆), k = 1, . . . ,K
5: S← argmin (34)− (36)

6: z
(i)
DC ← zDC(S,Φ

⋆)

7: until

∣

∣

∣
z
(i)
DC − z

(i−1)
DC

∣

∣

∣
< ǫ or i = imax

Note that the successive approximation method used in the

Algorithm 1 is also known as a sequential convex optimization

or inner approximation method [21]. It cannot guarantee to

converge to the global solution of the original problem, but

only to yield a point fulfilling the KKT conditions [21], [22].

However, it has been shown in [17] by simulation that such

an iterative algorithm often converges to the global optimum.

Remark 3: Non-linearity is obviously meaningful only for

N ≥ 2. For N = 1, both linear and non-linear designs boil

down to the simple matched beamformer w =
√
2PhH/ ‖h‖.

D. Decoupling Space and Frequency Domains

When M > 1, previous section derives a general method-

ology to design waveform weights jointly across space and

frequency. It is worth wondering whether we can decouple the

design of the spatial and frequency domain weights without

impacting performance. The optimal phases in (29) are those
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of a matched beamformer. Looking at (12), (13) and (15), the

optimum weight vector wn that maximizes the 2nd, 4th and

6th order terms is actually a matched beamformer of the form

wn = snh
H
n / ‖hn‖ (37)

such that, from (4), y(t) =
∑N−1
n=0 ‖hn‖ sn cos (wnt) =

ℜ
{

∑N−1
n=0 ‖hn‖ snejwnt

}

. Hence, with (37), the multi-

antenna multi-sine WPT weight optimization is converted into

an effective single antenna multi-sine WPT optimization with

the effective channel gain on frequency n given by ‖hn‖ and

the amplitude of the nth sinewave given by sn (subject to
∑N−1

n=0 s
2
n = 2P ). The optimum magnitude sn in (37) can now

be obtained by using the posynomial maximization method-

ology of Section IV-C. Namely, plugging (37) into (12), (13)

and (15), we get (38). zDC (s) =
∑no

i even,i≥2 kiR
i/2
antE

{

y(t)i
}

is now only a function of the N -dimensional vector s =
[

s0, . . . , sN−1

]

. Following the posynomial maximization

methodology, we can write zDC(s) =
∑K
k=1 gk(s), apply the

AM-GM inequality and write the standard GP problem

min
s,t0

1/t0 (39)

subject to
1

2
‖s‖2 ≤ P, (40)

t0

K
∏

k=1

(

gk(s)

γk

)−γk

≤ 1. (41)

Algorithm 2 summarizes the design methodology with spatial

and frequency domain decoupling. Such an approach would

Algorithm 2 WPT Waveform with Decoupling

1: Initialize: i← 0, wn in (37), s, z
(0)
DC = 0

2: repeat

3: i← i+ 1, s̈← s

4: γk ← gk(s̈)/zDC(s̈), k = 1, . . . ,K
5: s← argmin (39)− (41)

6: z
(i)
DC ← zDC(s)

7: until

∣

∣

∣
z
(i)
DC − z

(i−1)
DC

∣

∣

∣
< ǫ or i = imax

lead to the same performance as the joint space-frequency

design of Algorithm 1 but would significantly reduce the

computational complexity since only a N -dimensional vector

s is to be optimized numerically, compared to the N × M
matrix S of Algorithm 1.

E. PAPR Constraints

In practice, it may be useful to constrain the PAPR of

the transmitted waveform in order to increase the efficiency

of the power amplifier. From (1), the PAPR on antenna m

can be defined as PAPRm = maxt|xm(t)|2

E{|xm(t)|2} = maxt|xm(t)|2

1
2‖sm‖2 .

The PAPR constraint on antenna m writes as PAPRm ≤ η.

Problem (17) is now subject to an extra constraint

max
S,Φ

iout(S,Φ) (42)

subject to
1

2
‖S‖2F ≤ P, (43)

PAPRm ≤ η, ∀m. (44)

In the sequel, we will assume the use of the phase Φ
⋆ in (29)

and optimize the amplitude S.

By oversampling the transmit signals at tq = q T
NOs

for

q = 0, . . . , NOs − 1 with T = 1/∆f = 2π
∆w

and Os the

oversampling factor, the PAPR constraint can be rewritten as

|xm(tq)|2 ≤ 1
2η ‖sm‖

2
, ∀q = 0, . . . , NOs − 1 for sufficiently

large Os. Assuming the phase Φ
⋆ in (29), we can write

|xm(tq)|2 =
∑

n0,n1

sn0,msn1,m

cos
(

wn0tq + φ⋆n0,m

)

cos
(

wn1tq + φ⋆n1,m

)

. (45)

The quantity |xm(tq)|2 is not a posynomial anymore as some

of the coefficients ck are negative. |xm(tq)|2 is now written as

a signomial, i.e. the sum of monomials whose coefficients ck
can be either positive or negative, f(x) = f1(x)−f2(x) where

fj(x) =
∑Kj

k=1 gjk(x) and gjk(x) = cjkx
a1jk
1 x

a2jk
2 . . . x

aNjk

N

with cjk > 0. Let us write the signomial |xm(tq)|2 =
fmq(S,Φ

⋆) = fmq1(S,Φ
⋆) − fmq2(S,Φ

⋆). We therefore

have the inequality fmq1(S,Φ
⋆) − fmq2(S,Φ⋆) ≤ 1

2η ‖sm‖
2

or equivalently
fmq1(S,Φ

⋆)
1
2η‖sm‖2+fmq2(S,Φ⋆)

≤ 1. This is a standard

sign inequality but the quotient of posynomials is not a

posynomial. Writing the denominator as a sum of monomi-

als, 1
2η ‖sm‖

2
+ fmq2(S,Φ

⋆) =
∑Kmq2

k=1 gmq2k(S,Φ
⋆), we

can perform a single condensation and replace the original

inequality by the following inequality

fmq1(S,Φ
⋆)

Kmq2
∏

k=1

(

gmq2k(S,Φ
⋆)

γmq2k

)−γmq2k

≤ 1 (46)

with γmq2k ≥ 0 and
∑Kmq2

k=1 γmq2k = 1. For a given choice

of {γk, γmq2k} and assuming Φ
⋆, the optimization problem

(42)-(44) is now replaced by the standard GP

min
S,t0

1/t0 (47)

s.t.
1

2
‖S‖2F ≤ P, (48)

t0

K
∏

k=1

(

gk(S,Φ
⋆)

γk

)−γk

≤ 1, (49)

fmq1(S,Φ
⋆)

Kmq2
∏

k=1

(

gmq2k
γmq2k

)−γmq2k

≤ 1, ∀m, q (50)

Problem (47)-(50) can now be solved at each iteration of an

iterative procedure where {γk, γmq2k} are updated. The whole

optimization procedure is summarized in Algorithm 3.

Note that for M > 1, decoupling the space and frequency

domains (similarly to Section IV-D) would lead to a subop-

timal design compared to the joint space-frequency design of

Algorithm 3 in the presence of PAPR constraints.

F. Multiple Rectennas

Consider now the extension to U rectennas. Those rectennas

could either belong to a single user (i.e. point-to-point MIMO

WPT) or spread across multiple users (i.e. MU-MISO WPT).

In this multiple rectenna setup, the energy harvested by a given

rectenna zDC,q in general depends on the energy harvested by



8

E
{

y(t)2
}

=
1

2

[

N−1
∑

n=0

‖hn‖
2 s2n

]

, E
{

y(t)4
}

=
3

8







∑

n0,n1,n2,n3
n0+n1=n2+n3

[

3
∏

j=0

snj

∥

∥hnj

∥

∥

]






, E

{

y(t)6
}

=
5

16







∑

n0,n1,n2,n3,n4,n5
n0+n1+n2=n3+n4+n5

[

5
∏

j=0

snj

∥

∥hnj

∥

∥

]







(38)

Algorithm 3 WPT Waveform with PAPR Constraints

1: Initialize: i← 0, Φ⋆ in (29), S, z
(0)
DC = 0

2: repeat

3: i← i+ 1, S̈← S

4: γk ← gk(S̈,Φ
⋆)/zDC(S̈,Φ

⋆), k = 1, . . . ,K
5: γmq2k ← gmq2k(S̈,Φ

⋆)/
(

1
2η ‖s̈m‖

2 + fmq2(S̈,Φ
⋆)
)

,

m = 1, . . . ,M , q = 0, . . . , NOs − 1, k = 1, . . . ,Kmq2

6: S← argmin (47)− (50)

7: z
(i)
DC ← zDC(S,Φ

⋆)

8: until

∣

∣

∣
z
(i)
DC − z

(i−1)
DC

∣

∣

∣
< ǫ or i = imax

the other rectennas zDC,p, p 6= q. Indeed, a given waveform

may be suitable for a given rectenna but found inefficient for

another rectenna. Hence, there exists a trade-off between the

energy harvested by the different rectennas. The energy region

ZDC formulates this trade-off by expressing the set of all

rectenna harvested energy (zDC,1, . . . , zDC,U ) that are simul-

taneously achievable. The boundary of the energy region can

be derived by considering a weighted sum of DC component

at each user where weights vu, u = 1, . . . , U , account for the

multi-rectenna fairness4.

The optimization problem now consists in finding the op-

timal set of amplitudes and phases (across frequencies) that

maximizes the weighted sum of DC components zDC,u, i.e.

max
S,Φ

ZDC(S,Φ) =
U
∑

u=1

vuzDC,u(S,Φ) s.t.
1

2
‖S‖2F ≤ P.

(51)

From Section II, after adding the index u to any user specific

variable, we define Xn,ue
jδn,u =

∑M
m=1 sn,mAn,m,ue

jψn,m,u

and An,m,ue
jψn,m,u = ejφn,mhn,m,u with hn,m,u =

An,m,ue
jψ̄n,m,u the frequency response of the channel of

rectenna u on transmit antenna m at wn.

1) Linear Model: The ASS strategy (23) is generalized as

max
wn

N−1
∑

n=0

∥

∥H̃nwn

∥

∥

2
s.t.

1

2

[

N−1
∑

n=0

‖wn‖2
]

≤ P (52)

with H̃n =
[

h̃
T
n,1 . . . h̃

T
n,U

]T
and h̃n,u =

√
k2vuhn,u.

The solution consists in transmitting on a single sinewave n̄ =
argmaxi λmax

(

H̃
H
i H̃i

)

and along the dominant right singular

vector of H̃n̄. Hence,

w
⋆
n =

{ √
2P vmax,n, n = n̄,

0, n 6= n̄,
(53)

4In the MIMO WPT, fairness among rectennas is less of an issue and a
sum of DC components would be more meaningful. Weights can then simply
be taken equal to 1. Another interesting architecture for the MIMO WPT (left
for future studies) is such that the signals at different antennas are combined
in the RF domain before being conveyed to a single rectifier.

where vmax,n is the dominant right singular vector of H̃n.

Solution (53) naturally boils down to (23) for U = 1.

2) Non-Linear Model: Unfortunately, guaranteeing

ψn,m,u = 0 ∀n,m, u is not possible (NMU constraints and

NM variables only). Hence, for a given choice of phase

matrix Φ = Φ
′, some cosine functions in (12), (14) and (16)

are positive while others are negative. ZDC(S,Φ
′) is now a

signomial since some of the coefficients ck are negative.

Similarly to the single rectenna scenario, we can convert the

maximization problem into a minimization by introducing the

auxiliary variable t0. The problem writes as (30)-(32) with (32)

replaced by ZDC(S,Φ
′)/t0 ≥ 1. Condition ZDC(S,Φ

′) =
f1(S,Φ

′)− f2(S,Φ′) ≥ t0 can be replaced by

t0 + f2(S,Φ
′)

f̄1(S,Φ′)
= (t0 + f2(S,Φ

′))

K1
∏

k=1

(

g1k
γ1k

)−γ1k

≤ 1

(54)

where γ1k ≥ 0,
∑K1

k=1 γ1k = 1 and {g1k} are the monomial

terms in the posynomial f1(S,Φ
′) =

∑K1

k=1 g1k(S,Φ
′). For a

given choice of {γ1k}, we now get the standard GP

min
S,t0

1/t0 (55)

s.t.
1

2
‖S‖2F ≤ P, (56)

(t0 + f2(S,Φ
′))

K1
∏

k=1

(

g1k(S,Φ
′)

γ1k

)−γ1k

≤ 1. (57)

Similarly to the single rectenna optimization, Problem (55)-

(57) can now be solved at each iteration of an iterative

procedure where {γ1k} are updated. Note that Problem (55)-

(57) boils down to Problem (34)-(36) if f2 = 0. The whole

optimization procedure is summarized in Algorithm 4.

Algorithm 4 WPT Waveform with Multiple Rectennas

1: Initialize: i← 0, Φ′, S, Z
(0)
DC = 0

2: repeat

3: i← i+ 1, S̈← S

4: γ1k ← g1k(S̈,Φ
′)/f1(S̈,Φ

′), k = 1, . . . ,K1

5: S← argmin (55)− (57)

6: Z
(i)
DC ← ZDC(S,Φ

′)

7: until

∣

∣

∣
Z

(i)
DC − Z

(i−1)
DC

∣

∣

∣
< ǫ or i = imax

We note that the optimum phases for the single rectenna

scenario in (29) and the linear model optimization in (53) are

those of a dominant eigenmode transmission (boiling down to

a simple transmit matched filter for the single rectenna case)

[10]. Motivated by this observation, a good choice for the

phase Φ
′ in Algorithm 4 (even though there is no claim of

optimality) consists in choosing the (n,m) entries of Φ
′ as
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φ′n,m = phase (vmax,n,m) where vmax,n,m is the mth entry

of the dominant right singular vector vmax,n, ∀n,m.

G. CSI Acquisition at the Transmitter

The proposed waveform design relies on CSI (in the form

of frequency response hn,m) knowledge at the transmitter.

Inspired by communication systems in a TDD mode, we

could envision a WPT architecture equipped with a pilot

transmission (on the uplink) phase and a channel estimator

at the power base station. Alternatively, approaches relying on

CSI feedback, along the lines of e.g. [23], could be exploited.

Note that since the linear and nonlinear models give very

different waveform strategies (the first one favouring a single

sinewave while the second one favouring multiple sinewaves),

the CSI feedback/estimation mechanisms and requirements

depend on the adopted model.

We may be tempted to think that the design requires knowl-

edge of the rectifier characteristics since the parameters ki are

function of is and vt. However, is is just a mutiplicative factor

affecting all terms equally in zDC and therefore has no impact

of the design of the waveform. vt appears in the denominator

of ki through the term vit. However vt is a constant irrespective

of the rectifier design. Hence the waveform design at the

transmitter does not require any feedback of information about

the rectifier characteristics.

V. SCALING LAWS OF WPT

In order to further motivate the usefulness of multisine

waveform optimization and in order to get some insight into

the fundamental limits of WPT, we want to quantify how zDC
and ZDC scale as a function ofN , M and U . For simplicity we

truncate the Taylor expansion to the fourth order and there-

fore consider the metric zDC(S,Φ) = k2RantE
{

y(t)2
}

+
k4R

2
antE

{

y(t)4
}

. The scaling laws also draw insights into

the usefulness of CSIT for WPT. We consider frequency-flat

and frequency-selective channels.

We assume that the complex channel gains αle
jξl are mod-

eled as independent circularly symmetric complex Gaussian

random variables. αl are therefore independent Rayleigh dis-

tributed such that α2
l ∼ EXPO(λl) with 1/λl = βl = E

{

α2
l

}

.

The impulse responses have a constant average received power

normalized to 1 such that
∑L−1
l=0 βl = 1.

A. Frequency-Flat Channels

We first assume a single transmit antenna (and drop the

antenna index) and a single rectenna (U = 1) and consider a

frequency flat channel with ψ̄n = ψ̄ and An = A ∀n. This is

met when the bandwidth of the multisine waveform (N−1)∆f

is much smaller than the channel coherence bandwidth.

Making use of (12), (14), (16) and (20), it is clear that

choosing Φ
⋆ = 0N is optimal for any A and ψ̄. Recalling the

power constraint
∑

n s
2
n = 2P , we can then write

zDC (S,Φ⋆) = k2A
2RantP +

3k4
8
A4R2

antF (58)

where

F =
∑

n0,n1,n2,n3
n0+n1=n2+n3

sn0sn1sn2sn3 . (59)

Finding a closed form solution of the optimal S is chal-

lenging. We can lower bound F as F ≥ ∑N−1
n=0 s

4
n +

2
∑

n0,n1
n0 6=n1

s2n0
s2n1

= 4P 2 + 2
∑

n0,n1
n0<n1

s2n0
s2n1

. Subject to

the power constraint, the lower bound is maximized by

allocating power uniformly across sinewaves, i.e. sn =√
2P/
√
N such that S =

√
2P/
√
N1N . We will denote

as UP this non-adaptive waveform strategy characterized by

S =
√
2P/
√
N1N and Φ = 0N . UP is suboptimal for N > 2

and optimal for N = 2 (as already found in Section 2 when

A0 = A1), for which the inequality is replaced by an equality.

Nevertheless for N > 2, UP almost reaches the optimum

obtained with Algorithm 1, as confirmed in Section VI.

The value of zDC with the UP strategy, simply denoted as

zDC,UP , can be thought of as a lower bound on zDC(S
⋆,Φ⋆)

(with optimal amplitude and phase strategy) in frequency-flat

channels. Plugging sn =
√
2P/
√
N ∀n into (58), we get

zDC,UP = k2A
2RantP + k4A

4R2
ant

2N2 + 1

2N
P 2 (60)

since that there are N
(

2N2 + 1
)

/3 terms in the sum of (59).

In frequency-flat channels, A ≈ ∑

l αle
jξl . Taking the

expectation over A, z̄DC,UP = E {zDC,UP } is written as

z̄DC,UP = k2RantP + 2k4R
2
ant

2N2 + 1

2N
P 2

Nր≈ k2RantP + 2k4R
2
antNP

2 (61)

since E
{

A2
}

=
∑

l βl = 1 and E
{

A4
}

= 2
∑

l β
2
l +

2
∑

l

∑

l′ 6=l βlβl′ = 2 by making use of the moments of an

exponential distribution (E
{

α4
l

}

= 2β2
l ).

Equations (60) and (61) suggest that zDC,UP and z̄DC,UP
(and therefore zDC(S

⋆,Φ⋆)) linearly increase with N in

frequency-flat channels. This is remarkable as it is achieved

with a fixed waveform (non-adaptive to the CSI) and therefore

without CSI feedback. We also note that the linear increase

originates from the non-linearity of the rectifier as it only

appears in the fourth order term. On the contrary, the transmis-

sion with a single sinewave (N = 1) or with the ASS strat-

egy would perform significantly worse with zDC,SS/ASS =
k2A

2RantP + 3k4
2 A4R2

antP
2 and z̄DC,SS/ASS = k2RantP +

3k4R
2
antP

2. The multisine waveform with uniform power

allocation would achieve a relative gain over a single-sinewave

strategy on a frequency-flat channel that linearly increases with

N . This gain highlights the potential of optimizing multisine

waveforms and modeling the non-linearity of the rectifier.

Let us now look at multiple transmit antennas (M ≥ 1).

Since the channel is frequency flat, hn = h, ∀n. Let us

assume a simple strategy (denoted as UPMF) consisting in

performing uniform power (UP) allocation in the frequency

domain and matched beamforming (MF) in the spatial domain.

We therefore write wn =
√

2P/N h
H

‖h‖ , ∀n. Making use of

similar steps as in (60), the harvested energy zDC writes as

zDC,UPMF = k2RantP ‖h‖2 + k4R
2
ant

2N2 + 1

2N
P 2 ‖h‖4 .

(62)

After averaging over the channel distribution and making use
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of the moments of a χ2
2M random variable, we get

z̄DC,UPMF = k2RantPM + k4R
2
antP

2 2N
2 + 1

2N
M (M + 1)

N,Mր≈ k2RantPM + k4R
2
antP

2NM2. (63)

The UPMF strategy enables an increase of z̄DC proportionally

to NM2 and would rely on CSIT knowledge to perform spatial

matched beamforming. While M has an impact on both the

second order and fourth order term, N only appears in the

fourth order term. Scaling law (63) highlights that any increase

of z̄DC,UPMF by a factor 2 requires either increasing the

number of sinewaves (N ) by a factor 2 for a fixed number

of transmit antennas (M ) or increase the number of transmit

antennas by a factor
√
2 for a fixed number of sinewaves.

Let us now look at the presence of multiple rectennas (U ≥
1) and focus on N ≥ 1 and M = 1 for simplicity. Assuming

the channels to each rectenna are identically distributed, the

use of the UP strategy leads to an average harvested energy

at rectenna u, z̄DC,UP,u = z̄DC,UP , that scales as (61). Hence

the sum energy Z̄DC,UP =
∑U
u=1 z̄DC,u = Uz̄DC,UP

Nր≈
k2RantUP+2k4R

2
antUNP

2 linearly increases with N and U .

In frequency-flat channels with U rectennas, the energy region

ZDC with UP strategy is a hypercube with each rectenna’s

harvested energy scaling linearly withN , i.e. the same quantity

of energy as if it was alone in the system. Therefore adding

more rectennas comes for free and does not compromise each

rectenna’s performance.

Remark 4: It may appear from (61) and (63) that taking N
to infinity would imply the harvested energy reaches infinity.

The assumption behind the scaling law derivation is that the

diode operates in the non-linear region, as discussed in Section

III-B. If N grows too large, the waveform peaks will ultimately

have a very high amplitude and the diode will be forced

into the linear region of operation, making the Taylor series

expansion model and the scaling laws no longer applicable.

B. Frequency-Selective Channels

We assume a frequency selective channel with L >> 1
and frequencies wn far apart from each other such that the

frequency domain circularly symmetric complex Gaussian

random channel gains hn,m fade independently (phase and

amplitude-wise) across frequencies and antennas.

Let us first consider M = 1 and a waveform not adaptive to

the CSI whose set of amplitude and phase is given by S and

Φ. We write zDC(S,Φ) = k2
2 Rant

[

∑N−1
n=0 X

2
n

]

+ 3k4
8 R2

ant
[

∑N−1
n=0 X

4
n + 2

∑

n0,n1
n0 6=n1

X2
n0
X2
n1

+R
]

where R contains all

the remaining terms in the sum expansion (13). Those terms

are such that δn0 + δn1 − δn2 − δn3 6= 0. We can compute the

expectation of zDC(S,Φ) over {hn}. We note that E {R} = 0
because for any fixed phase of the waveform, quantities

δn0 + δn1 − δn2 − δn3 in R would be uniformly distributed

over 2π (since the phase of hn is uniformly distributed over

2π) such that E {cos(δn0 + δn1 − δn2 − δn3)} = 0. Moreover,

E
{

X2
n

}

= s2nE
{

A2
n

}

= s2n and E
{

X4
n

}

= s4nE
{

A4
n

}

=

2s4n. Recalling the power constraint
∑N−1
n=0 s

2
n = 2P , we

can write
∑N−1

n=0 E
{

X4
n

}

+ 2
∑

n0,n1
n0 6=n1

E
{

X2
n0

}

E
{

X2
n1

}

=

2
[
∑

n0
s2n0

] [
∑

n1
s2n1

]

= 8P 2, therefore leading to

z̄DC = E {zDC} = k2RantP + 3k4R
2
antP

2. (64)

This highlights that in the presence of frequency-selective

Rayleigh fading channels (with L >> 1), z̄DC is independent

of N and the waveform design, i.e. any fixed multisine

waveform would achieve the same z̄DC . In the absence of

CSIT, transmitting over a single sinewave (N = 1) is enough

in frequency-selective channels. In the presence of multiple

rectennas, the sum energy writes as Z̄DC = Uz̄DC .

Let us consider the same frequency-selective channel but

now assume an adaptive waveform, namely the ASS strategy

(23) (still with M = 1), allocating all transmit power to

the sinewave corresponding to the strongest channel gain. We

compute the expectation of zDC over {hn} as

z̄DC,ASS =
k2
2
Rant2PE {Emax}+

3k4
8
R2
ant4P

2E
{

E2
max

}

.

(65)

where Emax = maxnA
2
n. Since A2

n ∼ EXPO(1), the pdf

of Emax simply is fEmax
(x) = Ne−x (1− e−x)N−1

. Using

[16], E {Emax} = HN and E
{

E2
max

}

= 2SN with

HN = N

[

N−1
∑

k=0

(−1)k+N−1

(

N − 1

k

)

1

(N − k)2

]

, (66)

SN = N

[

N−1
∑

k=0

(−1)k+N−1

(

N − 1

k

)

1

(N − k)3

]

(67)

and we simply obtain

z̄DC,ASS = k2RantPHN + 3k4R
2
antP

2SN . (68)

After some calculations, it can be shown that

HN =

N
∑

k=1

1

k
= logN + γ + ǫN

Nր≈ logN + γ (69)

with γ the Euler-Mascheroni constant and ǫN scales as 1
2N .

Similarly, after some calculations, we can show that

SN =

N
∑

k=1

1

k
Hk =

N
∑

k=1

log k

k
+ γHN +

N
∑

k=1

ǫk
k
,

Nր≈ log2N

2
+ γ1 + γ logN + γ2 +

N
∑

k=1

ǫk
k
, (70)

where γ1 is the Stieltjes constant. This shows that HN ≈
logN and SN ≈ log2 N

2 . We can now write

z̄DC,ASS
Nր≈ k2RantP logN +

3

2
k4R

2
antP

2 log2N. (71)

Thanks to the frequency selectivity, the ASS strategy enables

an increase of the second order and fourth order terms pro-

portionally to logN and log2N , respectively.

Looking now at the UPMF strategy wn =
√

2P/Nh
H
n / ‖hn‖ (for N,M ≥ 1), we can write

z̄DC,UPMF = k2RantPM +
3

2
k4R

2
ant

P 2

N2
W. (72)
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where W =
∑

n0,n1,n2,n3
n0+n1=n2+n3

E {‖hn0‖ ‖hn1‖ ‖hn2‖ ‖hn3‖}.
We can now lower and upper bound (72). A lower

bound is obtained by noting that E
{
∏3
j=0

∥

∥hnj

∥

∥

}

≥
∏3
j=0 E

{ ∥

∥hnj

∥

∥

}

, ∀n0, n1, n2, n3. Equality holds when

n0 6= n1 6= n2 6= n3 due to the indepen-

dence between channel gains in the frequency domain.

Since ‖hn‖2 ∼ χ2
2M , we can compute E {‖hn‖} =

Γ
(

M + 1
2

)

/Γ (M). The lower bound is simply obtained

from W ≥
(

Γ
(

M + 1
2

)

/Γ (M)
)4
N

(

2N2 + 1
)

/3. Not-

ing E {‖hn0‖ ‖hn1‖ ‖hn2‖ ‖hn3‖} ≤ E
{

‖hn0‖4
}

=
M (M + 1), we also obtain the upper bound by writ-

ing W ≤ M (M + 1)N
(

2N2 + 1
)

/3. Noting that

limM→∞
Γ(M+α)
Γ(M)Mα = 1 (α ∈ R), both lower and upper bounds

have the same scaling law for N,M growing large such that

z̄DC,UPMF
N,Mր≈ k2RantPM + k4R

2
antP

2NM2. (73)

This is the same scaling law as (63) in frequency flat channels.

For M = 1, if the fourth order term is dominant or if N is

large enough, the UPMF strategy5 clearly outperforms the ASS

strategy (i.e. linear versus log squared increase in N ). On the

other hand, if the second order term is dominant, the ASS

strategy outperforms the UPMF strategy.

Table I summarizes the scaling laws for adaptive (based on

CSIT) and non-adaptive (no CSIT) waveforms in frequency-

flat and frequency-selective channels. We note again that for

M = 1 a linear increase with N is achievable without CSIT

in frequency-flat channels, while the same increase would

require CSIT knowledge in frequency-selective channels. We

also note that a linear model-based design leads to significantly

lower scaling laws than the non-linear model-based design for

frequency-flat and frequency-selective channels. This really

highlights the importance of modeling higher order terms in

the Taylor expansion.

C. Large-Scale Multi-Sine Multi-Antenna WPT

The previous scaling laws highlight the benefits of a large-

scale multisine multi-antenna architecture. This is reminis-

cent of Massive MIMO in communication. The large dimen-

sion enables to significantly simplify the waveform design.

The spatial matched beamformer (37), wn = snh
H
n / ‖hn‖

(with
∑N−1

n=0 s
2
n = 2P ), would induce channel harden-

ing on sinewave n such that by the law of large number

limM→∞ ‖hn‖ /
√
M = 1 and

zDC
Mր≈ k2RantPM +

3

8
k4R

2
antM

2F (74)

where F is defined in (59). zDC can now be maximized by

using the optimal power allocation for frequency-flat channels.

The suboptimal UP would be a good alternative. This leads to

a very low complexity waveform design for large-scale WPT.

5For M = 1, UPMF should not be confused with UP. UPMF is an adaptive
waveform that relies on CSIT knowledge to match the channel phases on each
sinewave while UP is a non-adaptive waveform with null phases.
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Fig. 3. zDC as a function of N (top) and PAPR constraint η for N = 8
(middle). WPT waveform amplitude as a function of η for N = 8 (bottom).
No wireless channel is assumed, i.e. A = 1 and ψ̄ = 0, and M = 1.

VI. PERFORMANCE EVALUATIONS

We consider two types of performance evaluations, the first

one is based on the simplified non-linear model introduced

in Section III, while the second one relies on an actual and

accurate modelling of the rectenna in PSpice.

A. Non-Linear Model-Based Performance Evaluations

The first type of evaluations consists in displaying zDC
averaged over many channel realizations for various wave-

forms. To that end, we assume a fourth order Taylor expansion

and therefore consider the following metric zDC(S,Φ) =
k2RantE

{

y(t)2
}

+ k4R
2
antE

{

y(t)4
}

with k2 = 0.0034,

k4 = 0.3829 and Rant = 50Ω.

We first consider a single rectenna scenario where the wire-

less channel is omitted, i.e. A = 1 and ψ̄ = 0 (representing

a frequency flat channel) and a single transmit antenna. The

received power, i.e. input power to the rectenna, is fixed to

-20dBm. Fig 3 (top) confirms that in a frequency flat channel,

zDC with UP is close to that achieved by OPT, obtained from

Algorithm 1. Fig 3 (middle) investigates the impact of PAPR

constraint on zDC with the optimized waveform for N = 8
using Algorithm 3. Fig 3 (bottom) illustrates the corresponding

shape of the waveform amplitudes sn across frequencies for

various PAPR constraints η. As η decreases, the allocation of

power decreases on the side frequencies and concentrates more

on the center frequencies. For large η, the optimized waveform

never exactly reaches the UP waveform. Center frequencies get

slightly larger magnitudes, which explains a slight increase in

zDC of OPT over UP in Fig 3 (top).

We now evaluate the performance of WPT waveforms in a

single rectenna scenario representative of a WiFi-like environ-

ment at a center frequency of 5.18GHz with a 36dBm transmit

power, isotropic transmit antennas (i.e. EIRP of 36dBm for

M = 1), 2dBi receive antenna gain and 58dB path loss

in a large open space environment with a NLOS channel

power delay profile with 18 taps obtained from model B

[24]. Taps are modeled as i.i.d. circularly symmetric complex

Gaussian random variables, each with an average power βl.
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TABLE I
SUMMARY OF SCALING LAWS.

Waveform N,M Frequency-Flat (FF) Frequency-Selective (FS)

No CSIT

z̄DC,SS N = 1,M = 1 k2RantP + 3k4R2
antP

2

z̄DC,UP N >> 1,M = 1 k2RantP + 2k4R2
antNP

2 k2RantP + 3k4R2
antP

2

Z̄DC,UP N ≥ 1,M = 1, U ≥ 1 Uz̄DC,UP (vu = 1, ∀u) Uz̄DC,UP (vu = 1, ∀u)

CSIT

z̄DC,ASS N >> 1,M = 1 k2RantP + 3k4R2
antP

2 k2RantP logN + 3

2
k4R2

antP
2 log2N

z̄DC,UPMF N >> 1,M = 1 k2RantP + 2k4R2
antP

2N ≥ k2RantP+π2/16k4R2
antP

2N, ≤
k2RantP + 2k4R2

antP
2N

z̄DC,UPMF N >> 1,M >> 1 k2RantPM + k4R2
antP

2NM2 k2RantPM + k4R2
antP

2NM2
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Fig. 4. Frequency response of the wireless channel and WPT waveform
magnitudes (N = 16) for 1 MHz and 10 MHz bandwidths.

The multipath response is normalized such that
∑18
l=1 βl = 1.

With one transmit antenna, this leads to an average received

power of -20dBm (10µW ). Equivalently, this system model

can be viewed as a transmission over the aforementioned

normalized multipath channel with an average transmit power

fixed to -20dBm. The frequency gap is fixed as ∆w = 2π∆f

with ∆f = B/N and B = 1, 10MHz. The N sinewaves are

centered around 5.18GHz.

In Fig 4, we illustrate the effect of frequency selectivity

on the shape of the transmit waveform obtained using Al-

gorithm 1. Fig 4 (top) illustrates the frequency response of

one realization of the multipath channel over 1MHz and 10

MHz bandwidth. Fig 4 (bottom) displays the magnitude of the

waveform optimized for N = 16 (Algorithm 1) over such a

channel realization. Interestingly, the optimized waveform has

a tendency to allocate more power to frequencies exhibiting

larger channel gains. This is reminiscent of the water-filling

power allocation strategy in communication. This observa-

tion also suggests a suboptimal low complexity waveform

design that would allocate power proportionally to the channel

strength. For comparison, recall that the ASS waveform,

motivated by the linear model, would allocate all power to

the frequency corresponding to the strongest channel gain.

We now evaluate the performance gain of the adaptive opti-

mized (OPT) waveform (Algorithm 1) versus three baselines: a

non-adaptive waveform not relying on CSIT and two adaptive

waveforms relying on CSIT but not requiring the optimization

of Section IV. From the scaling law analysis, a suitable choice

of non-adaptive waveform for single antenna WPT is UP.

We therefore choose the non-adaptive baseline waveform as

φn,m = 0 and sn,m =
√
2P/
√
NM ∀n,m. Motivated by

the observations made in Fig 4, the first adaptive baseline

waveform is chosen as a matched filter (MF) allocating power

to all sinewaves but proportionally to the channel strength,

i.e. φn,m = −ψ̄n,m and sn,m = cAn,m with c a constant to

guarantee the power constraint. Hence the difference between

the optimized waveform and the one based on MF lies in a

different choice of amplitudes. The second adaptive baseline

waveform is the ASS, designed according to the linear model.

Fig 5 and 6 display zDC averaged over many channel

realizations as a function of (N,M) for two bandwidths

B = 1MHz and B = 10MHz, respectively. We make

the following observations. First, for small bandwidth (B =
1MHz), the UP non-adaptive waveform performs pretty well

in the presence of a single transmit antenna (M = 1),

confirming that for channels with little frequency selectivity,

CSI feedback is not needed. On the other hand, for larger

bandwidth (B = 10MHz), the non-adaptive waveform is

clearly outperformed by the adaptive waveforms, therefore

highlighting the usefulness of CSI feedback in WPT even

with a single transmit antenna. Second, for small bandwidth,

the ASS waveform is significantly outperformed by the UP

waveform for M = 1, despite the fact it requires CSI

knowledge at the Transmitter. For larger bandwidth, the ASS

waveform benefits from the channel frequency selectivity to

get close performance to OPT for small N . As N increases,

the ASS waveform is however clearly outperformed by the

adaptive MF and OPT waveforms. This highlights the in-

accuracy of the linear model in characterizing the rectifier

and the inefficiency of the linear model-based design. The

inefficiency is particularly severe as N increases irrespectively

of the bandwidth. These observations confirm the predictions

made from the scaling laws in Table I. Third, OPT outperforms

all waveforms in all configurations. Fourth, MF is a good

alternative to OPT, at least with small bandwidth, and does not

require any optimization. For larger bandwidth, OPT shows a

non-negligible gain over MF as N increases.

Fig 7 further analyzes the sensitivity of zDC to the band-

width for a fixed number of sinewaves N = 16 and various

waveforms. Waveforms relying on uniform power allocation

such as non-adaptive UP and adaptive UPMF experience some

loss as the bandwidth increases and the channel becomes

more frequency selective. On the other hand, adaptive OPT

and adaptive SS benefit from the frequency selectivity by

favouring the strongest sinewave(s). In [7], experiments show
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Fig. 6. Average zDC as a function of (N,M) with B = 10MHz.

that waveforms with high peak to average power ratio (PAPR)

increase RF-to-DC conversion efficiency. The conclusion was

drawn for various waveforms (OFDM, white noise, chaotic)

that were not designed or optimized for WPT. Following this

observation, we investigate whether designing waveforms so

as to maximize the PAPR at the input of the rectenna, after

the wireless channel, is a suitable approach. The adaptive

waveform MAX PAPR in Fig 7 is designed following this phi-

losophy. It uses the same phases as OPT but inverts the channel

such that at the input to the rectifier, the waveform appears as

an in-phase multisine with uniform power allocation (which is

known to have the maximum PAPR of 10 log10 (2N) dB). This

is mathematically formulated by choosing s2n = C/A2
n where

C is a constant to satisfy the transmit power constraint. Results

show that this is a rather inefficient waveform design strategy.

This originates from the relatively low magnitude of the

waveform peaks due to the excessive amount of power wasted

in inverting the wireless power to guarantee the maximum

PAPR at the input of the rectenna. Note also that non-adaptive

UP would lead to the highest transmit PAPR (i.e. PAPR of

the transmit waveform, before the wireless channel) due the

uniform allocation across 16 in-phase sinewaves. OPT on the

other hand has a transmit PAPR always lower than UP despite

providing higher zDC .

Fig 8 further investigates the impact of PAPR on the per-

formance of the optimized multisine waveforms. It considers
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Fig. 8. zDC versus transmit PAPR for N = 16 and M = 1.

the OPT waveform with 16 sinewaves uniformly spread over

3 different bandwidths. zDC is plotted against the PAPR of

the transmit waveform for each realization of the multipath

channel, along with some linear regression fit. It is noted that

there is some positive correlation between zDC and PAPR,

especially for small bandwidths. As the bandwidth increases

and the wireless channel becomes more frequency selective,

the optimized waveform has a tendency to allocate less power

to the weakest channels, therefore leading to lower PAPR.

This explains why as the bandwidth increases, the correlation

between DC current and PAPR reduces.

Fig 9 reveals the performance of a large-scale multisine

WPT using 4 suboptimal (though low complexity) waveforms

(UP, ASS, UPMF and MF6) for M = 1 and 5 MHz bandwidth.

The linear model-based ASS is significantly outperformed by

the non-linear model-based design as N grows large. The

scaling laws for ASS and UPMF over frequency-selective (FS)

channels in Table I are also displayed for comparison.

B. Accurate and Realistic Performance Evaluations

The second type of evaluations is based on an accurate

modeling of the rectenna in PSpice in order to validate the

6The OPT waveform is not computed given the high computational com-
plexity of the optimization for large N . This calls for future research on
alternative optimization methods for large-scale waveforms.



14

24 8 16 32 64 128
0

5

10

15

20

25

30

Number of sinewaves N

A
v
e
ra

g
e
 z

D
C
 [

µ 
A

]

 

 

non−adaptive UP

adaptive SS

adaptive UPMF

adaptive MF

scaling law FS ASS

scaling law FS LB UPMF

scaling law FS UB UPMF
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waveform optimization and the rectenna non-linearity model.

To that end, the waveforms after the wireless channel have

been used as inputs to the realistic rectenna of Fig 10 designed

for an input power of -20dBm. The circuit contains an L-

matching network [3] to guarantee a good matching between

the rectifier and the antenna and to minimize the impedance

mismatch due to variations in frequency and input power level

of the input signal. The values of the capacitor C1 and the

inductor L1 are optimized to match the antenna impedance

to the average input impedance of the rectifier resulting from

an input signal composed of 4 sinewaves and spread across

B = 10MHz. Using ADS Harmonic Balance simulation, the

rectifier impedance is measured at the 4 sinewave frequencies

during a few iterations, and conjugate matching is performed

to match the antenna to the average rectifier impedance at

each iteration until the impedance mismatch error is min-

imised. Vs = vs(t) = 2y(t)
√
Rant is set as the voltage

source. Taking the optimized waveform as an example, for

a given channel realization, Algorithm 1 is used to derive the

optimal waveform weights, which are then used to generate

in Matlab the waveform y(t) as in (4) (after the wireless

channel). Several periods of the signal are generated such that

t = 0, . . . , c∆t, with c a positive integer chosen sufficiently

large to make sure that the rectifier is in the steady-state

response mode and ∆t = 1/∆f the period of the waveform.

Quantity y(t) is stored and then fed into the PSpice circuit

simulator to generate the voltage source Vs in Fig 10. The

antenna and load impedances are set as R1 = Rant = 50Ω
and R2 = RL = 1600Ω, respectively. The output capacitor

is chosen as C2 = Cout = 100pF for B = 1MHz and

C2 = Cout = 10pF for B = 10MHz so that the output

DC power is maximized and the rate of charge and discharge

of Cout is maintained in proportion to the period of the

waveform, i.e. for evaluations with B = 1MHz, C2 is replaced

by a 100pF capacitor in Fig 10.

Fig 11 illustrates the increase of the harvested DC power as

a function of N for a single transmit antenna and assuming

no wireless channel, i.e. A = 1 and ψ̄ = 0 (representing

a frequency flat channel). The harvested DC power is not

a monotonically increasing function contrary to what was

observed in Fig 3 with zDC . This is explained by the fact

that the rectenna has been optimized for 4 sinewaves. For

Fig. 10. Rectenna with a single diode and a L-matching network used for
PSpice evaluations with B = 10MHz.
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Fig. 11. PDC as a function of N for B = 10MHz. No wireless channel is
assumed, i.e. A = 1 and ψ̄ = 0, and M = 1.

B = 10MHz and N = 4, Cout = 10pF was found appropriate.

Nevertheless, as N increases, for a fixed B, ∆f decreases,

which affects the rate of charge and discharge of the output

capacitor. This shows that Cout (but also the load and the

matching network) should ideally be adjusted as a function

of N . We indeed notice that for large N , a larger capacitor

of 100pF is better than 10pF. It is worth noting even if the

rectenna design changes as a function of N , beyond a certain

N , the peak of the voltage at the input of the diode would be

higher than the diode breakdown voltage (2V for SMS7630),

which would cause a sharp decrease in efficiency.

In Fig 12, considering the channel impulse response of Fig

4, we illustrate the time-domain evolution of the input and

output voltages (in the form of vs(t) and vout(t)) for the OPT

and UP waveforms (with N = 16 and B = 10MHz). We

also illustrate the effect of the output capacitance Cout on the

performance. Large peaks in the input voltage occur with a

periodicity ∆t = 1/∆f = N/B = 1.6µs. Output voltage is

not flat contrary to what is expected with an ideal rectifier (as

used in the non-linear model of Section III). This is due to the

finite RLCout chosen in the simulated (and optimized) rectifier

of Fig 10. We note that a larger Cout leads to a smoother

output voltage and a better discharging behaviour but a slower

charging time and lower output peak voltages. A good value

for Cout results from a compromise between those conflicting

mechanisms that explains why a finite Cout is needed in

practice. We also note that the OPT waveform leads to a higher

output voltage than that obtained with the UP waveform. The

harvested DC output power with Cout = 100pF is given by

2.3281µW and 6.4157µW, for UP and OPT, respectively. With

Cout = 10pF, the harvested DC output power is slightly higher

and given by 2.9435µW and 6.9387µW, respectively.
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Fig 13 and 14 display the average harvested DC output

power for B = 1MHz and B = 10MHz (using the same

channel realizations as those used in Fig 5 and 6), respectively.

We make important observations. First, the results confirm the

observations made in Fig 5 and 6 and validate the rectenna

non-linearity model7 and the waveform optimization. There

is indeed a good match between the behavior predicted from

the analytical nonlinear model and the one observed from the

PSpice simulations. Second, they highlight the significant (and

increasing as N,M grow) gains achieved by the nonlinear

model-based design over the linear model-based design. Third,

they highlight that the linear model does not characterize

correctly the rectenna behavior, which leads to an inefficient

multisine waveform design. Indeed, if the linear model had

accurately characterized the rectifier behavior, the ASS wave-

form would have provided the highest average DC power over

all other waveforms. It is clearly not the case. The behaviour

observed from Fig 13 and 14 cannot be explained based on the

linear model. In Fig 13, with M = 1, ASS (requiring CSIT) is

even outperformed by non-adaptive UP (not requiring CSIT).

Results in Fig 13 and 14 can also be viewed in terms

of RF-to-DC conversion efficiency by dividing the harvested

DC power by the average input power (10µW ). For 10MHz

and M = 1, the RF-to-DC conversion efficiency of the

OPT waveform is 9%, 15%, 22%, 28%, 37% and 46% for

N = 1, 2, 4, 8, 16 and 32, respectively.

It is worth noting in Fig 13 and 14 the effect of bandwidth

on average DC power. The average DC power with a 10 MHz

bandwidth is larger than that with a 1 MHz bandwidth. This

comes from the increased channel frequency selectivity and the

diode being turned on more often as ∆f increases. When N =
1, all waveforms obviously achieve the same performance.

Remark 5: no = 4 was used throughout the waveform

design and zDC evaluations. More investigations are needed to

assess the usefulness of even higher order terms (no ≥ 6). In

[6], it was claimed that no = 4 is the minimum order required

to characterize the nonlinear mechanisms of the diode.

7This does not mean that the model zDC is accurate enough to predict the

rectifier output DC power using RL (k0 + zDC)2.
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VII. CONCLUSIONS AND FUTURE WORKS

The paper looks at a WPT link optimization and derives a

methodology to design and optimize multisine waveforms for

WPT. Assuming the CSI is available to the transmitter, the

waveforms result from a non-convex posynomial maximiza-

tion problem and are shown through realistic simulations to

provide significantly higher harvested DC power over various

baseline waveforms under a fixed transmit power constraint.

The results show the importance of accounting for the non-

linearity of the rectifier in any design involving wireless power.

Due to the space limitation, there are many important and

exciting research avenues unaddressed in this paper and left

for future work. Some of them are highlighted below.

The waveform design problem addressed in this paper

assumes N sinewaves with a uniform frequency spacing

∆f = B/N for a given spectrum bandwidthB. A fundamental

question arising from this work is, given a spectrum bandwidth

B, what is the best way to transmit power so as to maximize

the output DC power? This would help understanding how

to make the best use of the RF spectrum for WPT. This

problem has been investigated for several decades in wireless

communication but is an uncharted area in WPT.

The work highlights the usefulness of adaptive waveforms

and CSIT. The fundamentals of CSI acquisition/feedback in

WPT remain largely unknown. Some interesting ideas along

this line have appeared in [23]. However, the work relied on
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the linear model. It is unclear yet whether a similar approach

can be used over the non-linear wireless power channel.

The scaling laws and evaluations highlight the potentials

of a promising architecture relying on large-scale multisine

multi-antenna waveforms dedicated to WPT. This architecture

would be to wireless power what massive MIMO is to com-

munication. More results along this line can be found in [25].

The work also highlights the importance of understanding

and modeling the wireless power channel and formulating

a complete link optimization (transmitter to rectenna) in or-

der to design an efficient WPT architecture. Since WPT is

the fundamental building block of various types of wireless

powered systems (e.g. WPT, SWIPT, WPCN, backscatter

communication), this motivates a bottom-up approach where

any wireless powered system is based on a sound science-

driven design of the underlying WPT. The waveform design

and the rectifier non-linearity tackled in this paper therefore

have direct consequences on the design of SWIPT, WPCN and

backscatter communication. For instance, some preliminary

results on SWIPT waveforms have been reported in [26],

where it is shown that the superposition of multisine and

OFDM waveforms enlarges the rate-energy region compared

to an OFDM-only transmission. This originates from the non-

linearity of the rectifier and the fact that the OFDM waveform,

due to the randomness of the information, is less efficient than

a (deterministic) multisine waveform to convert RF power to

DC power.
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