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Abstract In this work we study wavefront propagation for a chemotaxis reaction-

diffusion system describing the demyelination in Multiple Sclerosis. Through a weakly

non linear analysis, we obtain the Ginzburg–Landau equation governing the evolution

of the amplitude of the pattern. We validate the analytical findings through numerical

simulations. We show the existence of traveling wavefronts connecting two different

steady solutions of the equations. The proposed model reproduces the progression of

the disease as a wave: for values of the chemotactic parameter below threshold, the

wave leaves behind a homogeneous plaque of apoptotic oligodendrocytes. For values

of the chemotactic coefficient above threshold, the model reproduces the formation of

propagating concentric rings of demyelinated zones, typical of Baló’s sclerosis.
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1 Introduction

Multiple Sclerosis (MS) is an autoimmune debilitating pathology of the central nervous

system. In the early stages it is characterized by inflammation and demyelination, with

the appearance of focal areas of myelin loss in the white matter of the brain, called

plaques or lesions [16]. The pathological hallmark of the initial stages, also common to

the so-called type-III pattern of the disease [2,18], mainly consists of an inflammatory

state which induces activated macrophages to respond to a chemical stimulus produced

by pro-inflammatory mediators, such as cytokines. The whole process results in tissue

damage through the destruction of the oligodendrocytes, of the myelin sheath around

nerves and of the axons.

Although the immunological mechanisms involved are very complex, some math-

ematical models, that are able to reproduce the essential features of the disease, have

been recently proposed [3,15].

In the present work we shall investigate the dynamics of the following non-

dimensional PDE system, describing the interaction between the density of activated

macrophages m = m(t, x), the concentration of the cytokine c = c(t, x) and the

density of the destroyed oligodendrocytes d = d(t, x):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂m
∂t

= �m + Γ m (1 − m) − ∇ · (χh(m)∇c) , with h(m) = m
1+m

,

∂c
∂t

= 1
τ

[ǫ�c + Γ (δd − c + βm)] ,

∂d
∂t

= rΓ f (m, d), with f (m, d) = m2

1+m
(1 − d).

(1)

We shall solve the above system for (t, x) ∈ R
+ ×Ω , where Ω = [0, L], imposing

initial condition and no-flux boundary conditions.

In the above system, the motion of the macrophages is described by two terms: undi-

rected random diffusion and a chemotactic-driven migration term, which accounts for

the finite volume of the cells. We therefore adopt a cell-kinetics version of the Keller-

Segel model [14] whose density-dependent sensitivity function displays saturation at

high cells densities to prevent the blow-up of the solution. The nonnegative parameter

χ measures the maximal chemotactic rate. The local dynamics of the macrophages

is modeled by an activation front with logistic growth and saturation. The evolution

of the cytokine is ruled by a linear diffusion term, whose diffusivity coefficient is

ǫ, plus a linear kinetic term, which describes the interaction between species: the

nonnegative parameters δ and β are the production rates of cytokine by destroyed

oligodendrocytes and macrophages, respectively. The positive constant τ allows for

the modeling of the chemoattractant evolution on a different time scale compared to the

other two species. The oligodendrocytes are considered fixed in their spatial positions

and their dynamics is described by the damaging function f (m, d), that is positive,

increasing with respect to m(x, t) and bounded for high values of the macrophages
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density. The positive parameter r gives a measure of the destructive strength of the

macrophages on the oligodendrocytes. Finally, the non-dimensional parameter Γ is

introduced, which governs the spatial and the temporal scales. More details about

the derivation of the system (1) and the numerical estimate of the parameters are

presented in [3], where an analytical and numerical exploration of the model is also

presented.

The mathematical properties of the Keller-Segel system and its numerous variations

have been extensively studied, see for example [8,12,13,28] and references therein.

Moreover the Keller-Segel chemotaxis model has been proposed to describe aggre-

gation and self organization processes in several biological phenomena. In particular,

chemotaxis and motility of macrophages are assumed in some spatially distributed

mathematical models of inflammation [7,17,21,22,26].

In this work we first focus on the investigation of the conditions which yield

the appearance of stationary non constant solutions for the chemotaxis reaction-

diffusion model (1). As the disease-free equilibrium is always unstable, the proposed

model prescribes two scenarios. When the chemoattraction is weak (in a sense to

be specified after the Turing stability analysis), the activated macrophages do not

aggregate and the solutions of the system converge towards the uniform steady state,

which corresponds to the formation of a spatially homogeneous plaque [6]. When

the chemoattraction is strong, we prove the appearance of periodically spatially dis-

tributed clusters of cells. The numerical simulations performed close to the threshold

show that, starting form a small perturbation of the disease-free equilibrium, the sys-

tem evolves towards the formation of a spatially periodic pattern for the macrophages

and cytokines. The dynamics of the destroyed oligodendrocytes follows the evo-

lution of the macrophages, forming zones of aggregation which, on a time scale

ruled by the system parameters, subsequently evolve towards a spatially uniformly

degraded state. This process reproduces the formation of expanding concentric layers

of demyelinated white matter, typical of Baló Sclerosis, a very aggressive variant

of MS but also frequently seen in the early stages of the pattern III MS lesions

[1].

The second goal of the present paper is to study the process of progression of the

disease in the form of a wave. We show that, if the chemotactic coefficient is above

the critical value, the pattern evolves as a traveling wavefront invading the whole

domain. Conversely, when the chemotaxis is weak, a wavefront connecting the disease-

free equilibrium to the stable equilibrium corresponding to a homogeneous plaque

is found. The issue of existence of traveling wave solutions for reaction-diffusion

models has been addressed in many papers, which show that a small perturbation near

a homogeneous steady state may lead to a wavefront invasion with the consequent

pattern formation [4,9,11,27].

The paper is organized as follows: in Sect. 2 we briefly review some results of the

Turing stability analysis obtained in [3]. Section 3 is devoted to derive the Ginzburg-

Landau equation governing the amplitude of the pattern, the shape and the speed of

the traveling wave. Section 4 provides the numerical simulations, some comparisons

with the theoretical results of Sect. 3 and the conclusions.
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2 Turing instability analysis

In this Section we briefly outline the results of the Turing stability analysis which

describes the mechanism of pattern formation for the system (1).

The two uniform steady states of the system are the disease-free equilibrium P0 =
(0, 0, 0) and the non trivial point P∗ = (m∗, c∗, d∗) = (1, β + δ, 1).

The equilibrium P0 is unstable while P∗ is a stable attractive node for the kinetics

for all non negative values of the parameters.

The following Turing analysis is aimed to characterize the spacing between cells

and the critical value of the chemotactic coefficient above which the pattern may form.

This is intended to describe the asymptotic behavior of the solutions of system (1),

which corresponds to the case when the macrophage populations is mostly activated

and well-delimited zones of destroyed oligodendrocytes are formed.

Linearization around P∗ gives:

ẇ = L
χ w = Γ Jw + Dχ�w, where w =

⎛

⎝

m − m∗

c − c∗

d − d∗

⎞

⎠ , (2)

J =

⎛

⎝

−1 0 0
β
τ

− 1
τ

1
τ

0 0 − r
2

⎞

⎠ , Dχ =

⎛

⎝

1 −χ
2

0

0 ǫ
τ

0

0 0 0

⎞

⎠ . (3)

The computation of the linear stability analysis can be found in full length in [3].

Here, for brevity, we only report the critical values of the chemotaxis coefficient and

of the wavenumber of the resulting pattern, namely:

χc =
2(

√
ǫ + 1)2

β
, k2

c =
Γ
√

ǫ
. (4)

For χ > χc the system admits a range [k1
2, k2

2] of unstable wavenumbers. These

modes are proportional to Γ , thus for the pattern formation to arise, Γ must be big

enough so that at least one of the modes admitted by the boundary conditions lays

within the interval [k1
2, k2

2].
We present this result in the following

Theorem 1 For all non negative values of the parameters β, δ, ǫ, r, τ, and Γ the

equilibrium P∗ = (m∗, c∗, d∗) is stable for the kinetics of model (1). Then, if χ > χc,

with χc given by (4), P∗ is an unstable equilibrium for the reaction-diffusion system

(1) and spatial patterns may occur close to P∗.

3 Traveling wavefront equations

In this section we perform a weakly non linear analysis close to the uniform steady

state P∗ = (1, β + δ, 1) to derive the Ginzburg–Landau amplitude equation for the

spatio-temporal pattern for the system (1). In fact, the aim here is to investigate the
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process of pattern invasion as a traveling wavefront when the domain is large and to

find the form and the amplitude of the resulting wave.

We first assume that the conditions for the Turing instability derived above are

satisfied. Following the approach based on the multiple scales method adopted by [5,9,

10], we set a small control parameter η2 = (χ−χc)/χc, which gives the dimensionless

distance from the bifurcation value of χ . Upon translation of the equilibrium P∗ to

the origin, the system (1) can be written as:

∂w

∂t
= L

χ w + N w, (5)

where w and Lχ are defined in (2) and N is a nonlinear operator containing higher

order powers in w.

We then expand w, the time derivative ∂/∂t and the bifurcation parameter χ as

follows:

w = ηw1 + η2w2 + η3w3 + O(η4), (6)

χ = χc + ηχ1 + η2χ2 + η3χ3 + O(η4), (7)

∂

∂t
= η

∂

∂T1
+ η2 ∂

∂T2
+ η3 ∂

∂T3
+ O(η4), (8)

where wi = (w
(1)
i , w

(2)
i , w

(3)
i )T .

To describe the phenomenon of wavefront invasion, we need to take into account

the slow modulation in space of the pattern amplitude. Therefore, we separate the fast

(x) and slow (X ) dependencies, so that the spatial derivative and the diffusion operator

write as follows:

∂x → ∂x + η∂X , ∂xx → ∂xx + 2η∂x X + η2∂X X . (9)

Here, the leading term of the nonlinear expansion of the solution is the product

of the basic pattern, which is the solution of the linearized system (2), and a slowly

varying amplitude A, depending on both time and the slow spatial variable X . Thus,

by substituting the above expansions (9) and (6)–(8) into (2) and collecting the terms

at each order of η, we obtain the following systems:

O(η) : L
χc
x w1 = 0, (10)

O(η2) : L
χc
x w2 = F, (11)

O(η3) : L
χc
x w3 = G, (12)

with L
χc
x = Γ J + Dχc∂xx . The expressions for F and G are too cumbersome and they

are not reported here.

From Eq. (10) and taking into account the Neumann boundary conditions, one gets

a solution of the form:

w1 = ρ A(X, T1, T2, . . .) cos (kcx), with ρ ∈ K er(Γ J − k2
c Dχc), (13)
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where A(X, T1, T2, . . .) is the amplitude of the pattern (still arbitrary at this level) and

ρ is normalized as follows:

ρ =
(

M, 1, N
)T =

(

Γ +ǫk2
c

Γβ
, 1, 0

)T

.

The solvability condition for the Eq. (11) is given by 〈F, ψ cos (kcx)〉 = 0, with

ψ =
(

M̄, 1, N̄
)T =

(

Γβ

τ(Γ +k2
c )

, 1, 2δ
τr

)T

∈ K er(L∗),

where we have denoted by L∗ the adjoint of L
χc
x and by 〈·, ·〉 the scalar product in

L2(0, 2π/kc).

Requiring T1 = 0 and χ1 = 0 to avoid the occurrence of secular terms, the solution

to the second-order system (11) is given by:

w2 = A2w20 + A2w22 cos (2kcx) +
∂ A

∂ X
w21sin(kcx), (14)

where the vectors w2i = (w
(1)
2i , w

(2)
2i , w

(3)
2i )T for i = 0, 1, 2 are the solutions of the

following linear systems:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Γ Jw20 =
(

Γ M2

2
, 0, 0

)T

,

(Γ J − k2
c Dχc)w21 = 2kc Dχcρ,

(Γ J − 4k2
c Dχc )w22 =

(

Γ M2

2
− Mχch

′
(m∗)k2

c , 0, 0

)T

.

(15)

Finally, substituting the expressions of w2 and w1 into (12), and imposing the

solvability condition at the third order, we get the following Ginzburg-Landau equation

for the amplitude A(X, T2):

∂ A

∂T2
= ν

∂2 A

∂ X2
+ σ A − L A3, (16)

where:

ν =
〈2kc Dχc w21 + Dχcρ,ψ〉

〈ρ,ψ〉
, σ =

〈G(1)
1 , ψ〉

〈ρ,ψ〉
, L =

〈G(3)
1 , ψ〉

〈ρ,ψ〉
, (17)

and

G
(1)
1 =

⎛

⎝

χ2h(m∗)k2
c

0

0

⎞

⎠ , G
(3)
1 =

⎛

⎜

⎜

⎜

⎜

⎝

2MΓ

(

w
(1)
20 + w

(1)
22
2

)

− χck2
c h

′
(m∗)(Mw

(2)
22 + w

(1)
20 )

+χc

2
h

′
(m∗)k2

c w
(1)
22 − χc

8
h

′′
(m∗)k2

c M2

0

0

⎞

⎟

⎟

⎟

⎟

⎠

.
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Theorem 2 Assume that:

1. The parameter Γ is sufficiently large (or, equivalently, the spatial domain is large);

2. The control parameter η2 = (χ − χc)/χc is small;

3. The Landau coefficient L in (17) is greater than zero.

Then the emerging solution of the reaction-diffusion system (1) is given by:

⎛

⎝

m

c

d

⎞

⎠ =

⎛

⎝

m∗

c∗

d∗

⎞

⎠ + ηρ A(X, T2) cos(kcx) + O(η2), (18)

where ρ ∈ Ker(Γ J − k2
c Dχc ) and A(X, T2) is the exact solution of the GL equation

(16) in R:

A(X, T2) =
1

2

√

σ

L

(

1 − tanh

(
√

σ

ν

z − z0

2
√

2

))

, z = X − cT2, (19)

with c = 3
√

σν
2

, and σ , L and ν given by (17).

In the subcritical case, i.e. when the coefficient L is negative, the third order

Ginzburg–Landau equation (16) is not able to capture the amplitude of the pattern. In

this case we shall restrict our analysis to a numerical investigation.

4 Numerical simulations and discussion

In this section we present a numerical exploration of system (1). The numerical simu-

lations shown are performed using a finite differences scheme based on the method of

the lines. We adopt a 800 points grid for the spatial domain that is able to ensure grid

independence of our results. Diffusion terms are approximated by second-order central

differences, the taxis term is approximated by a finite difference scheme that conserves

the number of macrophages. The time integration is realized using the CVODE stiff

integrator included in the XPPAUT computational software package. We set error

tolerances of 10−10 in CVODE and use a time-step �t = 10−4.

We fix the following parameter set β = 1, δ = 1, r = 1, τ = 1, Γ = 1 and vary

the values of ǫ and χ so as to explore the system behavior under and above the critical

threshold χc.

We first validate the results obtained by the weakly nonlinear analysis derived in

Sect. 2, by reproducing the pattern forming traveling wave solutions for system (1).

In the simulation shown in Fig. 1, we choose the parameter values so that they satisfy

the hypotheses of Theorem 2, i.e. χ > χc, σ, L > 0 and η2 = 0.033. We perturb the

equilibrium P∗ at the left end side of the spatial interval imposing an initial condition

of the form (m0, c0, d0)
T = (m∗, c∗, d∗)T + ηA(X, 0)ρ cos (kcx), where A(X, T2)

is given by (19). After a transient, the solution of the Ginzburg-Landau equation Eq.

(16) (shown by the dashed red line) is in good agreement with the amplitude of the
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m(X,T
2
=15)

A(X,T
2
=15)

Fig. 1 A localized perturbation of the equilibrium P∗ produces a pattern which invades the domain as

a modulated traveling wave. The dashed line is the exact solution (19) of GL Eq. (16), the solid line

is the numerical solution of the system (1) with initial condition (m0, c0, d0)T = (m∗, c∗, d∗)T +
ηA(X, 0)ρ cos(kcx) at the times indicated. The parameter values are: β = 1, δ = 1, r = 1, τ = 1, ǫ =
0.01, Γ = 1, χ = 2.5 > χc = 2.42 and η2 = 0.033

Fig. 2 Pattern invasion as a modulated traveling wave in the supercritical case for the macrophages (left)

and the cytokine (right). In the case of the initial conditions imposed here, the species d remains at the

homogeneous equilibrium. The parameter values are chosen as in Fig. 1

numerical solution of the system (1) (solid blue line), and the pattern invades the

domain as a traveling wavefront (see Fig. 2).

We now consider the subcritical case, namely the parameters are picked so as to

satisfy the conditions of (1) and the coefficient L < 0. The simulation in Fig. 3 is

performed choosing ǫ = 0.8, χ = 7.24 > χc = 7.17 and η2 = 0.009. We impose as

initial condition a random perturbation of the equilibrium P∗ = (1, δ + β, 1) at the
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0
0

0.5

1

1.5

2

X
2π

m(X,T
2
=4.3)

Fig. 3 (Left) Pattern invasion as a modulated traveling wave in the subcritical case. (Right) Numerical

solution of the system (1) with a localized random perturbation of the equilibrium P∗ as initial condition

at the time indicated. The parameter values are: β = 1, δ = 1, r = 1, τ = 1, ǫ = 0.8, Γ = 1, χ = 7.24 >

χc = 7.17 and η2 = 0.009

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

X

d(X,T
2
=0.93)

Fig. 4 (Left) A traveling wave connects the equilibrium P∗ = (1, b + d, 1) to (0, 0, 0). (Right) Numerical

solution of the system (1) for the oligodendrocytes d species at the time indicated. The initial condition

is (m0, c0, d0) = ηA(X, 0)ρ. The parameter values are β = 1, δ = 1, r = 1, τ = 1, ǫ = 0.03, Γ = 1,

χ = 2.65 < χc = 2.75 and η2 = 0.037

left end of the spatial domain which produces the formation of a traveling wavefront

leaving behind a stationary pattern, whose wavenumber is still predicted by the linear

stability analysis. The propagation of the pattern as a traveling wavefront, in both

the supercritical and subcritical cases, reproduces the well known phenomenon of the

formation of the concentric demyelinated rings [1], typical of Baló’s Sclerosis but also

found in some early active MS lesions. A similar dynamics was also observed in the

2D numerical simulations of system (1) presented in [3], where the disease progresses

as a target pattern, forming spaced concentric demyelinated annuli.

On the other hand, it is also of great biological interest to describe the mechanism

of disease invasion, starting from a healthy initial condition. This corresponds to the

existence of an orbit connecting the unstable disease-free equilibrium to the stable

equilibrium P∗. We therefore choose the chemotactic parameter χ under the thresh-

old χc and impose the following small perturbation of the equilibrium P0 as initial

condition: (m0, c0, d0) = ηA(X, 0)ρ. The numerically found traveling wave solu-

tion connecting P∗ to P0 is shown in Fig. 4, where the profile of d(x, t) is depicted.
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Therefore, when the conditions of Theorem 1 are not satisfied, namely the value of

χ is below criticality, the proposed model describes the formation and propagation

of a homogeneous plaque which invades the domain. The analytical description of

this phenomenon will be the subject of a forthcoming paper. It would be also of inter-

est to rigorously prove that, when the chemotactic coefficient is below the threshold,

the disease-free equilibrium is globally asymptotically stable, using the techniques

adopted, e.g., in [19,20,23–25].

Since for χ > χc the equilibrium P∗ is unstable, whereas the Turing pattern is

stable, one could look for an orbit connecting the free-disease state to the Turing pattern

prescribed by the weakly nonlinear expansion. The above described scenario was

simulated for two different values of the control parameter χ : close to the bifurcation

and well-above the critical threshold. In the former case, shown in Fig. 5, one can see

that the species m evolves on two different time scales: on an O(1)-scale a wavefront

propagates connecting the disease-free equilibrium to the unstable steady state P∗ [the
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Fig. 5 (Left) A traveling wave initially propagates connecting P0 to P∗. After the wavefront has invaded

the domain, a second wave is formed, leaving behind the Turing pattern. (Right) Numerical solution of the

system (1) for the macrophages m species at the time indicated. The initial condition is a small perturbation

of the homogeneous equilibrium P0 at the left end of the domain. The parameter values are β = 1, δ =
1, r = 1, τ = 1, ǫ = 0.03, Γ = 1, χ = 2.8 > χc = 2.75 and η2 = 0.01
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Fig. 6 (Left) Fully nonlinear solutions in the form of a traveling wave connecting the pattern to P0. (Right)

Numerical solution of the system (1) for the oligodendrocytes d species at the time indicated. The initial

condition is a small perturbation of the homogeneous equilibrium P0 at the left end of the domain. The

parameter values are β = 1, δ = 1, r = 1, τ = 1, ǫ = 0.03, Γ = 1, χ = 8.5 ≫ χc = 2.75 and η2 = 2.09

123

Author's personal copy



Wavefront invasion for a chemotaxis model of Multiple Sclerosis

dark zone in the bottom of Fig. 5(Left)]. Once the homogeneous plaque has invaded

the domain, on an O(η−2) temporal scale a second wave is initiated, leaving behind

the pattern prescribed by the linear stability analysis.

If the chemotaxis coefficient is chosen far away from the bifurcation value, the value

of η is big and the two different time scales observed in Fig. 5 can be made of the same

order. Then the observed spatio-temporal dynamics of the d describes the onset of well-

defined spatially structured plaques around the unstable equilibrium P∗, analogous to

the Baló’s concentric rings. This is reported in Fig. 6, where χ = 8.5 ≫ χc = 2.75.

In this fully nonlinear regime, the wavelength and the form of the pattern do not match

with the expected solution found through the weakly nonlinear analysis and nonlinear

effects in the form of amplitude instabilities and defects appear.
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