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ABSTRACT

Although waveform inversion has been studied extensively

since its beginning 20 years ago, applications to seismic field

data have been limited, and most of those applications have

been for global-seismology- or engineering-seismology-scale

problems, not for exploration-scale data. As an alternative to

classical waveform inversion, we propose the use of a new, ob-

jective function constructed by taking the logarithm of wave-

fields, allowing consideration of three types of objective func-

tion, namely, amplitude only, phase only, or both. In our wave-

form inversion, we estimate the source signature as well as the

velocity structure by including functions of amplitudes and

phases of the source signature in the objective function. We

compute the steepest-descent directions by using a matrix for-

malism derived from a frequency-domain, finite-element/fi-

nite-difference modeling technique. Our numerical algorithms

are similar to those of reverse-time migration and waveform in-

version based on the adjoint state of the wave equation. In or-

der to demonstrate the practical applicability of our algorithm,

we use a synthetic data set from the Marmousi model and seis-

mic data collected from the Korean continental shelf. For noise-

free synthetic data, the velocity structure produced by our in-

version algorithm is closer to the true velocity structure than

that obtained with conventional waveform inversion. When

random noise is added, the inverted velocity model is also close

to the true Marmousi model, but when frequencies below 5 Hz

are removed from the data, the velocity structure is not as good

as those for the noise-free and noisy data. For field data, we

compare the time-domain synthetic seismograms generated for

the velocity model inverted by our algorithm with real seismo-

grams and find that the results show that our inversion algo-

rithm reveals short-period features of the subsurface. Although

we use wrapped phases in our examples, we still obtain reason-

able results. We expect that if we were to use correctly un-

wrapped phases in the inversion algorithm, we would obtain

better results.

INTRODUCTION

Waveform-inversion and traveltime tomography provide de-

tailed subsurface-velocity information. Because Lailly �1983� and

Tarantola �1984� suggested that the back-propagation algorithm of

reverse-time migration can be used in seismic inversion, their ideas

have commonly been used in time-domain traveltime tomography

inversion and waveform inversion �Bamberger et al., 1982; Kolb et

al., 1986; Gauthier et al., 1986; Tarantola, 1986, 1987; Tarantola et

al., 1988; Mora, 1987, 1989; Sun and McMechan, 1992; Cao et al.,

1990; Pica et al., 1990; Xu et al., 1995; Zhou et al., 1995�. After

Pratt et al. �1998� applied the same idea to frequency-domain

waveform inversion and showed that the back-propagation algo-

rithm could be used efficiently for waveform inversion of large-

scale geologic models, the technique began to be used frequently

�Pratt, 1999; Pratt and Shipp, 1999; Hicks and Pratt, 2001�. Ac-

cording to Lailly �1983�, prestack reverse-time migration can be

regarded as the first iteration result of waveform inversion, so

waveform inversion and prestack reverse-time migration share the

numerical algorithm that originates from the symmetry of the wave

equation Green’s function.

Although a variety of waveform-inversion techniques has been

developed, we need more accurate or efficient algorithms. We

modify a waveform-inversion algorithm by using the logarithmic

wavefield as an objective function. By taking the logarithm of the

wavefield, we separate amplitude and phase, allowing us to con-

struct three kinds of objective functions using amplitude only,

phase only, or both. We can invert amplitude and phase, either

separately or simultaneously. Our waveform-inversion algorithm

also includes inversion of the source signature. In real seismic data,

because the source signature is usually unknown, we need to esti-

mate the source signature simultaneously �Pratt, 1999� with veloc-
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ity inversion. Explicitly expressing the amplitude and phase of the

source signature in our objective function allows us to recover the

amplitude and phase of the source signature separately.

We begin by constructing an objective function that is separable

into three types. We implicitly calculate gradients of the three

kinds of objective functions by using the adjoint state of the wave

equation as Tarantola �1984� and Pratt et al. �1998� did in conven-

tional seismic waveform inversion. Then we combine the estima-

tion of the source wavelet with the implicit calculation of the gra-

dient vector of the l2 norm of seismic-data residuals. Finally, we

demonstrate our approach using the Marmousi synthetic data and

real seismic data collected on the Korean continental shelf.

WAVEFORM-INVERSION ALGORITHM

Our algorithm uses the steepest-descent method to iteratively

update model parameters until we satisfy a convergence criterion

for an objective function to be either minimized or maximized.

Conventionally, to apply the steepest-descent method to an optimi-

zation problem, we need to directly calculate the derivative of the

objective function with respect to the model parameters. In this

study, we construct an objective function that is separable into

three types �using amplitude only, phase only, and both� and use an

implicit calculation of the steepest-descent direction �i.e., without

directly computing Fréchet derivatives�. This is accomplished by

using the back-propagation technique of reverse-time migration

based on the adjoint state of the wave equation �e.g., Pratt et al.,

1998�.

For simplicity, we begin with a 1D model, because it is straight-

forward to extend our algorithm to 2D or 3D problems. Mathe-

matical symbols are presented in Table 1. The 1D constant-density

acoustic-wave equation can be written as

�2u�z,t�
�z2

=
1

v�z�2

�2u�z,t�
�t2

+ f�z�g�t� , �1�

where v�z� is the subsurface velocity function, u�z,t� is the

acoustic-pressure field, and f�z� and g�t� are the source functions

in position and time, respectively. Equation 1 can be solved by

finite-difference, time-marching techniques �Alford et al., 1974� or

frequency-domain methods �Marfurt, 1984; Marfurt and Shin,

1989; Jo et al., 1996; Shin and Sohn, 1998�. In the frequency do-

main, we take the Fourier transform of equation 1 and then solve

the discretized matrix equation using frequency-domain, finite-

difference, or finite-element modeling methods. Doing this, we ob-

tain the matrix equation �Marfurt, 1984�

S���ũ��� = f�z�g��� , �2�

where � is the angular frequency, S��� is

the complex imped-

ance matrix, ũ��� is the Fourier-trans-

formed wavefield, f�z� is the vector de-

noting source position in depth, and g���
is the source function in the frequency

domain. For simplicity, we write the com-

plex source function g��� of equation 2

as gs���exp�i�s����, yielding

S���ũ��� = f�z�gs���exp�i�s���� ,

�3�

where gs��� and �s��� are the amplitude

and phase spectra of the source wavelet,

respectively.

The 1D earth model is subdivided into

a finite-difference grid in the z-direction

�z = � j − 1��z; j = 1,2, . . . ,N� and each

nodal point is parametrized with velocity

pk at the kth depth point. The 1D wave-

field at each frequency can be expressed

from the linearity of the wave equation

with respect to the source as

ũ j��� = gs���A j
m���exp�i� j

m���

+ i�s���� , �4�

where ũ j��� is the wavefield at the jth

depth point, A j
m��� and � j

m��� are the am-

plitude and phase of the Green’s function

at the jth depth point, and �s��� is the

Table 1. Symbols.

Symbol Type Description

u�t� real Time-domain pressure or displacement

ũ��� complex Fourier-transformed, forward-modeled data

d̃��� complex Fourier-transformed field data

S��� complex Complex impedance matrix and forward-modeling
operator

f�z� real Source vector in depth

g��� complex Fourier-transformed source function

gs���, �s��� real Amplitude and phase of source wavelet

Am���, �m��� real Amplitude and phase of forward-modeled data

A f���, � f��� real Amplitude and phase of field data

E real Objective function

p real Velocity-parameter vector

�p real Velocity-parameter change vector

ps real Change vector in amplitude and phase of source
signature

�, �E real Gradient vector of the objective function with
respect to velocity parameters

v��� complex Virtual-source vector

V��� complex Virtual-source matrix

r��� complex Residual vector

�sE, real Gradient vector with respect to amplitude and phase
of source wavelet

Hs real Hessian matrix with respect to amplitude and phase
of source wavelet

J complex Jacobian matrix

� real Damping factor

I real Identity matrix
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phase spectrum of the source signature. The superscript m is used

to discriminate modeled data from field data �which is represented

using the superscript f�. The modeled wavefield at the surface is

ũ1��� = gs���A1
m���exp�i�1

m��� + i�s���� . �5�

Similarly, the measured field seismogram at the surface is

d̃1��� = A1
f ���exp�i�1

f ���� , �6�

where d̃1��� is the wavefield measured at the surface and A1
f ���

and �1
f ��� are the amplitude and the phase of the wavefield mea-

sured at the surface, respectively. However, when we extract the

phase information from the measured or modeled wavefields, we

actually obtain the wrapped phases �unless we apply an unwrap-

ping algorithm�. As a result, we rewrite equations 5 and 6 as

ũ1��� = gs���A1
m���exp�i��1

m��� + 2�nm + �s��� + 2�ns��

�7�

and

d̃1��� = A1
f ���exp�i��1

f ��� + 2�n f�� , �8�

respectively, where nm, ns, and n f are integer values that must be

extracted.

In our new waveform-inversion algorithm, we construct an ob-

jective function based on the l2 norm of residuals between logarith-

mic-modeled wavefields and field wavefields. This residual at the

surface can be expressed as

ln
ũ1���

d̃1���
= ln

gs���A1
m���

A1
f ���

+ i��1
m��� + �s��� − �1

f ���

+ 2��nm + ns − n f�� . �9�

As shown in equation 9, in order to obtain meaningful phase infor-

mation, we need to unwrap the phase, but it is generally difficult to

accomplish this unambiguously. We assume that nm + ns = n f. The

assumption that the phase of the field data is unwrapped to the

same degree as the phase of the model data is equivalent to assum-

ing that the model is close to the true model. The objective function

can then be defined for a single frequency as

E =
1

2
��ln

gs���A1
m���

A1
f ���

�2

+ ��1
m��� + �s��� − �1

f ����2� ,

�10�

where the factor 1/2 is used to simplify the resulting equation.

From equation 10, we note that the objective function is repre-

sented as the l2 norm of the combined phase- and logarithmic-

amplitude errors. The gradient of this objective function with re-

spect to the kth velocity parameter pk is

�k = �pk
E =

�E

�pk

= ln	gs���A1
m���

A1
f ���


	 1

A1
m���


 �A1
m���

�pk

+ ��1
m��� + �s��� − �1

f ����
��1

m���

�pk

. �11�

A straightforward technique for calculating the gradient is to

compute and use the partial-derivative wavefield. The partial-de-

rivative wavefield with respect to pk is expressed from equation 5

as

�ũ1���
�pk

= gs���
�A1

m���

�pk

exp �i�1
m��� + i�s����

+ igs���A1
m���

��1
m���

�pk

exp �i�1
m��� + i�s���� ,

�12�

and dividing equation 12 by equation 5 gives

1

ũ1���

�ũ1���
�pk

=
1

A1
m���

�A1
m���

�pk

+ i
��1

m���

�pk

. �13�

We recognize that the terms on the right-hand side of equation 11

can be obtained by taking the conjugate of equation 9, multiplying

it by equation 13, and taking the real part of the result. Thus,

�k = Re��ln
ũ1���

d̃1���
�* 1

ũ1���

�ũ1���
�pk

� , �14�

where * indicates the complex conjugate. Equation 14 for an entire

frequency band can be rewritten in matrix form as

�k = Re �
−�

� � �ũ1���
�pk

�ũ2���
�pk

¯
�ũN���

�pk

�

	�
	ln

ũ1���

d̃1���

*

ũ1���

0

]

0

d� . �15�

The partial-derivative wavefields in equation 15 can be calcu-

lated numerically by taking the derivative of the matrix equation

resulting from finite-element or finite-difference implementations

of the wave equation �see Pratt et al., 1998; Shin et al., 2003�. Tak-

ing the derivative of equation 3 with respect to parameter pk, we

obtain

�S���
�pk

ũ��� + S���
�ũ���
�pk

= 0 . �16�

Because the source-related terms f�z� and exp�i�s
m���� in equation

3 are not a function of the subsurface parameters, the derivative of
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the source vector with respect to the subsurface parameter becomes

zero. From equation 16, we obtain

�ũ���
�pk

= S−1���vk��� �17�

with

vk��� = −
�S���
�pk

ũ��� , �18�

where vk��� is the virtual-source vector, which can be used to com-

pute the partial-derivative wavefield with respect to the kth veloc-

ity pk.

The partial-derivative wavefield and the virtual source do not

exist in reality. Once we factor a complex impedance matrix, we

can compute the partial-derivative wavefields for multiple shots as

well, using the factored matrix �Pratt et al., 1998�. If we introduce

the relationship between the virtual source and the partial-deriv-

ative wavefield �e.g., equations 17 and 18� into equation 15, the

steepest-descent direction at the kth depth point can be expressed

as

�k = Re��
−�

�

vk
T����S−1����Tr���d�� , �19�

and the entire steepest-descent direction is

� = Re��
−�

�

VT����S−1����Tr���d�� , �20�

where

r��� = �
�ln

ũ1���

d̃1���
�*

ũ1���

0

]

0

 �21�

and V is the virtual-source matrix whose column is the virtual-

source vector vk at the kth depth point:

V = �v1 v2 ¯ vN� . �22�

Because the modeling operator S��� is self-adjoint, �S−1����T is

interpreted as a back-propagation operator, and consequently the

numerical structure of equation 20 is similar to that of reverse-time

migration �Pratt et al., 1998; Shin et al., 2003�. However, unlike

reverse-time migration in which the field data are back-propagated,

we take the logarithmic residuals, divide them by the current mod-

el response at the surface, and propagate them in backward time.

We obtain the steepest-descent direction by calculating the zero-

lag value of convolution between the back-propagated wavefield

and the virtual source, as we normally do in prestack reverse-time

migration and prestack waveform inversion �Pratt et al., 1998�.

When we compute the steepest-descent direction of the objec-

tive function of the amplitude and the phase of the wavefield for

the inversion, we can divide the objective function into three types.

First, we may take the l2 norm of errors of the logarithmic ampli-

tudes and the phases of the wavefields as shown in equation 10 and

compute the steepest-descent direction of the objective function

using equation 20. Second, we may take the l2 norm of errors of the

logarithmic amplitudes of the wavefields and neglect the l2 norm of

the phase errors in equation 10. In this case, the steepest-descent

direction is expressed by equation 20 with r��� changed to

r��� = �
Re�ln

ũ1���

d̃1���
�

ũ1���

0

]

0

 . �23�

Third, we may take the l2 norm of the phase residuals by discarding

the l2 norm of the logarithmic amplitude errors in equation 10. For

computing the steepest-descent direction, we change the residual

vector r��� of equation 20 to

r��� = �
− i Im�ln

ũ1���

d̃1���
�

ũ1���

0

]

0

 . �24�

ESTIMATION OF SOURCE WAVELET

From equation 10, we note that the objective function is a func-

tion of the phase and amplitude of the source wavelet. Applying

the full Newton method �Lines and Treitel, 1984� to estimate the

phase and amplitude of the source signature, we compute

�ps = − Hs
−1�sE , �25�

where �ps is a vector containing the change in phase and amplitude

of the source signature and �sE and Hs are the gradient and the

Hessian of the objective function with respect to amplitude and

phase of the source wavelet, respectively. Because there is no rela-

tionship between phase and amplitude of the source wavelet in the

objective function, as given in equation 10, the mixed, partial de-

rivatives with respect to phase and amplitude of the source wavelet

become zero, resulting in a diagonal Hessian matrix. The first de-

rivative of equation 10 with respect to the phase of the source

wavelet is

�E

��s���
= ��1

m��� + �s��� − �1
f ���� , �26�

and the second derivative is
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�2E

��s
2���

= 1. �27�

Note that the first derivative is in fact the phase error, whereas the

second derivative degenerates to a constant. In the inversion pro-

cess, we obtain the phase error at each frequency and then use it to

update the source wavelet phase. At each iteration, we update the

phase of the source function in equation 3 with

�s
�k+1���� = �s

�k���� + ��1
m��� + �s��� − �1

f �����k�,

�28�

where k indicates the iteration number.

In a similar manner, we obtain the first and second derivatives of

the objective function with respect to amplitude of the source sig-

nature as

�E

�gs���
=

1

gs���
ln

A1
m���gs���

A1
f ���

�29�

and

�2E

�gs
2���

=
1

gs���2	1 − ln
A1

m���gs���

A1
f ���


 . �30�

Therefore, we update the source-function amplitude at each itera-

tion with

gs
�k+1���� = gs

�k����

1 − 2 ln
A1

m���gs
�k����

A1
f ���

1 − ln
A1

m���gs
�k����

A1
f ���

. �31�

In the case of multiple receivers, equations 28 and 31 can be ex-

pressed as

�s
�k+1���� = �s

�k���� +
1

nsnr
�
i=1

ns

�
j=1

nr

��ij
m��� + �s���

− �ij
f �����k� �32�

and

gs
�k+1���� = gs

�k����

1 −
2

nsnr
�i=1

ns � j=1

nr ln
Aij

m���gs
�k����

Aij
f ���

1 −
1

nsnr
�i=1

ns � j=1

nr ln
Aij

m���gs
�k����

Aij
f ���

,

�33�

respectively, where i and j indicate the source and receiver num-

bers. Based on the above results, we may iteratively update phase,

amplitude, or both phase and amplitude of the source wavelet dur-

ing the waveform-inversion process.

Regularization of the steepest-descent direction

In order to enhance the stability of our inversion algorithm, we

need to regularize the steepest-descent direction. The approximate

Hessian matrix in the Gauss-Newton method is a frequent method

of choice for regularization of inversion algorithms, but its compu-

tation along with its inverse are usually very expensive. In our al-

gorithm, we use a pseudo-Hessian matrix for regularization in or-

der to achieve computational efficiency �Shin et al., 2001a�.

When we apply the Gauss-Newton method to the frequency-

domain seismic inverse problem, the normal equation can be ex-

pressed as

− � = Re��
−�

�

J*T���J���d���p , �34�

with

J��� = � 1

ũ1

�ũ1���
�p1

1

ũ1

�ũ1���
�p2

1

ũ1

�ũ1���
�p3

¯ � ,

�35�

where J*TJ is the n 	 n approximate Hessian matrix �Shin, 1988�.

Even if we use the reciprocity theorem to compute the partial-

derivative wavefield �Shin et al., 2001b�, it is difficult to calculate

explicitly the approximate Hessian matrix for large-scale 2D or 3D

velocity models. For example, consider the parametrization of the

2D velocity model into 2000 	 1000 unknowns: The size of the

approximate Hessian matrix is 2000000 	 2000000 for each

source. Consequently, the computation of this matrix inverse is be-

yond the capability of current computers. Another problem related

to the Hessian matrix for seismic inverse problems is that this ma-

trix is ill-posed. For most seismic inverse problems, the approxi-

mate Hessian matrix is not invertible, because some of its diagonal

elements have small values, close to zero, which originate from

poorly illuminated areas and geometric spreading �Chavent and

Plessix, 1999�. To overcome this, Shin et al. �2001a� suggested re-

placing the approximate Hessian matrix with the pseudo-Hessian

matrix. The main idea was to use the similarity between the uncor-

related structure of the forward-modeled wavefields and the uncor-

related property of the partial-derivative wavefields.

We use the approach of Shin et al. �2001a� in place of the ap-

proximate Hessian matrix for regularization of the steepest-descent

direction. The main goal is to amplify the small values of the

steepest-descent direction caused by geometric spreading. We ac-

complish this goal by multiplying the steepest-descent direction by

the reciprocal of the diagonal elements of the pseudo-Hessian ma-

trix. In the frequency domain, we have two choices for regulariza-

tion of the steepest-descent direction. One choice is to take an av-

erage value of step lengths, obtained by dividing the steepest-

descent direction by the diagonal elements of the pseudo-Hessian

matrix at each frequency. The other choice is to sum the steepest-

descent direction at all frequencies and the pseudo-Hessian matrix

at all frequencies separately and then divide the summed steepest-

descent direction by the summed pseudo-Hessian matrix. In order

to avoid the singularity problem of the pseudo-Hessian matrix

when using the average step-length approach, we also use a La-

grangian multiplier. This can be expressed as

Waveform inversion R35



�p = − Re��
−�

�

�diag�Re�V*T���V���� + �I��−1

	 VT�S−1����Tr���d�� , �36�

where � is the damping factor. For the damping factor in our inver-

sion, we choose either 0.1%, 1%, or 2% of the maximum value of

the diagonal elements in the pseudo-Hessian matrix.

NUMERICAL EXAMPLES

Synthetic data without noise

We first test our waveform-inversion algorithms on synthe-

tic data generated for the Institute Français du Pétrole �IFP� Mar-

mousi model �Versteeg, 1994�. Figure 1 shows the 16-m-grid Mar-

mousi model. To generate synthetic seismograms from it, we used

the nine-point, frequency-domain, finite-difference modeling tech-

nique suggested by Jo et al. �1996�. We use the first derivative of a

Gaussian function with maximum frequency of 18.41 Hz for the

source wavelet and perform the inversion for 59 frequencies, rang-

ing from 0.3121 Hz to 18.41 Hz. By distributing the inversion at

each frequency to different processors using the Message Passing

Interference �MPI� system, we gain computational efficiency. We

locate 576 shots at the surface at an interval of 16 m. In all the

cases, we use the full aperture of the model, locating 576 receivers

on all nodal points at the surface. Figure 2 shows an example seis-

mogram generated by the nine-point, frequency-domain, finite-dif-

ference method for the Marmousi model, when the source is lo-

cated at 3200 m.

We first perform full-waveform inversion employing both am-

plitude and phase based on equations 20 and 21. For an initial

model for the inversion, we take a linearly increasing velocity

model, where velocity varies from 1500 m/s to 4500 m/s as

shown in Figure 3a. In Figure 3b, we present the velocity structure

obtained by our full-waveform inversion algorithm at the 1928th

iteration. Because we use small step lengths, the convergence rate

is very slow. We could accelerate convergence using other optimi-

zation techniques, such as the conjugate-gradient method. In the

inversion, we update the source wavelet’s amplitude and phase at

each iteration. In order to check the accuracy of our waveform-

inversion algorithm, we compare the velocity model inverted by

our algorithm to that of the conventional, source-independent

waveform inversion. For the conventional, source-independent in-

version algorithm, we construct the objective function using the l2

norm of residuals between field data and model responses normal-

ized by the reference wavefields. With the exception of the objec-

tive function, the numerical algorithm for conventional inversion is

the same as ours. Figure 3c shows the velocity structure generated

by the conventional inversion algorithm. In Figure 3c, the left part

of the inverted model is not accurately recovered. For quantitative

comparison, we measure the misfit of the velocities obtained by the

two inversion algorithms with respect to the true velocities �Figure

4a and b�. From Figure 4a and b, we note that our waveform-

inversion algorithm gives more reliable results than the conven-

tional method does.

We also need to check whether the source wavelet is properly in-

verted. In Figure 5, we display amplitude and phase spectra of the

true- and estimated-source signature with respect to frequency. In

Figure 5, the amplitudes of the estimated source are consistent with

those of the true-source wavelet, but the phase spectrum shows

some discrepancies at the frequencies where phases are wrapped.

In order to measure the sensitivity of the inversion results to am-

plitude and phase, we also show velocity models inverted by the

pure-amplitude method �equations 20 and 23� at the 198th iteration

and the pure-phase method �equations 20 and 24� at the 1253rd it-

eration in Figure 6a and b, respectively. In each case, we invert ei-

ther amplitude or phase of the source signature. For an initial

model, we choose the linearly increasing velocity model �Figure

3a�. From Figure 6a and b, we note that the pure-phase method

gives a velocity model comparable to that of the full waveform-

inversion method using both amplitude and phase, whereas the

pure amplitude method does not yield good results. Figure 7 shows

rms errors of amplitude and phase with respect to iteration. While

the rms error of amplitude rapidly converges to zero, the rms error

of phase decreases monotonically as iteration number increases.

Figure 1. The 2D Institute Français du Pétrole �IFP� Marmousi
model.

Figure 2. The synthetic seismograms generated by the nine-point,
frequency-domain, finite-difference method for the Marmousi
model.
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Synthetic data with noise

Before applying our inversion to real seismic data, which is usu-

ally contaminated with noise, we perform the inversion on the

Marmousi synthetic data set with random noise added to it. The av-

erage level of random noise is about 25% of the original amplitude

at each frequency. Figure 8 shows the noise-added shot gather

when the source is located at 3200 m �compare Figure 8 with Fig-

ure 2�. Figure 9 shows the velocity model inverted by our wave-

form-inversion technique at the 926th iteration for the noise-added

data. The velocity model inverted for the noise-added data is very

similar to that for the noise-free data �compare Figure 9 with Fig-

ure 3b�. In Figure 10, we check the source-signature estimate by

comparing the spectra of the estimated-source wavelet with those

of true-source wavelet. The estimated amplitude and phase are

comparable to those of the true wavelet, although slightly more

differences exist than in the noise-free examples.

In real seismic data, noise is often dominant in the low- and

high-frequency bands. In our frequency-domain waveform inver-

sion, we use only relatively low frequencies because of the lack of

computational resources; therefore, we consider noise effects only

Figure 3. Numerical examples for the noise-free Marmousi syn-
thetic data: �a� the initial model, �b� the velocity model inverted by
full waveform inversion using both amplitude and phase at the
1928th iteration, and �c� the velocity model inverted by the con-
ventional source-independent inversion algorithm at the 259th it-
eration.

Figure 4. Misfits of velocity models generated for the noise-free
Marmousi synthetic data by �a� our inversion algorithm and �b� the
conventional source-independent inversion algorithm with respect
to the true Marmousi model.

Figure 5. Spectra of �a� amplitude and �b� phase of the true-source
signature and the estimated-source signature for the noise-free
Marmousi synthetic data. The solid line represents the true-source
signature, and the dashed line denotes the estimated-source signa-
ture.
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in the low-frequency band. To do so, we apply our full waveform-

inversion method to the noise-free synthetic data set without fre-

quencies below 5 Hz. In Figures 11 and 12, we display the inver-

sion results for the velocity model and source wavelet. The in-

verted velocity model and source-wavelet spectra for the low-

frequency missing data are not as good as they are for the random

noise-added data �Figures 9 and 10�. We note a large discrepancy

in the phase spectrum of Figure 12. These results confirm the fact

that low-frequency data are of critical importance in waveform in-

version �Lines, personal communication, 1987; Song et al., 1995�.

Field data

After successfully completing the experiment on the synthetic

data from the Marmousi model, we applied our full waveform-

inversion algorithm to real data gathered from the Korean conti-

nental shelf, where gas deposits exist. The field data were collected

with 120 channels for 235 shots. The shot interval and receiver in-

terval are 25 m, and the time sample interval is 4 ms. A receiver-

cable length of 2975 m resulted in minimum and maximum offset

distances of 300 m and 3285 m, respectively. Figure 13 shows a

representative common-shot gather, where data are muted to the

temporal range containing reflections/refractions from a gas reser-

voir. We use low-pass filtered data from 0.5 Hz to 24 Hz and a

finite-difference grid interval of 12.5 m to prevent grid dispersion.

Figure 6. Velocity structures generated for the noise-free Mar-
mousi synthetic data by �a� the pure amplitude inversion method at
the 198th iteration and �b� the pure phase inversion method at the
1253rd iteration.

Figure 7. The history of errors of �a� the pure amplitude inversion
and �b� the pure phase inversion algorithm for the noise-free Mar-
mousi synthetic data.

Figure 8. The synthetic seismograms with random noise generated
by the nine-point, frequency-domain, finite-difference method for
the Marmousi model. The noise level is 25%.

Figure 9. The velocity model inverted by the full waveform inver-
sion using both amplitude and phase at the 926th iteration for the
random noise-added Marmousi synthetic data.
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For an initial model for the real-data inversion, we chose a lin-

early increasing velocity model �Figure 14a�, as we did for the syn-

thetic Marmousi data. Of the three types of inversion algorithms,

we apply only the full waveform-inversion algorithm for inverting

both the real data and the source signature up to 24 Hz. In the real-

data inversion, we update the velocity model by inverting real data

for each frequency, summing the results at every frequency and

then computing the steepest-descent direction.

In Figure 14b, which shows the inverted velocity model at the

252nd iteration, we can see the shallow, stratified layers and the

area �denoted by an arrow� of a gas reservoir. However, Figure 14b

also reveals that the inverted velocity model is not far from the ini-

tial velocity model, which indicates that we could not fully recover

the velocity model’s long-wavelength content because of the real

data’s unreliable low-frequency content. Figure 15 shows the rms

errors of amplitudes and phases with respect to iteration number,

respectively. As in the synthetic examples, the rms error of ampli-

tude converges more rapidly than that of phase.

We check the validity of the inverted model by comparing the

real seismogram with the synthetic seismogram generated for the

inverted model shown in Figure 16. In Figure 16, we display the

real seismogram low-pass filtered up to 24 Hz and the synthetic

seismogram when a source is located at 1.375 km. The synthetic

seismogram generated from the inverted model resembles the real

seismogram. Figure 17 shows single traces of the real and syn-

thetic seismograms. The single traces are obtained at three receiv-

ers separated by 2.375 km, 3.0 km, and 3.625 km from the source.

In Figure 17, we see that although there are some discrepancies,

the synthetic data are comparable to the field data. Possible sources

of discrepancies are the incompletely inverted velocity model be-

cause of the unreliable low-frequency content of real data, a local

minimum problem and a nonuniqueness problem in a general in-

Figure 10. Spectra of �a� amplitude and �b� phase of the true- and
the estimated-source signature for the random noise-added data.
The solid line represents the true-source signature, and the dashed
line denotes the estimated-source signature.

Figure 11. The velocity model inverted by our full waveform in-
version at the 363rd iteration for the Marmousi synthetic data with-
out frequencies lower than 5 Hz.

Figure 12. Spectra of �a� amplitude and �b� phase of the true- and
the estimated-source signature for the data without frequencies be-
low 5 Hz. The solid line represents the true-source signature, and
the dashed line denotes the estimated-source signature.

Figure 13. Real seismogram collected on the Korean continental
shelf.
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verse problem, the inadequacy of the acoustic approximation to 3D

real-wave propagation, array forming of hydrophones in the

streamer cable, nonlinear wave propagation near a source point, a

Figure 14. Real data examples: �a� the initial model used for wave-
form inversion of the field data, and �b� the inverted velocity struc-
ture of the field data collected on the Korean continental shelf at
the 252nd iteration.

Figure 15. History of �a� amplitude and �b� phase errors of the real
seismogram collected on the Korean continental shelf.

Figure 16. Comparison of �a� field seismogram with �b� synthetic
seismogram generated from the inverted velocity structure shown
in Figure 14b when a source is located at 1.375 km.

Figure 17. Comparison of single traces of field data with those of
synthetic data obtained from the inverted velocity structure �e.g.,
Figure 14b�. Receivers are located at �a� 2.375 km, �b� 3 km, and
�c� 3.625 km from the source. The solid line indicates the field
data, and the dotted line denotes the synthetic data.
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problem of source-receiver coupling to the earth, 2D approxima-

tion to 3D wavefields, and anisotropic properties and intrinsic at-

tenuation of the real earth.

CONCLUSIONS

Instead of defining the objective function as the l2 norm of re-

siduals between the measured data and the modeled data, we built

an objective function that can be separated into three types via the

complex phase: the mismatch of amplitude, the mismatch of phase,

and the mismatch of both amplitude and phase. This separation

leads to three kinds of inversions: the simultaneous inversion of

amplitude and phase, pure-amplitude inversion, or pure-phase in-

version. We estimated the source signature as well as the subsur-

face velocity by including amplitude and phase of the source signa-

ture in our objective function.

In our waveform inversion, we computed the steepest-descent

direction of the three different objective functions without directly

computing the sensitivity matrix. The steepest-descent direction is

computed by the back-propagation algorithm of reverse-time mi-

gration on the basis of the matrix formalism of the frequency-

domain, finite-element/finite-difference method for the wave equa-

tion. Our algorithm shares the same numerical algorithm with

prestack reverse-time migration and seismic inversion. Although

the conventional waveform inversion using the back-propagation

technique back-propagates the residuals between the measured and

the modeled data, our approach back-propagates the wavefield ob-

tained by dividing the logarithm of the ratio of the modeled data to

the measured data by the modeled wavefield.

By applying three inversion algorithms to the synthetic seismo-

gram of the Marmousi model, we showed that the simultaneous in-

version of amplitude and phase produces the best resolution in the

shallow and the deep structure of the Marmousi model. Neverthe-

less, it is too early to state with certainty which inversion algorithm

yields the best results because we used only data containing rela-

tively low frequencies ranging from 0.3121 Hz to 18.41 Hz. We

also tested our algorithm for two cases of corrupted Marmousi syn-

thetic data. One test involved inversion of data with random noise

added, and the other involved inversion of data without frequen-

cies below 5 Hz. For the former, the inverted velocity model was

as close as that of the noise-free data. For the latter, the inversion

results were not good, which indicates that our logarithmic-wave-

form inversion cannot resolve low wavenumbers of the velocity

model, a situation like conventional waveform inversion when low

frequencies are missing.

By applying our inversion algorithm to real seismic data, we

converged to a velocity structure. However, we are still uncertain

whether our inversion algorithm can be applied to real seismic

data, when low-frequency components are often missing. More-

over, in waveform inversion of real data, we also need to overcome

intrinsic problems such as the incompletely inverted velocity

model arising from the unreliable low-frequency content of real

data, a local minimum problem and nonuniqueness of the general

inverse problem, the inadequacy of the acoustic approximation to

3D real-wave propagation, array forming of hydrophones in the

streamer cable, nonlinear wave propagation near a source point, a

source-receiver coupling problem, 2D approximation to 3D wave-

fields, and anisotropic properties and attenuation of the real earth.

In our waveform inversion, we employed a small step length, re-

sulting in slow convergence, but the convergence can be acceler-

ated by using methods such as conjugate gradient. We also used

wrapped phases rather than the more meaningful unwrapped

phases, which may sacrifice something unknown in inverting the

velocity structures.

For a reliable inversion algorithm, we need to unwrap the

wrapped phases. Our algorithm can be extended to 2D elastic-

waveform inversion and 3D acoustic- and elastic-waveform inver-

sion. Extending our algorithm to the Gauss-Newton method using

the reciprocity theorem is straightforward but is computationally

more expensive.
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