Wavelength Conversion in Optical Networks

Jon Kleinberg * Amit Kumar |

Abstract

In many models of optical routing, we are given a set of communication paths in a
network, and we must assign a wavelength to each path so that paths sharing an edge
receive different wavelengths. The goal is to assign as few wavelengths as possible, in
order to make as efficient use as possible of the optical bandwidth.

Wilfong and Winkler considered the problem of placing wavelength converters in
such a network: if a node of the network contains a converter, any path that passes
through this node may change its wavelength. Having converters at some of the nodes
can reduce the number of wavelengths required for routing, down to the following
natural congestion bound: even with converters, we will always need at least as many
wavelengths as the maximum number of paths sharing a single edge. Thus Winkler
and Wilfong defined a set S of nodes in a network to be sufficient if, placing converters
at the nodes in S, every set of paths can be routed with a number of wavelengths equal
to its congestion bound. They showed that finding a sufficient set of minimum size is
NP-complete.

In this paper, we provide a polynomial-time algorithm to find a sufficient set for
an arbitrary directed network whose size is within a factor of 2 of minimum. For the
special case of planar graphs with bi-directional edges, we obtain a polynomial-time
approximation scheme. Our techniques establish a connection between the problem of
finding a minimum sufficient set and an interesting simultaneous generalization of the
VERTEX COVER and FEEDBACK VERTEX SET problems in undirected graphs.

1 Introduction

Routing connections in an optical communication network involves a host of optimiza-
tion problems that arise from the issue of wavelength assignment. In this paper, we
focus on wavelength division multiplexing (WDM) networks [6, 10]. A basic type of
problem that arises in such networks is the following: Given a set of communication
paths, we wish to assign a wawvelength to each path in such a way that if two paths
share an optical link, then they must be assigned different wavelengths. We will call
such a wavelength assignment wvalid.

*Department of Computer Science, Cornell University, Ithaca NY 14853. Email: kleinber@cs.cornell.edu.
Supported in part by an Alfred P. Sloan Research Fellowship and by NSF Faculty Early Career Development
Award CCR-9701399.

"Department of Computer Science, Cornell University, Ithaca NY 14853. Email: amitk@cs.cornell.edu.

The problem of minimizing the number of wavelengths required under this con-
straint is equivalent to a graph-coloring problem on the conflict graph of the set of
paths — the graph whose nodes are the given paths, with an edge between each pair of
paths that share a link in the network. For a set P of paths in a network, we will use
X(P) to denote the minimum number of wavelengths required in a valid assignment. (It
is more accurate to denote this by yg(P), where G is the underlying network, but we
will omit the subscript when it is clear from context.) We note that there is a related
problem, in which we are given only the pairs of nodes that wish to communicate; we
must then choose a path joining each such pair, and a valid wavelength assignment for
the set of paths, so that the number of wavelengths is minimized. Approximation al-
gorithms have been developed for a number of different settings of this latter problem:;
see eg. [1,7,8,9, 11, 12].

A natural lower bound on the number of wavelengths required for a set P is paths
is its load, or congestion, defined to be the maximum number of paths passing through
any one link in the network. We will use v(P) to denote this quantity. x(P) is at
least v(P), since a different wavelength must be assigned to each path on the most
heavily loaded link in the network, and x(P) can in general be much larger than v(P).
For example, it is not difficult to construct a set P of n paths in a planar grid graph
with the property that v(P) = 2, but each pair of paths shares an edge, and hence
X(P) = n.

In many models of optical routing, one can place wavelength converters at certain
of the nodes; if there is a converter at node v, then any path containing v can change
its wavelength as it passes through v. In a network with converters, our notion of
a wavelength assignment must become more general: it is now an assignment of a
wavelength to each edge of each path, with the restriction that it must be constant on
any sub-path that does not pass through a converter. We will use xg,5(P) to denote
the minimum number of wavelengths required for a set P of paths, in a network G,
with converters at a subset S of the nodes; as before, we will abbreviate this to x(P)
when G and S are clear from context. Clearly wavelength assignments in networks with
converters can sometimes be more efficient (i.e. use fewer wavelengths) than optimal
wavelength assignments for the same set of paths when no converters are available. For
example, it is possible to prove that placing a converter at any node of a directed ring
has the effect that x(P) = v(P) for any set P of paths.

Motivated by this notion, Wilfong and Winkler [13] proposed the following def-
inition: A subset S of the nodes of a directed graph G = (V,E) is sufficient if
Xa,s(P) = vg(P) for all sets of paths P — that is, if the number of wavelengths
required is equal to the load, for all sets of paths, when converters are placed at the
nodes of S.

A basic optimization problem in optical network design then becomes the following:
Given a network G, represented by a directed graph G = (V, E), find a sufficient set
for G of minimum size. Wilfong and Winkler proved that this problem, MINIMUM
SUFFICIENT SET, is NP-complete; and it remains NP-complete even when G is bi-
directed in the sense that (u,v) is an edge if and only if (v, u) is an edge. The existence
of good approximation algorithms for the problem was left open.

Our Results. We provide a polynomial-time algorithm that produces a sufficient
set of at most twice the minimum size, in an arbitrary directed network. This is done

by exploiting a connection between MINIMUM SUFFICIENT SET and an optimization
problem that we call GENERALIZED FEEDBACK SET, a simultaneous generalization of
the VERTEX COVER and FEEDBACK VERTEX SET problems for undirected graphs.
For GENERALIZED FEEDBACK SET, we develop a 2-approximation algorithm using
a primal-dual method, based on an approach of Chudak, Goemans, Hochbaum, and
Williamson [4] for the FEEDBACK VERTEX SET problem.

We begin by providing a simple 2-approximation algorithm for MINIMUM SUFFI-
CIENT SET in the special case of bi-directed graphs. Here we exploit a tight connection
between this problem in bi-directed graphs and the VERTEX COVER problem for undi-
rected graphs. As a consequence of this connection, we also obtain a polynomial-time
approximation scheme for MINIMUM SUFFICIENT SET in bi-directed planar graphs,
and we show that the problem is fized-parameter tractable in the sense of Downey and
Fellows [5]: there is an algorithm with running time O(f(k)-p(n)), where p is a polyno-
mial function. Finally, we give an approximation-preserving reduction from VERTEX
COVER to MINIMUM SUFFICIENT SET in bi-directed graphs; since providing an ap-
proximation ratio better than 2 for VERTEX COVER is a long-standing open problem,
this indicates that improving on our performance guarantee for MINIMUM SUFFICIENT
SET will be difficult as well.

2 Preliminaries

A network, in this paper, is a directed graph G = (V, E). For certain pairs of nodes
u and v, G may contain edges (u,v) and (v,u); this will be called a bi-directed pair
of edges. G will be called bi-directed if each edge belongs to a bi-directed pair. The
skeleton of the network G, denoted s(G), is the undirected graph obtained from G
by ignoring the directions of the edges, and replacing each bi-directed pair of edges
by a single undirected edge. For the sake of simplicity, we will assume that s(G) is
connected for all networks G that we deal with. We will also assume that G does not
contain multiple copies of the same edge in the same direction.

Let P denote a set of directed paths in G. We will assume throughout that no path
in P passes through any vertex more than once. Recall that the conflict graph of P is
an undirected graph whose vertices are the set of paths in P and two paths P; and P;
are joined by an edge if and only if they share an edge.

3 Bi-directed Graphs

As discussed in the introduction, we begin with the special case of a bi-directed graph
G = (V, E): one for which (u,v) € E if and only if (v,u) € E. Let G5 = (V, E') denote
s(G@). By partial abuse of terminology, we will say a set is sufficient in G if and only
if it is sufficient in G.

Wilfong and Winkler [13] developed some basic properties of converters in a bi-
directed graph; we restate one of their results here, as it will be useful in what
follows. We begin with some definitions from [13]. For a subset S of V, define
Gs(S) = (V(S),E'(S)) as the graph in which V(S) is the set of nodes in V — S,
together with the set of pairs (s,e) for which s € S and e € E' is an edge incident on
s. E'(S) consists of (i) edges of G5 between vertices in V' — S; (ii) edges of the form

((s,e),v) whenever (s,e) € V(S) and e = (s,v); and (iii) ((s,e), (¢t,e)) where s and ¢
are in S. Define a spider to be a tree with at most one vertex of degree greater than
2. Now the following theorem is proved in [13].

Theorem 3.1 S is sufficient for G if and only if each component of G(S) is a spider.

We now give a 2-approximation for MINIMUM SUFFICIENT SET in bi-directed
graphs, and in the following sections extend the 2-approximation to general graphs.

Define a vertex v to be a branching node if its degree in s(G) is greater than 2.
Analogously, define a straight node to be a node whose degree in s(G) is less than or
equal to 2. (We will also refer to a node of degree 1 as a leaf.) We will assume that
G5 contains at least one branching node, since otherwise G is either a path or a cycle,
and MINIMUM SUFFICIENT SET is easy to solve optimally. We say that a node of a
path P is an internal node if it is not one of the two endpoints.

Lemma 3.2 If S is a sufficient set for G, we can find another sufficient set S’ for
G such that |S'| <|S| and S’ does not contain any straight node.

Proof. Suppose S contains a straight node v. Let v’ be a branching node which is
not in S such that the path between v and v’ consists of straight nodes only - if there
is no such v/, then we can remove v from S and still have a sufficient set. Consider
S" = (S —{v})U{v'}. Tt can be easily seen that S’ is a sufficient set also. ®

We will say that a sufficient set is canonical if it contains only branching nodes.

We construct a graph H = (Vi, Ey) as follows. Vp consists of all branching nodes
in Gs. For u,v,€ Vg, (u,v) is an edge in Ey if and only if there exists a path in G,
between v and v such that all internal nodes in the path are straight nodes. Note that
H may have self-loops, which we retain as part of the graph.

Lemma 3.3 Let S be a canonical sufficient set, and consider S as a subset of V.
Then S is a vertex cover of H. Conwversely, every vertex cover of H is also a sufficient
set of Gs. (By definition, we require a verter cover to include the unique endpoint of
each self-loop.)

Proof. Suppose S is a canonical sufficient set of G, but is not a vertex cover of H.
Then there exists an edge (u,v) in H such that neither « nor v are in S. Now, in Gy,
u and v are branching nodes such that there is a path P between them containing no
other branching node. Since S cannot contain any straight node, none of the nodes in
P connecting u and v are in S. When we form the graph G4(S), all the nodes in P —
including 4 and v — will be in the same component. Moreover, the degrees of both u
and v will be the same as that in G. Thus, if u = v, this would be a directed cycle in
a component of G4(S); if u # v, this would be two branching nodes in a component of
Gs(S). In both cases, this is a contradiction. So, S must be a vertex cover of H.
Conversely, suppose C' is a vertex cover for H, but not a sufficient set of G;. Then
there is a component Z of G4(C) that is not a spider. Note that any non-leaf node of
Z corresponds to a node of the same degree in V — S. If Z contains a single branching
node v, then Z must contain a cycle including v. But this implies that v is the endpoint
of a self-loop of H; since we also know v ¢ C, this contradicts the assumption that C

4

is a vertex cover. Otherwise, Z contains more than one branching node. Choose a pair
u,v € Z of branching nodes whose distance in Z is minimal. Thus, there is a u-v path
P in Z whose internal nodes all have degree 2. These nodes must also have degree two
in G, and hence (u,v) is an edge of H. But this again contradicts the assumption
that C is a vertex cover. m

Given Lemma 3.3, it is easy to obtain a 2-approximation algorithm for MINIMUM
SUFFICIENT SET. One first constructs the graph H from G, then computes a vertex
cover C for H that is within a factor of 2 of minimum, and then returns C as sufficient
set for G.

Two other consequences of Lemma 3.3 are the following. First, it is well-known that
it requires time O(f(k) - p(n)) to decide whether a graph has a vertex cover of size at
most k (see e.g. [5]); thus we obtain a similar running time for MINIMUM SUFFICIENT
SET in bi-directed graphs. Second, H is a contraction of G, so H is planar if G
is. Since there exists a polynomial-time approximation scheme for VERTEX COVER in
planar graphs [2, 3], Lemma 3.3 implies that there is also one for MINIMUM SUFFICIENT
SET in bi-directed planar graphs.

The Minimum Sufficient Set Problem is as Hard as Vertex

Cover

We now give an approximation-preserving reduction from VERTEX COVER to MINI-
MUM SUFFICIENT SET; this shows that improving on the approximation ratio of 2 for
MINIMUM SUFFICIENT SET, even in bi-directed graphs, will be quite difficult.

Consider an instance of VERTEX COVER : H = (V, E) is an undirected graph and
k is an integer. We construct a new graph H' = (V' E’) as follows. Let V{ =V, VJ
denote the set {x1(e),z2(e)|e € E}, V! =V U VY, and

E = {(uaxl(e))v (uva(e))a (xl(e)vv)a (.TQ(@),U)|€ = (U,U) € E}

In other words, we split each edge into two edges and place new vertices on each of
these edges. An example is shown in the figure below :

H xA3)

Figure 1: The construction for proving NP-completeness of SUFFICIENT SET

Theorem 3.4 H has a vertex cover of size k if and only if H' has a sufficient set of
size k.

Proof. Suppose C is a vertex cover of H of size k. Then in each component of H'(C),
there is at most one node of V{ — Cj since Vi consists only of straight nodes, it follows
that each component of H'(C) is a spider.

Conversely, suppose C' is a sufficient set for H'. By Lemma 3.2 we can assume that
C' does not contain any straight nodes; i.e., C’ is a subset of V. If C' is not a vertex
cover of H, then let e = (u,v) be an edge in H such that C’ doesn’t contain u or v.
Then, u,x1(e),v,z2(e) is a cycle in H'. But this cycle will also be present in H'(C),
which contradicts our assumption that C’ is a sufficient set. So, C must be a vertex
cover of H. m

4 General Graphs

We now consider the case of a general directed graph G = (V, E). First note that on a
directed cycle, one can place a set P of three paths so that v(P) = 2, but each pair of
paths meets at some edge, and hence x(P) = 3. Thus, any sufficient set must contain
at least one node from each directed cycle of G.

We now look at a different type of subgraph that also necessitates a converter.
Consider a graph consisting of a bi-directional path with edges coming in and out at
its two ends. For concreteness, let the path be P and its ends be v and v. Suppose
that we have edges coming in and out at both ends, i.e., (u,u1) and (ug,u) are edges
incident on w (uy # wg). Similarly, (v,v1), (ve,v) are incident on v (v; # wvy). Let us
call such a graph an H-graph. The bi-directional path P of an H-graph will be called
its characteristic path.

As shown in Figure 2, one can place 5 paths in an H-graph whose conflict graph is
a 5-cycle. Thus we have

Lemma 4.1 Let G be a directed graph, S a sufficient set for G, and K an H-graph in
G with characteristic path P. Then SN P # ¢.

\\\\‘\’2

v, 75

(Paths shown in dotted lines)

Figure 2: An H-graph

If K and K’ are H-graphs in G, we say that K’ encloses K if the characteristic
path of K is a subset of the characteristic path of K’. Enclosure, defined in this way,
imposes a partial order on the H-graphs of G, and we say an H-graph is minimal if it
is minimal with respect to enclosure.

Lemma 4.2 (i) If K is a minimal H-graph in G, with characteristic path P, then
there is mo edge of G — K incident on an internal node of P.
(ii) The characteristic paths of two minimal H-graphs are edge-disjoint.

Proof. The second statement follows directly from the first. To prove the first
statement, suppose there were any edge e of G — K incident on an internal node w of
P. Then the sub-path between w and either end of P would form the characteristic
path of an H-graph in G, contradicting the minimality of K. m

Lemma 4.3 Suppose s(G) is a tree. Then the empty set is sufficient for G if and only
if G has no H-graph.

Proof. We know that if the empty set is sufficient, then G has no H-graph.

We prove the converse by induction on the number of edges of G. An edge (u,v)
will be called internal if neither u nor v is a leaf. First suppose G has an internal edge
(u,v) for which (v,u) ¢ E. Let P be a set of paths. If we delete the edge (u,v), s(G)
is partitioned into two components, R; and Rs. Construct two subgraphs of G: Gy,
equal to the union of R; and the edge (u,v); and Gj, equal to the union of Ry and
(u,v). Since (u,v) is an internal edge, both these subgraphs have fewer edges than
G. Restrict P to each subgraph as follows : if there is a path through (u,v), we only
retain the edges of the path that lie in the respective subgraph. Paths not using (u,v)
remain unchanged.

Now, by induction hypothesis, we can color the paths in G; and G2 with at most
v(P) colors. We can now merge these two subgraphs by permuting the labels of colors
used in G so that paths using (u,v) receive the same color in both subgraphs.

Thus we may consider the case in which all internal edges come in bi-directional
pairs. If G contains at most one branching node, then it is a subgraph of a spider.
Hence we may further focus on the case in which G has at least two branching nodes;
if we consider two branching nodes w,v at minimum distance in G, then the path P
between them is bi-directional, consists only of straight nodes, and has the property
that at one end, say wu, all other incident edges come in the same direction. We now
conclude by induction as follows. As shown in the figure below, create two copies of
u: v’ and u”. Replace P by two bi-directional paths - from u’ to v and from v to u”.
Moreover, all incoming edges at u are now incident on u’ (see figure).

Figure 3: Replacing a bi-directional path by two directed paths

Let this new graph be G’. Note that G’ can have paths (e.g., v’ to v to u”) for
which we may not have an analogue in G — but certainly, one can define a mapping
from a path @ in G to a path Q' in G’ in the usual manner — because no path Q
in G will contain edges of P which go in both directions. Moreover, such a mapping

7

clearly preserves the conflict graph and the load. So, if we can prove that empty set
is sufficient for G’, then empty set will be sufficient for G also. But G’ has directed
internal edges and so, by induction we have the result. m

Again, let G be an arbitrary network. We say that a node of G is a converging
point if it has at least two incident edges, so that each is oriented into v, or each is
oriented out of v. First, we show how to eliminate converging points from G.

Suppose v is a converging point of G, with incident edges (v, u1), (v,u2), ..., (v,uq).
(The case in which all edges are incoming is strictly analogous.) Define a new graph
G, as follows: G, is same as G except that we split v into d parts, each joined to one
of u;’s. More formally, G, = (V,, E,), where

Vo= (V - {U}) U {UU17UU27"' 7Uud}a

E, = (Ev - {(U, ul)’ cey (U’ ud)}) U {(Uuuul)a SRR (Uud? ud)}
We call this operation splitting of G at v.

Any path passing through v must have one of its end points on v; so we do not
need to do wavelength conversion at v. Hence

Lemma 4.4 it is a minimal No minimal sufficient set of G contains a converging
point. Hence, if v is a converging point, a set S of vertices is a minimal sufficient set
for G if and only if it is a minimal sufficient set for G,.

Next we show how to eliminate another type of structure in G.

Definition 4.5 Let P be a bi-directional path with ends u and v. Let the other edges
incident at u be called B, and those incident at v be called E,. Suppose all edges in E,,
and E, are directed into nodes u and v (respectively), or all are directed out of nodes u
and v. Further, suppose there are no edges except those of P incident on any internal

vertex of P. Then P is called a bounded path of G (see figure below).

P

N

/u ~—
C

Figure 4: Example of a bounded path (P in the figure)

Lemma 4.6 Let P be a bounded path in G, and S a minimal sufficient set. Then S
does not contain any internal vertex of P.

Proof. Let S be a set of converters in G, and S’ the subset of those that do not lie
internally on P. We show how to color any set of paths P with v(P) colors, converting
colors only at nodes of S’.

Let P have ends uw and v; let Py denote the edges of P that are directed from u
to v, and P; denote the edges of P that are directed from v to u. We consider the
following three sets of paths.

e P’ consisting of all paths that do not contain edges of P.
e O, consisting of all paths in P that use edges from Pj.
o O, consisting of all paths in P that use edges from P;.

Using converters only at nodes in S’, it is easy to verify that each of these path sets
can be colored using a number of colors equal to their congestion. We can now extend
this to a coloring of P using the same number of colors, by a re-labeling of colors: this
is possible since Qp N Q1 = ¢, and the only paths common to P’ and Q; (i = 0,1) all
share an edge, and hence all receive different colors. m

Thus we can apply the following transformation to a graph with a bounded path P,
preserving the structure of the minimum sufficient set. Suppose P has ends u and v,
and the edges at u and v are incoming edges - the other case is exactly similar. Then,
we can break the cycle as follows : Split « and v (and every other vertex on P) into
two vertices each - v/, u” and v',v”. Replace P by two paths : P’ - a directed path
from u' to v' and P” - a directed path from v" to u” (see figure below) - let this new
graph be called G’. Then it is clear that we can have 1-1 correspondence (in the usual
way) between the paths of G and G’. In fact conflict graphs of two corresponding set
of paths will also remain the same.

P P’

u/\V u’//v

7 = e

Figure 5: Breaking a bounded path

We will say that a graph G is robust if it contains no converging points and no
bounded paths. By applying the above two transformations initially, we may assume
for the remainder of the section that the input graph G is robust.

A minimal cycle in an undirected graph is a cycle such that no two vertices on it
are joined by an edge other than those on the cycle itself. Clearly, a graph has a cycle
if and only if it has minimal cycles. Let C' be a minimal cycle in s(G). Define a meeting
point on C to be a vertex v of C such that the two edges of C incident on v are either
both directed towards or directed away from v.

Lemma 4.7 Let G = (V, E) be robust, and C a minimal cycle of s(G) so that if (u,v)
is an edge of C, then (v,u) € E. Then any sufficient set must contain a vertex of C.

Proof. Let v be a meeting point of C. Let the edges of C incident on v be incoming
edges. Since, v is not a converging point, there is an outgoing edge incident on v. We
call this edge the non-converging edge of v - we can define this for v analogously if
the edges of C incident on v are outgoing edges. Since, C is a minimal cycle, no two
meeting points have the same non-converging edge.

Observe that a cycle can have only an even number of meeting points. We prove
the result by induction on the number of meeting points.

Induction Hypothesis If C' has 2k meeting points, then we can find 2k + 1 paths,
such that the conflict graph is an odd cycle (implying that we need at least 3 colors),
even though the maximum load on an edge is 2. Moreover, we can find this set of
paths such that exactly one path passes through a specified edge of C' and for every
non-converging edge, there are exactly two paths which share this edge.

For k = 1, we show an example below :

Connection Requests :

(1,3), (2,4),(3,5), (2,5), (1,4)

Figure 6: Example of paths whose conflict graph is an odd cycle
So, suppose that the hypothesis is true are all £ < r. Now, we prove it for k£ = r.
Let u and v be two consecutive meeting points (and suppose the specified edge is (v, u).

Let the edges of the cycle incident on them be (ui,u), (v,u),(v,v1) (see figure below).
Let the non-converging edges of u and v be (u,u2) and (vy,v). We construct a new

N —

Figure 7: Induction case for the hypothesis

cycle C' by removing u and v (and the edges incident on them) and adding a directed
edge from uy to v1. Now, C’ has only 2k —2 meeting points - so by induction hypothesis
we can find the specified set of paths such that there is exactly one path, call it P,
through (u1,v1). Replace P by three paths P;, P2, Py as shown in the figure. It is clear
that this routing satisfies the induction hypothesis. Thus, we are done. m

Using this, we can prove the more general statement that any minimal cycle in s(G)
requires a converter.

Lemma 4.8 Let G = (V,E) be robust, and C a minimal cycle of s(G). Then any
sufficient set must contain a vertex of C.

10

Proof. The idea is the following : we convert C into a new cycle C’ such that all edges
of C' are uni-directional edges. Moreover, C’ will be such that it doesn’t contain any
converging points. Then, by Lemma 4.7 (and the induction hypothesis in the lemma)
we can construct a set of paths P’ such that their conflict graph is an odd cycle. Finally
we show that P’ can be mapped back to set of paths P in the original graph G without
such that their conflict graph is also an odd cycle. This will prove the lemma.

Consider two vertices v and v in C such that the path P from u to v in C is bi-
directional. Moreover, the other edges of C incident at u and v are uni-directional. In
case C' just consists of bi-directional edges, we have nothing to prove since C' contains
a directed cycle.

Two cases arise (see figure below) :

1. Let the other edges of C incident on u and v be (u1,u) and (v,v1) (the case when
it is (u,u1) and (v1,v) is similar). Then replace P by a uni-directional path from
u to v.

2. The other edges of C incident at v and v are (ui,u) and (v1,v) (the other case is
similar) : Since P is not a bounded path one of the two cases must occur :

(a) There exists a vertex w on path P (w can be u or v) such that there is an
edge (w,w;) going out of it. Then replace the bi-directional path from u to
w and from v to w by uni-directional paths from u to w and v to w (see
figure).

(b) There exists a vertex w on path P, w # u, v such that there is an edge (w1, w)
incident on w. Replace the bi-directional edge from u to w and from v to w
by uni-directional edges from u to w and from v to w (as in Case 2(a)) and
replace the edge (wy,w) by the edge (w,w;), i.e., we reverse the direction of
this edge. Note that there may be more edges incident on P - but we don’t
care about them. So, we delete other edges incident on P.

u

Case2(a) / \

u
1 W, \
] 1

w
Case2(b) u / \ v

ul/ \"1

Figure 8: Constructing C’ from C' - various cases

We can apply this transformation to every such bi-directional path in C until we
get a cycle C' which only has uni-directional links. Let the new graph obtained be G'.
Note that there are no converging points in C' (because by applying any of the three
transformations, no new converging points are introduced, i.e., the vertex w above is
not a converging point in C’).

11

So, by the induction hypothesis in Lemma 4.7, we can find a set of paths P’ in C’
such that their conflict graph is an odd cycle and there are exactly two paths sharing a
non-converging edge. Now, we show how to map these paths back to C. Any path P’
in P’ which doesn’t use the non-converging edges introduced in Case 2(b) (i.e., edges of
the type (w,w;) in Figure 8) can be mapped directly to G because they pass through
edges which are already present in G.

Now, we consider the case for paths which pass through non-converging edges in-
troduced in Step 2(b) (so, these edges are not present in G). Let (w,w;) be an edge
of C' introduced by Case 2(b) (so (w1, w) is an edge in C). Let P| and Pj be the
two paths through (w,w;) in P’. They must look as shown in Figure 9. Modify P
to a path P, in P by removing the edge (w,w;) from P and adding the edge (w,v)
to it. Similarly construct P, in G which is basically same as Pj with the edge (w,w)
replaced by (w,u). Now, add two more paths P3 = (wy,w,v) and Py = (wy,w,u) to
P. Note that P3 and P, use edges which were not present in G’. Also, the new edges
used by P; and P, are also not in G’. So, it is easy to see that the conflict graph of P
is same as that P’ with the edge (P{, Py) replaced by the path (Py, Ps, Py, P2). So, this
conflict graph is also an odd cycle. In this way, we can modify all paths of P’ which
use edges introduced in Step 2(b) while maintaining the conflict graph structure.

Figure 9: Mapping of paths in P’ which pass through edges introduced by step 2(b) to paths
in P

Thus, the lemma is proved. m

A non-trivial example is given in the figure below :

Figure 10: A set of paths needing a converter

Thus we have the following theorem.

12

Theorem 4.9 Let G be robust. Then a set of nodes S in G is sufficient if and only if
it intersects each minimal cycle of s(G), and the characteristic path of each minimal
‘H-graph.

Proof. Lemmas 4.1 and 4.8 imply that S must meet each minimal cycle and minimal
H-graph. Conversely, suppose that S has this property, and consider G(S). Each
component Z of G(S) has the property that it contains no H-graph, and s(Z) is a tree.
The result now follows from Lemma 4.3. m

By Lemma 4.2, the characteristic paths of the minimal H-graphs in G form a
collection of edge-disjoint bi-directional paths {F;}, each of whose internal vertices
have degree 2 in s(G). Given any sufficient set S for G, we can therefore transform it
into a sufficient set S’ of no greater size that meets each P; at one of its ends.

Let G’ denote the graph obtained from G by replacing each of the P; by a single bi-
directed edge e, between its endpoints, and deleting the internal nodes. As a corollary of
Theorem 4.9 and the observation of the previous paragraph, our problem is equivalent
to finding a set of minimum size that intersects each cycle in s(G’) and each of the
edges €.

We can phrase this as the following optimization problem.

GENERALIZED FEEDBACK SET: Given an undirected graph G = (V, E) and
a set ofedges I C F, find a set S C V of minimum size such that S intersects
all cycles of G and all edges in I.

By the results of this section, it follows that if we can obtain an a-approximation
algorithm for the GENERALIZED FEEDBACK SET problem, then we can obtain an
approximation algorithm with the same performance guarantee for MINIMUM SUFFI-
CIENT SET. In the next section, we shall obtain a 2-approximation for GENERALIZED
FEEDBACK SET.

It is also not difficult to show that deciding whether an undirected graph has a
generalized feedback set of size at most k can be done in time O(f(k) - p(n)), where p
is a polynomial function; thus a similar result holds for MINIMUM SUFFICIENT SET in
general directed graphs.

Graphs with no bi-directed pairs of edges. If there are no bi-directed pairs in
G, i.e., all edges are uni-directional, then I = () and so GENERALIZED FEEDBACK SET
reduces to FEEDBACK VERTEX SET in undirected graphs. Moreover, the SUFFICIENT
SET problem remains NP-complete even for graphs containing no bi-directed pairs of
edges, as we now show.

Proposition 4.10 Suppose G is a directed graph with no bi-directed pairs of edges.
Then deciding whether G has a sufficient set of size k or less is NP — complete.

Proof. We reduce FEEDBACK VERTEX SET for undirected graphs to this problem.
So, suppose G = (V, E), k is an instance of FEEDBACK VERTEX SET; i.e., do there
exist at most k£ nodes in G which meet all cycles? We shall transform this into a
directed graph G’ = (V', E’) such that G’ has a sufficient set of size k if and only if G
has a feedback vertex set of size k. The idea is that we assign directions to each edge
in E such that we must intercept all cycles of G'.
We prove this by the following Lemma:

13

Lemma 4.11 We can orient edges of G in such way that no vertex (except the leaves)
is a converging point (recall that a converging point is a vertex such that all edges
incident on it are either incoming or outgoing).

Proof. We prove this by induction on the number of edges of G. It is obvious if G has
1 edge.

So assume the lemma, to be true for all graphs having fewer than m edges. Suppose
G has m edges. If G has a leaf v, with incident edge (u,v), then we delete v from
G. By induction we assign directions to all edges of G — {v} so that there are no
converging points; we then choose the direction of (u,v) so that u is not a converging
point. If G does not have any leaves, let C be a cycle in G. Assign direction to edges
in C such that C' becomes a directed cycle. Now, remove the edges of C' from G and
solve recursively. Note that no vertex of C' can be a converging point because C' is a
directed cycle, and the other vertices are not converging points due to the induction
hypothesis. Thus, the lemma is proved. m

So, by Lemma 4.7, a sufficient set must intersect all cycles in s(G’), which proves
the theorem. m

5 A Primal-Dual Algorithm

Recall the problem we introduced in the previous section :

GENERALIZED FEEDBACK SET: Given an undirected graph G = (V, F) and
a set ofedges I C F, find a set S C V of minimum size such that S intersects
all cycles of G and all edges in I.

We will call such a set S a generalized feedback verter set (gfvs) for this problem
instance.

This problem is generalization of both VERTEX COVER and FEEDBACK VERTEX
SET, and we know 2-approximations for each of these. Our approximation algorithm in
this section will be based on a primal-dual approach used in [4] for FEEDBACK VERTEX
SET.

We make extensive use of the linear programming formulation for feedback vertex
set described in [4], together with some of its analysis from that work. Because the
overall approach works for the weighted version of the problem as well, we work at this
greater level of generality.

For a subset S C V, define G[S] as the subgraph induced by S. Let G[S] =
(S, E[S]). Define b(S) = |E[S]| —|S| + 1. Let ds(v) denote the degree of vertex v in
G[S]. 6(v) denotes the edges incident on v in G.

From the integer programming formulation for feedback vertex cover in [4], we
obtain the following integer programming formulation for the generalized version :

Min), cy WyTy
subject to
Sues(ds(v) = 1z, > b(S) S CV,E[S] #0
Ty +xy>1 (u,v) € I
x, € {0,1} vevV

14

where I is the set of edges to be intersected.
The linear programming relaxation is :

Min), ey WyTy

subject to
(LP) Yves(ds(v) = 1)z, 2 b(S) SCV:E[S]#0
Ty + Ty >1 (u,v) € I
Ty >0 veV

The dual of the above linear program is :

Max 375 b(S)ys + Xeer ze

(D) subject to
ZS:@ES(ds(U) - 1)3/3 + Zeeé(v),eeI ZeSw, vEV
Ys,ze 2 0 SCV:E[S|#0,eel
We use a basic primal-dual approach to solve this.
y 0
F—0
<0

VI—V,E — E;I' — 1
While F is not a gfvs for G = (V, E)

l—1+1

Recursively remove degree 1 vertices which are not in I’ from V’ and E’

X « VIOLATION(V', E', I')

(X can be either S C V or e € I depending on which violated constraint is returned)
9 Increase the dual variable corresponding to X (i.e., ys or z.)
until v € X : gy e (dr(v) — Dyr + 2 ffebw)nl Zf = Wy

10 F—FU {Ul}
11 Remove v; from V' and attached edges from E’
12 If X was e € I, then remove e from I’
13 For j « [downto 1
14 if F —{v;} is an gfvs then F « F — {v;}
15 F' «F
16 Output F’

0 ~J O U i W b =

The structure of this loop is essentially the same as in [4]. The significant difference
is in the definition of the VIOLATION routine:
VIOLATION(V', E', I')

1 IfI'#0

2 return any element ¢ € I’

3 Else

4 If (V', E') contains a semi-disjoint cycle C'

(a semidisjoint cycle contains at most 1 vertex of degree > 2)

5 return the vertex set of C
6 Else
7 Return V'

Note that the VIOLATION routine runs in two stages. In Stage 1, I’ is not empty,
so it always returns a violated edge. Stage 2 begins when all edges of I have been
intersected; during Stage 2, VIOLATION behaves as in [4].

15

Before we prove that this procedure is a 2-approximation, we mention the following
lemma from [4].

Lemma 5.1 (Chudak et al.) Let F denote a minimal feedback vertex set of a graph
G = (V,E). If every vertex in G is has degree at least 2 and G contains no semidisjoint
cycles, then :

> (d(v) —1) < 2b(V) - 1

veF

Theorem 5.2 The algorithm above constructs an gfvs F' such that

Z Wy < 2(2 b(S)ys + Zze)

veF! S ecl

where ys and z. are the feasible dual solution obtained by the algorithm.
Hence, the algorithm gives a 2-approximation for gfvs.

Proof. From Line 9 of the main algorithm, a vertex v is added to F' (and hence in F’)
only if its dual constraint becomes tight. So,

Dowe= Y [(ds(v) —Lys+ D z] (1)

veF! veF! SweSs ecé(v)NI
=20 > (ds(v) = D)ysl+ > zelen F'| (2)
S wveSNF! ecl

Since, [eNF'| <2, Y crzele NF'| <23 ¢ ze.
Now, observe that in Stage 1 of the algorithm, only z. is incremented. So, yg
remains 0 in this stage. The vertices in F’ can be divided into 2 parts :

e Those which were added to F' in stage 1. These variables were used to satisfy
constraints involving the edges in I. Suppose v was added in stage 1. So, the
dual constraint involving v (see line 9 of main algorithm) became tight - but at
this moment all yg are 0. This means that all those ys which were in the dual
constraint involving v (i.e., all yg such that v € S) can not be increased now. So,
for all variables in F’ which were added in Stage 1, yg = 0 if S contains any of
these variables.

e Those added in Stage 2. Note that after Stage 1 finishes, in each iteration (V', E')
contains only vertices of degree at least 2 (due to Line 7 of main algorithm) - this
will be needed when we apply Lemma 5.1.

Consider an S such that ys > 0. By the remarks above, S N F' contains only
vertices added in Stage 2. We claim that SN F’ is a minimal fvs for the graph (V', E’)
where (V', E') denotes that graph for which the VIOLATION routine returned S as
the violated set.

Let F. denote at the set F' at this time (i.e., when S is the violated set). When S
was chosen as the violated set F,. did not contain any element from SNF’. In line 13-15
of main algorithm, vertices are removed from F' in the reverse order. So, if F/ — F, is
not a minimal fvs for (V', E’) (note that E’ at this time does not contain any element of
I and so, minimal gfvs and fvs are same), then we would have removed more elements
from F’ which is not possible. So, SN F' must be a minimal fvs for (V', E').

16

Now, if S is a semi-disjoint cycle, then each vertex has degree 2. Clearly, |S N F’|
is a singleton. So, Y ,csnp(ds(v) —1) = 1. Also, 2b(S) —1 =2 — 1 = 1. Thus, the
relation

S (ds(v) = 1) < 25(8) — 1 (3)

veESNF!

holds in this case.
If S is not a semi-disjoint cycle, then by the way VIOLATION is defined, it must
be the case that (V', E') does not contain any semidisjoint cycles. Thus, by Lemma 5.1,
Equation (3) holds in this case also. Therefore, if yg > 0, then Equation (3) holds.
So, Equation (2) becomes :

Z Wy < Z(?b(S) - 1)y5 + 22'26 < 2[2 b(S)ys + Zze]

veF! S ecl S eel

Thus, we have the theorem. m

We note that it is also possible to develop a more ad hoc 2-approximation algorithm
for GENERALIZED FEEDBACK SET, which uses the algorithm of Chudak et al. [4] in a
more “black-box” fashion. We have chosen the current approach because it results in
a “pure” primal-dual algorithm, and implies an integrality gap of 2 for a natural linear
programming relaxation of the problem.

References
[1] Y. Aumann, Y. Rabani, “Improved bounds for all-optical routing,” Proc. 6th ACM-
SIAM Symp. on Discrete Algorithms, 1995, pp. 567-576.

[2] B.Baker, “Approximation algorithms for NP-complete problems on planar graphs,”
Proc. 24th IEEE Symp. on Foundations of Computer Science, 1983.

[3] R. Bar-Yehuda, S. Even, “On approximating a vertex cover for planar graphs,”
Proc. 14th ACM Symp. on Theory of Computing, 1982.

[4] F. Chudak, M. Goemans, D. Hochbaum, D. Williamson, “A primal-dual inter-
pretation of two approximation algorithm for the feedback vertex set problem in
undirected graphs,” Operations Research Letters, to appear.

[5] R. Downey, M. Fellows, “Parametrized Computational Feasibility,” in Feasible
Mathematics II, P. Clote and J. Remmel, eds., Birkhauser, 1994.

[6] P.E. Green, Fiber-Optic Communication Networks, Prentice-Hall, 1993.

[7] J. Kleinberg, E. Tardos, “Approximations for the Disjoint Paths Problem in High—
Diameter Planar Networks,” Proc. 27th ACM Symp. on Theory of Computing, 1995,
pp. 26-35.

[8] V. Kumar, E. Schwabe, “Improved access to optical bandwidth,” Proc. 8th ACM-
SIAM Symp. on Discrete Algorithms, 1997.

[9] M. Mihail, C. Kaklamanis, S. Rao, “Efficient access to optical bandwidth,”
Proc. 36th IEEE Symp. on Foundations of Computer Science, 1995.

[10] C. Partridge, Gigabit Networking, Addison Wesley, 1993.

17

[11] Y. Rabani, “Path-coloring on the mesh,” Proc. 37th IEEE Symp. on Foundations
of Computer Science, 1996.

[12] P. Raghavan, E. Upfal, “Efficient all-optical routing,” Proc. 26th ACM Symp. on
Theory of Computing, 1994, pp. 134-143.

[13] G. Wilfong, P. Winkler, “Ring routing and wavelength translation,” Proc. 9th
ACM-SIAM Symp. on Discrete Algorithms, 1998.

18

