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Theoretical and numerical analyses of waveguide branches in a photonic crystal are presented. Conditions for
perfect transmission and zero reflection are discussed. Based upon these conditions, numerical simulations of
electromagnetic-wave propagation in photonic crystals are performed to identify structures with near-complete
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1. INTRODUCTION

Waveguide branches play an important role in integrated
photonic circuits. Ideally, such a device splits the input
power into the two output waveguides without significant
reflection or radiation losses. Motivated by the goal of
miniaturizing photonic components and circuits, there
have been many efforts to construct wide-angle
branches.!™ Despite such efforts, the splitting angles
are still limited to a few degrees for conventional struc-
tures, owing to the inherent radiation loss at the branch-
ing region. Moreover, while such loss can be substan-
tially reduced,®7 it cannot be completely suppressed by
increasing the index contrast between the guide and the
surrounding media. Photonic crystals offer the way to
completely eliminate radiation losses® and thereby open
the possibility of designing wide-angle branches with high
performance. Very recently, estimates of the transmis-
sion characteristics of a 120° Y branch in a crystal with
hexagonal symmetry have been presented by Yonekura
et al.’ However, direct and accurate numerical charac-
terizations of the transmission and reflection properties
through a single waveguide branch have not been previ-
ously performed. Moreover, a general criterion for ideal
performance of waveguide branches in a photonic crystal
has yet to be developed. In this paper we present theo-
retical calculations for the construction of a waveguide
branch in a photonic crystal. We note that structures
with 120° rotational symmetry, including the configura-
tion considered by Yonekura et al.,’ do not completely
eliminate reflection. Based upon our theoretical consid-
erations, we introduce designs of photonic-crystal wave-
guide branches with 180° branching angles that display
near-zero reflection and almost-complete transmission.

2. THEORETICAL CONSIDERATIONS

In order to obtain a qualitative understanding of wave-
guide branches in a photonic crystal, we consider the the-
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oretical model,” as shown in Fig. 1. The branching re-
gion is treated as a cavity that couples to the input and
output waveguides. The resonance in the cavity then de-
termines the transport properties of the branch.

The transmission and reflection properties of such a
model can be calculated by use of coupled-mode theory,
which relates the incoming and outgoing wave ampli-
tudes S,; and S _; at port 7, to the amplitude of the reso-
nant mode a, as follows:
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Here, v, is the resonant frequency, and 1/7; is the ampli-
tude decay rate of the resonance into the ith port. Also,
for simplicity we have assumed a single-mode cavity.
When the electromagnetic wave at a frequency w is inci-
dent upon the system from port 1, i.e.,, S, = S,3 =0,
the reflection coefficient R and the transmission coeffi-
cients T’y and T'5 into the remaining two ports can be de-
termined as
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From Eq. (3), zero reflection can be achieved at the reso-
nant frequency o = w,, if the rate-matching condition
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is satisfied. Furthermore, the power is split evenly be-
tween port 2 and port 3 in a symmetric situation when
1/ Tg = 1/ 73.

In Fig. 2 we plot the transmission coefficient 7'y at the
resonant frequency as a function of the decay rates, as-
suming the symmetric situation where 1/79 = 1/73.
Ideal splitting, i.e., a 50% transmission coefficient, occurs
at the optimal ratio 7;/79 = 0.5. We also note that the
transmission coefficient is only a slowly varying function
of the ratio 7;/75. Transmission higher than 45%, for
example, can be achieved with 7, /79 ranging from 0.26 to
0.97. Therefore, while ideal performance can only be
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Port 1 Resonance
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Fig. 1. Schematic of the theoretical model for waveguide
branches. The gray regions represent the waveguides, and the
white circle represents a resonator. S,; and S_; are the input
and output wave amplitudes at the ith port, respectively.
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Fig. 2. Prediction of the theoretical model as shown in Fig. 1,
assuming that the wave is incident from port 1 and that the out-
put ports are symmetric. Plotted here is the intensity-
transmission coefficient into port 2, as a function of the ratio be-
tween the decay rates into the input and an output waveguide.
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achieved with an exact matching of the decay rates, one
expects many structures to have relatively high transmis-
sion.

In particular we first consider structures with C3, sym-
metry (i.e., the symmetry group of an equilateral tri-
angle). In the case where the resonance is singly degen-
erate, the decay rates into the three ports are equal, i.e.,
T, = 79 = 73, which leads to a transmission coefficient of
4/9 at resonance. Whereas the coupled-mode analysis is
approximate, this case in fact provides the exact upper
limit of transmission for any structure with 120° rota-
tional symmetry.

To see that, we note that in general, the incoming am-
plitudes S, = (S,,..., S,) are related to the outgoing
amplitudes S_ = (S _4,..., S_,) by a scattering matrix T,
ie.,

S_.=T-8,. (7

Energy conservation and time-reversal symmetry require
that the matrix T be symmetric and unitary.'® For struc-
tures with C3, symmetry the matrix 7' therefore assumes
the following form:

a B B
T=|B a B, 8
B B a

where |«|? and | 8]? are the reflection and transmission co-
efficients. In addition, since 7 is unitary, @ and 8 must
satisfy the following conditions:

le|? + 2]B)% = 1, 9)
|82 + ap* + a*B = 0. (10)

Defining ¢ = arg(aB*), we immediately obtain
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which puts a lower limit on the reflection coefficient.
Thus we have shown that for structures with threefold ro-
tational symmetry the maximum transmitted intensity
into either of the output ports cannot exceed 4/9 of the in-
coming intensity. This result, in fact, is well known in
microwave circuit design.'!

3. NUMERICAL SIMULATIONS

Based upon the theoretical calculations presented above,
we choose to study structures without threefold rotational
symmetry. We perform numerical simulations of
T-shaped waveguide branches in a two-dimensional pho-
tonic crystal made of a square lattice of dielectric rods in
air (e=1), which has a gap in the TM modes.® The com-
putational cell is shown in Fig. 3. The rods have a dielec-
tric constant € of 11.56 and a radius of 0.2a, where a is
the lattice constant. The waveguides are introduced by
removing rows or columns of rods in the crystal.®

We simulate the propagation of electromagnetic waves
using finite-difference time-domain methods'? with
perfectly-matched-layer boundary conditions.!® Fifteen
grid points are used to represent each lattice constant. A
dipole source located at the entrance of the input wave-
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Fig. 3. Top panel: Schematic view of the 140a X 180a compu-
tational cell, where a is the lattice constant. The field amplitude
is monitored at points A and B, which are placed in the input and
output guides of the branch, respectively. The output guide is
separated from the edge of the cell by ten periods of rods. Bot-
tom panel: Field amplitude recorded at points A and B, as a
function of time. The pulses reflected by and transmitted
through the branch, as well as the pulses reflected from the
edges of the cell, are easily discernible.
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Fig. 4. Intensity-transmission spectra through the waveguide
branch shown in Fig. 3. The structure of the branching region is
also shown in the inset.

guide creates a pulse with a Gaussian envelope in time.
The field amplitude is monitored before the branch (point
A) and after the branch (point B), as indicated in the top
panel of Fig. 3. Although most of the light that reaches
the edge of the crystal escapes and is absorbed by the
boundaries, some light gets reflected back from the ends
of the waveguides. By using a sizable computational cell
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of 140 X 180 lattice constants and by positioning each
monitor point appropriately, we can distinguish and sepa-
rate all the different pulses propagating in the cell: the
useful pulses, such as the input pulse and the pulse re-
flected by and transmitted through the branch, and the
parasite pulses, which are reflected from the edges of the
crystal. These pulses are clearly shown in the bottom
panel of Fig. 3. In the simulations, four pulses are sent
down the guide, each covering different ranges of frequen-
cies. The pulses are then Fourier transformed to obtain
the reflection and transmission coefficients for each fre-
quency. The reflection coefficients and the combined
transmission coefficients into the two output arms add up
to unity to within an accuracy of 0.1%, indicating that our
approach indeed eliminates the error associated with the
reflection from the edge of the crystal and gives an accu-
rate description to the response function of the waveguide
branch.

For the T-shaped structure shown in Fig. 3 the trans-
mission spectra thus obtained are shown in Fig. 4. The
transmission coefficient is a slow varying function of the
frequency: it remains higher than 42% for a wide range
of frequencies between 0.348(2mc/a) and 0.415(2mc/a),
with a maximum of 43.8% at the frequency o
= 0.387(2mc/a).

We can qualitatively explain the simulation results us-
ing the coupled-mode theory arguments presented above.
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Fig. 5. Intensity-transmission spectra for waveguide-branch
structures with (a) r, = 0.03a, (b) r, = 0.07a, and (c¢) r,
= 0.15a. The structures are shown in the inset of each panel.
The r, denotes the radius of the smaller rods between the input
and output waveguides.
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Fig. 6. Steady-state electric field distribution, at a frequency
o = 0.41(27c/a), for the waveguide-branch structures with r;
= 0.07a, as shown in Fig. 5(b). Red and blue represent large
positive and negative fields, while white represents zero field.

We approximate the cavity region by a point defect
formed by removing one rod from the perfect crystal.
Such a defect creates a localized state that possesses the
full symmetry of the lattice.® The localized state there-
fore should couple to all the input and output waveguides
with substantially the same strength, resulting in a peak
transmission of 44.4%, in qualitative agreement with the
simulation.

In order to improve the transmission we therefore need
to reduce slightly the coupling between the resonance and
the output waveguides, to satisfy the rate-matching con-
dition described by Eq. (6). This is achieved by placing
extra rods between the input and output waveguides (Fig.
5). The radius r, of these extra rods is then varied for
performance optimization. As r, is increased from zero,
the transmission is significantly improved, as shown in
Figs. 5(a) and 5(b). In the case where r, = 0.07a [Fig.
5(b)] the transmission coefficient remains higher than
49.5% within the frequency range between o
= 0.398(2mc/a) and w = 0.416(27c/a) [Fig. 5(b)]. [The
drop in transmission at frequencies above 0.417(2wc/a)
is due primarily to an increase in tunneling of light from
the output arms to the outside of the crystal because of
the increased coupling to bulk states at the upper band
edge.] Further increasing r, to 0.15a, however, results in
a deviation from the rate-matching condition [Eq. (6)] and
therefore leads to a decrease in transmission, as shown in
Fig. 5(c).

In Fig. 6 we plot the steady-state field distribution at
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o = 0.41(27c/a) for the structure with r, = 0.07a. The
fields are completely confined within the waveguide re-
gions and split equally into the output waveguides.

4. SUMMARY

We have presented a theoretical analysis of waveguide
branches in photonic crystals. We have identified opti-
mized structures by simulating the propagation of electro-
magnetic waves in a two-dimensional photonic crystal.
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