
Research Article
Waveform Prediction of Blade Tip-Timing Sensor Based on
Kriging Model and Static Calibration Data

Liang Zhang , Qidi Wang, and Xin Li

Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China

Correspondence should be addressed to Liang Zhang; zhangliang545238@163.com

Received 27 June 2022; Revised 9 January 2023; Accepted 28 January 2023; Published 17 February 2023

Academic Editor: Majid Niazkar

Copyright © 2023 Liang Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Blade tip clearance is an important parameter afecting the efciency, stability, and safety of aero-engines. During the high-speed
rotation of the blade, the blade tip clearance changes, which leads to changes in signal amplitude collected by the tip timing sensor.
When the rotor is rotating at high speed, it is impractical to measure the tip-timing signal under each tip clearance. Aiming at the
previous problems, a prediction method of blade tip-timing sensor waveform based on the combination of the Kriging model and
static calibration data are proposed. Te relationship between the output voltage of the tip timing sensor and the blade tip
clearance and the angle of the blade tip cutting magnetic line is obtained by collecting the data of static calibration. Based on the
collected static calibration experimental data and compared with the polynomial ft method and the RBF model, the accuracy of
the Kriging model in predicting the waveform of the blade tip timing sensor was verifed. Te results show that the prediction
accuracy of the Kriging model is basically the same as that of the RBF model, but the Kriging model has more advantages in
predicting the waveform when the blade tip clearance is unknown. In contrast, the prediction accuracy of the polynomial ft is
lower than that of the Kriging and RBF models, and the polynomial ft is prone to signifcant prediction errors.

1. Introduction

Rotor blades are the core component of an aero-engine,
which are subjected to a variety of complex forces that
generate vibrations during high-speed rotation [1]. Tere-
fore, real-time monitoring of the vibration state of the blades
is an efective method to ensure the safe operation of an
aero-engine. During engine operation, factors such as
thermal deformation, centrifugal deformation, and unbal-
anced rotor response would cause changes in tip clearance
[2, 3]. Blade tip clearance refers to the radial distance be-
tween the tip of the rotor blade and the engine casing, which
is an important parameter afecting the efciency, stability,
and safety of gas turbines [4]. Among them, the efciency of
the gas turbine is inversely proportional to the tip clearance.
Te larger the tip clearance, the larger the tip-leakage with an
associated loss of high-energy gas and the lower the engine’s
efciency [5]. Conversely, a smaller tip clearance may bring
the risk of friction between the blade and the engine casing.
Terefore, it is essential to monitor the blade tip clearance in

real-time, give early warning to the failure of the blade, and
ensure the smooth operation of the engine.

In recent years, more and more researchers have begun
to dedicate themselves to the research on the blade tip
clearance measurement of the engine. Tey have proposed
several tip clearance measurement methods, including the
probe method [6], optical fber method [7], capacitance
method [8], eddy current method [9], and microwave
method [10]. Among them, the technical principles of dif-
ferent measurement methods are diferent, and each has its
advantages and disadvantages. It is necessary to select an
appropriate monitoring method according to diferent ap-
plication environments.

Qi and Chen [11] used the fnite element method to
perform a numerical analysis of the blade tip clearance and
obtained the variation law of the blade tip clearance during
the working process of a specifc type of aero-engine.
However, it is not easy to accurately estimate the actual tip
clearance in experimental measurements by obtaining the
tip clearance results under diferent working conditions
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through theoretical simulation under simplifed conditions.
Shang [12] proposed a tip clearance calibration technology
combining radial and circumferential calibration. During
the static circumferential calibration, the voltage at diferent
relative spatial positions of the blade end face to the sensor
probe end face was calibrated according to the time course.
Shao [13] optimized the static calibration method and
proposed a trigger pulse method. Combined with the static
calibration data, the tip clearance value of the blade under
dynamic undersampling conditions was obtained. Te static
calibration of the blade is usually carried out under some
specifc clearances. It takes a lot of time and efort to obtain a
large amount of experimental data, and slight diferences
would cause large errors in the experimental results. Also, in
dynamic experiments, it is very difcult to measure the pulse
signal of each clearance as a reference. Jamia et al. [14]
developed a quasi-static 3D fnite element model of an
electromagnetic feld to simulate blade tip-timing applica-
tions to estimate the output from active and passive eddy
current sensors. Te efect of blade tip clearance and rota-
tional speed on the accuracy of blade tip-timing measure-
ment was shown through a parametric study. Cao et al. [15]
proposed the short-time Fourier transform with adaptive
window length, which extracted natural frequencies from a
single blade tip-timing measurement based on a sampling-
aliasing frequency map and corresponding engine order.
Mandache et al. [16] developed a pulsed eddy current
technique to detect engine blade and disk damage by
monitoring blade tip displacement. Liu and Jiang [17]
established a method that can correct the expected arrival
time in the presence of torsional vibration based on the
traditional blade tip-timing method, which improves the
accuracy of blade vibration monitoring. Wu et al. [18]
proposed a speed adjustment model-based blade tip clear-
ance measurement method and constructed a geometric
constraint equation to evaluate the accuracy of the blade tip
clearance measurement.

Ariyarit et al. [19] investigated a multifdelity optimi-
zation technique for an efcient global optimization process
using a hybrid agent model, which uses a Kriging method to
construct local deviations and a radial basis function to
construct a global model. It is used for the optimization of
the aerodynamic design of helicopter blades to obtain
maximum blade efciency. Han and Görtz [20] proposed a
hierarchical Kriging model, which can be applied to efcient
aerodynamic analysis and shape optimization of aircraft. Bu
et al. [21] used a hierarchical Kriging model for rotor op-
timization design, which improved the efciency of the
traditional Kriging model. Huang et al. [22] built an efective
multifdelity surrogate model based on two independent
high-fdelity and low-fdelity samples using a Co-Kriging
method. Bailly and Bailly [23] applied the multifdelity
optimization technique to the design of a helicopter rotor
blade and verifed that aerodynamic optimizations using a
Co-Kriging surrogate model has advantages over the single-
fdelity Kriging model.

Terefore, this paper proposes a method for predicting
the waveform of the tip timing sensor based on the Kriging
model and static calibration data. Te relationship data

between the output voltage of several groups of tip timing
sensors and the tip clearance, and the angle of the blade
cutting magnetic feld line are measured in a static state. Te
waveform signals of diferent blade tip clearances are pre-
dicted, and the better prediction accuracy is obtained. Te
organization of this paper is as follows: Section 2 establishes
a static calibration test bench and calibrates the relationship
between the output voltage of the sensor and the blade tip
clearance, the angle of the blade cutting the magnetic in-
duction line based on the static calibration experiment, and
the polynomial equation is ftted based on these relation-
ships. Te Kriging and the RBF models are established in
Section 3. Section 4 verifes the prediction accuracy of the
Kriging models, RBF model, and polynomial ftting method.
Finally, the main conclusions of this article are given in
Section 5.

2. Experimental Study on the Static
Calibration of Blade Tip
Clearance Measurement

2.1. Measurement Principle of the Eddy Current Method.
Te eddy current method uses metal cutting magnetic lines
of force to generate magnetic feld changes. Te clearance
measurement device comprises a probe and a detection
circuit. Te sensor probe is placed at a certain distance from
the tip of the blade.When an alternating current is applied to
the coil inside the probe, an alternating magnetic feld is
generated in the coil of the probe. When the blade under test
is close to this magnetic feld, an induced current is gen-
erated on the blade surface. At the same time, the eddy
current feld also generates an alternating magnetic feld
whose direction is opposite to the direction of the probe coil,
resulting in a change in the equivalent impedance Z of the
probe coil [24]. At this point, the functional expression of the
equivalent impedance Z can be expressed as follows:

Z � f(σ, μ,ω, r, x), (1)

where σ is the blade electrical conductivity, μ is the blade
magnetic permeability, ω is the passing frequency, r is the
size factor, and x is the tip clearance.

2.2. Building Eddy Current Sensor Static Calibration Test
Bench. Te static calibration test bench consists of the radial
moving device and the circumferential rotating device, as
shown in Figure 1. Te eddy current sensor is mounted on
the radial moving device. Te XYZ three-axis displacement
platform adjusts the position of the eddy current sensor so
that the center of the eddy current sensor probe is aligned
with the center of the blade tip and adjusts the tip clearance
between the sensor probe and the blade.Te blade is fxed on
the disk and the disk is mounted on the R-axis rotation
platform. Te R-axis rotation platform adjusts the angle
between the tip of the blade and the center of the eddy
current sensor probe.

In this experiment, the parameters of the eddy current
sensor and the blade are constant, so the size factor r of the
coil, the electrical conductivity σ of the blade, the magnetic
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permeability μ of the blade, and the passing frequency ω are
constant. Terefore, the coil impedance value Z of the eddy
current sensor should only be related to the tip clearance x.
Te change in the coil impedance value Z of the eddy current
sensor is changed to the change in the output voltage U by
the conversion circuit. For the object whose measured
surface is fat, with the center of the eddy current sensor
probe surface, the diameter of the measured surface should
be more than 1.5 times the diameter of the probe. In this
measurement experiment, the thickness of the blade is only
2mm, while the diameter of the eddy current sensor probe is
8mm, the diameter of the eddy current sensor probe is much
larger than the thickness of the blade. As a result, the output
voltage U of the sensor is also diferent when the blade tip
and the center of the eddy current sensor probe are in
diferent relative circumferential positions. Terefore, the
output voltage U of the eddy current sensor is afected by the
tip clearance x, the blade thickness h, and the angle α of the
blade cutting the magnetic induction lines [25]. Terefore,
the output voltage U of the eddy current sensor is expressed
as follows:

U � f(x, h, α). (2)

For a known blade, the blade thickness h is constant.
Terefore, the output voltage U of the eddy current sensor
can be expressed as follows:

U � f(x, α). (3)

According to equation (3), when the blade thickness h is
known, the output voltage U of the eddy current sensor is
only afected by the tip clearance x and the angle α of the
blade cutting magnetic induction lines.

2.3. Experimental Scheme. Trough the actual measurement
of the static radial calibration experiment, the radial mea-
surement range of the TR81 type eddy current displacement
sensor is 0.1∼0.55mm under the condition that the blade is
stationary [26].Te specifc process for static circumferential
calibration within this measurement range is as follows: frst,
we align the center of the eddy current sensor probe with the
center of the blade tip to be measured, adjust the blade tip
clearance, and keep it constant. Ten, we use the R-axis
rotation platform to rotate the blade to the edge of the eddy
current sensor probe and record the scale of this position.
Next, we rotate a fxed angle each time and record the output

voltage value at each stop until it exceeds the measurement
range of the eddy current sensor. Finally, we repeat the
experiment in the range of 0.1∼0.55mm and complete the
static circumferential calibration of the blade. Te process of
static circumferential calibration under diferent tip clear-
ances is shown in Figure 2.

2.4. Static Calibration Experimental Study. First, we aligned
the tip of the blade to the center of the eddy-current sensor
probe and adjusted the tip clearance to 0.1mm. Next, we
adjusted the R-axis rotation platform so that the tip of the
blade was gradually away from the center of the sensor
probe, stopped when the measured voltage value was close
to the lower limit of the sensor’s measurement range, and
recorded the angle as 0°. With 2.3′ as a step, the R-axis
rotary platform rotated fve scales and recorded the voltage
value once. Te rotation stopped when the vane rotated
again to the lower limit of the sensor’s measuring range.
After measuring the experimental data under the tip
clearance of 0.1mm, the static circumferential calibration
under each tip clearance was completed in sequence with a
step size of 0.05mm. Te experiment was repeated fve
times for each blade tip clearance. Te average of fve
experimental data was taken as the static circumferential
calibration data under this blade tip clearance. Te
recorded data refect the relationship between the output
voltage U of the eddy current sensor and the blade tip
clearance x, the angle α of the blade cutting the magnetic
induction line. After getting all the data, data ftting was
performed with the help of MATLAB to obtain the rela-
tionship curves of the output voltage U of the eddy current
sensor and the blade tip clearance x, the angle α of the blade
cutting the magnetic induction line. Te static circum-
ferential calibration curve of each blade tip clearance is
shown in Figure 3.

As can be seen from Figure 3, the number of output
voltage values collected by the eddy current sensor probe
gradually decreases with the increase of the blade tip
clearance x when the static circumferential calibration ex-
periment is performed.Tis is because the range of magnetic
feld that the blade can cut to gradually decreases when the
blade tip clearance x increases.

A polynomial ft to the data in Figure 3 is performed to
obtain the functional relationship of the output voltage U of
the eddy current sensor and the blade tip clearance x, the
angle α of the blade cutting the magnetic induction line. Te
ftted curve is plotted as shown in Figure 4.

Te polynomial equation obtained from the ftted curve
is as follows:

U � f(x, α) � −2647x
2

− 2.724α2 − 7060x + 192.8α + 4.369xα − 3779.

(4)

Te square of the correlation coefcient of the ftted
equation is 0.9981. However, equation (4) does not guar-
antee that all the collected sample points are on a curved
surface, which is prone to signifcant prediction errors.
Terefore, this article uses the Kriging model to predict the
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Figure 1: Static calibration test bench.
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Figure 3: Static circumferential calibration curve of each blade tip clearance.

x (mm)

-5000

-4000

60

-3000

U
 (m

V
)

-2000

40

-1000

20

0.550 0.50.450.40.350.30.250.20.150.1

α (')

Figure 4: Fitted curve based on a polynomial function.
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output voltage U of the eddy current sensor in relation to the
blade tip clearance x and the angle α of the blade cutting the
magnetic induction line.

3. Static Circumferential Calibration Curve
Prediction Based on the Kriging Model

3.1. KrigingModel. Te Kriging model, initially proposed in
geostatistics, is a stochastic process-based proxy model that
is now applied in reliability assessment [27, 28]. It is an
optimal estimation method for fnite localized variables
based on theoretical analysis of variation function.

Te Kriging model is a semiparametric interpolation
technique that includes linear regression and nonparametric
techniques. It generally consists of polynomial distribution
and random distribution and can be written as follows:

y(x) � f(x) + z(x), (5)

where y(x) is ftted response function,
β � β1 β2 . . . βp 

T
is the regression coefcient, f(x) is a

known polynomial function that reduces f(x) to a constant
β in many cases, and z(x) is a random distribution with
nonzero covariance that obeys a normal distribution
N(0, σ2); the covariance can be written as follows:

Cov z xi( , z xj   � σ2R xi, xj , (6)

where σ2 is the variance of z(x) and R(xi, xj) is the cor-
relation function between xi and xj. In this article, the
Gaussian function with better computational efciency is
chosen as the correlation function, which has the following
form:

R xi, xj  � exp − 
m

k�1
θk x

k
i − x

k
j




2

⎛⎝ ⎞⎠, (7)

where m is the number of design variables, θk is the cor-
relation coefcient of the ftted model, and xk

i and xk
j are the

kth component of the sample points xi and xj, respectively.
Te sample point correlation function matrix is as follows:

R �

R x1, x1(  · · · R x1, xn( 

⋮ ⋱ ⋮

R xn, x1(  · · · R xn, xn( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where n is the number of sample points.
After determining the correlation function, y

⌢
(x) is the

approximate response of y(x). Te expression containing
the observation point x can be written in the following form:

y
⌢

(x) � β
⌢

+ r
T

(x)R
−1

(y − fβ
⌢

), (9)

where y is the column vector of sample points, including the
observed response values for each design point, f is the
column vector of sample points, f is the unit column vector
when f(x) is a constant, and rT(x) is the column vector of
sample points, indicating the correlation between the ob-
served points x and the sample points (x1, x2, . . . , xn),
expressed in the following form:

r
T
(x) � R x, x1( , R x, x2( , · · · , R x, xn(  

T
. (10)

β
⌢

is the following assessment:

β
⌢

� f
T
R

−1
f 

−1
f

T
R

−1
y. (11)

When f(x) is assumed to be a constant, β
⌢

is reduced to a
scalar.

σ2 is the variance estimate, which can be expressed as
follows:

σ⌢
2

�
(y − fβ

⌢

)
T
R

−1
(y − fβ

⌢

)

n
. (12)

When f(x) is assumed to be a constant, f is reduced to a
unit column vector.

In equation (7), the maximum likelihood estimate of θk

can be obtained from the maximum of equation (13). σ2 and
|R| are both dependent variables of θk (θk > 0):

−
n ln σ⌢

2
  + ln |R|

2
.

(13)

By solving the k-dimensional nonlinear unconstrained
optimization of equation (13), the best-ft Kriging model is
acquired.

3.2. Building the Kriging Prediction Model. Te Kriging in-
terpolation algorithm is applied to predict the collected static
calibration experimental data. Four Kriging prediction
models with diferent numbers of collected sample points
were constructed, as shown in Figures 5(a)–5(d). In
Figures 5(a)–5(d), the sample point groups are 10, 6, 5, and
3, respectively. Figure 5(a) inputs all the data obtained from
the static calibration experiment, and the predicting results
of this model should theoretically be closest to the experi-
mentally measured true values. Figure 5(b) experimental
data for inputting blade tip clearance of 0.1mm, 0.2mm,
0.3mm, 0.4mm, 0.5mm, and 0.55mm, comparing the efect
of sample point reduction on the prediction accuracy of the
Kriging model. Figure 5(c) removes the experimental data of
0.55mm from Figure 5(b) to observe the prediction accuracy
of the Kriging model for waveforms outside the range of the
collected blade tip clearance. Figure 5(d) retains only the
experimental data of 0.1mm, 0.3mm, and 0.55mm to ob-
serve whether the Kriging model still has high prediction
accuracy when the number of collected sample points is few.

Meanwhile, in order to refect the advantage of the Kriging
model in predicting the waveform of the blade tip timing
sensor, the RBFmodel is established at six sets of sample points,
as shown in Figure 6. Moreover, the RBF model is compared
with the Kriging model for prediction accuracy.

4. Validation of Kriging Model
Prediction Accuracy

From equation (3), it can be seen that the output voltage U of
the eddy current sensor is only related to the blade tip
clearance x and the angle α of the blade cutting magnetic
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inductance line when other conditions have been deter-
mined. Suppose the angle α of the blade cutting magnetic
induction line is kept unchanged, and only the distance
between the blade and the blade tip timing sensor is changed.
In that case, the static radial characteristic curve of the
output voltage U of the eddy current sensor and the blade tip
clearance x can be obtained. Conversely, by keeping the
blade tip clearance x constant and changing only the angle α
of the blade cutting the magnetic induction line, the static
waveform under this blade tip clearance can be obtained.

4.1. Prediction of the Static Radial Characteristic Curve at the
Specifc Angle. Representative angles will be selected for

prediction. Te Kriging models, the RBF model, and the
polynomial equation (4) are used for prediction when the
angle α of the blade cutting magnetic feld line is 17.825′ and
35.65′, respectively. When the angle α of the blade cutting
the magnetic feld line is 17.825′, it means that the blade is in
the middle position from the vertical center line of the eddy
current sensor to the edge, and it is approximately half of the
measured signal amplitude height. At this angle, if the blade
tip clearance exceeds 0.45mm, the blade cannot cut the
magnetic feld line of the eddy current sensor and cannot
continue to obtain voltage. Terefore, the measurement
range of the clearance at this angle is 0.1∼0.45mm. Te
comparison of the Kriging models prediction curves, the
RBF model prediction curve, and the polynomial ft
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Figure 5: Kriging models with diferent number of sample point groups: (a) 10 sets of sample points, (b) 6 sets of sample points, (c) 5 sets of
sample points, and (d) 3 sets of sample points.
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prediction curve with the static radial characteristic curve
obtained from the experimental data are shown in
Figures 7(a)–7(c), and 7(f ). As can be seen from
Figures 7(a)–7(d), the prediction curves of the Kriging
models with four diferent number of sample groups are
basically the same, and they all have a high degree of co-
incidence with the static radial characteristic curves drawn
from the experimental data. As shown in Figure 7(e), the
polynomial ft prediction curve overlaps slightly less than the
Kriging model with the static radial characteristic curve
obtained from the experimental data. As shown in
Figure 7(f), the RBF model has a high degree of agreement
with the static radial characteristic curve derived from the
experimental data.

Te prediction errors are shown in Figure 8. As can be
seen in Figure 8, when the angle α of the blade cutting the
magnetic induction line is 17.825′, the absolute errors
predicted by the four Kriging models and the RBF model are
less than 40mV.Te prediction accuracy of the RBFmodel is
slightly lower than that of the Kriging model at the same
number of sample point groups. However, the prediction
errors are all within themeasurement error range of the eddy
current sensor, indicating that both Kriging and RBFmodels
have good prediction accuracy at this angle. Te absolute
error of the polynomial ft prediction is less than 60mV,
which is also within the measurement error.

When the angle α of the blade cutting the magnetic feld
line is 35.65′, the vertical center line of the blade coincides
with the vertical center line of the eddy current sensor, and
the peak value of the output voltage U of the eddy current
sensor will be obtained at this position. Te comparison of
the Kriging models prediction curves, the RBF model pre-
diction curve, and the polynomial ft prediction curve with
the static radial characteristic curve obtained from the ex-
perimental data are shown in Figures 9(a)–9(f). Te pre-
dicted curves of the Kriging model in Figures 9(a) and 9(b)
are basically the same as the static radial characteristic curves
obtained from the experimental data. Combined with
Figures 7(a) and 7(b), it can be shown that even if a certain
number of sample points are reduced, the prediction curves
of the Kriging model do not change much. In Figure 9(c),
when the tip clearance is 0.5∼0.55mm, the predicted point
has an obvious turn. However, due to the correction of other
prediction points, the prediction curve of the Kriging model
does not change signifcantly. Suppose the prediction range
of the tip clearance continues to increase, a relatively obvious
error will occur, indicating that the accuracy of the Kriging
model will be reduced when predicting points outside the
sampling point range. Te predicted curve of the Kriging
model in Figure 9(d) is shifted somewhat relative to the static
radial characteristic curve drawn from the experimental
data. As can be seen in Figures 9(e) and 9(f), the polynomial
ft prediction curve, the RBFmodel prediction curve, and the
static radial characteristic curve obtained from the experi-
mental data are in good agreement.

Te prediction errors are shown in Figure 10. As can be
seen from Figure 10, the absolute errors of the predictions of
the Krigingmodel in Figures 9(a)–9(c) and the RBFmodel in
Figure 9(f ) are both minor, indicating that the Kriging

model and the RBF model have good prediction accuracy.
Moreover, under the same number of sample point sets, the
prediction errors of the RBF model and the Kriging model
under the same blade tip clearance are diferent. Still, the
overall prediction accuracy is basically the same. However,
the prediction errors of the Kriging model in Figure 9(d)
increase signifcantly, indicating that the prediction accuracy
of the Kriging model decreases when the number of groups
of sample points is few. When the Kriging model had only
three sets of sample points, the prediction accuracy of the
polynomial ft was better than that of the Kriging model.
Although the prediction accuracy of the polynomial ft is
slightly lower than that of the Kriging models with other
sample point numbers, the prediction error is also smaller,
indicating that the polynomial ft has good accuracy in the
prediction of static radial characteristic curves.

4.2. Prediction of the Static Circumferential Characteristic
Curve at the Specifc Tip Clearance. Te static circumfer-
ential characteristic curves under two tip clearances of
0.15mm and 0.2mm were predicted based on the Kriging
model, the RBF model, and the polynomial ft. Te pre-
diction accuracy of the Kriging models, the RBFmodel, and
the polynomial ftting method is verifed by comparison
with static circumferential calibration curves. When the tip
clearance x is 0.2mm, the comparison of the Kriging
models prediction curves, the RBF model prediction curve,
and the polynomial ft prediction curve with the static
circumferential calibration curve obtained from the ex-
perimental data are shown in Figures 11(a)–11(f ). In
Figures 11(a)–11(c), the static calibration data when the tip
clearance is 0.2mm have been input into the Kriging
model. Terefore, the prediction curves of the Kriging
models in Figures 11(a)–11(c) are highly consistent with
the static circumferential calibration curve. Tere is a
certain deviation between the static circumferential char-
acteristic curve predicted by the Kriging model in
Figure 11(d) and the static circumferential calibration
curve. In this model, the static calibration data when the tip
clearance is 0.2mm is not input, but the number of sample
point groups in this model is too few, which does not mean
that the Kriging model is not accurate enough to predict the
data that is not input. As shown in Figure 11(e), the
polynomial ft prediction curves are in high agreement with
the static circumferential calibration curve derived from
the experimental data. In Figure 11(f ), the static calibration
data at the tip clearance of 0.2mm have also been input into
the RBF model. Terefore, the prediction curve of the RBF
model is also highly consistent with the static circumfer-
ential calibration curve.

Te prediction error comparison is shown in Figure 12.
It can be seen from Figure 12 that when the tip clearance x is
0.2mm, the prediction accuracy of the Kriging model in
Figures 11(a)–11(c) is basically the same, and the absolute
errors are all less than 20mV.Te prediction accuracy of the
RBF model is slightly higher than that of the Kriging model
at the same number of sample point groups, but the dif-
ference is slight. Moreover, the prediction errors are all
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Figure 7: Comparison of the predicted curve and the experimental curve when the angle α of the blade cutting the magnetic feld line is
17.825′: (a) Kriging model with 10 sets of sample points, (b) Kriging model with 6 sets of sample points, (c) Kriging model with 5 sets of
sample points, (d) Kriging model with 3 sets of sample points, (e) polynomial ft of 10 sets of sampling points, and (f) RBF model with 6 sets
of sampling points.
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Figure 8: Comparison of the prediction error when the angle α of the blade cutting the magnetic induction line is 17.825′.

0.2 0.3 0.4 0.50.1
x (mm)

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

U
 (m

V
)

Static radial characteristic points
Kriging model prediction points
Static radial characteristic curve
Kriging model prediction curve

(a)

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

U
 (m

V
)

0.2 0.3 0.4 0.50.1
x (mm)

Static radial characteristic points
Kriging model prediction points
Static radial characteristic curve
Kriging model prediction curve

(b)

0.2 0.3 0.4 0.50.1
x (mm)

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

U
 (m

V
)

Static radial characteristic points
Kriging model prediction points
Static radial characteristic curve
Kriging model prediction curve

(c)

0.2 0.3 0.4 0.50.1
x (mm)

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

U
 (m

V
)

Static radial characteristic points
Kriging model prediction points
Static radial characteristic curve
Kriging model prediction curve

(d)

Figure 9: Continued.
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within the measurement error range of the eddy current
sensor, indicating that both Kriging and RBF models have
good prediction accuracy at this tip clearance. However, the
prediction error of the Kriging model in Figure 11(d) is
relatively large. When the Kriging model has only three sets
of sample points, the prediction accuracy of the polynomial
ft is better than that of the Kriging model. However, the
prediction accuracy of the polynomial ft is slightly lower
than that of the Kriging models with other sample points.

Next, at the tip clearance x of 0.15mm, it is verifed
whether the insufcient prediction accuracy of the Kriging
model in Figure 11(d) is caused by too few sample point
groups in the model. When the tip clearance x is 0.15mm,
the comparison of the Kriging models prediction curves, the
RBF model prediction curve, and the polynomial ft pre-
diction curve with the static circumferential calibration
curve obtained from the experimental data are shown in
Figures 13(a)–13(f ). In Figure 13(a), the static calibration
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Figure 9: Comparison of the predicted curve and the experimental curve when the angle α of the blade cutting the magnetic feld line is
35.65′: (a) Kriging model with 10 sets of sample points, (b) Kriging model with 6 sets of sample points, (c) Kriging model with 5 sets of
sample points, (d) Kriging model with 3 sets of sample points, (e) polynomial ft of 10 sets of sampling points, and (f) RBF model with 6 sets
of sampling points.
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Figure 10: Comparison of the prediction error when the angle α of the blade cutting the magnetic induction line is 35.65′.
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Figure 11: Comparison of the predicted curve with the experimental curve when the tip clearance x is 0.2mm: (a) Kriging model with 10
sets of sample points, (b) Krigingmodel with 6 sets of sample points, (c) Kriging model with 5 sets of sample points, (d) Krigingmodel with 3
sets of sample points, (e) polynomial ft of 10 sets of sampling points, and (f) RBF model with 6 sets of sampling points.
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data for a 0.15mm tip clearance has been input into the
Kriging model, so the static circumferential characteristic
curve predicted by the Kriging model in Figure 13(a)
overlaps with the static circumferential calibration curve.
In Figures 13(b)–13(d), the static circumferential charac-
teristic curves predicted by the Kriging model also do not
deviate signifcantly from the static circumferential cali-
bration curves and still have a high degree of overlap. As can
be seen in Figure 13(e), the polynomial ft prediction curve
deviates signifcantly from the static circumferential cali-
bration curve obtained from the experimental data, indi-
cating that the polynomial ft cannot guarantee that a high
prediction accuracy is maintained for all the data. In
Figure 13(f ), the static circumferential characteristic curve

predicted by the RBF model is also in high agreement with
the static circumferential calibration curve.

Te comparison of prediction errors is shown in Fig-
ure 14. As shown in Figure 14, the Kriging model has high
accuracy when predicting the location of the sample points. In
other words, the closer the predicted data are to the location
of the sample points, the higher the prediction accuracy of the
Krigingmodel.When the predicted data are far away from the
sample points, the prediction accuracy of the Kriging model
decreases, and the maximum error gradually increases as the
number of sample points decreases.With the same number of
sample point sets, the prediction accuracy of the RBFmodel is
slightly lower than that of the Kriging model, indicating that
the Kriging model is more advantageous in predicting the
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Figure 12: Comparison of prediction errors for a blade tip clearance x of 0.2mm.
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Figure 13: Comparison of the predicted curve with the experimental curve when the tip clearance x is 0.15mm: (a) Kriging model with 10
sets of sample points, (b) Krigingmodel with 6 sets of sample points, (c) Kriging model with 5 sets of sample points, (d) Krigingmodel with 3
sets of sample points, (e) polynomial ft of 10 sets of sampling points, and (f) RBF model with 6 sets of sampling points.
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waveform under the unknown blade tip clearance. It indicates
that the prediction accuracy of the Kriging model is afected
when the number of sample point groups decreases, but it still
has some accuracy. Te Kriging model slightly outperforms
the RBF model with the same number of sample points. In
contrast, polynomial ftting does not guarantee highly ac-
curate predictions for all data and is prone to signifcant
prediction errors.

5. Conclusions

Te numerical simulation is the main method for estimating
blade tip clearance waveform under diferent operating
conditions. However, it is difcult to accurately estimate the
actual tip clearance waveform by obtaining theoretical
simulation results of tip clearance under diferent working
conditions. It is not easy to measure the experimental data of
each tip clearance in the dynamic experiment. Tis article
proposes a waveform predictionmethod for blade tip-timing
sensor based on the Kriging model and static calibration
data. Firstly, a static calibration test bench is established, and
the static circumference calibration data obtained from the
experiment under diferent tip clearances are used as the real
values. Secondly, the polynomial ft prediction equation, the
RBF prediction model, and the Kriging prediction model are
established by changing the number of sample points, and
their prediction accuracy is compared with the actual values
obtained from experiments. Te specifc conclusions are as
follows: the closer the predicted data are to the location of
the sample point, the higher the prediction accuracy of the
Kriging model. When the predicted data are far away from
the sample point, the prediction accuracy of Kriging model
decreases, but it still has high accuracy. If the number of
sample points is too few, it would lead to the insufcient

prediction accuracy of the Kriging model. Moreover, the
Kriging model is less accurate when predicting points
outside the sampling point range. Moreover, the prediction
accuracy of the Kriging model is basically the same as that of
the RBF model, but the Kriging model has more advantages
in predicting waveforms under unknown blade tip clearance.
In contrast, the prediction accuracy of the polynomial ft is
lower than that of the Kriging and RBF models, and the
polynomial ft is prone to signifcant prediction errors.
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