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abstractIn this paper we study the routing and wavelength converter placement prob-
lems in optical networks with sparse wavelength conversion. We propose a new dynamic
routing algorithm with two new path cost functions based on the concept of the Least-Load
Routing (LLR) with sparse converter placement. Moreover, we discuss the application of
Genetic Algorithms (GA) to determine the optimal location of wavelength converters so
that the call blocking probability is minimized. Simulation results show that the proposed
dynamic routing algorithms performs significantly better than Shortest-Path (SP) routing
and Fixed-Alternative-Routing (FAR), in terms of the call blocking probability. The GA
model is able to obtain a nearly optimal solution of the wavelength converter placement
problem within a reasonable time and its performance is better than that of two other pop-
ular heuristic placement algorithms. abstract

1. Introduction

Wavelength-Division Multiplexing (WDM) technology has emerged as the multiplexing
technique of choice to share a single optical fiber bandwidth among concurrent flows. Com-
pared with traditional circuit switched networks, the call (or connection) blocking proba-
bility in optical WDM networks is much higher due to the so-called wavelength continuity
constraint: a lightpath must utilize the same wavelength from the source to the destination.
To mitigate the effect of the wavelength continuity constraint on the call blocking proba-
bility, wavelength conversion can be used [1]. A wavelength converter is an input/output
device that, using a different wavelength without signal distortion, converts the wavelength
of an optical signal from an input port to an output port. If wavelength converters are in-
stalled in all optical network nodes, the wavelength continuity constraint is relaxed and,
hence, the call blocking probability can be decreased tremendously [2]. However, due to
technical difficulties, wavelength converters are still very expensive devices. Therefore,
the research community has focused its efforts onsparse wavelength conversion networks,
where only some nodes in this network have the wavelength conversion capability while
the rest do not. Previous research indicates that networks with sparse wavelength conver-
sion can achieve a similar blocking performance as optical networks with full wavelength
conversion, if the wavelength converters are placed appropriately [2], [3]. Because of the
high cost of wavelength converters and the significant performance gain of wavelength con-
verters in optical networks, we are interested here in the placement of wavelength converter
in sparse wavelength conversion networks to minimize the call blocking probability.
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The converter placement problem is coupled with the Routing and Wavelength Assign-
ment problem (RWA). Both problems are NP-hard problems [4], [5] and, thus, different
heuristics have been proposed to obtain approximate solutions to these two problems [5]
- [16].

RWA in optical networks was introduced in [7], and analyzed first in [8]. To select an
appropriate routing algorithm and wavelength assignment algorithm, the traffic assumption
is an important issue. It generally falls into one of two categories: static or dynamic. For
static traffic, all connections are fixed and known beforehand, and the objective is to min-
imize the number of used wavelengths to satisfy a given request set. For dynamic traffic,
all connection requests arrive at, and depart from, the network randomly and the objective
is to minimize the call blocking probability. Since it is very difficult to know the details of
all connections beforehand, the dynamic traffic assumption is more realistic and thus we
consider dynamic traffic in our research.

Routing in optical networks is simply inherited from traditional circuit switching.
Among all the routing algorithms, the Least Load Routing (LLR) is the most popular one in
traditional circuit switched networks [17] [18]. Naturally there were also attempts at study-
ing LLR in the context of optical networks in [19]; however, it has only been applied in two
types of optical networks: a network with no wavelength conversion and a network with
full wavelength conversion (i.e. every node has a wavelength converter). An LLR-based
routing algorithm in optical networks with sparse wavelength conversion neither has been
formulated nor studied to the extent of our knowledge.

Among all wavelength assignment algorithms, the random wavelength assignment and
the first-fit assignment [4] are the most popular algorithms to be used in wavelength assign-
ment. In the random assignment algorithm, available wavelengths are selected randomly in
all links along a path, while in the first-fit assignment algorithm the wavelengths are se-
lected according to a predetermined order from the pool of available wavelengths along the
path in ascending order. In general, the first-fit assignment algorithm achieves a lower call
blocking probability than the random assignment at the cost of a very minor increase in the
complexity [4].

In most previous research, the RWA problem and converter placement problem were
studied separately. Although Li et al. [6] recently argued that the RWA problem and the
wavelength converter placement need to be considered jointly for a better overall system
performance, it is very difficult to formulate an optimization model for both issues together
because of the complexity. Therefore in [6], Li et al. proposed greedy-type wavelength
converter placement algorithms given a particular RWA algorithm. We shared this view
and studied the converter placement problem together with the proposed LLR-based RWA
algorithms.

To solve the wavelength converter placement problem, various placement heuristics
have been proposed in the literature [5] [9] - [16] . Different heuristic algorithms, based on
different parameters such as the number of channels in transit, node degrees, link loading,
and fiber utilization, are employed [5] [12] - [16]. An exhaustive search method for large
scale optical networks is proposed in [15]. Genetic Algorithms (GA), to determine the opti-
mal solution, are also proposed in [9] - [11]. In [11], the method is only applicable in a ring
topology rather than in a general topology. The routing algorithms discussed in [9] - [11]
are normally applied in fixed or fixed alternate routing. Dynamic routing determines routes
after a consideration of the network status at the time when the connection request arrives.
Generally, the performance (in terms of call blocking probability) of dynamic routing algo-
rithms is much better (lower) than that of static routing algorithms since dynamic routing
algorithms make routing decisions based on the current network status and, thus, a path, in
which congestion (if any) can be avoided, can be established.

In this paper, we first propose a new dynamic routing algorithm based on the concept
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of the Least Load Routing (LLR) for optical networks with sparse wavelength conversion.
Then define two new path cost functions that are related to the overall link loading of a
path and the locations of the wavelength converters in a path. Then we discussed the use
of GA to minimize the overall call blocking probability by finding the optimal wavelength
converter placement. We will start by presenting the two new path cost functions in Section
2. The network model and our proposed routing algorithms will also be illustrated using an
example. In Section3, we discussed the employment of a GA-based optimization model to
search for the optimal converter locations. Numerical results of the proposed dynamic rout-
ing algorithms and the GA model are presented in Section4. A performance evaluation has
also been conducted for other RWA algorithms and wavelength converter heuristic place-
ment algorithms. Finally, in Section5, concluding remarks are drawn, and future research
directions are outlined.

2. LLR for networks with sparse wavelength conversion

2.A. Preliminaries

Different levels of wavelength conversion capability are possible in optical nodes [1]. Full-
range wavelength converters can convert an incoming wavelength to any outgoing wave-
length, while limited-range wavelength converters can convert an incoming wavelength to
only a subset of outgoing wavelengths. For simplicity, all wavelength converters in our
network model are full-range wavelength converters.

Define a pathp as an ordered set of linksl = (u, v) starting at the source node and
ending at the destination node. In an optical network with sparse wavelength conversion,
we define a segments on a pathp, as an ordered subset ofp i) starting at the source node
and ending at the first converter if any; or ii) starting at a converter and ending at the next
converter if any; or iii) starting at a converter if any, and ending at the destination; or, iv) if
there is no converter on the path, the path itself. The wavelength continuity constraint can
be relaxed at the frontier between segments. If there is no wavelength converter in a path,
a segment of a path is the path itself. An example of paths segmented by a wavelength
converter is shown in Fig.1. The nodeWC is a node equipped with a wavelength con-
verter. The first segment of the path from nodeS to nodeD consists of two links(S, a) and
(a,WC). The second segment consists of two links(WC, b) and(b,D). In the first seg-
ment, the same wavelength (i.e.,λ1) has to be used to establish a lightpath because of the
wavelength continuity constraint. With the help of the wavelength converter at nodeWC,
in the second segment another wavelength (λ2) may be used to establish an end-to-end
lightpath fromS to D.

S
D

WC

a

b

First segment Second segment

λ1 λ1

λ2

λ2

Fig. 1.Segments.

2.B. Network Model and Proposed Path Cost Functions

The LLR algorithm has been used in circuit switched networks since the early 1980s. In
[19], to migrate it to optical networks, two path cost functions based on the concept of
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the LLR were proposed for two types of optical networks. For optical networks with no
wavelength conversion, a pathp is chosen if it achieves

max
p,j

min
l∈p

Ml −Alj , (1)

whereMl is the number of fibers on linkl and Alj is the number of fibers for which
wavelengthj is utilized on linkl. For an optical network with full wavelength conversion
capability, a pathp is chosen if it achieves

max
p

min
l∈p

KMl −
∑
j

Alj , (2)

whereK is the number of wavelengths in a single fiber. However, neither path cost func-
tions can be directly applied to optical networks with sparse wavelength conversion. In this
section, two path cost functions, able to be utilized in two LLR-based routing algorithms
in sparse convertible networks, are proposed.

For each source-destination node pair to reduce the state space, we will only consider
thek edge-disjoint shortest paths and sort them by the hop count (total number of links in
a path) in an ascending order and, then, by the number of wavelengths of all links in a path
in a descending order. These paths are edge disjoint to ensure that the blocking along these
paths is independent.

A channel of a path (segment) is defined as an available wavelength for end-to-end
communication along the path (segment). Note that there may be more than one available
channel using the same wavelength if multiple fibers are allowed within a link. Two new
path cost functions are proposed as extensions of (1) and (2) when the network supports
sparse conversion. The first, the so-called Least Load Routing using Min-Max-Min (LLR-
MMM) is given by

C(p(R)) = min
s∈p(R)

max
j

min
l∈s

Ml −Alj . (3)

wherep(R) is a path for connection requestR. If there are some nodes with wavelength
converters in the path, the path is decomposed into segments and the cost of a segment is
defined as the maximum number of available channels of all the wavelengths of the segment
as in (1). Then the cost of a path is the minimum cost of all the segments in the path. Note
that the cost function of this path involves both routing and wavelength assignment. The
second cost function considered here is the so called Least Load Routing using Min-Sum-
Min (LLR-MSM) and is,

C(p(R)) = min
s∈p(R)

∑
j

min
l∈s

Ml −Alj . (4)

This path cost function takes into consideration the case where some nodes in the path
do not have any wavelength converters. If some nodes in the path are not equipped with
wavelength converters, the path is decomposed into segments and the cost of a segment is
defined as the sum of the available channels of all the wavelengths through the segment. The
cost of a path is the minimum cost of all the segments in the path. Compared with the LLR-
MMM, this path cost function is more aggressive with respect to the total available channels
of a segment since the least load concept is applied to the total available channels rather
than the maximum number of available channels in a single wavelength. As a tradeoff, this
is possible because this path cost function does not involve any wavelength assignment
algorithm in the mathematical model. Various wavelength assignment algorithms can work
together with the LLR-MSM.
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Algorithm 1 Least Load Routing in optical network with Sparse conversion
Notations.
p: a path.
s: a segment.
l: a link.
j: a wavelength.
Np

c : the number of converters in the pathp.
Np

s : the number of segments in the pathp such thatNp
s = Np

c + 1.
Γs: the number of segments allowed (to limit the use of converters).
C(·): the cost function.
p∗(R): the optimal connection path for connection requestR.

BEGIN
Γs ⇐ 1
while (all k edge-disjoint paths inZ are examined in the ascending order in hop num-
bers)do

Z∗ = {p∗(R) ∈ Z : N
p∗(R)
s = Γs, C(p∗(R)) = max

p(R)∈Z
C(p(R)) > 0}

if Z∗ = ∅ then
Γs ⇐ Γs + 1

else
The request is accepted,p∗(R) ∈ Z∗ (select the first element ofZ∗), and exit.

end if
end while
the request is denied.
END

2.C. Algorithms

Considerk shortest paths for connection requestR. Let Z be the set ofk shortest paths,
thenZ = {p(R)}. The LLR routing algorithm is given in Algorithm 1.

Note that this LLR algorithm has two variants, LLR-MMM or LLR-MSM, depend-
ing on the path cost functionC(·) used. These two LLR-based path cost functions take
into account the impact of wavelength converters in the routing decision. The number of
wavelength converters is limited and converters help to relax the wavelength continuity
constraint; therefore, it is easier to find an available channel on a path with wavelength
converters than on a path without wavelength converters. Because of the deployment of
wavelength converters, at the beginning, the algorithm attempts to select a path without
wavelength converters (i.e.Γs = 1) so that wavelength converters can be reserved for
future requests. If such paths cannot be found, paths with one wavelength converter (i.e.
Γs = 2), and so on, are sought until all thek edge-disjoint shortest paths are examined.

2.D. An Illustrative Example

To illustrate the proposed routing algorithm with the two path cost functions, an example of
a 6-node network is shown in Fig.2. The nodeWC is a node equipped with a wavelength
converter. Other nodes do not have this conversion capability.

A connection request arrives at nodeS and the destination is nodeD. The cost of the
segments and paths are shown in Table1. In this example, four different segments and four
possible paths from nodeS to nodeD exist. The wavelengths within brackets, shown in
the second and third columns of Table1, represent the available wavelengths that can be
used in their corresponding segments. For both path cost functions, pathp1 has the largest
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Fig. 2.A 6-node network with one wavelength converter.

path cost and, thus, this path should be used to establish a connection from nodeS to node
D in the LLR-MMM or the LLR-MSM with the available wavelengthλ2.

Table 1. Cost of segments and paths for the connection from nodeS to nodeD.

Segment/Path LLR-MMM LLR-MSM
s1 = {S, a, WC} C(s1) = 3(λ2) C(s1) = 5(2(λ1) + 3(λ2))
s2 = {WC, D} C(s2) = 4(λ1) C(s2) = 6(4(λ1) + 2(λ2))
s3 = {S, b, WC} C(s3) = 1(λ1 or λ2) C(s3) = 2(1(λ1) + 1(λ2))
s4 = {WC, c,D} C(s4) = 2(λ2) C(s4) = 2(2λ2)
p1 = {s1, s2} C(p1) = 3 C(p1) = 5
p2 = {s3, s2} C(p2) = 1 C(p2) = 2
p3 = {s1, s4} C(p3) = 2 C(p3) = 2
p4 = {s3, s4} C(p4) = 1 C(p4) = 2

3. An Optimization Model based on Genetic Algorithms

In this section a GA-based optimization model is proposed for the wavelength converter
placement problem. Given the network topology, the LLR-MMM or the LLR-MSM routing
algorithm, the wavelength assignment algorithm (random or first-fit algorithm whereever
applicable), and the number of wavelength converters to be placed, the objective is to mini-
mize the average call blocking probabilityBp of an optical network with sparse wavelength
conversion.

To placeK converters in the network withN nodes, we first label each node in the
network with a unique label from0 to N − 1. We define a placement vectorv with K
elements where thei-th element (i = 1, · · · ,K) is the label of the node on which thei-
th converter is located. As an example, a placement vector(2, 5, 1, 3, 9) for a 5-converter
placement in the 14-node NSFNet indicates that the 5 converters are placed at nodes 2, 5,
1, 3 and 9, respectively. Different placements result in different blocking probabilityBp,
and finding the best placement (i.e., the one that minimizes the blocking probability) is NP-
hard. Therefore, we adopt a Genetic Algorithm (GA) to search for the optimal placement
in a reasonable time.
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A Genetic Algorithm (GA) is an iterative optimization procedure to obtain near-optimal
solutions. The basic idea is borrowed from the evolution process in Nature [20], [21]. In
our placement problem, the objective function is defined as the average call blocking prob-
ability, Bp. Because the blocking probability for the LLR-MSM and the LLR-MMM al-
gorithms is not available,Bp is directly obtained from simulations (described in Section
4).

GA starts its evolution process from a random population of placements. The evolution
process is repeated for a predetermined number of times (generations) or until the solution
converges to the optimal one (no evolution); thereafter, GA stops and the final solution
is the optimal placement with the smallest blocking probability. One generation evolution
consists of the selection, to choose placements (chromosomes) that are likely to survive
in the next generation; crossover, to combine the good characteristics of placements and
generate new placements (combining genes from different chromosomes to form new chro-
mosomes), and finally mutation, to change elements of a placement randomly (i.e., given a
placement we move randomly a converter from one node to another). The three steps are
executed in this sequence repeatedly. Selection of placements that survive from iteration to
iteration obeys a given fitness functionF , defined here as a negative power transformation
of the blocking probability, as shown in Algorithm 2.

In this power transformation, placements with a smaller blocking probability have much
higher chance of surviving in the evolution process.t is a very small positive constant
(t = 1 × 10−6 in the implementation) to prevent the case whereBp = 0. The parameter
α controls the convergence speed of the GA iteration process. When the difference of the
objective values of candidate placement vectors is small (∆

Vmax
< 0.1), the absolute value

α is assigned with a higher value (α = −2) to increase the difference of the fitness value
of each candidate, so that each candidate can be differentiated. When the difference of the
objective values of candidate placement vectors is large (∆

Vmax
> 0.9), the absolute value

α is assigned as a smaller value (α = −0.5), so that the difference of the fitness value
of each candidate is reduced and, hence, it can prevent some candidate with a significant
better objective value from dominating the GA process.

Algorithm 2 A power transformation from the objective function to the fitness function
Notations.
Bp: the objective function, which is the blocking probability in our case.
F : the fitness function.

BEGIN
Vmax ← the largest value of the objective function among all vectors in one run.
Vmin ← the smallest value of the objective function among all vectors in one run.
∆ ← |Vmax − Vmin|
if ∆

Vmax
> 0.9 then

α ← −0.5
else if ∆

Vmax
< 0.1 then

α ← −2
else

α ← −1
end if
t ← 1× 10−6

F ← (Bp + t)α

END

In order to reduce the search space, in the selection operation, the number of placements
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in each iteration is maintained constant. The universal sampling selection scheme was used
in the implementation because the comparison with two other selection schemes, the tour-
nament selection and the roulette wheel selection, indicated that it outperforms them.

In the crossover operation, two placement vectors exchange partially their elements
(genes) and generate new candidate placements. The uniform crossover was used in the
implementation. For two parental placements, a mask vector with the same length as a
placement vector which consists of 1s and 0s is randomly generated. An example is shown
in Table2. If the maski-th bit is 1, thei-th element of two parental vectors are exchanged,
otherwise, i.e., if the mask bit is 0 ati-th bit, thei-th element is not changed. Notice that
illegal placements may be created if the uniform crossover is applied directly because dupli-
cated elements may occur in one vector. For the example in Table2, vector A(5, 4, 6, 1, 8)
exchanges the elements for converters 2, 3, and 4, with vector B(7, 8, 2, 9, 3) and hence
two new vectors A’(5, 8, 2, 9, 8) and B’(7, 4, 6, 1, 3) are generated; however, the placement
vector A’ is not allowed because converters 2 and 5 are placed at the same node 8. The fol-
lowing technique was used to solve this problem. First, two parental vectors are rearranged
(using a permutation of the converter identifiers) so that those converters at the same nodes
are placed at the same location in the parental vectors. A modified uniform crossover is
shown in Table3. Vector B(7, 8, 2, 9, 3) is rearranged into vector B*(7, 3, 2, 9, 8) so that
the child vector A’ does not have any duplicated elements.

Table 2. A Uniform Crossover with Illegal Solution Created.

Vector A 5 4 6 1 8
Vector B 7 8 2 9 3

Mask 0 1 1 1 0
Vector A’ 5 8 2 9 8 wrong!
Vector B’ 7 4 6 1 3

Table 3. A Uniform Crossover with Legal Solution Created.

Vector A 5 4 6 1 8 ⇒ Vector A* 5 4 6 1 8
Vector B 7 8 2 9 3 ⇒ Vector B* 7 3 2 9 8

Mask 0 1 1 1 0
Vector A’ 5 3 2 9 8
Vector B’ 7 4 6 1 8

In the mutation procedure, some elements of a placement vector can be changed ac-
cording to some probability distribution. The single point mutation was used in the imple-
mentation. An example is shown in Table4, in which converter 2 is changed from node 4
to node 2.

Table 4. A Single Point Mutation.

Vector A 5 4 6 1 8
Vector A’ 5 2 6 1 8

The whole wavelength routing and wavelength converter placement problem is the in-
teraction process of the RWA algorithm and the GA, which is depicted in Algorithm 3.
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Algorithm 3 A GA Optimization Algorithm
v: a placement vector.
P: a population of placement vectors.
RWA: a routing and wavelength assignment algorithm, i.e., LLR-MSM.
Sim: the simulation process.
Nmax: the maximum number of generations.
Bp: the blocking probability in our case.
F : the fitness function.
F : the set of the fitness function forv ∈ P
PowerTransform: the transform from the blocking probability to the fitness function.
GA: the GA process, consisting of the selection, crossover, mutation operations.

BEGIN
Generate an initial populationP randomly.
for i = 1 to Nmax do

while v ∈ P do
Bp ← Sim(v,RWA).
F ← PowerTransform(Bp).

end while
P ← GA(F).

end for
END

One simulation usually takes several minutes to obtain the call blocking probability.
The crossover probability and the mutation probability are carefully chosen so that the
GA generates near optimal solutions in relative fewer iterations. In our implementation,
the crossover probability is set higher to ensure that the algorithm searches more solution
space; the mutation probability is set to 0.1 to ensure that the algorithm generate new can-
didates by mutation in each iteration on average and the population of the candidates is
relatively stable.

4. Numerical Results

In this section numerical results are provided in order to illustrate the performance of the
proposed LLR algorithm with two path cost functions. Performance evaluations were con-
ducted for the Shortest Path Routing, Fixed Alternate Routing, LLR-MMM and LLR-MSM
with the random and the first-fit wavelength assignment schemes. In FAR, LLR-MMM and
LLR-MSM, 2 edge-disjoint paths (K = 2) are used. The performance of the GA model
for the wavelength converter placement is also discussed, and compared with two popular
heuristic algorithms, Total Outgoing Traffic (TOT) [12] and the K Minimum Dominating
Set (K-MDS) placement [22].

The investigations were conducted in the 14-node NSFnet network, as shown in Fig.3.
Each link has a single fiber (Ml = 1) and each fiber has 40 wavelengths (K = 40). The
connection requests arrive according to a Poisson process and all call holding times are
exponentially distributed with a unit mean. All processing times, including the call setup
and release time, are negligible. When a connection request is aborted, it is not retried and
is cleared immediately from the network.

For each set of simulation points, there are 10 batches in one simulation run and the
length of each batch is105 units of mean interarrival time of the connection request. The
initial 10% is discarded to avoid the effect of the transient states. The size of the simulation
points shown in the figures below is large enough to cover95% confidence intervals. The
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whole simulation model was constructed based on SimLib 2.2 [23].
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8

Fig. 3.The 14-node NSFnet network.

4.A. Performance of LLR Algorithms

In this section the performances of the LLR-MMM, LLR-MSM, SP and FAR algorithms
under the random and the first-fit wavelength assignment schemes are presented. Fig.4, 5
and6, show the blocking probability under different algorithms when the network has no
conversion, full conversion, and sparse conversion with the first-fit wavelength assignment
and the random wavelength assignment, respectively. In Fig.6, the network has 5 nodes
with wavelength converters and the placements are obtained using the K-MDS algorithm.
The LLR-MSM routing significantly outperforms all other algorithms under the three dif-
ferent situations, and the difference increases when the network loading decreases.

Moreover, the performance of the LLR-MMM routing is the same as that of FAR, ex-
cept in Fig.7 and8 because, in the case of a single fiber, the cost of a path is either 0 or 1
in LLR-MMM and, thus, LLR-MMM is equivalent to FAR with first fit. If a link can install
multiple fibers, LLR-MMM is expected to outperform FAR. The LLR-MMM routing has
a lower blocking probability than that of FAR because random wavelength assignment is
used in FAR, see Fig.7 and8. In general, the First Fit wavelength assignment has a lower
blocking probability than that of the random wavelength assignment. Since the LLR-MSM
and the First-Fit algorithm result in the best system performance, we focus on the converter
placement study using the LLR-MSM and First-Fit in the next section.

4.B. Performance of GA Model

In this section the performance of the GA model is compared with that of two heuristic
placement algorithms: TOT and K-MDS. Since the LLR-MSM routing outperforms oth-
ers, we concentrate on the GA model which uses the LLR-MSM. In Table5 the wavelength
converter placements under different placement algorithms are shown. It is interesting to
observe that in different algorithms the same results are obtained if the number of wave-
length converters is small (i.e. 1 or 2). However, when the number of wavelength converters
is sufficiently large, different wavelength converter placements are obtained.

A comparison of the performances of different placement algorithms with different
number of wavelength converters, is depicted in Table6. The blocking probability with
the converter placement obtained using the proposed GA model converges much faster to
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the blocking probability with full conversion than the blocking probability with the con-
verter placement obtained using TOT and K-MDS. In addition, the performance difference
increases when the number of wavelength converters increases. When the number of wave-
length converters is small, the obvious solution is to place wavelength converters in the
congestion region of the whole network, i.e., the nodes with the highest call blocking prob-
ability, and all placement algorithms can find these congestion regions using their heuristic
approaches. However, when the number of wavelength converters is large, the heuristics of
TOT and K-MDS are not good enough to obtain a near-optimal solution; on the other hand,
the GA model can still converge to the global optimal solution.

A comparison of the performance of different placement algorithms under different
network loadings is presented in Fig.9. With 4 converters obtained using the GA model,
the call blocking probability is very close to the blocking probability obtained with full
conversion; however, the blocking probability using the placement obtained using TOT
and K-MDS is still quite far from the blocking probability obtained with full conversion.
The differences in terms of the blocking performance increases when the network loading
decreases.

In Fig. 10, the conversion gain with converters obtained using GA is depicted. With
only 4 nodes out of 14 nodes in the whole network, equipped with converters, the blocking
probability is already very close to the blocking probability obtained with full conversion.
Note that although TOT and K-MDS can obtain a solution very quickly compared with GA,
the processing time to obtain a solution is not our major concern because the optimization
should be processed off-line and only GA gives the optimal solution.

In Fig. 11, the convergence speed of the GA model is depicted when the network load
is at 454.5 Erlangs. Within around 12 iterations in the GA process, the placement is almost
converging to the optimal solution empirically. When the converter number is really large (8
converters in the 14-node NSFNet), the GA can not help much in optimizing the placement.
It is because over half of nodes in the network are equipped with converters, even the
random placement can achieve the near-optimal system performance.

Table 5. Wavelength Converter Placement under Different Placement Algorithms in the
LLR-MSM Routing.

No. of wavelength converters TOT K-MDS GA-Simul
1 5 5 5
2 5,9 5,9 5,9
3 5,7,9 5,9,12 5,9,10
4 3,5,7,9 5,9,11,12 3,5,7,9
5 1,3,5,7,9 5,9,11,12,13 1,3,5,9,11

5. Conclusion and Future Work

In this paper we discussed the routing and the wavelength converter placement problem in
optical networks with sparse wavelength conversion. We proposed a new dynamic routing
algorithm with two new path cost functions: the LLR-MMM and the LLR-MSM. They
are based on the concept of the LLR with sparse converter placement. Simulation results
showed that the LLR-MSM and LLR-MMM outperform other traditional routing algo-
rithms.

We also discussed the development of a GA model for the wavelength converter place-
ment problem. To minimize the call blocking probability, the optimal location of wave-
length converters are found. Simulation results indicated that with a small number of con-

11



Table 6. Performance Comparison in the Network using the First-Fit Wavelength Assign-
ment under the Uniform Traffic at the Load of 454.5 Erlangs.

No. of wavelength converters GA K-MDS TOT
No Conversion 0.014329 0.014329 0.014329

1 0.008699 0.008699 0.009628
2 0.006113 0.006898 0.006898
3 0.004849 0.006208 0.006332
4 0.003460 0.005554 0.004111

Full Conversion 0.002970 0.002970 0.002970

verters, placed using the GA model the blocking probability can converge to the blocking
probability obtained with full conversion.

Because analytical blocking probability models for the LLR-MSM and the LLR-MMM
are not available in a closed form, a simulation model was developed to obtain the blocking
probability in the GA framework. This results in a longer search time in the GA process.
Though it is an off-line design problem, using simulation for even larger network in the GA
framework might not be affordable. In our future work, we will concentrate on developing
an analytical model for obtaining the call blocking probability of the proposed dynamic
routing algorithm LLR-MSM and LLR-MMM.
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Fig. 4.Performance comparison in the network with no conversion and the First-Fit wave-
length assignment.

0.001

0.01

0.1

350 400 450 500 550 600

B
lo

ck
in

g 
pr

ob
ab

ili
ty

Load (Erlangs)

SP
FAR

LLR-MSM
LLR-MMM

Fig. 5.Performance comparison in the network with full conversion and the First-Fit wave-
length assignment.
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Fig. 6.Performance comparison in the network with partial conversion, K-MDS placement
and the First-Fit wavelength assignment.
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Fig. 7.Performance comparison in the network with no conversion and the Random wave-
length assignment.
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Fig. 8.Performance comparison in the network with full conversion and the Random wave-
length assignment.
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Fig. 9.Performance comparison in the network using the LLR-MSM routing and the First-
Fit wavelength assignment with 4 wavelength converters under the uniform traffic.
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Fig. 10. The effect of the number of wavelength converters on the performance of our
GA model using the LLR-MSM routing and the First-Fit wavelength assignment under the
uniform traffic.
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Fig. 11.The convergence speed of the GA model using the LLR-MSM routing and the
First-Fit wavelength assignment under the uniform traffic at the Load of 454.5 Erlangs.
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