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Phase-shifting interferometry is a coherent optical method that combines high

accuracy with high measurement speeds. This technique is therefore desirable

in many applications such as effi cient industrial quality inspection process.

However, despite its advantageous properties, the inference of the object am-

plitude and the phase, herein termed wavefront reconstruction is not a trivial

task owing to, namely, the Poissonian noise associated with the measurement

process and to the 2π phase periodicity of the observation mechanism. In this

paper, we formulate the wavefront reconstruction as an inverse problem where

the amplitude and the absolute phase are assumed to admit sparse linear rep-

resentations in suitable sparsifying transforms (dictionaries). Sparse modeling

is a form of regularization of inverse problems which, in the case of the absolute

phase, is not available to the conventional wavefront reconstruction techniques

as only interferometric phase modulo-2π is considered thereof. The developed

sparse modeling of the absolute phase solves two different problems: essentially

improved accuracy of the interferometric (wrapped) phase reconstruction and

simultaneous phase unwrapping.

Based on this rationale, we introduce the sparse phase and amplitude

reconstruction (SPAR) algorithm. SPAR takes into full consideration the

Poissonian (photon counting) measurements and uses data adaptive BM3D

frames as a sparse representation for the amplitude and for the absolute

phase. SPAR effectiveness is documented by comparing its performance with

that of competitors in a series of experiments. c© 2014 Optical Society of

America

2



OCIS codes: 070.2025, 100.3010, 100.3190, 100.5070, 110.1650

1. Introduction

The determination of the complex amplitude of a monochromatic light wave field, often

termed wavefront reconstruction, is a fundamental step in many applications of optical

metrology. Especially the phase distribution defined, e.g., in a plane, may be evaluated

to yield information of the optical path the light has traveled before impinging on the sen-

sor, e.g., a CCD camera. This knowledge enables a huge number of practical applications in

industry and science, such as shape and deformation measurements down to a fraction of a

micron or absolute distance measurements on an environmental scale [1].

There are various interferometric based methods aimed at determination of the complex

amplitude of a monochromatic light wavefront, namely phase shifting, digital holography,

and shearography [1], [2]. This paper is addressed to reconstruction of the object phase and

amplitude in phase-shifting interferometry. In this technique, from each pixel of the object

under study, we are given a set of noisy and nonlinear measurements of the complex field.

The noise is Poissonian, linked with the photon counting process, and the nonlinearities are

sinusoidal, each one corresponding to a different phase shift (more on the used phase-shifting

interferometry in Section 3).

The sparse approximations of the wavefront proposed in this paper are quite general and

can be used for various complex-valued wavefront reconstruction, thus the considered phase-

shifting setting can be treated as a convenient scenario for clear demonstration of specific

features of this technique. This paper is elaboration of the preliminary results introduced in

[3] with respect to which we detail the adapted sparse model and the proposed multiobjective

based optimization. In addition, we present a set of evidences providing clear effectiveness
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of the proposed methodology.

In what follows the paper is organized as follows. We start from the concept of the sparsity

for the complex valued wavefront (Section 2), where it is emphasized the used sparsification

of the phase as the absolute phase. The observation modeling for phase-shifting interferom-

etry with the Poissonian noise are discussed in Section 3. The variational approach to the

problem based on multiobjective optimization is considered in Section 4. The solutions of the

considered variational problems are presented in the corresponding subsections 4.A, 4.B and

4.C. The developed iterative algorithm is discussed in Section 5. Experimental results are

shown in Section 6 separately for visual evaluation of the phase and amplitude reconstruction

(subsection 6.A) and for the numerical comparison of various techniques (subsection 6.C).

2. Sparsity and low dimensional wavefront modeling

In this paper, we use sparse modeling for wavefront reconstruction from phase-shifting in-

terferometry measurements. It is well known that many images (and signals) admit sparse

representations in the sense that they are well approximated by linear combinations of a

small number of functions taken from a know set. On many occasions, this is a consequence

of the self-similarity of these images: it is very likely to find in them many similar patches in

different locations and at different scales. The topic of sparse and redundant representations

has attracted tremendous interest from the research community in the last ten years. This

interest stems from the role that the low dimensional models play in many signal and image

areas such as compression, restoration, classification, and design of priors and regularizers,

just to name a few [4].

Let c ∈ Rn denote a vector representing an image, or a patch of it, and let us assume that

c admits a sparse representation, or sparse coding, with respect to the columns of a given

4



matrix Ψ ∈ Rn×m; i.e., it is possible to write c = Ψθ, where θ ∈ Rm is a vector containing

only a few non-zero components. The matrixΨ is termed a synthesis operator (or dictionary)

because in the writing c =
∑m

j=1 Ψjθj, where Ψj are the columns of the matrix Ψ and θj

are the elements of the vector θ, c is synthesized as a linear combination of the columns

of Ψ weighted by the elements of θ, often called the spectrum of c. The synthesis based

representations have a dual point of view in which, given an image c ∈ Rn, we compute its

spectrum β ∈ Rm by applying the so-called analysis operator (or dictionary) Φ ∈ Rm×n to

c, i.e. β = Φc.

There are many classical transforms in which the direct transform Φ is interpretable as

an analysis operator and the inverse transform Ψ as the corresponding synthesis operator.

Quite often these matrices Φ and Ψ are orthonormal, i.e., ΦTΦ = In×n , where In×n is

the n × n identity matrix, and Ψ = ΦT . It happens, however that when we are looking for

the sparsest approximation using a synthesis dictionary, the likelihood of success increases

with the number and variety of signals (atoms) held by the dictionary. As a consequence, the

synthesis dictionaries yielding sparse representations are often overcomplete, i.e.,m > n. The

concept of frame is a generalization of the classical basis especially developed for overcomplete

(synthesis and analysis) representations with linearly dependent approximating functions [4].

Let o ∈ Cn be a complex-valued wavefront defined on a grid with n pixels. Denote Bo =

mod(o) and ϕo = angle(o) ∈ [−π, π) and as, respectively, the corresponding images of

amplitude (modulus) and the wrapped phase, ϕo. Then we have o = Bo exp(jϕo). Herein,

all functions applied to vectors are to be understood in the component-wise sense; the same

applies to multiplications and divisions of vectors. In addition, if o is a vector and a is a

scalar, the notation oa stands for a vector with the same size of o such that its i-th component
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is given by [oa]i = [o]ia.

With the objective of formulating treatable phase imaging inverse problems, most ap-

proaches follow a two-step procedure: in the first step, an estimate of the so-called principal

(wrapped, interferometric) phase in the interval [−π, π) is determined; in the second step,

termed phase unwrapping, the absolute phase is inferred by adding of an integer number of

2π multiples to the estimated interferometric phase [5]. In what follows, we denote the prin-

cipal phase as ϕo and the absolute phase as ϕo,abs. We introduce the phase-wrap operator

W : R 7→ [−π, π), linking the absolute and principal phase as ϕo=W(ϕo,abs). We also define

the unwrapped phase as ϕo,abs = W−1(ϕo). Notice that W−1 is not the inverse function of

W because the latter is not one-to-one and thus is does not have inverse.

In sparse coding for complex valued images, we may think in two different approaches:

either we use a complex valued sparse representation to model directly the complex image

exp(jϕo), as recently proposed in [6], or we use sparse real valued representations for the

amplitude Bo and absolute phase ϕo,abs images of o. The choice of the type of the sparse

modeling depends on the application. The former is suited to wavefront reconstruction,

where the interferometric (wrapped) phase carries all necessary phase information, whereas

the latter is suited to applications requiring the inference of the absolute phase, herein termed

phase reconstruction.

In this paper, we follow the second type of the wavefront modeling. We introduce formally

this sparse wavefront modeling as follows:

Bo = Ψa,oθa,o, ϕo,abs = Ψϕ,oθϕ,o , (1)

θa,o = Φa,oB0, θϕ,o = Φϕ,oϕo,abs , (2)

where θa,o and θϕ,o are, respectively, the amplitude and phase (absolute phase) spectra of
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the object o. In Eqs.(1), the amplitude Bo and absolute phase ϕo,abs are synthesized from

the amplitude and phase spectra θa,o and θϕ,o. On the other hand, the analysis Eqs.(2) give

the spectra for amplitude and phase for the wavefront o.

Following the rationale we have introduced in beginning of this section, we herein assume

that the amplitude and phase (absolute phase) spectra, θa,o and θϕ,o, respectively, are sparse;

i.e., most elements thereof are zero. In order to quantify the level of sparsity of θa,o and

θϕ,o, i.e., their number of non-zero elements, we use the pseudo l0-norm ‖ · ‖0 defined as

‖x‖0 = |{i : xi 6= 0, i = 1, . . . , n}|, where x is an n-dimensional vector. Therefore, in

the ensuing formulations, we will design estimation criteria promoting low values of ‖θa,o‖0

and ‖θϕ,o‖0. It is obvious that for the complex exponent there is no difference between the

principal and absolute phase, exp(jϕo,abs) = ϕ(jϕo), and the angle operator in ϕo =angle(o)

gives the principal phase. However, there is a great deal of difference between the sparsity

for the absolute and interferometric phases, because in many cases the absolute phase can

be smooth or piece-wise smooth function easily allowing sparsification while the complex

exponents is a periodic function of this phase.

The sparse approximation of the phase in the form Eq.(2) is initiated from our works [7]- [9],

where it was presented for the interferometric phase assuming at least in the modeling that

−π ≤ ϕo,abs < π. Formulation and detailed of this technique to the sparse approximation of

the absolute phase which can take values out of the basic interval [−π, π) is an essential step

forward in this paper.

The approach proposed in this paper takes into full consideration the Poissonian (photon

counting) measurements. In this way we are targeting at optimal sparse reconstruction both

phase and amplitude taking into consideration all details of the observation process.
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3. Phase-shifting interferometry

Fig. 1 schematizes the phase-shifting interferometry concept. The light emitted by a laser

is split into two beams by a beam splitter: one beam is directed towards the surface of

an object under study; the other beam is directed towards a mirror which introduces a

controlable phase shift. The intensity of the sum of these two beams is then measured by a

sensor array. For the L-step phase-shifting interferometry, the complex-valued wavefront at

the sensor plane is given by

us = Bo exp(jϕo) +Ar exp(−jϕrs), s = 1, ..., L, (3)

where Bo exp(jϕo) and Ar exp(−jϕrs) are the object and reference wavefronts, respectively.

The phase ϕrs is defined by the phase shift introduced by the mirror for s = 1, . . . , L.

Let us assume that the sensor takes measurements on a rectangular grid with N digital

elements and let Ys = {Ys[l], l = 1, ..., N}, for s = 1, ..., L, denote the L measured images

with N elements each. The measurement process in optics amounts to count the photons

hitting the sensor’s elements and is well modeled by independent Poisson random variables;

that is, the probability that Ys[l] = k, for a given non-negative integer k, is given by

p(Ys[l] = k) = exp(−Is[l]χ)
(Is[l]χ)

k

k!
, (4)

where Is[l] = |us[l]|2 is the intensity of the wavefront at pixel l. We have then

Is = B2
o +A2

r + 2BoAr cos(ϕo + ϕrs). (5)

The parameter χ in (4) is a scaling factor, which can be interpreted as an exposure time

(and/or as a sensitivity of the sensor). We recall that the mean and the variance of Poisson

random variable Ys[l] are equal and given by Is[l]χ, i.e., E{Ys[l]} = var{Ys[l]} = Is[l]χ.

Defining the observation signal-to-noise ratio as the ratio between the square of the mean and
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the variance ofYs[l], we have E2{Ys[l]}/var{Ys[l]} = Is[l]χ. Thus, the noise level approaches

infinite when χ → 0 and approaches zero when χ → ∞. The latter case corresponds to the

noiseless case and Ys[l]/χ→ Is[l] with the probability 1.

This paper is focused on the reconstruction of the object absolute phase ϕo,abs and the

amplitude Bo from the observations1 {Ys, s = 1, ..., L}. The standard approach consists

in estimating phase ϕo and amplitude Bo and then from ϕo estimating ϕo,abs via phase

unwrapping. Regarding the estimation of ϕo and Bo, the intensities Is in Eq.(5) are replaced

by the observations Ys and the obtained redundant equations are solved with respect the

unknowns ϕo and the amplitude Bo using the least squares method. The solutions for various

configurations of the reference phase ϕrs , for s = 1, . . . , L, can be found, for example, in

[1], page 247. For the Poissonian observations modeled by Eq.(4), the observations Ys are

replaced with Ys/χ to account for the scaling parameter χ. In particular, for L = 4 and ϕrs

taking values in the set {0, π/2, π, 3π/2}, the least squares formulation for the phase and

the amplitude of the object is

(ϕ̃o, B̃o) = arg min
ϕo, Bo

4∑
s=1

∥∥∥Ys/χ−B2
o +A2

r + 2BoAr cos(ϕo + ϕrs)
∥∥∥2
2
,

yielding the solution

tan(ϕ̃o) =
Y4 −Y2

Y1 −Y3

, B̃o =

√√√√ 4∑
s=1

Ys/4χ−A2
r. (6)

As illustrated in the following sections, the solution (6) is highly sensitive to the counting

noise present in the observations Ys. The straightforward idea is to filter somehow ϕ̃o, and

B̃o. This is not however a trivial procedure because the noise in the estimates (ϕ̃o, B̃o) is

not additive, and, what is even worse, it exhibits a complex signal dependent structure.
1To lighten the presentation, the symbols Ys, s = 1, ..., L are used both as random vectors and as sample vectors. The

meaning should be clear from the context.
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We show that the iterative algorithm developed in this paper, which models the observa-

tions in an accurate way, yields precise results even for highly noisy data. Comparison of

these results versus those obtained by the straightforward filtering of (ϕ̃o, B̃o) is always in

favor of the former.

4. Wavefront reconstruction

We consider the problem of wavefront reconstruction as the estimation of (Bo,ϕo,abs) from

observations Ys, for s = 1 . . . , L, assuming that Ar and ϕrs are given. This problem is

rather challenging mainly due the periodic nature of the likelihood function with respect

to the phase ϕo. Herein, we adopt a multiobjective optimization [7], [10] to estimate the

(Bo,ϕo,abs). The main objective of this approach is the simultaneous minimization of the

negative log-likelihood function of observations given by
∑L

s=1− ln p(Ys|Bo,ϕo,abs) and of

the l0-norms of the amplitude and phase spectra modeling the sparsity of Bo and of ϕo,abs,

given by ‖θa,o‖0 and ‖θϕ,0‖0, respectively. However, the straightforward approach based on

these ideas yields complex calculations with respect to (Bo,ϕo,abs).

In order to make the problem manageable, we introduce auxiliary variables vs approxi-

mating the wavefront us and allowing to split the optimization with respect to (Bo,ϕo) into

simpler decoupled optimizations. In addition to the negative log-likelihood function and to

the l0-norms terms, we introduce a third objective function defining the deviation between

vs and us. The developed algorithm is iterative and composed of three successive stages each

one minimizing one of the above mentioned objective functions. These successive steps are

introduced in the following subsections.

10



4.A. Stage 1 : Observation noise suppression

Let vs, s = 1, ..., L, be approximations (estimates) of the wave fields us (Eq.(3)). Then, an

improved approximation of us is obtained from the following minimization:

ûs = argmin
us
L1(us,vs), (7)

L1(us,vs) =
L∑
s=1

∑
l

[|us[l]|2χ−Ys[l] log(|us[l]|2χ)] +
1

γ1

L∑
s=1

∥∥us − vs
∥∥2
2
.

The first summand in L1 is the negative loglikelihood of Poissonian distributions (4). The

second summand is a quadratic regularization (penalization) term with the weight 1/γ1

defined by the difference between us in question and its approximation vs.

The minimization of L1 with respect to complex-valued us[l] gives the solution

ûs[l] = bs[l] exp(j · angle(vs[l]), (8)

where

bs[l] =

∣∣vs[l]∣∣/(γ1χ) +√|vs[l]|2/(γ1χ)2 + 4Ys[l](1 + 1/(γ1χ))/χ

2(1 + 1/(γ1χ))
. (9)

Note that for γ1χ→∞ (noiseless case), we have

ûs[l]→
√

Ys[l]/χ exp(j · angle(vs[l]), s = 1, ..., L. (10)

This solution coincides with the famous Gerchberg-Saxton-Fienup rule, where the amplitude

of the estimate is replaced by the square root of the intensity measurement and the phase

is equal to its predicted value. We conclude that the widely used Gerchberg-Saxton-Fienup

rule is an approximation of the maximum likelihood estimate of us only valid for in high

signal-to-noise ratio scenarios.
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4.B. Stage 2 : Parametrization of object wavefront

The variables us are represented in Eq.(3) as a function of (ϕo,Bo). Let us assume that we

observe an us + ε, where ε is an additive perturbation. From these observations, we infer

(ϕo,Bo) by solving the optimization

(ϕ̂o,B̂o ) = arg min
ϕo,Bo

L2(Bo,ϕo, Ar,us), (11)

L2(Bo,ϕo, Ar,us) =
L∑
s=1

∥∥us − (Bo exp(jϕo) +Ar exp(−jϕrs))
∥∥2
2
. (12)

The minimization of L2 with respect to ϕo and Bo gives

ϕ̂o = angle
( L∑
s=1

us

)
, B̂o = Re

(
exp(−jϕo)

∑
s

us

)
/4. (13)

4.C. Stage 3: Sparsification (filtering) of phase and amplitude

As it was already discussed in Section 2, we use the separate sparse modeling for the ab-

solute phase ϕo,abs and amplitude Bo of the wavefront uo ≡ Bo exp(jϕo). The corresponding

sparsity criterion is similar to the one introduced in [7]:

(θ̂ϕo,θ̂Bo) = arg min
θϕo ,θBo

L3(θϕo ,θBo ,ϕo,abs,Bo), (14)

L3(θϕo ,θBo ,ϕo,abs,Bo) = τa · ||θBo ||0 + τϕ · ||θϕo||0 (15)

+
1

2
||θBo −Φa,oBo)||22 +

1

2
||θϕo −Φϕ,oϕo,abs||22.

The presence of the l0-norms in (15) enforces sparsity on the phase spectrum θϕo and on

the amplitude spectrum θBo. The regularization terms
1
2
||θBo − ΦBoBo)||22 and 1

2
||θϕo −

Φϕoϕo,abs||22 are defined by the predictions ΦBoBo and Φϕoϕo,abs for the amplitude and phase

spectra θBo and θϕo , respectively.

The minimization of L3 with respect to the spectra θϕo, θBo gives the well known hard-
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thresholding solutions

θ̂Bo = Φa,oBo ·H
(
|ΦBoBo| − Tha

)
(16)

θ̂ϕo = Φϕ,oϕo ·H
(∣∣Φϕoϕo,abs

∣∣− Thϕ) ,
where Tha =

√
2τa and Thϕ =

√
2τϕ are thresholds for the amplitude and the phase

respectively, and H is the Heaviside step function. The spectral coeffi cients
∣∣Φϕoϕo,abs

∣∣ and
|ΦBoBo| smaller than the corresponding thresholds are zeroed in Eq. (16).

Using these estimates, we define the auxiliary variable vs as the approximation of uo in

the form:

vs = (ΨθBo
θ̂Bo) exp(jΨϕoθ̂ϕo) +Ar exp(−jϕrs). (17)

The variable vs in Eq.(7) corresponds to a quadratic splitting introduced in L1(us,vs) to

decompose this likelihood criterion and the sparsity criterion L3(θϕo ,θBo ,ϕo,abs,Bo) in two

more manageable objective functions. Therefore, the objective function L1(us,vs) jointly

with L2(Bo,ϕo, Ar,us) are interpretable as the negative Poissonian loglikelihood function,

and the objective function L3(θϕo ,θBo ,ϕo,abs,Bo) is a weighted measure between the spar-

sity of Bo and ϕo and their representation errors, using the analysis frames ΦBo and Φϕo.

We conclude therefore that the multiobjective optimization (7), (11), (14) aims at finding

object uo which is simultaneously likely to have produced the observation and to have sparse

representation.

Naturally, the success of the sparse imaging depends on how reach and redundant are the

dictionaries used for the analysis and the synthesis. In our experiments for the analysis and

synthesis operations, we use the BM3D frames, where BM3D is an abbreviation for Block-

Matching and 3D filtering [10]. Let us recall basic ideas of this advanced technique. At the

first stage phase and amplitude of the wavefront are partitioned into small overlapping square
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patches. For each patch a group of similar patches is collected which are stacked together

and form a 3D array separately for amplitude and phase. This stage is called grouping.

The entire 3D arrays are projected onto a 3D transform orthonormal basis. The obtained

spectral coeffi cients are hard-thresholded and inverse 3D transform gives filtered patches,

which are returned to the original positions of these patches of the phase and amplitude

images, respectively. This stage is called collaborative filtering. The process is repeated for

all pixels of the entire wavefront. The final estimates of the amplitude and the phase are given

by calculating weighted means of the estimates obtained for common pixels of the overlapped

filtered patches of the amplitude and the phase. This last stage is called aggregation. The

details of BM3D as an advanced image filter can be seen in [11].

In our technique, as it is implemented in this paper, grouping, analysis, synthesis, and

hard-thresholding are combined in a single procedure which we call BM3D. This procedure

in parallel and independently is applied to amplitude and phase variables. Then, the solutions

(16) can be presented in the following short form:

(ΨθBo
θ̂Bo) = BM3Dampl(Bo, Tha), (18)

(Ψϕoθ̂ϕo) = BM3Dangle(ϕo, Thϕ),

where BM3D denotes algorithm applied to the amplitude and to the phase with different

indexes just because different parameters of the algorithm can be used for the amplitude and

the phase.
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5. Algorithm

Combining the solutions obtain in Section 4, we arrive to the following Sparse Phase and

Amplitude Reconstruction (SPAR) algorithm.

SPAR (Sparse Phase Amplitude Reconstruction) algorithm

Input: {Ys}, s = 1, ..., L;

Output: ϕ̂To,abs, B̂T
o ;

Initialization: t = 0, ϕ̂0o, B̂0
o;

v0s = B̂0
o exp(jϕ̂

0
o) +Ar exp(−jϕrs), s = 1, ..., L;

Repeat for t = 0, 1, ...,

1. Poissonian noise suppression (Eq. (8)):

ûts = B̂t
s exp(j · angle(vts), s = 1, ..., L, B̂t

s = (b̂
t
s[l]);

2. Parametrization of ûto (Eq. (13)):

ϕ̂to = angle
( L∑
s=1

uts

)
, B̂t

o = Re
(
exp(−jϕ̂to)

∑
s

uts

)
/4;

3. Phase unwrapping (PUMA [12]):

ϕ̂to,abs =W−1(ϕ̂to);

4. Sparsification (filtering) of amplitude and absolute phase (Eqs. (18)):

ϕ̂t+1o,abs = BM3Dangle(ϕ̂
t
o,abs, Thϕ),

B̂t+1
o = BM3Dampl(B̂

t
o, Tha);

5. Updating vts:

vt+1s = Bt+1
o exp(jϕ̂t+1o,abs) +Ar exp(−jϕrs), s = 1, ..., L;

6. t = t+ 1;

Until stopping criterion is satisfied.
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The SPAR algorithm is initialized by v0s , s = 1, ..., L, where Ar is assumed known and

ϕ̂0o,abs, B̂0
o are obtained by filtering of the raw data ϕ̃

0
o, B̃0

o calculated according to Eqs.(6).

As it is mentioned in Section 3, these latter estimates can be quite noisy. In our experiments

for this filtering, we use BM3Dmod for B, which gives B̂0
o = BM3Dampl(B̃o), and the WFT

(windowed Fourier transform) algorithm [13], [14] for filtering of the wrapped phase ϕ̃o,

ϕ̂0o =WFT(ϕ̃o). Both algorithms, BM3Dmod and WFT, yield state-of-the-art results in the

corresponding fields for the image and the wrapped phase denoising, respectively.

At Step 1 the noise in the magnitudes of ûts, s = 1, ..., L, is filtered. The level of the noise

suppression is defined by the parameter γ1. For large values of γ1 the amplitudes are defined

by the observed Ys, i.e., no filtering (see Eq. (9)). The phase of ûts is equal to the phase of

v̂ts for any γ1.

At Step 2 the object wavefront ûto is defined. For phase unwrapping at Step 3 we use the

state-of-the-art PUMA algorithm [12], which is able to cope with piecewise smooth surfaces of

the absolute phase. The phase and the amplitude of the object wave front are filtered at Step

4 by BM3D filters. At Step 5 the variable vs, i.e., the estimate of the wave front impinging

on the sensor, is updated. In our experiments we use a fixed number, T , of iterations as a

stopping criterion. Thus, the output of the algorithm are defined by the variables ϕ̂To,abs, B
T
o .

The block-scheme of this algorithm are shown in Fig. 2.

6. Experiments

The experiments presented in this section are obtained for a quadratic amplitude and three

types of a phase surface: Gaussian, Truncated Gaussian, and Shear Plane, exploited in [7].

The ratio maximum-to-minimum values of the amplitude is equal to 2 with the maximum

value at the central point of the image. This setting models wavefronts with non-uniform
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intensities.

The accuracy of the wavefront reconstruction is characterized by ISNR (improvement in

signal-to-noise ratio in dB) independently for the amplitude and exponential complex com-

ponents of the wavefront and by RMSE (root mean square error) for the absolute phase:

ISNRamp = 10 log10
||B̃o −Bo||22
||B̂50

o −Bo||22
, (19)

ISNRexp = 10 log10
|| exp(jϕ̃o)− exp(jϕ)||22
|| exp(jϕ̂50o )− exp(jϕ)||22

,

ISNRphase,wrap = 10 log10
||W(W(ϕ̃o)−ϕo)||22
||W(W(ϕ̂50o )−ϕo)||22

,

RMSEphase,abs =
1

N
||ϕ̂50o,abs −ϕo||22.

Using the complex exponent in ISNRexp allows simultaneously estimating the accuracy of

the real and imaginary parts of the wavefront and in this way to evaluate the accuracy of

the wavefront reconstruction overall. The amplitude Bo can be included in this criteria but

we prefer to evaluate the accuracy separately for the phase and the amplitude because the

phase inference in many application is the main objective. Note that in all cases we calculate

ISNR with respect to the observed noisy raw data ϕ̃o and B̃o. The filtered values of these

variables, i.e., ϕ̂0o and B̂0
o, are used for initialization of the algorithm.

6.A. Visual comparison of the reconstructions

The experiments herein conducted are produced for various values of the parameter χ defining

the amount of noise in observations. We are mostly concerned with highly noisy scenarios,

where, as seen below, SPAR exhibits the strongest advantage compared with the competitors.

The essential accuracy improvement is observed also for the low-level noise, when visually

this improvement cannot be noticed.

Figs. 3 to 6 show the reconstruction results for the Gaussian phase, with 44 radians of phase
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range and the quadratic amplitude. The scale parameter controlling the level of the noise is

set to χ = 0.05. We can see that the observations (raw data) ϕ̃o (Fig.3a ) and B̃o (Fig.5a)

obtained according to Eq.(6) are indeed extremely noisy. Fig.3b and Fig.5b show ϕ̂0o and

B̂0
o obtained by pre-filtering of these noisy data as ϕ̂

0
o =WFT(ϕ̃o) and B̂0

o =BM3Dampl(B̃o).

Fig.3c and Fig.5c illustrate SPAR performance: the obtained estimates are very close the

true wrapped phase and the amplitude shown in Fig.3d and Fig.5d, respectively.

Fig.4 presents the corresponding results for the unwrapped phase, respectively: the initial

reconstruction ϕ̂0o,abs (Fig. 4a), the SPAR reconstruction ϕ̂
50
o,abs (Fig.4b) and the true absolute

phase (Fig.4c). In the last image of this series (Fig.6), we show the SPAR performance as a

function of the number of iterations. The convergence for the phase and amplitude ISNR is

reached, from a practical point of view, in 50 iterations.

The next two images, shown in Fig.7 and Fig.8, show similar results for the truncated

Gaussian phase, the quadratic amplitude, and χ = 0.25. We show only the images concerning

the phase because the images for the amplitude and the dependence of the accuracy on

iterations are quite similar to shown in Fig.5-Fig.6. We can see quite impressive results

where the noise effects are suppressed nearly completely.

The phase results for the shear plane phase are shown in the two images (Fig.9 and

Fig.10). Again we can see quite accurate reconstruction of this linearly varying absolute

phase covering the range 79 radians. In all images, we can note that the numerical accuracy

improvement with respect to the initial estimates is very impressive.

6.B. Parameters of the SPAR algorithm

The noise parameter χ takes values in the interval [0.05, 5]. For χmax = 5.0, the data are

practically noiseless, while for χmin = 0.05 the noise level is so high that an acceptable

18



quality reconstruction of the absolute phase from ϕ̂0o, using the PUMA algorithm, becomes

impossible.

As expected, SPAR performance depends on the parameters of the algorithm. We have

kept BM3D parameters for synthesis and analysis frames fixed in all our experiments. The

size of the image patches is always 8×8 and the group size is limited by the number 25. The

step size between the neighboring patches is equal to 2.

The parameters γ1 appearing in L1 and the thresholds Thϕ and Tha, used in Eqs.(16)

and (17), respectively, are set heuristically as follows: γ1 = 0.4 ; Tha = 0.02; Thϕ =

0.02/
√
χ/χmin. Thus, the phase threshold is taken depending on χ, larger χ results in a

smaller value of the phase threshold.

For the truncated Gaussian phase, we have used χ = 0.25 because for lower values of χ

the unwrapping gives poor results owing to high level of the noise present in the wrapped

phases ϕ̃o and ϕ̂
0
o.

6.C. Numerical evaluation of reconstruction accuracy

A detail picture of the accuracy achieved by the SPAR algorithm can be seen in Table 1.

Here we show results for different level of noise by varying χ from χmin = 0.05 to χmax = 5.0.

The three numbers shown for each criteria regards, from the left to the right, a) SPAR

algorithm, b) initial estimates ϕ̂0o and B̂0
o, making evident how far the initial estimate is

improved by SPAR, c) best estimates (shown in brackets) which can be achieved using the

separate filtering of ϕ̃o, B̃o given by Eq.(6).

Concerning these best estimates we wish to note the following. The estimate for the ampli-

tude is obtained by BM3Damp optimized with respect to the threshold parameter Tha and

this optimization is produced separately for each experiment. In a similar way, in order to
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obtain the best estimate for the phase, we use the WFT algorithm. Remind that WFT is

derived for the exponential observation model us = Bo exp(jϕo) + σ(ε1,s+ jε2,s), where ε1,s

and ε2,s are independent Gaussian, zero mean with the standard deviations equal to 1. The

standard deviation σ of this complex-valued noise is an important parameter of WFT: larger

values of σ result in stronger smoothing and smaller values result in noisier estimates. The

optimization of WFT is produced with respect to σ. In this way we obtain the so-called

“oracle” estimates assuming that the true amplitude and phase are given in advance and

can be used for optimization of the parameters of BM3Damp and WFT algorithms. The main

idea behind this modeling is providing clear evidences that even with the optimal (but im-

practical) conditions, the separate filtering of the raw observations ϕ̃o, B̃o given by Eq.(6)

cannot competes with the results of the SPAR algorithm.

We can see in Table 1 for the criteria ISNRphase,wrap, ISNRexp and ISNRampl that these

oracle estimates are always better than the initial phase and amplitude estimates. How-

ever, this optimal tuning of WFT is not always good for the absolute phase reconstruc-

tion if the data are very noisy. In particular, for the Gaussian phase, χ = 0.05, we can

see that RMSEphase,abs = 1.72 for the optimized WFT, while the initial estimate shows

RMSEphase,abs = 0.46. Similarly, for the truncated Gaussian phase (χ = .25 and χ = 0.5)

we can see for the optimized WFT estimate RMSEphase,abs = 1.82 and RMSEphase,abs = 1.64

versus RMSEphase,abs = 1.07 and RMSEphase,abs = .02, respectively, obtained by the initial

phase estimate ϕ̂0o =WFT(ϕ̃o).

These large values of RMSEphase,abs mean that the absolute phase reconstruction is seri-

ously different from the true absolute phase. For initialization of SPAR, we use WFT with

significantly lower values of σ, than those appeared in the optimized oracle estimates, which
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have been optimized for estimation of the interferometric wrapped phase. As a result, the

initial estimate of the wrapped phase given by WFT is noisier than that obtained by the

optimized oracle one but the essential features of the wrapped phase are preserved. The

phase unwrapping is very delicate procedure which is sensitive to even small errors in the

corresponding wrapped phase. The optimization of WFT for the wrapped phase results in a

compromise between the noise variance and the bias and later can be strong enough in order

to destroy the structure of the wrapped phase essential for unwrapping.

The Poissonian noise can be characterized in terms of the mean signal-to-noise ra-

tio per pixel (mSNRp) and the mean value of photons per pixel (Nphoton). The for-

mer criterion for the Poissonian observations is calculated for each experiments as

10log10(mean(Y )/
√
mean(Y )), mean(Y ) = 1

4N

∑N
l=1

∑4
s Ys[l]. In particular, for the

Gaussian phase we found: χ = 0.05 corresponds to mSNRp= 2.8dB and Nphoton =3.6;

χ = 0.5 corresponds tomSNRp= 7.8 dB and Nphoton =35.8; χ = 5 corresponds tomSNRp=

12.8 dB and Nphoton = 358. For small values of χ, many observations take zero values. For

instance, for the results, shown in Fig.3-Fig.6 about 10% of the observed values of Ys are

zeros.

For our experiments, we used MATLAB R2012b and the computer with the processor

Intel(R) Core(TM) 2 Duo CPU P8400@ 2.26 GHz. The complexity of the algorithm is

characterized by the time required for one iteration. For image 100× 100 this time is about

1 sec/iteration.

We make our MATLAB programs for the demo version of our algorithms publicly available

for testing: http://www.cs.tut.fi/~lasip/DDT/.
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7. Conclusion

This paper introduced a variational approach for reconstruction of wavefront, i.e., absolute

phase and amplitude, from Poissonian phase-shifting measurements. Sparse modeling of am-

plitude and absolute phase is one of the key elements of the developed algorithm. The other

key step is the adoption of multiobjective optimization, which allowed to decompose an un-

bearable optimization into an iterative procedure solving, in each iteration, a set of much

simpler subproblems. Armed with the sparse modeling framework, and with the multiob-

jective optimization strategy, we introduced the sparse phase and amplitude reconstruction

(SPAR) algorithm. SPAR takes into full consideration the Poissonian (photon counting)

measurements, uses data adaptive BM3D frames as a sparse representation for the am-

plitude and for the absolute phase. SPAR effectiveness was documented by comparing its

performance with that of competitors in a series of experiments, where it systematically

outperformed the competitors.
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List of Figure Captions

Fig.1. Phase-shift interferometry: on-axis setup. In this Michelson configuration a single

laser beam of coherent light is split into two beams by a beam splitter. The path difference

traveled by the reference (mirror) beam and object beam is reflected in the intensity of the

aggregated beam us. This intensity is measured by the sensor array. Shift of the mirror is

used in order to introduce different phase shifts between the object and reference beams used

in order to reconstruct the object wavefront from the intensity measurements.

Fig.2. SPAR algorithm: block-scheme.

Fig.3. Wrapped phase for the Gaussian phase object, from left to right: the noisy raw data,

the initial WFT estimate, SPAR reconstruction, true image.

Fig.4. The absolute (unwrapped) phase for the Gaussian phase object, from left to right:

the initial WFT estimate, SPAR reconstruction, true image.

Fig.5. Surfaces for the quadratic amplitude, from left to right: the noisy raw data, the

initial BM3Dampl estimate, SPAR reconstruction, true image.

Fig.6. The accuracy of the wavefront reconstruction (object with the Gaussian phase)

versus the number of iterations, from left to right: ISNRexp for the exponential wavefront

exp(jϕ), ISNRampl for the quadratic amplitude.

Fig.7. The wrapped phase for the truncated Gaussian phase object, from left to right: the

noisy raw data, the initial WFT estimate, SPAR reconstruction, true image.

Fig.8. The absolute (unwrapped) phase for the truncated Gaussian phase object, from left

to right: the initial WFT estimate, SPAR reconstruction, true image.

Fig.9. The wrapped phase for the shear plane phase object, from left to right: the noisy

raw data, the initial WFT estimate, SPAR reconstruction, true image.
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Fig.10. The absolute (unwrapped) phase for shear plane phase object, from left to right:

the initial WFT estimate, SPAR reconstruction, true image.
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List of Table Captions

Table 1. Accuracy criteria for phase and amplitude reconstruction. Each row corresponds

to different phase function of the wavefront. The three numbers shown for each criteria

regards, from the left to the right, SPAR, the initialization of SPAR, and the best oracle

estimate provided by WFT (in brackets).

26



Table 1. Accuracy criteria for phase and amplitude reconstruction. Each row corresponds to

different phase function of the wavefront. The three numbers shown for each criteria regards,

from the left to the right, SPAR, the initialization of SPAR, and the best oracle estimate

provided by WFT (in brackets).

Phase χ ISNRphase,wrap ISNRexp RMSEphase,abs ISNRampl

Gauss 0.05 17.6 | 9.47 (10.6) 15.9 | 8.54 (9.78) 0.178 | 0.46 (1.72) 22.3 | 9.43 (16.9)

0.5 19.25 | 10.73 (16.1) 18.6 | 10.10 (15.15) 0.065 | .17 (.0943) 17.6 | 9.54 (17.17)

5.0 15.7 | 5.98 (14.28) 15.7 | 5.96 (14.25) 0.026 | 0.081 (.0313) 15.5 | 8.75 (15.4)

Gauss 0.25 20.09 | 11.9 (15.3) 18.9 | 10.8 (14.22) 0.324 | 1.07 (1.82) 18.22 | 9.53 (17.1)

Trunc 0.5 19.7 | 9.65 (13.95) 19.0 | 9.01 (13.35) 0.445 | 0.2 (1.64) 18.3 | 10.1 (17.33)

2.5 17.7 | 4.78 (11.87) 17.6 | 4.74 (11.82) 0.030 |0.1317(0.0586) 16.05 | 8.9 (15.82)

5.0 17.02 | 4.32 (11.65) 17.0 | 4.3 (11.63) 0.023 |0.099(.0.043) 14.9 | 8.60 (15.13)

Shear 0.05 21.5 | 10.5 (14.77) 20.5 | 9.15 (13.28) 0.238 | 2.14 (4.76) 21.3 | 10.3 (16.93)

Plane 0.5 27.2 | 10.14 (14.78) 26.5 | 9.52 (14.13) 0.0256| 0.19 (0.111) 18.5 | 9.75 (17.48)

5.0 24.1 | 4.61 (12.20) 24.0 | 4.59 (12.18) 0.0102 | .0948 (.034) 15.0 | 8.45 (15.1)
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Fig. 1. Phase-shift interferometry: on-axis setup. In this Michelson configuration a single

laser beam of coherent light is split into two beams by a beam splitter. The path difference

traveled by the reference (mirror) beam and object beam is reflected in the intensity of the

aggregated beam us. This intensity is measured by the sensor array. Shift of the mirror is

used in order to introduce different phase shifts between the object and reference beams

used in order to reconstruct the object wavefront from the intensity measurements.
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Fig. 2. SPAR algorithm: block-scheme.

SPAR, ISNR
EXP

=15.9 dBINIT IAL, ISNR
EXP

=8.54 dBNOISY DATA TRUE

(a) (b) (c) (d)

Fig. 3. Wrapped phase for the Gaussian phase object, from left to right: the noisy raw data,

the initial WFT estimate, SPAR reconstruction, true image.
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Fig. 4. The absolute (unwrapped) phase for the Gaussian phase object, from left to right:

the initial WFT estimate, SPAR reconstruction, true image.

Fig. 5. Surfaces for the quadratic amplitude, from left to right: the noisy raw data, the initial

BM3Dampl estimate, SPAR reconstruction, true image.
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Fig. 6. The accuracy of the wavefront reconstruction (object with the Gaussian phase) versus

the number of iterations, from left to right: ISNRexp for the exponential wavefront exp(jϕ),

ISNRampl for the quadratic amplitude.

SPAR, ISNR
EXP

=18.9 dBINITIAL, ISNR
EXP

=10.8 dBNOISY DATA TRUE

( c )( a ) ( b ) ( d )

Fig. 7. The wrapped phase for the truncated Gaussian phase object, from left to right: the

noisy raw data, the initial WFT estimate, SPAR reconstruction, true image.
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Fig. 8. The absolute (unwrapped) phase for the truncated Gaussian phase object, from left

to right: the initial WFT estimate, SPAR reconstruction, true image.

SPAR, ISNR
EXP

=20.5 dBINITIAL, ISNR
EXP

=9.15 dBNOISY DATA TRUE

( d )( b )( a ) ( c )

Fig. 9. The wrapped phase for the shear plane phase object, from left to right: the noisy

raw data, the initial WFT estimate, SPAR reconstruction, true image.
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Fig. 10. The absolute (unwrapped) phase for shear plane phase object, from left to right:

the initial WFT estimate, SPAR reconstruction, true image.
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