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SUMMARY

Wavefront healing is a ubiquitous diffraction phenomenon that affects cross-correlation

traveltime measurements, whenever the scale of the 3-D variations in wave speed is

comparable to the characteristic wavelength of the waves. We conduct a theoretical and

numerical analysis of this finite-frequency phenomenon, using a 3-D pseudospectral

code to compute and measure synthetic pressure-response waveforms and ‘ground truth’

cross-correlation traveltimes at various distances behind a smooth, spherical anomaly in

an otherwise homogeneous acoustic medium. Wavefront healing is ignored in traveltime

tomographic inversions based upon linearized geometrical ray theory, in as much as it is

strictly an infinite-frequency approximation. In contrast, a 3-D banana–doughnut

Fréchet kernel does account for wavefront healing because it is cored by a tubular region

of negligible traveltime sensitivity along the source–receiver geometrical ray. The cross-

path width of the 3-D kernel varies as the square root of the wavelength l times the

source–receiver distance L, so that as a wave propagates, an anomaly at a fixed location

finds itself increasingly able to ‘hide’ within the growing doughnut ‘hole’. The results

of our numerical investigations indicate that banana–doughnut traveltime predictions

are generally in excellent agreement with measured ground truth traveltimes over a wide

range of propagation distances and anomaly dimensions and magnitudes. Linearized

ray theory is, on the other hand, only valid for large 3-D anomalies that are smooth on

the kernel width scale
ffiffiffiffiffiffi

jL
p

. In detail, there is an asymmetry in the wavefront healing

behaviour behind a fast and slow anomaly that cannot be adequately modelled by any

theory that posits a linear relationship between the measured traveltime shift and the

wave-speed perturbation.

Key words: body waves, global seismology, ray theory, tomography, traveltime, wave

propagation.

1 INTRODUCT ION

During the past decade we have witnessed remarkable pro-

gress in the determination of the Earth’s 3-D compressional-

and shear-wave velocity structure by means of global seismic

traveltime tomography. Linearized geometrical ray theory has

provided the basis for the majority of these traveltime tomo-

graphic studies (e.g. Inoue et al. 1990; Su & Dziewonski 1992;

Pulliam et al. 1993; Grand 1994; Masters et al. 1996; Van der

Hilst et al. 1997; Su & Dziewonski 1997; Grand et al. 1997;

Vasco & Johnson 1998; Boschi & Dziewonski 2000). In this

approximation, the traveltime shift of a body wave depends upon

the 3-D perturbation in wave speed along the unperturbed,

spherical-earth ray path only. A few recent analyses have

sought to overcome the limitations of linearization by making

use of an iterative inversion procedure, which requires the

computationally intensive tracing of rays through the previous

3-D structure (e.g. Bijwaard & Spakman 2000;Widiyantoro et al.

2000). Both linearized and ‘exact’ geometrical ray theory are,

however, strictly valid only in the limit of an infinite-frequency

wave. The measured traveltimes of actual finite-frequency

seismic waves differ from the predictions of ray theory in two

significant respects.

First, as a result of diffractive effects, the traveltimes of

finite-frequency waves are sensitive to 3-D wave-speed pertur-

bations off the geometrical ray (Woodward 1992; Marquering

et al. 1999; Dahlen et al. 2000; Hung et al. 2000; Zhao et al. 2000).

A remarkable feature of the 3-D Fréchet kernel expressing this

sensitivity is that it is identically zero everywhere along an

unperturbed P or S ray; the strongest sensitivity is in fact within

a tubular ‘skin’ surrounding the turning ray. The 3-D geometry

of a P- or S-wave traveltime kernel resembles that of a hollow

banana; in a cross-section perpendicular to the unperturbed

ray, the shape resembles that of a doughnut. Because of these

similarities, we have whimsically christened our formalism for

computing 3-D traveltime sensitivity kernels, banana–doughnut

theory. The original papers describing the theory (Dahlen

et al. 2000; Hung et al. 2000) will henceforth be referred to as

Banana–Doughnut I and II.
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Second, an infinite-frequency wave that accrues a traveltime

advance or delay upon passage through a fast or slow anomaly

somewhere along its ray path ‘remembers’ that shift as it

continues to propagate towards the receiver. This familiar but

fundamental aspect of geometrical ray theory can be regarded

as the central tenet of seismic tomography (see Fig. 1). In

a linearized inversion, a single traveltime-shift measurement

only constrains the line integral of the slowness perturbation

along the unperturbed, spherical-earth ray; data from millions

of crossing ray paths must be fitted simultaneously in order

to determine the locations and magnitudes of 3-D wave-

speed anomalies within the Earth’s mantle. The traveltimes of

actual finite-frequency waves violate the central tenet of seismic

tomography, due to another intrinsic diffraction phenomenon—

wavefront healing—which occurs whenever the scale of any

geometrical irregularities in a wavefront are comparable to the

wavelength of the wave. If an initially irregular, finite-frequency

wavefront continues to propagate through a medium that

is devoid of wavelength-scale 3-D heterogeneity, diffraction

acts to ‘fill in’ or ‘heal’ the irregularities (e.g. Gudmundsson

1996).

Nolet & Dahlen (2000) conducted a simplified analysis

of wavefront healing, using an elementary Gaussian-beam

solution to the one-way, parabolic wave equation to investigate

the evolution of both phase and group traveltimes, follow-

ing the passage of a monochromatic scalar wave through an

isolated anomaly. We present an independent analysis in this

paper, showing how the presence of the doughnut hole enables

a 3-D traveltime sensitivity kernel to account for the diffractive

healing of a broad-band body-wave pulse. Our objective is

to delineate the regime within which banana–doughnut theory

provides a valid description of observed finite-frequency travel-

time shifts, by comparison with ‘ground truth’ traveltimes

measured by cross-correlation of a suite of perturbed and

unperturbed synthetic seismograms. In the interests of com-

pleteness and pedagogy, we also conduct a 3-D ray-theoretical

analysis of a number of the examples which we consider.

Sections 2–4 are devoted to a review of relevant background

material, including a description of our numerical method for

computing ground truth synthetic seismograms, and a brief

summary of both geometrical ray theory and banana–doughnut

theory in the context of the problem under consideration.

In Sections 5–7 we compare a number of different measures of

the traveltime shift, for a variety of source–receiver anomaly

configurations.

2 GROUND TRUTH TRAVELT IMES

In the interest of computational expediency, we restrict attention

to acoustic-wave propagation in a Cartesian medium. The

fundamental principles governing diffraction and wavefront

healing are the same regardless of the physical characteristics

of the waves. For this reason, we expect the results to be

directly applicable to turning P, SV and SH elastic waves in a

spherically symmetric background earth model.

2.1 Homogeneous background medium

The background acoustic medium is assumed to be uniform,

with a constant-mass density r and acoustic wave speed c. The

response to an explosive point source in such a homogeneous

medium is governed by the classical wave equation,

+2phom � c�2L2t phom ¼ �o _mðtÞdðr� sÞ , (1)

where d(rxs) is the Dirac delta distribution. The unknown

phom(r, t) is the incremental pressure at point r and time t. The

quantity m(t) in the source term on the right is the instan-

taneous rate of change of an infinitesimally small volume dV(t)

situated at the point s; the dot denotes differentiation with

respect to time. The exact unique solution to eq. (1) in an infinite

medium is (Morse & Ingard 1968, Section 7.1)

phomðr, tÞ ¼
o _mðt� L=cÞ

4nL
: (2)

The quantity L=drxsd is the straight-line distance between

the source, s, and receiver, r. The acoustic pressure response (2)

is a delayed pulse that propagates with speed c and is geo-

metrically attenuated by a factor Lx1. The shape of the pressure

pulse is the second derivative of the differential source volume,

ṁ(t)=dV̈(t).

2.2 Isolated heterogeneity

To investigate the factors that govern 3-D wavefront healing

we consider an extremely simple situation—the passage of

a finite-frequency wave through a single, smooth, spherical,

cosine-bell ‘inclusion’ in an otherwise homogeneous medium.

The anomaly is presumed to have the same constant density, r,

but a spatially variable wave speed,

c?cþ dc : (3)

Specifically, the fractional wave-speed perturbation is given by

dc=c ¼
e½1þ cosð2nr=aÞ� if rƒa=2

0 if r§a=2 ,

(

(4)

where r is the radial distance from the centre. The dimension-

less parameter, e, is a measure of the strength or magnitude of

the wave-speed anomaly; a fast anomaly has e>0 whereas a

slow anomaly has e<0. The maximum value of the perturbation

dc/c at the centre of the sphere, r=0, is

ðdc=cÞmax ¼ 2e , (5)

whereas the volumetric root-mean-square average perturbation

is

Sdc=cTrms ¼ ð3=2� 45=4n2Þ1=2e&0:6e : (6)

a traveltime advance or

delay accrued here ...

... survives its journey

through the earth to here

fast or slow

 anomaly
s

r

Figure 1. Cartoon illustration of the central tenet underlying con-

ventional traveltime tomography. Diffractive healing of an infinite-

frequency wave is negligible, so that a single body-wave traveltime

between a seismic source s (star) and receiver r (dot) cannot determine

the location of an isolated fast or slow anomaly (grey blob) along the

source–receiver geometrical ray.
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Note that the dimensional parameter a is the diameter rather

than the radius of the anomaly. The background wave speed

and the uniform density are the same in all of our simulations:

c=8 km and r=3300 kg mx1, respectively.

2.3 Pseudospectral method

The equations of motion governing acoustic-wave propagation

in a constant-density medium are

Ltuhet ¼ �o�1+phet , (7)

Ltphet ¼ �oðcþ dcÞ2½+ . uhet �mðtÞdðr� sÞ� : (8)

There are four scalar unknowns in this case, the three Cartesian

components of the fluid velocity uhet(r, t) as well as the pressure

variation phet(r, t).

We use a parallelized pseudospectral method developed by

Hung & Forsyth (1998) to integrate the four equations (7)–(8)

numerically. In this technique, the four unknown wavefield

variables are represented as discrete 3-D Fourier expansions,

enabling the pressure gradient, +phet, and velocity divergence,

+ . uhet, in eqs (7)–(8) to be computed by multiplication in

the wavenumber domain. Numerical dispersion is significantly

improved in comparison to finite difference schemes, which use

only a few neighbouring nodes to approximate these spatial

derivatives.Wraparound artefacts and unwanted reflections from

the eight faces of the 3-D computational grid are suppressed by

means of a simple absorbing boundary condition described

by Cerjan et al. (1985).

2.4 Model geometry

The spherical anomaly (4) is situated near one corner of a

7650r7650r7650 km3 cube, as depicted in Fig. 2; the number

of gridpoints is 256r256r256#17r106. An explosive point

source,m(t), is detonated at a grid point, s, located on the near-

corner side of the anomaly and the resulting synthetic pressure

response phet(r, t) is sampled at a fan-shaped array of receivers

r, stretched across a long diagonal of the cube, so that some

of the unperturbed straight rays pass through the anomaly,

whereas others do not. We specify the position of an individual

receiver, r, by its distance 0jLj8000 km from the source, s,

and by its azimuth x45ujwj45u, as illustrated in Fig. 3. The

distance between s and the centre of the anomaly is denoted

by S, whereas that from the anomaly centre to an axial (w=0u)

receiver is denoted by R; the total source–receiver distance is of

course just the sum of these two,

L ¼ S þ R : (9)

The pressure response phet(r, t) at receiver locations, r,

between grid points is computed by means of a 3-D bilinear

interpolation from the eight adjacent nodal values.

2.5 Source time function

The time variation of the differential source volume in eq. (8) is

assumed to be a Gaussian, of the form

mðtÞ ¼ exp½�2n2ðt=q� 1=2Þ2� : (10)

The resulting pressure response (2) in the background

homogeneous medium is an acausal two-sided pulse,

_mðtÞ ¼ �4n2q�2ðt� q=2Þ exp½�2n2ðt=q� 1=2Þ2� , (11)

with a visually obvious upswing at t#0 and a characteristic

period equal to t. We denote the associated characteristic angular

frequency and wavelength by

) ¼ 2n=q , j ¼ cq , (12)

respectively. The power spectrum of the source time function

(11) is

j _mðuÞj2 ¼ ðu2q2=2nÞ expð�u2q2=4n2Þ : (13)

Note that all three relations (10)–(13) differ slightly from

the corresponding eqs (38)–(40) in Banana–Doughnut II. The

0
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Figure 2. Model configuration and source–receiver geometry used

in the pseudospectral simulation of 3-D acoustic-wave propagation.

The shaded isosurface represents a smooth, spherically symmetric

wave-speed anomaly of the form (4) embedded in an otherwise homo-

geneous 7650r7650r7650 km3 cube. Solid lines are the unperturbed

straight geometrical rays between the point source s (star) and the

receivers r (dots). Receivers are spaced every 2.5u along a series of equi-

distant arcs; the middle (w=0u) line of receivers lies along the straight

ray path through the centre of the spherically symmetric anomaly.

a

2ε

R S 

φ
φ = 0˚

L

Figure 3. Receiver locations (dots) are completely described by

specifying their distance 0jLj8000 km from the source (star) and

their azimuth x45ujwj45u, measured with respect to the axis of

cylindrical symmetry passing through the centre of the spherical

anomaly (shaded circle). The quantities S and R are the distances from

the anomaly centre to the source s and an axial w=0u receiver r,

respectively. The wave-speed perturbation is a cosine bell of the form

(4), having a maximum value (dc/c)max=2e at the centre r=0, and

tending smoothly to zero at r=a/2.
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upshot of this redefinition is to shift the maximum of |ṁ(v)|2

from
ffiffiffi

2
p

) to V, so that the characteristic quantities t, V and l

coincide with the visually estimated period, angular frequency

and wavelength of the pulse.

In all of the simulations presented in this paper, the

characteristic period and wavelength are

q ¼ 25 s , j ¼ 200 km : (14)

The numerical values (14) and the longest propagation distances,

L=8000 km, were chosen to be representative of long-period

shear waves that sample the deep mantle. Since the grid spacing is

*x ¼ 7650=255 ¼ 30 km , (15)

there are between six and seven grid points per wavelength in

the pseudospectral computations; this is more than adequate to

ensure numerical accuracy (Hung & Forsyth 1998).

A conventional fourth-order Runge–Kutta scheme is used to

advance phet(r, t) and uhet(r, t) in time. The time step Dt must

satisfy the von Neumann criterion,

*tƒ
2*x
ffiffiffi

3
p

nc
&1:4 s , (16)

in order for the pseudospectral integration procedure to be

stable (e.g. Kosloff & Baysal 1982; Kosloff et al. 1984). We err

on the side of conservatism, using a significantly shorter time

step,

*t ¼ 0:25 s , (17)

to ensure that grid dispersion is thoroughly negligible. This and

other features of the numerical method, including the efficacy

of the absorbing boundary conditions, were checked by com-

parison with the exact analytical solution (2) for phom(r, t) in an

infinite homogeneous (e=0) medium.

2.6 Dimensionless parameters

Acoustic wave propagation within the simple class of models

examined here is completely characterized by four dimensionless

parameters:

(i) the magnitude of the anomaly, e;

(ii) the ratio of the anomaly size to the wavelength, a/l;

(iii) the dimensionless source–anomaly distance, S/l; and

(iv) the dimensionless receiver–anomaly distance, R/l.

To investigate wavefront healing, we generally place the centre

of the anomaly at a fixed position relatively close to the source,

S ¼ 10j , (18)

and examine the ensuing evolution of the wavefront after it

has passed through the anomaly at various receiver distances

0jRj30l and azimuths x45ujwj45u, for a suite of both

fast and slow anomaly magnitudes |e|=3–12 per cent and

dimensions a=l–8l. Only in Sections 5.3 and 6 do we alter

the location (18) of the anomaly, in order to conduct a brief

examination of the principle of source–receiver reciprocity.

2.7 Cross-correlation traveltime measurement

The time required for a wave to propagate from the source, s,

to a receiver, r, is measured by cross-correlation of the syn-

thetic waveform, phet(r, t), with the corresponding waveform,

phom(r, t), in an infinite homogeneous medium. The traveltime

anomaly, dTccm, is the amount by which phom(r, t) must be

shifted in time in order to most closely resemble phet(r, t), in the

sense

ðt2

t1

phomðr, t� dTccmÞ phetðr, tÞ dt ¼ maximum : (19)

Physically, dTccm is the traveltime of a finite-frequency wave

in the perturbed medium relative to its traveltime Thom=L/c

in the unperturbed medium. A negative traveltime anomaly,

dTccm<0, corresponds to an advance in the arrival of the

perturbed pulse phet(r, t) relative to the unperturbed pulse

phom(r, t), whereas a positive anomaly, dTccm>0, corresponds

to a delay. Unless indicated otherwise, we make use of a box-

car cross-correlation window of length t2xt1=45 s, carefully

positioned to ensure that it includes all non-negligible portions

of the two t=25 s pulses phet(r, t) and phom(r, txdTccm). The

value of the traveltime anomaly dTccm is determined by least-

squares fitting of a parabola to a discretized version of the

cross-correlagram (19) in the vicinity of its maximum.

The quantity dTccm is the first of several measures of

the traveltime anomaly due to a wave-speed perturbation of the

form (4) which we shall introduce and compare. A different

three-letter subscript will be used to identify and distinguish

these various measures of dT. The values dTccm measured by

cross-correlation (19) are regarded as ground truth standards

for the purpose of comparison.

3 GEOMETR ICAL RAY THEORY

In the limit of an infinitely high-frequency pulse, tp0, the wave

can be regarded as propagating from s to r along one or more

geometrical rays. The problem of determining the response

phet(r, t) reduces to that of tracing all of the rays and computing

the geometrical amplitude variation along them.

3.1 Ray tracing

We denote the position and instantaneous propagation direction

of a wave along a ray by x and k̂, respectively. In the language

of classical differential geometry, the unit vector k̂ is the tangent

vector along the ray. The equations needed to trace rays can be

written in a variety of forms, including

dx=dl ¼ kŒ , dkŒ =dl ¼ �ðcþ dcÞ�1
+\ðdcÞ , (20)

dx=dT ¼ ðcþ dcÞkŒ , dkŒ =dT ¼ �+\ðdcÞ , (21)

where dl and dT are the differential arclength and traveltime,

respectively and +’=+xk̂k̂ .+ is the gradient in a direction

perpendicular to the ray (Dahlen & Tromp 1998, Section 15.3).

Every ray starts from the source s in a specified direction:

xð0Þ ¼ s , kŒ ð0Þ ¼ kŒ s : (22)

To perform two-point ray tracing, it is necessary to find the

set of initial take-off vectors k̂s that enable the associated

ray to ‘hit’ the receiver r. Fermat’s principle stipulates that the

geometrical rays between s and r are those paths for which

the total traveltime

Tray ¼
ðr

s

dl

cþ dc
(23)
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is stationary. The first-arriving wave propagates along the

global least-time path, whereas later arrivals propagate along

minimax paths that are stationary but not least-time.

3.2 Ray-theoretical response

The approximate ray-theoretical pressure response is a

straightforward generalization of the result (2),

phetðr, tÞ&
1

4n

X

rays

ðosorcscrÞ1=2ðcsLÞ�1
_m
ðMÞ
H ðt� TÞ : (24)

The subscripts on rs, cs and rr, cr denote evaluation at the

source s and the receiver r, respectively. The summation accounts

for the possibility of multipathing, that is, the existence of more

than one geometrical ray between s and r. The quantityL(r, s)

is a geometrical attenuation or spreading factor, analogous

to the straight-line source–receiver distance L=drxsd in a

homogeneous medium. If dS is the differential cross-sectional

area at the receiver r of an infinitesimal ray tube that subtends

a solid angle dU at the source s, then (Dahlen & Tromp 1988,

Section 15.4)

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jd&j=d�
p

: (25)

The absolute value in the definition (25) is necessary because

the ray tube area dS changes sign upon every passage through a

caustic. Every such passage gives rise to a non-geometrical,

frequency-independent p/2 phase shift, or Hilbert transform-

ation, of the associated wave. The Maslov index M is a mono-

tonically increasing integer that keeps track of the number of

caustic passages along a ray; the M-times-transformed pulse

in (24) is

_m
ðMÞ
H ðtÞ ¼ 1

n
Re

ð

?

0

_mðuÞ exp iðutþMn=2Þ du : (26)

The first-arriving wave at every receiver r hasM=0, so that the

shape of the least-time pulse is always ṁH
(0)(t)=ṁ(t).

3.3 Ray-theoretical traveltime anomaly

The ‘exact’ ray-theoretical traveltime anomaly associated

with the wave-speed perturbation dc is simply the difference

in traveltime between s and r in the perturbed and unperturbed

media,

dTray ¼
ðr

s

dl

cþ dc
�
ð

�
r

s

dl

c
¼

ðr

s

dl

cþ dc
� L

c
, (27)

where the unadornment or adornment on an integral indi-

cates that it is taken along the true geometrical (perturbed) or

straight-ray (unperturbed) path. Fermat’s principle can be used

to linearize the relation (27); the traveltime anomaly is given in

this approximation by a much simpler straight-ray integral:

dTfer ¼ �
ð

�
r

s

c�2dc dl : (28)

The difference between dTray and dTfer is guaranteed to be of

second order in the wave-speed perturbation:

dTray ¼ dTfer þOðe2Þ : (29)

Fermat’s principle is invoked in the vast majority of global

traveltime tomographic studies, because it enables the inverse

problem to be cast only in terms of integrals along the unper-

turbed spherical earth ray path, avoiding the need to perform

3-D ray tracing.

4 BANANA–DOUGHNUT THEORY

Banana–doughnut theory accounts explicitly for the ability

of a finite-frequency wave to ‘feel’ earth structure off the geo-

metrical ray. The 1-D line integral (28) is replaced by a 3-D

volume integral,

dTbdk ¼
ððð

+

Kðdc=cÞ d3x , (30)

over the entire space, +, in which the wave-speed perturbation

is non-zero, dc/cl0. In Banana–Doughnut I and II we used

the Born approximation to find an ‘exact’ double-ray-sum

representation of the 3-D Fréchet kernel in (30), and we have

shown that this double-sum representation could be approxi-

mated very well by the leading term in a paraxial or near-ray

expansion. We shall conduct all of our traveltime comparisons

in this paper in terms of the paraxial rather than the ‘exact’

sensitivity kernel, because of the relative ease with which its

generalization can be computed in a more realistic spherical

background earth model.

4.1 Paraxial Fréchet kernel

We specify the location of a single-scatterer integration point

x in eq. (30) in terms of the path-perpendicular ray-centred

coordinates q1, q2 as well as the straight-ray distances Lk

and La=LxLk to the source and receiver, as illustrated in

Fig. 4. In the special case where the background medium is

homogeneous, c=constant, the paraxial kernel K(x) is given by

K ¼ � 1

2nc2
L

L0L00

� �

ð

?

0

u3j _mðuÞj2 sin u

2c

L

L0L00

� �

q2
� 	

du

ð

?

0

u2j _mðuÞj2du
, (31)

where q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q21 þ q22

q

is the perpendicular distance from the

scattering point x to the nearest point on the straight source-

to-receiver ray. The argument of the sinusoid in the upper-

most integral is v times the difference in traveltime DT=(1/2c)

(L /LkLa)q2 required to take the detour path through the

s r

x

L' L"

L

q1 q2

Figure 4. Geometrical notation used in the specification of the

paraxial Fréchet kernel, eq. (31). Every single scatterer x is projected

onto the nearest point on the straight-line source–receiver ray; the

position of x relative to the projection point is described by the two

orthogonal ray-centred coordinates q1, q2. The quantities Lk and

La=LxLk are the distances from the projected point to the source s

and receiver r, respectively.
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scatterer x rather than straight along the source-to-receiver ray.

The identical dependence of this traveltime difference upon

the two cross-path coordinates q1, q2 renders the straight-ray

traveltime sensitivity kernel (31) axially symmetric. In addition,

K exhibits a mirror-plane symmetry with respect to s and r, by

virtue of the interchangeability of Lk and La.

The derivation of the result (30)–(31) in Banana–Doughnut I

and II specifically assumes that the traveltime anomaly of a

finite-frequency wave with power spectral density |ṁ(v)|2 has

been measured by cross-correlation in the time domain, in

accordance with the stipulation (19). In fact, eqs (30) and (31)

can be regarded as the linearized version of eq. (19); i.e.,

dTccm ¼ dTbdk þOðe2Þ , (32)

in the same way that the Fermat approximation (28) is the

linearization of (27).

4.2 Doughnut-hole geometry

Fig. 5 shows a cross-sectional representation of the paraxial

Fréchet kernel (31) for a t=25 s wave observed at a source–

receiver distance L=drxsd=20l. As noted in Banana–

Doughnut I and II, the presence of the sinusoidal term

sin(vDT) in the uppermost integral renders the sensitivity

of a finite-frequency traveltime identically zero along the

straight-line source–receiver ray, where q=0. The maximum

sensitivity is in a dark-grey (K<0) ellipsoidal ‘banana skin’

surrounding the ray; the sensitivity is significantly reduced

within the fringing light-grey (K>0) sidelobe and beyond as a

result of destructive interference among adjacent frequencies v

and v+dv in the waveform. Roughly speaking, the region of

strong sensitivity lies within the first Fresnel zone, defined by

VDTjp or, equivalently, DTjt/2. In our simple ellipsoidal

geometry, this condition reduces to

qƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jL0L00=L
p

: (33)

The cross-path width or diameter of the axially symmetric zone

(33) at the source–receiver midpoint Lk=La=L /2 is
ffiffiffiffiffiffi

jL
p

, as

shown.

4.3 Fat man and little boy

Whenever the dimensions of an on-axis anomaly are large

compared to the characteristic width of the kernel,

a&
ffiffiffiffiffiffi

jL
p

, (34)

the wave-speed perturbation dc/c can be extracted from the 2-D

integration over the transverse coordinates q1, q2 in eq. (30),

leading to the approximation

dTbdk&

ð

�
L

0

ðdc=cÞ dl
ðð

?

�?

K dq1 dq2 : (35)

The remaining integral over q1, q2 can be evaluated analytically,

with the result
ðð

?

�?

K dq1 dq2 ¼ � 1

c
: (36)

Upon inserting (36) into (35) we find that the traveltime

anomaly reduces to that for an infinite-frequency wave:

dTbdk&dTfer : (37)

This analysis shows that banana–doughnut theory provides the

natural finite-frequency extension of linearized geometrical ray

theory.

In the opposite limit of an on-axis perturbation that is small

compared to the characteristic width of the kernel,

a%
ffiffiffiffiffiffi

jL
p

, (38)

the traveltime anomaly (30) of a finite-frequency wave is

negligible:

dTbdk&0 : (39)

Such a small wave-speed anomaly is able to ‘hide’ inside the

doughnut hole, where K#0, as illustrated in Fig. 6. A large

enough anomaly does not care if the 3-D Fréchet sensitivity

kernel has a doughnut hole; the entire kernel then ‘sees’

essentially the same cross-path perturbation dc/c, so that dTbdk

reduces to dTfer by virtue of the identity (36).

4.4 Wavefront healing mechanism

Fig. 7 illustrates the manner in which the 3-D Fréchet kernel

(30)–(31) is able to account for finite-frequency, diffractive

wavefront healing by virtue of the presence of the doughnut

hole. In this schematic example, an anomaly of fixed size a=4l

is situated at fixed distance S=10l from the source s. The top

panel shows the kernel K for a receiver r at a distance R=2l,

corresponding to the point at which an infinite-frequency wave

has just passed through the anomaly. The diameter of the

anomaly is much greater than the local width of the kernel K,

so that a finite-frequency wave will also accrue almost the

full ray-theoretical advance or delay, dTbdk#dTfer. The other

two panels show the kernels K after the wave has propagated

beyond the anomaly, to distances R= 12l and R= 30l,

respectively. It is clear that the local width of the kernel K in the

vicinity of the anomaly increases with the source–receiver

distance, so that as the wave propagates, the anomaly finds

itself increasingly able to ‘hide’ within the doughnut hole. In

the limit Rp? the anomaly will be 100 per cent successful in

hiding, and the initial advance or delay will be completely

s r

source-receiver distance L

τ = 25 s

width = (λL)1/2

–2 +2

kernel K (×10–6 s/km3)

Figure 5. Axial cross-section through the 3-D banana–doughnut travel-

time sensitivity kernel K for an acoustic wave with a characteristic period

t=25 s, observed at a source–receiver distance L=20l=4000 km.

Note the scale: medium grey tone (background) represents K=0.

Curve on right shows the cross-path variation of K versus q on a

path-perpendicular plane midway between the source s and receiver r.
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eradicated by wavefront healing, dTbdkp0. We shall return to

this hide-and-seek scenario in Section 6, in order to conduct a

slightly more quantitative back-of-the-envelope analysis of this

banana–doughnut mechanism of wavefront healing.

5 NUMERICAL RESULTS

In this section we test the linearity of ray theory by comparing

dTfer with dTray and we examine the prediction capabilities

of both linearized ray theory and banana–doughnut theory by

comparing dTfer and dTbdk with ground truth cross-correlation

traveltime anomalies dTccm for a variety of wave-speed anomaly

magnitudes and source–receiver geometries. Many of the results

we present here are reminiscent of those in the now classic study

of Wielandt (1987). He studied the waveform and traveltime

perturbations induced by a ‘hard’ spherical scatterer, with a

constant wave-speed perturbation dc=constant, rather than a

‘soft’ scatterer, with a wave-speed perturbation (4) that blends

smoothly into the background, as we do. We comment briefly

upon another important difference between our study and that

of Wielandt in Section 5.7.

5.1 Rays, wavefronts and caustics

Fig. 8 presents a bare-bones ray-theoretical view of the wave-

field passing through a fast anomaly (a) and a slow anomaly (b).

Recall that each plot represents a 2-D cross-section through

an axially symmetric 3-D situation. The circular bull’s-eyes on

the left are contours of the wave-speed perturbation dc/c; the

diameter in both cases is a=4l and the anomaly magnitudes

are e=t6 per cent, corresponding to a straight-through Fermat

traveltime advance or delay dTfer
w=0=A6 s, respectively. The

diverging lines are geometrical rays emanating from a source s

situated out of the picture at a distance S=10l to the left. The

curved solid lines are infinite-frequency wavefronts, which are

everywhere perpendicular to the rays. Each vertical strip can

be regarded as a snapshot of the propagating wave, taken at an

instant t=8t, 12t, . . . , 40t=200, 300, . . . , 1000 s given above.

The dashed lines show the presence of the corresponding

unperturbed spherical wavefront at the same instant; the advance

of the wavefront upon passing through a fast (e>0) anomaly

and its delay upon passing through a slow (e<0) anomaly are

evident. The heavy solid lines are caustics, where the geometrical

spreading factor L in eqs (24) and (25) vanishes, because of the

crossing of adjacent rays. A fast anomaly gives rise to a two-

sheeted, funnel-shaped caustic, with a circular cusp at L#17l in

3-D space. The folding or triplication which the wavefront experi-

ences upon passing through this cusp is too small to be seen at

this scale. In the case of a slow anomaly, there are two caustics—

a conical caustic with a pencil-point cusp at L#14l and a linear

axial caustic that commences at this cusp. The conical caustic is

associated with the crossing of rays that lie within the plane of the

2-D cross-section shown. The triplication associated with this

caustic is evident; note that the folds in the wavefront everywhere

coincide with the caustic. The axial caustic is due to the crossing

of adjacent rays that lie out of the 2-D plane. Beyond L#14l,

all of the rays that leave the source at the same take-off azimuth w

cross the axis at the same point (see Appendix for further details).

As usual, the ray-theoretical picture is extremely complicated,

and marred by caustic singularities and triplicated wavefronts.

Nevertheless, this example, makes one thing abundantly clear:

wave propagation through a fast anomaly is decidedly different

from propagation through a slow one. As we shall see, vestiges

of this fast–slow asymmetry persist even for finite-frequency

waves. There is no way that any strictly linear relationship

such as (28) or (30) can capture this phenomenon. Evidently

dTferpxdTfer and dTbdkpxdTbdk whenever dcpxdc.

Figure 6. The cross-path width of an L=20l Fréchet kernel K at

the source–receiver midpoint Lk=La=L /2 is
ffiffiffiffiffi

20
p

j&4:5j. (a) A little-

boy wave-speed anomaly of diameter a=2l gives rise to a negligible

traveltime shift, dTbdk#0, because it is able to ‘hide’ within the

doughnut hole. (b) A fat-man anomaly of diameter a=8l appears to be

uniform on the cross-path scale of the kernel; as a result, the traveltime

shift is approximately that given by linearized ray theory, dTbdk#dTfer.

s r

S = 10λ, R = 2λ

s r

S = 10λ, R = 12λ

s r 

S = 10λ, R = 30λ

Figure 7. Schematic illustration of the banana–doughnut mechanism

of wavefront healing. In this example, a wave-speed anomaly of diameter

a=4l is situated at a distance S=10l from the source s. The three

panels show the relation of the anomaly (white circle) to the 3-D

traveltime sensitivity kernel K of a t=25 s wave, as the position of the

receiver r is shifted from R=2l to R=12l to R=30l, representing

the propagation of the wave. The size of the doughnut hole in the

vicinity of the anomaly increases with increasing propagation distance,

so that the traveltime shift dTbdk decreases with time.
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5.2 Finite-frequency waves

In Fig. 9 we see the wave-theoretical flesh grafted onto the

ray-theoretical bones. The anomaly size a=4l and magnitude

e=t6 per cent are unchanged, and the layout is analogous to

that in Fig. 8; the upper and lower panels show the propagation

of a t=25 s wave through a fast and slow wave-speed pertur-

bation, respectively. Each vertical strip represents a snapshot of

the incremental pressure field phet(r, t) at time t=8t, 12t, . . . , 40t;

regions of compression (phet>0) and dilatation (phet<0) are

designated by green–blue colours and orange–red colours,

respectively. The reference locations of the unperturbed spherical

wavefronts are shown by dashed lines, as before. Just after

passing through the fast or slow anomaly, at time t=12t=300 s,

the leading green edge of the wavefront is visibly advanced (a)

or delayed (b) with respect to the unperturbed wavefront. As

time progresses, however, the extent of this advance or delay is

diminished by diffractive processes; the sequence of snapshots

provides a visualization of the wavefront healing phenomenon

which is the principal focus of this paper.

The nature of the healing process is obviously quite different

in the two examples. In the case of a fast anomaly, the on-axis

(w=0u) pulse amplitude diminishes with time, as a result of

geometrical attenuation associated with the defocusing of rays

in Fig. 8. It is also evident that the pulse width is substantially

broadened; note the growing yellowish ‘lens’ between the lead-

ing blue compression and the trailing red rarefaction. In the

case of a slow anomaly, the amplitude of the on-axis pulse is, in

contrast, amplified by focusing and its width is narrowed. The

only manifestation of the caustic singularities are weak orange

and green diffractions, which lie along extrapolations of the

folded infinite-frequency wavefronts (Fig. 9b). As usual, the

exquisite detail in the infinite-frequency picture is blunted and

blurred in the real finite-frequency world.

5.3 Source–receiver reciprocity

The principle of acoustic reciprocity guarantees that the pressure

response to a pinpoint explosion m(t)d(rxs) is invariant under

an interchange r<s of the source and receiver (Landau &

Lifshitz 1959, Section 74):

phetðr, t; source at sÞ ¼ phetðs, t; source at rÞ : (40)

We devote the present section to a brief illustration of this

fundamental result. Figs 10 and 11 show the rays, wavefronts

and caustics and a sequence of snapshots of a t=25 s pressure

pulse phet(r, t) passing through a fast (a) and slow (b) a=4l,

e=t6 per cent wave-speed anomaly. The formats of these

figures are identical to those of Figs 8 and 9; the only difference

is that the anomaly (bull’s-eye) has been moved from S=10l=

2000 km to a new position at a greater distance, S=30l=

6000 km, from the source. All of the views prior to t=28t=700 s

slow

L/λ
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

t = 8τ

fast

t = 12τ t = 16τ t = 20τ t = 24τ t = 28τ t = 32τ t = 36τ t = 40τ

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

(a)

(b)

Figure 8. Axial cross-sections illustrating the passage of an infinite-frequency 3-D wavefield through a fast (a) and a slow (b) anomaly. Circular

contours centred at L=10l depict the cosine-bell wave-speed perturbation (4), of diameter a=4l and maximummagnitude e=t6 per cent. Thin solid

lines are geometrical rays and wavefronts diverging from an S=10l point source s (not shown). The corresponding unperturbed spherical wavefronts

are depicted by dashed lines. Heavy solid lines are caustic singularities, where neighbouring rays cross. The triplications continue to expand laterally,

and no additional caustics develop as the wavefront propagates further beyond the anomaly into homogeneous space. See Fig. 9 for corresponding

finite-frequency view.
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are in this case quite boring; the rays are straight lines,

the wavefronts are spherical, and the pressure response is

simply that of a homogeneous medium, phet(r, t)=phom(r, t).

The wavefront that finally encounters the anomaly is more

nearly planar than that in Figs 8 and 9; as a result, the caustics

and associated triplications develop more quickly, at distances

L#35l and L#33l upon passage through a fast (Fig. 10a) and

slow (Fig. 10b) anomaly, respectively. The blunted and blurred

diffractions that are the finite-frequency manifestations of the

ray-theoretical wavefront folding are evident in Fig. 11b.

The reciprocity principle (40) stipulates that the waveforms

phet(r, t) should be identical at an on-axis (w=0u) receiver

situated at a distance L=40l in the two cases S=10l, R=30l

and S=30l, R=10l. It is clear that the blue p red p green

patterns that are on the verge of passing through the w=0u

receiver are visually similar in the final t=40t=1000 s snap-

shots in Figs 9 and 11. Note that there is no requirement that

the responses phet(r, t) be identical anywhere other than at

this S<R receiver. In Fig. 12 we present a more quantitative

vindication of eq. (40); the two panels show the synthetic fast-

anomaly (Fig. 12a) and slow-anomaly (Fig. 12b) waveforms

phet(r, t) at a sequence of on-axis (w=0u) receivers, situated at

distances L=8l, 12l, . . . , 40l. Solid and dashed lines depict

the responses for the near-source (S=10l) and the more distant

(S=30l) anomalies, respectively; the amplitude of each pulse

has been scaled by a factor proportional to the propagation

distance L, in order to eliminate the effect of Lx1 geometrical

spreading in the background model. At distances Lj8l all

four pulses phet(r, t; e>0 or e<0; S=10l or S=30l) are

identical, and simply equal to phom(r, t), because none of the

waves has yet encountered an anomaly. Between L=8l and

L=28l the perturbed S=10l waveforms phet(r, t) are very

clearly advanced (e>0, top) or delayed (e<0, bottom) in time

relative to the unperturbed S=30l waveforms phet(r, t)=

phom(r, t). At L=12l, immediately after the waves have passed

through the S=10l anomaly, the extent of this visual traveltime

shift is approximately equal to the expected ray-theoretical

advance or delay, dTfer
w=0=A6 s. With increasing propagation

distance, however, the visual traveltime shift decreases by a

factor of two to three, as a consequence of diffractive wave-

front healing. The geometrical attenuation of phet(r, t) relative

to phom(r, t) due to ray defocusing upon passage through a fast

anomaly and its relative amplification due to focusing upon

passage through a slow anomaly are also evident. At L=32l

the S=30l pressure pulses phet(r, t) have just passed through

the anomalies, where they accrue their ray-theoretical travel-

time shifts dTfer
w=0=A6 s. These shifts and the attendant

defocusing (top) and focusing (bottom) reduce the discrepancy

between phet(r, t;S=10l) and phet(r, t;S=30l). The discrepancy

continues to decrease with increasing propagation distance until,

finally, at L=40l, the two pulses merge and become identical,

in accordance with the principle of acoustic reciprocity (40).

The visual indistinguishability of the solid and dashed wave-

forms phet(r, t;S=10l, R=30l) and phet(r, t;S=30l, R=10l)

is indicative of the accuracy of the numerical procedure used to

solve eqs (7) and (8).

slow

L/λ
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

t = 8τ

fast

t = 12τ t = 16τ t = 20τ t = 24τ t = 28τ t = 32τ t = 36τ t = 40τ

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

(a)

(b)

Figure 9. Axial cross-sections showing the passage of a finite-frequency (t=25 s) acoustic pressure field phet(r, t) through a fast (a) and slow (b)

a=4l, e=t6 per cent wave-speed anomaly. Green–blue colours denote regions of compression (phet>0); orange–red colours denote regions of

dilatation or rarefaction (phet<0). Dashed lines show the reference location of the unperturbed spherical wavefront. See Fig. 8 for corresponding

infinite-frequency, purely geometrical view.
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5.4 Traveltime comparisons

Fig. 13 illustrates the cross-correlation traveltime measure-

ment process for an on-axis (w=0u) suite of synthetic pressure-

response seismograms at various distances 2ljRj30l beyond

a fast (Fig. 13a) or slow (Fig. 13b) anomaly. The anomaly

location S=10l and diameter a=4l are the same as those

in Figs 8 and 9; however, the magnitude of the wave-speed

perturbation is half as large, e=t3 per cent. Solid lines are

used to display the perturbed waveforms phet(r, t) in the plots

on both the left and right; dashed lines on the left depict

phom(r, t), whereas those on the right depict the corresponding

optimally aligned, unperturbed waveforms phet(r, txdTccm
w=0).

Immediately after passage through the anomalies, at R=2l,

the unperturbed pulses are advanced (Fig. 13a) or delayed

(Fig. 13b) with respect to the unperturbed pulses by roughly

the full ray-theoretical amount, dTccm
w=0

#dTfer
w=0=A3 s. Once the

pulses have propagated to the most distant, R=30l, receivers,

however, diffractive wavefront healing has reduced the cross-

correlation traveltime dTccm
w=0 by a factor of 70–80 per cent.

It is noteworthy that the degree of healing, as measured by

cross-correlation, is somewhat more pronounced for the fast

anomaly than for the slow one; this fast–slow asymmetry is a

general feature, which becomes more pronounced when the

absolute magnitude |e| of the wave-speed perturbation increases,

as we shall see in Section 5.6.

In Fig. 14 we conduct a more thorough analysis of the

source-anomaly configuration in Fig. 13, examining all four

quantitative measures (19), (27), (28) and (30) of dT over

the full range of receiver azimuths, x45ujwj45u, at three

different source–receiver distances L=12l (Fig. 14a), L=22l

(Fig. 14b) and L=40l (Fig. 14c). The top two panels compare

the linearized Fermat anomaly dTfer (dashed line) with the

‘exact’ ray-theoretical anomaly dTray (solid line). The cusp of

the slow anomaly lies immediately in front of the most distant,

L=40l, receiver, and one can just see a tiny triplication starting

to form. All of the receivers lie in front of the caustic in the case

of a fast anomaly. Note that dTfer need not coincide with, and

in fact can be either greater or less than, dTray even along the

straight-through (w=0u) ray. The least-time character of the

first-arriving waves does not dictate that dTrayjdTfer whenever

the linearization (28) is performed in terms of the wave speed

rather than the associated slowness perturbation, as we have

done.

In the bottom two panels (Figs 14c and d) we test the extent

to which banana–doughnut theory is able to reproduce ground

truth cross-correlation traveltime measurements. The predicted

and measured anomalies dTbdk and dTccm are denoted by filled

circles and unfilled triangles, respectively. The dashed lines,

which are identical to those in the top two panels, show the

Fermat anomalies dTfer for comparison. It is evident that the

3-D Fréchet kernels (31) are able to account reasonably well for

slow

L/λ
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

t = 8τ

fast

t = 12τ t = 16τ t = 20τ t = 24τ t = 28τ t = 32τ t = 36τ t = 40τ

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

(a)

(b)

Figure 10. Same as Fig. 8, except that the anomaly (bull’s-eye) is situated at a distance S=30l from the source s. Prior to t=28t=700 s, the

geometrical rays are straight and the perturbed (solid) and unperturbed (dashed) wavefronts coincide, because the spherically symmetrical waves are

simply propagating through a homogeneous medium. See Fig. 11 for corresponding finite-frequency view.
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the healing of the finite-frequency traveltimes in this example.

In general, the discrepancy between dTbdk and the measure-

ments dTccm is about the same as or less than that between dTfer

and dTray, due to the linearization of ray theory. Particularly at

the largest propagation distance, L=40l, the difference between

dTbdk and dTccm is more pronounced for the fast anomaly than

for the slow one. Since dTfer does not account for finite-frequency

wavefront healing at all, it is in very poor agreement with the

cross-correlation measurements dTccm, except at the L=12l

receivers situated just behind the anomaly.

slow

L/λ
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

t = 8τ

fast

t = 12τ t = 16τ t = 20τ t = 24τ t = 28τ t = 32τ t = 36τ t = 40τ

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

(a)

(b)

Figure 11. Same as Fig. 9, except that the anomaly (bull’s-eye) is situated at a distance S=30l from the source s. Prior to t=28t=700 s, the waves

are simply propagating through a homogeneous medium, so that phet(r, t)=phom(r, t). See Fig. 10 for corresponding infinite-frequency, purely

geometrical view.

8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41

slow anomaly

dimensionless time t/τ

L = 8λ L = 12λ L = 16λ L = 20λ L = 24λ L = 28λ L = 32λ L = 36λ L = 40λ

fast anomaly (a)

(b)

Figure 12. Synthetic pseudospectral seismograms phet(r, t) at a number of on-axis receivers r, situated at distances L=8l, 12l, . . . , 40l from the

source. Solid and dashed lines depict the waveforms for the S=10l and S=30l wave-speed anomalies illustrated in Figs 8–9 and 10–11, respectively.

(a) phet(r, t) for an a=4l, e=+6 per cent fast anomaly, (b) phet(r, t) for an a=4l, e=x6 per cent slow anomaly; ticks on horizontal axis denote time t

since detonation of the source, measured in integral multiples of the characteristic wave period t. All pulse amplitudes have been corrected for the Lx1

effect of background geometrical spreading. The indistinguishability of the solid and dashed L=40l waveforms (far right) is guaranteed by the

principle of acoustic source–receiver reciprocity, eq. (40).
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5.5 Effect of anomaly size

In Fig. 15 we examine the effect of the physical size of the

anomaly upon the waveforms at a fixed source–receiver distance

L=22l, but at various azimuths 0ujwj45u. The solid lines

in the left (Fig. 15a), middle (Fig. 15b) and right (Fig. 15c)

columns show phet(r, t) for a slow anomaly with dimensions

a=2l, a=4l and a=8l, respectively; the dashed lines show

the corresponding unperturbed, unshifted waveforms phom(r, t)

for comparison. Each of the anomalies has been scaled to

give the same straight-through Fermat delay, dTfer
w=0=+6 s;

the resulting wave-speed perturbations are e=x12 per cent,

e=x6 per cent and e=x3 per cent. The parameters in

Fig. 15(b) are identical to those in Figs 8 and 9. Regardless of

the size of the anomaly, the waveforms are very little perturbed

at azimuths in excess of w=20u–30u; the anomaly is then too

far off the source–receiver axis to be significantly ‘felt’ by the

waves. It is evident that a large, a=8l, slow wave-speed anomaly

gives rise to very nearly the full 6 s, w=0u ray-theoretical

delay, dTvis
w=0#dTfer

w=0; on the other hand, a small, a=2l, slow

anomaly produces very little visible delay in the arrival of the

on-axis pulse, dTvis
w=0#0. This is the expected consequence of

the fat-man, little-boy distinction depicted in Fig. 6.

Fig. 16 compares the various measures of the traveltime

shift for both fast and slow dTfer
w=0=A6 s anomalies of small

(a=2l, e=t12 per cent), intermediate (a=4l, e=t6 per cent)

and large (a=8l, e=t3 per cent) size. The source–receiver

distance in all six cases is L=22l, as before. The dashed line

in every plot is the linear Fermat traveltime anomaly dTfer.

The azimuthal range subtended by the anomaly increases from

approximately x10ujwj 10u to x30ujwj 30u as the size

increases from a=2l to a=8l. The solid line in the top two

panels is the exact ray-theoretical traveltime anomaly dTray.

Both an a=2l and an a=4l fast anomaly produce a flank

triplication with its ‘crossover point’ at w#t10u; recall that

the solid line is a cross-section of a 3-D, axially symmetric

wavefront. Likewise, there is an axially symmetric triplication

with its ‘crossover point’ at w=0u in the case of both an a=2l

and an a=4l slow anomaly. The fast wavefronts can loosely be

thought of as propagating upwards and the slow wavefronts as

propagating downwards.

The unfilled triangles and filled circles in the two lower

panels of Fig. 16 denote the measured cross-correlation travel-

time anomalies dTccm and the banana–doughnut traveltime

anomalies dTbdk, respectively. Banana–doughnut theory reduces

to linearized ray theory in the case of an a=8l fat-man

R = 30λ

R = 26λ

R = 22λ

R = 18λ

R = 14λ

R = 10λ

R = 6λ

R = 2λ

fast anomaly, a=2λ, ε = –3%, δTfer
φ = 0

 = +3 s

δTccm
φ = 0

 = –0.51 s

δTccm
φ = 0

 = –0.68 s

δTccm
φ = 0

 = –0.74 s

δTccm
φ = 0

 = –0.94 s

δTccm
φ = 0

 = –1.26 s

δTccm
φ = 0

 = –1.48 s

δTccm
φ = 0

 = –2.06 s

δTccm
φ = 0

 = –2.72 s

-10 0 10 20 30 40

reduced time t – L/c (s)

R = 30λ

R = 26λ

R = 22λ

R = 18λ

R = 14λ

R = 10λ

R = 6λ

R = 2λ

slow anomaly, a=2λ, ε = +3%, δTfer
φ = 0

 = –3 s

-10 0 10 20 30 40

reduced time t – L/c (s)

δTccm
φ = 0

 = +0.89 s 

δTccm
φ = 0

 = +0.99 s 

δTccm
φ = 0

 = +1.01 s 

δTccm
φ = 0

 = +1.11 s 

δTccm
φ = 0

 = +1.26 s 

δTccm
φ = 0

 = +1.39 s 

δTccm
φ = 0

 = +1.79 s 

δTccm
φ = 0

 = +2.83 s 

(a)

(b)

Figure 13. Perturbed and unperturbed waveforms at various distances R=2l, 6l, . . . , 30l behind (a) an a=2l, e=x3 per cent and (b) an a=2l,

e=+3 per cent anomaly. Solid lines on both left and right denote phet(r, t); dashed lines denote phom(r, t) before shifting (left) and phom(r, txdTccm
w=0)

after shifting (right) to maximize cross-correlation (19). The measured traveltime shift dTccm
w=0 is indicated in each case. All pulse amplitudes have been

scaled by a factor proportional to L, to eliminate the effect of background geometrical spreading. The relative attenuation of the perturbed pulse due

to defocusing behind a fast anomaly (a) and its amplification due to focusing behind a slow anomaly (b) are again apparent. Note that the horizontal

timescale has been reduced by the background wave speed, c=8 km sx1; this choice aligns all of the unperturbed pulses phom(r, t).
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 = +–3 s,
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Figure 14. Comparison of both ray-theoretical and banana–doughnut predictions with ground truth, cross-correlation traveltime-shift measure-

ments at three source–receiver distances (a) L=12l, (b) L=22l and (c) L=40l, following passage through an S=10l, a=4l, e=t3 per cent fast or

slow wave-speed anomaly. Solid lines in top two panels show the ‘exact’ ray-theoretical traveltime shifts dTray; filled circles and unfilled triangles in

bottom two panels denote the banana–doughnut traveltime shifts dTbdk and the cross-correlation measurements dTccm, respectively. Dashed lines in all

plots show the linearized Fermat anomalies dTfer for comparison. Vertical axis is the normalized traveltime shift dT/dTfer
w=0 in all plots. See Fig. 13 for

a depiction of the perturbed and unperturbed waveforms phet(r, t) and phom(r, t).
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anomaly, and either theory is capable of modelling the ground

truth measured traveltime shifts, dTbdk#dTfer#dTccm. Finite-

frequency diffraction effects have healed the on-axis measure-

ments dTccm
w=0 by approximately 50 per cent in the case of an

intermediate-sized a=4l anomaly; however, this healing is well

described by the banana–doughnut Fréchet kernels for both the

fast and slow anomaly. The healing is much more significant,

virtually 100 per cent, for an a=2l little-boy anomaly; banana–

doughnut theory is not quite as successful in this case, but it is

certainly far superior to linearized ray theory. Once again, we

see that the discrepancy between dTbdk and dTccm is somewhat

more pronounced for a fast than for a slow anomaly.

5.6 On-axis healing

In Fig. 17 we specifically examine healing along the w=0u axis

immediately behind an intermediate-sized, a=4l, anomaly. The

vertical axis in the plot on the left (Fig. 17a) is the measured

cross-correlation traveltime anomaly dTccm
w=0; the correspond-

ing prediction dTbdk
w=0 of banana–doughnut theory is shown on

the right (Fig. 17b). The horizontal axis in both cases is the

magnitude of the anomaly, e=t3, 4, 5, 6 per cent. The y45u

solid lines show the infinite-frequency Fermat anomaly, which

obviously depends linearly upon the anomaly magnitude,

reaching dTfer
w=0=A6 s for e=t6 per cent, respectively. The

circles, diamonds, triangles and squares show the measured and

predicted anomalies dTccm
w=0 and dTbdk

w=0 at the four downstream

distances R=3l, 6l, 15l and 27l, respectively. The extent to

which these points lie between the y45u line and the horizontal

axis is a measure of the percentage healing. If banana–doughnut

theory provided a perfect description of wavefront healing, then

Fig. 17(b) would look identical to Fig. 17(a). This is very nearly

so at all distances for a slow (e<0) anomaly, as well as at the

closest receivers (R=3l, 6l, 15l) behind a fast (e>0) anomaly.

The largest discrepancy between dTbdk
w=0 and dTccm

w=0 is at the most

distant (R=27l) receiver behind a fast anomaly.

We examine the reason for this marked long-distance fast–

slow asymmetry in Fig. 18. The top two plots compare the

healing behaviour at various distances 0jRj30l behind an

a=4l, e=+6 per cent (Fig. 18a) and an a=4l, e=x6 per cent

(Fig. 18b) anomaly. The measured traveltimes dTccm
w=0 behind

the slow (e<0) anomaly are well behaved and well modelled

at all distances by the banana–doughnut predictions dTbdk
w=0.

Behind the fast (e>0) anomaly, however, the measurements

dTccm are more scattered, and appear to undergo a transition to

a much stronger healing regime at R#15l. This behaviour is

symptomatic of the competition between two distinct contri-

butions to the cross-correlated waveform—a defocused and

therefore low-amplitude first arrival that is advanced because

it has passed straight through the fast anomaly and a later-

arriving diffraction that has ‘crept’ around the centre of the

‘soft’ anomaly. The presence of this diffracted arrival is distinctly

21.5 22.0 22.5 23.0 23.5

dimensionless time t/τ (s) 

φ = 45.0˚

φ = 42.5˚

φ = 40.0˚
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φ = 15.0˚

φ = 12.5˚

φ = 10.0˚
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φ = 0.0˚

small slow anomaly

a = 2λ, ε = −12%

21.5 22.0 22.5 23.0 23.5

dimensionless time t/τ (s) 

medium slow anomaly

a = 4λ, ε = −6%

21.5 22.0 22.5 23.0 23.5

dimensionless time t/τ (s) 

large slow anomaly

a = 8λ, ε = −3%

L = 22λ, δTfer
φ = 0

 = +6 s

(a) (b) (c)

Figure 15. Synthetic pressure-response seismograms at a fixed source–receiver distance L=22l, following passage through (a) a small, (b) a medium

and (c) a large slow wave-speed anomaly situated at a distance S=10l from the source. The straight-through Fermat delay is the same, dTfer
w=0=+6 s,

in all three cases. Solid and dashed lines denote the perturbed and unperturbed waveforms phet(r, t) and phom(r, t), respectively. Receiver azimuth

0ujwj45u is indicated on the extreme left. Horizontal axis is dimensionless time t/t since detonation of source.
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Figure 16. Same as Fig. 14, except that all of the traveltime shift measurements have been made at the same source–receiver distance L=22l,

following passage of a wave through (a) a small, (b) a medium (c) and a large dTfer
w=0=+6 s slow S=10l anomaly. Vertical axis is the normalized

traveltime shift dT/dTfer
w=0 in all plots. See Fig. 15 for a depiction of the perturbed and unperturbed waveforms phet(r, t) and phom(r, t).
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Figure 18. (a) Top two plots illustrate the evolution of dTbdk
w=0 (filled circles), dTccm

w=0 (unfilled triangles) and dTfer
w=0 (dashed line), following the

propagation of a t=25 s wave through a fast (left) and slow (right) S=10l, a=4l, e=t6 per cent wave-speed anomaly. Vertical axis is the

normalized traveltime shift dT/dTfer
w=0 in all plots. The L=10l receiver is located at the centre of the anomaly; the full Fermat advance or delay

dTfer
w=0=A6 s is not attained until L=12l, where the waves have passed completely through. (b) Solid and dashed lines in the bottom two plots

display the perturbed and the shifted, unperturbed waveforms phet(r, t; R=30l) and phom(r, txdTccm
w=0; R=30l), respectively; overlying boxcars show

the t2xt1=45 s time window used in the cross-correlation traveltime measurement (19). Horizontal axis is reduced time, txL/c. The fast-anomaly

measurements dTccm
w=0 begin to diverge markedly from the banana–doughnut predictions dTbdk

w=0 at R#15l, due to the increasing importance of

diffracted waves that ‘creep’ at the background speed, c=8 km sx1, around the centre of the 3-D inclusion.
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Figure 17. On-axis (w=0u) traveltime shifts following passage of a t=25 s wave through an a=4l anomaly of varying magnitude, e=t3, 4, 5, 6 per

cent, situated at a distance S=10l from the source. Side-by-side plots display (a) the cross-correlation traveltime shift dTccm
w=0 and (b) the banana–

doughnut traveltime shift dTbdk
w=0 at four different distances, R=3l (circles), R=6l (triangles), R=15l (diamonds), R=27l (squares) behind the

anomaly. The unhealed Fermat anomaly dTfer
w=0 is indicated by the y45u solid line in both plots.
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visible in the nascent ‘double-bump’ waveform phet(r, t) at the

most distant, R=30l, receiver. In essence, a cross-correlation

traveltime measurement based upon the minimization (19) fits

the second ‘bump’ rather than the first, resulting in a measured

traveltime shift, dTccm
w=0 /dTfer

w=0=(0.69 s)/(x6 s)#x0.1, that

appears to be ‘overhealed’. The measurements behind a slow

anomaly are much less affected by any comparable later-

arriving diffraction, because the first arrival is delayed and

geometrically amplified by focusing, rather than being advanced

and geometrically attenuated. The resulting R=30l waveform

shows no evidence of a ‘double bump’, and the minimization

procedure (19) is able to ‘lock’ successfully onto the desired first

arrival.

In Fig. 19 we show that it is possible to improve the agree-

ment between dTbdk
w=0 and dTccm

w=0 behind a fast anomaly by intro-

ducing a forward-weighted taper w(t) into the cross-correlation,

replacing the criterion (19) by

ðt2

t1

wðtÞphomðr, t� dTccmÞ phetðr, tÞ dt ¼ maximum : (41)

The adoption of a one-sided 60 per cent cosine taper w(t) with

a total length t2xt1=35 s results in a series of measurements

dTccm that are tolerably close to the banana–doughnut pre-

dictions dTbdk at all distances 0jRj30l behind both a fast

and slow S=10l anomaly, as shown. Not surprisingly, however,

the measurements are rather sensitive to the overall length and

detailed shape of the taper. It would obviously be rash, on

the basis of this single, highly idealized, synthetic experiment, to

advocate the real-world application of forward-weighted tapers

in automated cross-correlation traveltime measurement schemes.

We shall briefly discuss the results of using a battle-tested, inter-

active method for preferentially weighting the initial onset of

phet(r, t) in Section 7.

5.7 Comparison with previous results

The on-axis healing patterns exhibited by the untapered travel-

time shifts dTccm in Fig. 18 are in broad agreement with the

theoretical evolution curves for the group delay of a mono-

chromatic Gaussian beam derived by Nolet & Dahlen (2000).

In both analyses, a fast traveltime shift initially heals slightly

more slowly than a slow shift does; beyond a critical distance,

however, the healing of a fast shift overtakes that of a slow

shift, eventually even ‘overhealing’, so that dTccm
w=0/dTfer

w=0<0.

In contrast, Wielandt (1987) found very little healing in the

wake of a fast ‘hard’ spherical scatterer, even at dimensionless

propagation distances R /l much greater than those considered

in the present ‘soft’ scatterer study. The cause of this signi-

ficantly different behaviour is that Wielandt (1987) used an

automated picking algorithm to measure the onset time of the

first arriving wave. In the case of a positive wave-speed pertur-

bation, dc/c>0, the first arrival may be significantly reduced
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Figure 19. Same as Fig. 18 except that a 60 per cent cosine taper w(t) of total duration t2xt1=35 s has been used to weight preferentially the

early-arriving portions of the perturbed and the shifted, unperturbed waveforms phet(r, t) and phom(r, txdTccm
w=0) in eq. (41). Horizontal axis in bottom

two plots is reduced time, txL/c. The resulting R=30l traveltime measurements dTccm
w=0=x2.34 s (fast anomaly, left) and dTccm

w=0=+2.19 s

(slow anomaly, right) are in much better agreement with the predictions dTbdk
w=0 of banana–doughnut theory.
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in amplitude as a result of defocusing, but it always arrives

before the corresponding unperturbed spherical wave in a homo-

geneous background medium, because it has passed straight

through the anomaly rather than creeping around it. In practice,

the onset of a broad-band body-wave pulse is difficult to deter-

mine in the presence of seismic noise; this is the principal reason

for the popularity in global seismology of the cross-correlation

traveltime shift measurements studied here.

5.8 Banana–doughnut versus ray theory

We present a summary assessment of the validity of banana–

doughnut theory in our highly simplified study of 3-D wave-

front healing in Fig. 20. As a measure of goodness we use

the absolute (L1 norm) discrepancy between the predicted

and ground truth traveltime shifts at all of the on-axis (w=0u),

post-anomaly (S=10l, 0jRj30l) receivers:

Ebdk ¼ 1

N

X

N

n¼1

dT
�¼0
bdk � dT�¼0

ccm

dT
�¼0
fer

�

�

�

�

�

�

�

�

�

�

, (42)

where dTccm
w=0 is measured using an untapered cross-correlation

(19) rather than (41), and N is the total number of receivers r in

the sum. The top two diagrams plot this untapered banana–

doughnut misfit factor Ebdk as a function of the size ljaj8l

and magnitude 3 per centj|e|j12 per cent of a fast (Fig. 20a)

and slow (Fig. 20b) anomaly. The hyperboloids on the floors of

the cubes are contours of the straight-through Fermat travel-

time anomaly dTfer
w=0, which is used as a normalizing factor in

the denominator of the banana–doughnut misfit definition (42).
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Figure 20. (a) and (b) Average L1 discrepancy Ebdk and (c) and (d) Efer at all of the on-axis (w=0u) receivers, behind a number of different fast (left)

and slow (right) wave-speed anomalies. The source anomaly distance is fixed at S=10l; the entire suite of post-anomaly receivers 0jRj30l is

included in the misfit sums (42) and (42). Horizontal axes of each perspective 3-D box plot are the dimensionless radius a/l and the magnitude e of the

perturbation; contours on floor give the corresponding straight-through Fermat anomaly dTfer
w=0. Note the fivefold difference in vertical scales:

0jEbdkj20 per cent (top) whereas 0jEferj100 per cent (bottom).
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The corresponding absolute ray-theoretical misfits,

Efer ¼
1

N

X

N

n¼1

dT
�¼0
fer � dT�¼0

ccm

dT
�¼0
fer

�

�

�

�

�

�

�

�

�

�

, (43)

are plotted in the two bottom diagrams (Fig. 20c and d), for

comparison. All of the wavefront healing trends which we have

identified previously are evident in the misfit comparisons:

(i) Banana–doughnut theory (30) analytically reduces to

linearized ray theory (28), and both theories are in good

agreement with measured cross-correlation traveltime shifts,

dTbdk#dTfer#dTccm, in the limit of a sufficiently large anomaly,

ai6l–8l.

(ii) In general, the discrepancy between dTbdk and dTccm is

larger for wave-speed anomalies with a larger absolute Fermat

traveltime shift |dTfer|.

(iii) The discrepancy is slightly larger for fast anomalies than

it is for slow ones. As we have seen, this deficiency is the result

of a fundamental fast-slow asymmetry in the healing process,

which cannot be accounted for by any linearized relationship,

and which manifests itself most strongly at long propagation

distances.

(iv) Finally, and most importantly, banana–doughnut travel-

time predictions dTbdk are consistently better than linearized

ray-theoretical predictions dTfer, particularly for small anomalies,

a=l–4l, with large wave-speed perturbations, |e|=6–12 per

cent. Typically, the agreement with measured cross-correlation

traveltimes dTccm is improved by a factor of five to 10, that is

Ebdk#(0.1– 0.2)rEfer.

6 CRAMMING A BALL INTO A BANANA

Roughly speaking, the criterion for the validity or invalidity of

linearized ray theory is whether a&
ffiffiffiffiffiffi

jL
p

or a%
ffiffiffiffiffiffi

jL
p

, as we have

seen in Section 4.3. In this section, we shall improve upon

this imprecise criterion slightly, by conducting an elementary

geometrical analysis of the ability of an anomaly to ‘hide’ itself

inside a banana–doughnut hole. Specifically, the quantity we

seek to estimate is the percentage amount by which an on-axis

Fermat traveltime anomaly has been healed:

%healing ¼ 1� dT
�¼0
bdk =dT

�¼0
fer : (44)

Both Tbdk
w=0 and dTfer

w=0 depend linearly upon the wave-speed

perturbation dc, so that the banana–doughnut prediction of the

percentage healing (44) depends only upon the three purely

geometrical dimensionless parameters a/l, S/l and R/l, and

is independent of the sign and magnitude of the per cent

perturbation e.

Figs 21(a) and (b) illustrate the banana–doughnut percent-

age healing (44) behind an a=4l anomaly situated at a distance

S=10l (Fig. 21a) and S=30l (Fig. 21b) behind the source.

The evolution of dTbdk
w=0/dTfer

w=0 behind the S=10l anomaly is

identical to that shown by the solid circles in Figs 18 and 19; at

a distance R=30l the healing amounts to 70 per cent. Because

the impinging wavefronts are more nearly planar, the healing

occurs slightly more rapidly behind the S=30l anomaly; in this

case 70 per cent healing is attained at a distance R=10l. The

symmetrical dependence of (44) upon S/l and R/l is of course a

consequence of source–receiver reciprocity.

To begin our simplistic banana-cramming analysis, we note

that the cross-sectional area of the first Fresnel zone of a 3-D

traveltime Fréchet kernel (31) at the centre of an on-axis

anomaly is

Ahole ¼ nq2 ¼ njSR=L , (45)

where we have substituted Lk=S and La=R in eq. (33) to

obtain the second equality. A fast or slow anomaly of diameter

a and cross-sectional area

Aanom ¼ 1

4
na2 (46)

will be unable or able to ‘hide’ in the hole (45) depending

upon whether Aanom&Ahole or Ahole%Aanom. The healing will

be total if the anomaly is completely hidden, so we expect the

percentage healing to be given approximately by

%healing&const|ðAhole=AanomÞ , (47)

where the constant is introduced to account for the details

of the overlap between the outer portions of the wave-speed

perturbation dc/c and the inner regions of the doughnut hole in

the 3-D integration (30). Empirically, we find that a suitable

value for this overlap ‘fudge factor’ is const=1/4. With this

choice, eq. (47) can be rewritten in terms of the non-dimensional

distances a/l, S/l and R/l in the form

%healing&
a

j

� 
�2 S=j R=j

S=jþ R=j

� �

: (48)

As anticipated, the approximate degree of healing (48) is

invariant under an interchange S<R of the distance of the

anomaly to the source and receiver; the maximum healing occurs

when an anomaly of a given size a is situated at the source–

receiver midpoint S=R=L/2, where the banana–doughnut

kernel K is the fattest.

Fig. 21(c) compares the approximate relation (48) with the

‘exact’ banana–doughnut healing percentage (44), for source–

receiver configurations satisfying S=R=40l, 0jS, Rj40l,

and anomalies of various sizes 3ljaj8l. The agreement is

obviously far from perfect; nevertheless, it is clear that (48) can

be used to provide a back-of-the-envelope estimate, accurate

to within t20 per cent, of the degree of wavefront healing

following propagation through a quasi-spherical wave-speed

anomaly. In any more realistic spherical-earth application, the

wavelength l should be that at the depth of the anomaly, and

the distances S and R should be measured along the unperturbed

source–receiver ray.

To give a concrete example, a t=20–25 s shear wave, with a

wavelength l#150 km will, according to eq. (48), have healed

by almost 50 per cent upon passage through an anomaly of

diameter a#700 km situated at the midpoint, R#S#4000 km,

of the associated turning ray. A t#1 s compressional wave,

with a wavelength l#13 km, will, on the other hand, heal by a

negligible amount, less than 4 per cent, upon passage through

the same size anomaly. This example shows that linearized

ray theory (28) can reliably be used to resolve 700 km wave-

speed variations in any inversion study based solely upon ISC

compressional-wave traveltime data. Naive reliance upon ray

theory to invert cross-correlation traveltimes of 20–25 s shear

waves will, in contrast, result in a severe underestimation of the

magnitude of 700 km anomalies. Banana–doughnut Fréchet

kernels provide a proper theoretical basis for traveltime inversions

that utilize such long-period, long-wavelength waves.

Wavefront healing 307

# 2001 RAS, GJI 146, 289–312

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
4
6
/2

/2
8
9
/6

3
8
5
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



7 SCR IPPS P ICKS

We noted in Section 5.6 that it is possible to improve the

agreement between dTbdk and dTccm by emphasizing the initial

portions of the perturbed pressure pulse in the cross-correlation

measurement procedure. In fact, such a ‘fit the first swing’

philosophy has long guided the global traveltime measurement

programme conducted by researchers at the Scripps Institution

of Oceanography (Masters et al. 1996). In their interactive

procedure, an observed and a spherical-earth pulse are first

rescaled to have the same maximum amplitude; the two pulses

are then displayed on a workstation screen, and the synthetic

is click-shifted until the initial up-or-down swings are aligned

to the subjective satisfaction of the analyst. We report in

this section the results of a modest experiment, in which we

use the Scripps software to process a handful of our ground

truth pseudospectral waveforms phet(r, t) and phom(r, t).

The measurement technique is illustrated in Fig. 22. The

top two traces (Fig. 22a) show the perturbed (solid line) and

unperturbed (dashed line) synthetic seismograms at a distance

R=30l behind a fast and slow a=4l, e=t3 per cent anomaly.

A slight advance (left) or delay (right) of phet(r, t) relative

to phom(r, t) is evident; however, it is obvious that these

shifts are less than the straight-through Fermat advance or

delay dTfer
w=0=A3 s, as a result of finite-frequency wavefront

healing. Straightforward application of our usual automated

cross-correlation measurement procedure (19) leads to the best-

fit alignments shown in the middle two traces (Fig. 22b). The

measured traveltime shifts are

dT�¼0
ccm ¼

�0:51 s fast anomaly

0:89 s slow anomaly :

(

(49)

In the Scripps procedure phet(r, t) and phom(r, t) are rescaled

and the initial upswings are interactively aligned, as shown in

the bottom two traces (Fig. 22c). This results in significantly

different traveltimes, namely,

dT
�¼0
sio ¼

�2:12 s fast anomaly

1:68 s slow anomaly :

(

(50)
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Figure 21. Pictorial definition of the per cent healing (44) behind (a) an a=4l, S=10l and (b) an a=4l, S=30l anomaly. Filled circles and dashed

lines denote banana–doughnut and Fermat traveltime shifts dTbdk
w=0 and dTfer

w=0, respectively. (c) Filled circles and solid lines denote ‘exact’ and

approximate banana–doughnut healing percentages (44) and (47), respectively, for a range of anomaly diameters 3ljaj8l. Source-receiver distance

is fixed, L=40l; source–anomaly and receiver-distances vary from S=0, R=40l (left) to S=40l, R=0 (right). Both the ‘exact’ and approximate

healing percentages are symmetrical about the source–receiver midpoint S=R=20l.
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Clearly dTsio
w=0 is much closer to dTfer

w=0 than dTccm
w=0 is. Fitting

the first upswing or downswing appears to emphasize the

higher-frequency components of the pulse, thereby reducing

the effects of wavefront healing.

Fig. 23 shows the results of a more comprehensive com-

parison, for the same a=4l, e=t3 per cent fast (left) and slow

(right) anomaly. The unfilled triangles and squares in the top

(Fig. 23a) and bottom (Fig. 23b) panels represent the auto-

mated ‘whole-pulse’ and Scripps ‘initial-swing’ traveltime-shift

measurements dTccm
w=0 and dTsio

w=0, respectively. The unhealed

Fermat anomalies dTfer
w=0=A3 s are displayed as dashed lines,

for comparison. The filled circles in the top panel are the banana–

doughnut predictions dTbdk
w=0, for a wave with the actual charac-

teristic period t=25 s, whereas those in the bottom panel are

the predictions dTbdk
w=0 for a slenderized banana–doughnut

Fréchet kernel Keff, computed using eqs (13) and (31), with t

replaced by an effective period,

qeff ¼ 15 s : (51)

The cross-path width of Keff is less than that of the actual

Fréchet kernel K by a factor of only
ffiffiffiffiffiffiffiffiffiffiffiffi

15=25
p

¼ 77 per cent. As

we have seen, however, the degree of healing (47–48) depends

to a good approximation upon the cross-sectional area of the

doughnut hole, so it is reduced by the square of this factor, 15/

25=60 per cent.

The value of the effective period (51) was chosen by trial

and error to provide a reasonably good agreement between the

banana–doughnut predictions dTbdk
w=0 and the Scripps measure-

ments dTsio
w=0 over a wide range of fast and slow anomaly

magnitudes e=t3, 4, 5, 6 per cent. This is illustrated in

Fig. 24, which is plotted using a format identical to that in

Fig. 17. In this case the circles, diamonds, triangles and squares

show the measured and predicted anomalies dTsio
w=0 (t=25 s)

and dTbdk
w=0 (teff=15 s) at the same four distances R=3l, 6l,

15l and 27l behind the anomaly. The strong similarity between

Fig. 24(a) and Fig. 24(b) indicates that the degree of wavefront

healing experienced by the initial upswing or downswing of

a t=25 s pulse is well modelled by an artificially emaciated

banana–doughnut kernel Keff, with an effective period teff=15 s.

As usual, the agreement is better for the slow anomalies (e<0)

than for the fast ones (e>0).

Masters et al. (1996) originally introduced their time-

consuming, interactive, initial upswing or downswing scheme

precisely to try to improve the effective spatial resolution

of their traveltime measurements, by emphasizing what were

presumably the highest-frequency portions of an observed

body-wave pulse (in addition, first-swing picking minimizes

interference from depth phases and crustal reverberations, and

the influence of errors in the model attenuation operator). The

present synthetic study obviously provides an extremely limited

test of the Scripps measurement method; nevertheless, we con-

sider the observed 60 per cent reduction in the effective period,

from t=25 s to teff=15 s, to be an impressive confirmation of

the group’s seismological intuition.

-10 0 10 20 30 40

reduced time t – L/c (s)

δTccm
φ = 0

 = 0.89 s

δTsio
φ = 0

 = 1.68 s

-10 0 10 20 30 40

reduced time t – L/c (s)

unshifted

raw seismograms

whole-pulse

cross correlation

rescale & fit first

upswing interactively

δTccm
φ = 0

 = –0.51 s

δTsio
φ = 0

 = –2.12 s

a = 2λ, ε = ±3%, R = 30λ, φ = 0, δTfer
φ = 0

 = +–3 s

fast anomaly slow anomaly

(a)

(b)

(c)

Figure 22. Comparison of ‘whole-pulse’ cross-correlation and Scripps interactive traveltime measurement procedures. Solid and dashed lines display

perturbed and unperturbed waveforms, respectively. The centre of the anomaly is situated at a distance S=10l from the source. (a) Raw seismograms

phet(r, t) and phom(r, t) at an on-axis (w=0u) receiver, situated at a distance R=30l behind an a=2l, e=+3 per cent anomaly (left) and an a=2l,

e=x3 per cent (right) anomaly. (b) Best-fit alignment of phet(r, t) and phom(r, txdTccm
w=0), as determined by automated cross-correlation (19).

(c) Interactive alignment of the initial upswings of phet(r, t) and phom(r, txdTsio
w=0). The Scripps ‘initial-swing’ traveltime shifts dTsio

w=0 are significantly

less healed than the automated ‘whole-pulse’ shifts dTccm
w=0.
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8 CONCLUS IONS

In this paper we have used a ‘ground truth’ pseudospectral

method to investigate the propagation of finite-frequency acoustic

waves through an isolated, highly idealized 3-D anomaly, in an

effort to illuminate the phenomenon of diffractive wavefront

healing. Not surprisingly, we found that the character of the

perturbed pressure-response waveform phet(r, t) depends to a

marked extent upon the sign of the fractional wave-speed

perturbation dc/c. The amplitude of the straight-through wave

behind a fast (dc/c>0) anomaly is reduced by ray defocusing

and the width of the pulse phet(r, t) is broadened by later-

arriving contributions from ‘creeping’ diffracted waves; in con-

trast, phet(r, t) is amplified and narrowed behind a slow (dc/c<0)

anomaly as a result of ray focusing and themore nearly coincident

arrival of the direct and diffracted waves. Despite these signi-

ficant differences, the traveltime advance or delay dTccm

measured by cross-correlation of phet(r, t) with an unperturbed

pulse phom(r, t) generally ‘heals’—or diminishes with increasing

distance—behind either a fast or slow wave-speed anomaly.

The absence of sensitivity along a geometrical ray enables

a 3-D traveltime Fréchet kernel K to account for this finite-

frequency, diffractive wavefront healing; as the propagation

distance increases the anomaly finds itself increasingly able to

‘hide’ within the growing doughnut hole. Banana–doughnut

Fréchet kernel theory provides a strictly linearized relationship

between a measured cross-correlation traveltime shift dTccm

and the wave-speed perturbation dc /c; nevertheless, it yields an

acceptable prediction of the evolution of dTccm at all distances

0jRj30l behind either a fast or slow anomaly of any dimension

ail and root-mean-square magnitude ndc /cmrmsj10 per cent.

Since linearized geometrical ray theory does not account for

wavefront healing, it systematically underpredicts dTccm behind

small-scale wave-speed anomalies, of dimension aj4l–6l. The

magnitudes ndc/cmrms of such small-scale anomalies may, as a

result, be underestimated in contemporary tomographic models

of the Earth’s 3-D structure based upon ray theory.
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Figure 23. (a) Unfilled triangles show ‘whole-pulse’ traveltime shifts dTccm
w=0, measured by automated cross-correlation of phet(r, t) and phom(r, t)

behind an a=4l, e=+3 per cent (left) and an a=4l, e=x3 per cent} (right) anomaly. (b) Unfilled squares show Scripps interactive traveltime shifts

dTsio
w=0, obtained by alignment of the initial upswings of phet(r, t) and phom(r, t) behind the same fast (left) and slow (right) anomalies. Filled circles in

top and bottom plots show the banana–doughnut predictions dTbdk
w=0, for a wave with a true characteristic period t=25 s and a reduced effective

period teff=15 s, respectively. Dashed lines in all four plots depict the Fermat traveltime shift dTfer
w=0; the full shift dTfer

w=0=A3 s is not attained until

L=12l, where the waves have passed completely through the S=10l anomaly.
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computations have been performed on the Geowulf PC cluster

in the Department of Geosciences at Princeton University, and

under the sponsorship of the National Partnership for Advanced

Computational Infrastructure at the San Diego Supercomputer

Center. Most figures have been plotted using GMT (Wessel &

Smith 1995). Financial support for this work has been pro-

vided by the US National Science Foundation under Grant
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finite-frequency traveltimes—II. Examples, Geophys. J. Int., 141,

175–203.

Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y., 1990. Whole mantle

P-wave travel time tomography, Phys. Earth. planet. Inter., 59,

294–328.

Kosloff, D.D. & Baysal, E., 1982. Forward modelling by a Fourier

method, Geophysics, 47, 1402–1412.

Kosloff, D.D., Reshef, M. & Loewenthal, D., 1984. Elastic wave

calculations by the Fourier method, Bull. seism. Soc. Am., 74,

875–891.

Landau, L.D. & Lifshitz, E.M., 1959. Fluid Mechanics, Pergamon,

London.

Marquering, H., Dahlen, F.A. & Nolet, G., 1999. Three-dimensional

sensitivity kernels for finite-frequency traveltimes: the banana–

doughnut paradox, Geophys. J. Int., 137, 805–815.

Masters, G., Johnson, S., Laske, G. & Bolton, H., 1996. A shear-

velocity model of the mantle, Phil. Trans. R. Soc. Lond., A354,

1385–1411.

Morse, P.M. & Ingard, K.U., 1968. Theoretical Acoustics, McGraw-

Hill, New York.

Nolet, G. & Dahlen, F.A., 2000. Wave front healing and the evolution

of seismic delay times, J. geophys. Res., 105, 19 043–19 054.

Pulliam, R.J., Vasco, D.W. & Johnson, L.R., 1993. Tomographic

inversions for mantle P wave velocity structure based on the mini-

mization of l2 and l1 norms of International Seismological Centre

travel time residuals, J. geophys. Res., 98, 699–734.

Su, W.-J. & Dziewonski, A.M., 1992. On the scale of mantle

heterogeneity, Phys. Earth. planet. Inter., 100, 135–156.

Su, W.-J. & Dziewonski, A.M., 1997. Simultaneous inversions for 3-D

variations in shear and bulk velocity in the mantle, Phys. Earth.

planet. Inter., 74, 29–54.

Van der Hilst, R.D., Widiyantoro, S. & Engdahl, E.R., 1997. Evidence

for deep mantle circulation from global tomography, Nature, 386,

578–584.

Vasco, L.W. & Johnson, L.R., 1998. Whole Earth structure estimated

from seismic arrival times, J. geophys. Res., 103, 2633–2671.

δTbdk
φ = 0

 (τeff = 15 s)

–8

–6

–4

–2

0

2

4

6

8

tr
av

el
ti

m
e 

an
o
m

al
y
 (

s)

–8 –6 –4 –2 0 2 4 6 8

ε (%)

slow

fast

δTsio
φ = 0

 (τ = 25 s)

–8

–6

–4

–2

0

2

4

6

8
tr

av
el

ti
m

e 
an

o
m

al
y
 (

s)

–8 –6 –4 –2 0 2 4 6 8

ε (%)

slow

fast

a = 4λ, R = 3λ, 6λ, 15λ, 27λ

(a) (b)

Figure 24. Same as Fig. 17, except that the quantities plotted in (a) are the traveltime shifts dTsio
w=0 measured by interactively aligning the initial

upswings of the t=25 s pulses phet(r, t) and phom(r, t), whereas the quantities in (b) are the shifts predicted by an effective banana–doughnut kernel

Keff, with a reduced characteristic period teff=15 s. Circles, diamonds, triangles and squares denote the measured and predicted traveltime shifts at

distances R=3l, 6l, 15l, and 27l behind an S=10l, a=4l anomaly of varying magnitude, e=t3, 4, 5,t6 per cent. The unhealed Fermat anomaly

dTfer
w=0 is indicated by the y45u solid line in both plots.

Wavefront healing 311

# 2001 RAS, GJI 146, 289–312

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
4
6
/2

/2
8
9
/6

3
8
5
5
5
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Wessel, P. & Smith, W.H.F., 1995. New version of the Generic

Mapping Tools released, EOS, Trans. Am. geophys. Un., 76, Suppl.,

329.

Widiyantoro, S., Gorbatov, A., Kennett, B.L.N. & Fukao, Y., 2000.

Improving global shear wave traveltime tomography using three-

dimensional ray tracing and iterative inversion, Geophys. J. Int., 141,

747–758.

Wielandt, E., 1987. On the validity of the ray approximation for

interpreting delay times, in Seismic Tomography, pp. 85–98, ed.

Nolet, G., Reidel, Dordrecht.

Woodward, M.J., 1992. Wave-equation tomography, Geophysics, 57,

15–26.

Zhao, L., Jordan, T.H. & Chapman, C.H., 2000. Three-dimensional
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APPENDIX A : RAY TRACING DETA ILS

The rays and infinite-frequency wavefronts in Figs 8 and 10

were computed by solving an axially symmetric version of the

first-order differential eqs (21) and initial conditions (22). We

specify the instantaneous position of a point along a ray in

terms of its cylindrical coordinates,

x ¼ ðq, z, hÞ , (A1)

where q is the perpendicular distance from the axis and z is

measured along it. The instantaneous direction of propagation

of a wave along a ray can be written in the form

kŒ ¼ z“ cos i þ q“ sin i , (A2)

where i is the instantaneous angle between a ray and the z axis,

considered to be positive if the ray is pointing towards the

axis and negative if it is pointing away. The radius r in the

specification (4) of the wave-speed anomaly is given in terms of

the coordinates (A1) by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ðz� SÞ2
q

: (A3)

The absence of any dependence upon the cylindrical angle h is

what renders the problem axially symmetric. It is clear that a

ray that leaves the source s in a given plane remains in that

plane forever:

h ¼ constant along a ray : (A4)

To find the remaining unknowns q, z and i needed to determine

x and k̂, we integrate the three equations

dq=dT ¼ ðcþ dcÞ sin i , (A5)

dz=dT ¼ ðcþ dcÞ cos i , (A6)

di=dT ¼ �LqðdcÞ cos i þ LzðdcÞ sin i (A7)

subject to the initial conditions

qð0Þ ¼ 0 , zð0Þ ¼ 0 , ið0Þ ¼ � , (A8)

where dT is the differential traveltime along the ray and w is

the take-off angle at the source s, as illustrated in Fig. 3.

Eqs (A5)–(A8) are equivalent to eqs (21) and (22). Wavefront

snapshots are plotted by connecting adjacent points q(T, w),

z(T, w) and q(T, w+dw), z(T, w+dw) at a fixed instant T.

The geometrical spreading factor (25) is given in this axially

symmetrical situation by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q

sin�

�

�

�

�

�

�

�

�

cos i
Lq

L�
� sin i

Lz

L�

�

�

�

�

�

�

�

�

s

, (A9)

where the partial derivatives hq /hw and hz /hw are computed

at fixed traveltime T. As expected, the result (A9) reduces to

L=L in the case of a homogeneous medium, dc/c=0. There

are two ways in which the spreading factor L can vanish,

indicating the presence of a caustic, either

q ¼ 0 and sin� 6¼ 0 (A10)

or

cos i
Lq

L�
� sin i

Lz

L�
¼ 0 : (A11)

The first condition, (A10), occurs whenever any ray other than

w=0 crosses the symmetry axis q=0; all of the rays in the same

take-off cone wl0, 0jhj2p, cross at the same point z, giving

rise to the axial caustics seen in Figs 8 and 10. This caustic

is associated with a closing of the ray tube in a direction ‘out’

of the invariable plane, (A4). The ‘funnel’ and ‘pencil point’

caustics in Figs 8 and 10 are, in contrast, due to closure (A11)

of the ray tube within the plane. The axial caustic is said to be

structurally unstable, because it would disappear in the absence

of perfect axial symmetry. The cusped caustics are structurally

stable, because distorted versions of them would persist.
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