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A new approach to design a wavelength-insensitive optical power splitter is presented. First, a coupled-
mode theory is cast in operatorial form. This allows us to solve the equivalent of coupled differential
equations as simple limits. The operators are then represented on a generalized Poincaré sphere, and
the resulting graphical tool is applied to different structures, giving a clear interpretation of previous
results in literature as well as hints on how to find improved solutions. © 2003 Optical Society of
America
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1. Introduction

The need for wideband optical communication de-
mands that optical devices able to cover the entire
band of interest. A very basic element of a typical
device is, of course, the power splitter.

Power exchange between optical waveguides is
usually obtained via directional couplers.1–3 The
simplest splitting device is the synchronous coupler,
obtained by keeping two identical waveguides close
together over a given length. This coupling mecha-
nism is based on the difference in the propagation
constants of the coupler supermodes. On the other
hand, this means that it can depend strongly on the
wavelength.

Many proposals have been presented to overcome
this problem, for example, coupling different
waveguides �asynchronous coupler�,4–6 tapering the
coupled waveguides �tapered coupler�,7 or imple-
menting interferometric structures �Mach–Zehnder
coupler�.8–11 Takagi et al.4 fabricated an asynchro-
nous coupler with a coupling ratio of �50 � 5�% over
a wavelength range of 400 nm, as well as a tapered
coupler7 achieving �50� 5�% over 500 nm. Jinguji et
al.11 built a Mach–Zehnder coupler that achieves a
splitting ratio of �50� 1.9�% over 400 nm, and with a
similar structure Gonthier et al.9 obtained �50 �
2.5�% over 300 nm.
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In this paper we will focus on wavelength sensitiv-
ity of 50�50 splitters, but a similar approach applies
to all splitting ratios as well as to changes of param-
eters other than wavelength.

2. Unitary Transformations

We will assume a power splitter as a lossless device
made of two waveguides, one beside the other over a
length L along the propagation axis z �see Fig. 1�. In
general their cross sections, distances, and refractive
index profiles may vary along z. We will also as-
sume that, for any fixed z0, the two eigenmodes of the
single waveguides cross section, Ej�z0� � Ej�x, y, z0�,
� j � 1, 2� can be considered as a basis12 for the field
at that point, so that it is always possible to write

E� z� � a1[z]E1[z] � a2[z]E2[z],

where aj�z� are complex numbers, so that �a1�z��
2 �

�a2�z��
2 � 1 and Ej�z� are normalized so that �aj�

2

represents the power fractions in each of the
waveguides. We will regard E�z� as a scalar quan-
tity, since we will consider only singly copolarized
modes of the structure. With these assumptions we
can always represent the generic state of the system
through the complex vector

u� z� � �a1� z�
a2� z�

� . (1)

The evolution of the system can be described by an
unitary 2 	 2 matrix or, up to an overall phase,13 by
an element U of SU�2� �i.e., an unitary matrix so that
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det U � 1�. From its definition, the most general
form for U is14:

� exp�
i��2�cos � exp�i�exp�
i��2�sin �

exp�
i�exp�i��2�sin � exp�i��2�cos � � .

(2)
If optical power is launched in just one of the two
waveguides, the splitting ratio �defined as the power
fraction transferred to the other waveguide� does not
depend on which waveguide is chosen, and it is
clearly given by sin2 �.

A. Global View

Equation �2� describes a power splitter as a black box
that propagates the input state from z � 0 to z � L,
i.e., so that u�L� � U�L, 0�u�0�. It can be cast in the
form U � V��� W��, �, where

V��� � �exp�
i��2� 0
0 exp�i��2�� , (3)

W��, � � � cos � exp�i�sin �

exp�
i�sin � cos � � , (4)

which physically means that any unitary transforma-
tion can be decomposed in the product of a �-phase
shift between the two branches and a coupling in
which the field transferred from the upper �or lower�
branch acquires a  �or � 
 �-phase shift.

B. Local View

If we look locally at the whole transformation U�L, 0�,
we can decompose it in an infinite number of infini-
tesimal unitary transformations Un � U�zn�1, zn�:

U�L, 0� � lim
N3� �n�0

N
1
4

Un, (5)

where �� means matrix product on the left, and we
have defined �z � L�N, zn � n�z �from now on fn �
f �zn� @f �z��.

From the physical interpretation of Eqs. �3� and �4�,
we can think of every small section of the splitter as
a composition of a local phase shifter V��n� with �n �
��n�z �where ��n � �2�zn� 
 �1�zn� is the local dif-

ference in propagation constants of the two branches�
and a local coupler W��n, n� with �n � �n�z �where
�n is the local coupling coefficient between the two
waveguides and n is the phase acquired locally, pass-
ing from the first to the second branch�. To first
order in �z can rewrite

Un � I � �n�z,

where I is the identity matrix and

�n � � 
i�2��n �n exp�in�

�n exp�
in� i�2��n

� . (6)

Un is the infinitesimal propagator from zn to zn�1, i.e.,
the matrix so that

un�1 � Unun. (7)

Notice that Eq. �7� is nothing but a compact form for
writing the standard1–3 system of coupled differential
equations in the coefficients a1�z�, a2�z� of Eq. �1�.

C. Special Cases

In some special cases Eq. �5� can be cast in closed
form:

1� Null coupling.
Setting � � 0 gives U�L, 0� � V��� with � � �0

L ��
dz. This result describes a “pure” phase shifter and
is easily shown by noting that V��1�V��2� �V��1��2�.

If we define ���z�� � ��1�z� � �2�z���2, the ne-
glected overall phase13 is exp�i��, with � � �0

L

���z��dz.
2� Null phase shift.
Imposing �1 � �2 � � and d�dz � 0 gives U�L, 0�

�W��, � with � � �0
L �dz. This describes a “pure”

coupler and, as before, it is a consequence of the
property W��1, �W��2, � � W��1 � �2, �.

In this case the neglected overall phase amounts to
exp�i��, with � � �0

L �dz.
Actually the only coupling mechanism known to

the author is reciprocal, i.e., time reversal. It can be
shown2 that the time reversal combined to the uni-
tarity condition implies U† � U*; that in Eq. �2� re-
quires  � ��2. Physically this means that the
phase acquired during coupling from the first to the
second branch must be equal to the phase acquired in
the reverse process. Nevertheless we will allow for
generic  values, so that our formalism holds for any
unitary system �e.g., for polarization states, where
the Faraday rotation is nonreciprocal�.

3� Constant coupling and phase shift �asynchro-
nous coupler�.

Suppose d���dz � 0, d��dz � 0 and d�dz � 0.
Eq. �5� then becomes

U�L, 0� � U�L, 0� � lim
N3�

�I �
L
N

��N

� lim
N3�
�
k�0

N �N
k ��L

N
��k

� lim
N3�
�
k�0

N �L��k

k!

� exp�L��,

Fig. 1. Schematic of a splitter.
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where, from now on, the overbar will denote the so-
lution with constant coupling and phase shift. Let
us now introduce the hermitian matrix � � ���i��,
where �2� det �� ����2�2� �2. It is easily verified
that �2n � �
I�n. So the sum splits in even and odd
terms, yielding

U�L� � cos��L�I � i sin��L��. (8)

The matrix � is the so-called infinitesimal genera-
tor14,15 of U.

In this case the neglected overall phase is clearly
exp�i���L�, where

��� � ��1 � �2��2. (9)

If we define cos � � 
����2�� �which implies sin � �
����, Eq. �8� becomes

Since we are neglecting overall phases

U��L � �, , �� � 
U��L, , �� � U��L, , ��,
(11)

i.e., U��L, , �� is �-periodic in �L.
Notice that in solving for the propagator matrix

U�L, 0� �Eq. �5��, we do not need to impose any bound-
ary conditions, as for usual differential equations,
because they are implicit in the input state u�0� on
which U�L, 0� operates.

D. Eigenstates

To interpret the last result, it is useful to determine
the eigenstates of U. From the determinantal equa-
tion the eigenvalues are found to be

�� � exp��i�L�, (12)

and, correspondingly, the eigenvectors can be cast in
the form

u� � 	exp�
i�2���2 � ��cos���2�
exp�i�2���2 � ��sin���2� 


u
 � 	
exp�
i�2���2 � ��sin���2�
exp�i�2���2 � ��cos���2� 
 . (13)

From Eqs. �3� and �4�, defining R��, � � V���2 

�W���2, 0�, we can also rewrite

u�,
 � R��, �u1,2

U��L, , �� � R��, �V�
2�L�R
1��, �. (14)

Physically, Eq. �12�means that the difference between
the propagation constants of the two eigenstates is
��� � �
 
 �� � 
2�. On the other hand Eq. �14�
means that U��L, , �� is nothing but a V����L� di-
agonal transformation �i.e., a transformation repre-

sented in the basis of its eigenstates� represented in
the rotated basis �R
1��, �u�, R
1��, �u
�.

Looking at U globally, we can also rewrite the ne-
glected overall phase as13 exp�i����L�, where ���� �
��� � �
��2. From Eq. �9� �which was obtained
looking at the local Un� we get ���� � ���, which
implies �� � ��� � �.

Notice that, for � � 0, the eigenstates of U do not
depend on ��, so they must also be the eigenstates
of V��� �the first special case discussed earlier�.
Similarly, for �� � 0 they do not depend on �, so
they must also be the eigenstates of W��, �.

3. Generalized Poincaré Sphere

All the results obtained so far are better understood
introducing a convenient geometrical representation.

It is well known15,16 that SU�2� transformations may
be mapped into SO�3� transformations through a ho-
momorphism. This means that all the transforma-
tions we have analyzed before can be represented as
rotations on a spherical surface, analogous of the
Poincaré sphere17 for polarization states. In Fig. 2
are displayed all the intersection of the S1, S2, S3 axes
within the sphere. They represent the single
waveguides modes E1, E2 and their linear combina-
tions ES,A � 1� 2�E1 � E2� and ER,L � 1� 2�E1 �
iE2�. Also plotted is the generic normalized mode
P � a1E1 � a2E2 � cos !E1 � exp�i�� sin !E2, with
Stokes parameters17

S0 � �a1�2 � �a2�2 � 1,

S1 � �a1�2 � �a2�2 � cos 2!,

S2 � a1 a2* � a1*a2 � sin 2! cos �,

S3 � i�a1 a2* � a1*a2� � sin 2! sin �.

In Fig. 3 we have plotted the eigenmodes E�,
 �cor-
responding to the eigenstates u�,
 of Eq. �13��. It is
clear that the generic transformation U �Eq. �8��, cor-
responds, on the sphere, to a rotation about the axis
of its eigenstates E�E
 � S��, ��2 
 � �which is the
rotated of the axis S1 by an angle � about S3 and then
by an angle ��2 
  about S1�. This means that a
generic input state P will be rotated by an angle

2�L �see Eq. �14�� on the circle of revolution about
S��, ��2 
 � passing through P. The three special
cases discussed earlier may be represented as rota-
tions on the sphere:

1� � � 0 implies E�,
 � E1,2 and U � V���.
Physically it is clear that E1,2 are the eigenmodes of

the phase shifter. On the sphere a generic input
state P will be rotated by an angle � on the circle of
revolution about S1 �Fig. 4� passing through P. In

U�L� � U��L, , �� � �cos��L� � i sin��L�cos � exp�i�sin��L�sin �

exp�
i�sin��L�sin � cos��L� � i sin��L�cos �� . (10)
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the special case of constant phase shift will be � �
��L.

Notice that the circles of revolution about S1 rep-
resent the loci of constant power splitting, which we
will call isodias �"#o� equal, $"! � split in two parts�.

2� �� � 0 and  � ��2 means E�,
 � ES,A and U�
W��, ��2�.

Physically it is clear that the symmetric and anti-
symmetric superpositions of the single waveguide
modes are the eigenmodes of the synchronous cou-
pler. On the sphere a generic input state P will be
rotated by an angle 2� on the circle of revolution
about S2 �Fig. 5� passing through P. In the special

case of constant coupling will be 
2� � 
2�L �
��ASL, where we have defined ��AS � �A 
 �S.

If one allows for generic �U �W��, ��, it is easily
seen that the loci of constant ���2
 � phase shift are
the semicircles with diameter on S1, which we will
call isophases �notice that isodias and isophases can
be regarded as a parallels and meridians for the
sphere, with poles on E1 and E2�.

3� �� % 0 and  � ��2 means u�,
 �W���2, 0�u1,2
and U � U��L, ��2, ��.

In the limit of validity of our approximation,12 the
eigenmodes of an asynchronous coupler are similar to
ES,A, but with unbalanced power in the waveguides.

Fig. 2. Generalized Poincaré sphere.

Fig. 3. Eigenstates of �U��L, , ��.

Fig. 4. Action of a phase shifter.

Fig. 5. Action of a synchronous coupler.
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On the sphere a generic input state P will be rotated
by an angle 
2�L � ���L on the circle of revolution
about S��, 0� �Fig. 6� passing through P.

4. 50�50 Splitters

We will now analyze the wavelength dependence of
some 50�50 splitters. Under a change d� in the
wavelength �, a relative change df�f will correspond
to any f ��� �relative changes are easier to calculate
when products and divisions resembling the rules of
relative error propagation are used�.

On the sphere a 50�50 splitter is any transforma-
tion that, starting from E1 �or, equivalently, from E2�,
reaches any point on the isodia &with diameter on S2.
The straightest way to do so is by a synchronous
coupler, i.e., by a W���4, ��2� transformation.
Power transfer is given by P2 � 1�2�1
 cos���ASL��,
and varies as

dP2 �
1
2

sin���ASL�Ld��AS

�
1
2
��ASL sin���ASL��d�nAS

�nAS
�

d�
� � , (15)

where �nAS � nA 
 nS is the difference between the
effective indexes of the symmetric and antisymmetric
modes. In our case

dP2 �
1
2

Ld��AS �
�

4 �d�nAS

�nAS
�

d�
� � .

Therefore the only way to minimize the wavelength
sensitivity is through a convenient choice of the
waveguides and their distance.18

On the sphere �Fig. 7� we observe that power split-
ting is measured by the S1 parameter �by definition,
the difference between the optical power in the two
waveguides�. Since a synchronous coupler ap-

proaches the isodia & parallel to S1, a change in the
angle L��AS translates immediately into a power
change.

An alternative approach could be using an asyn-
chronous coupler.4–6 Power transfer in this case is
given by P2 � P0F, where P0 � sin2 � � 1 
 ����
����

2 is the maximum transferable power and F �
1�2�1 
 cos����L�� is the power oscillation along
propagation. A � change will now give dP2�P2 �
dP0�P0 � dF�F, where

dP0 � 2�P0 � 1��d�n
�n

�
d�n�
�n�

� � 2�P0 � 1�$, (16)

dF �
1
2

sin����L�Ld���

�
1
2
���L sin����L��d�n�

�n�
�

d�
� � , (17)

where �n� n2
 n1 is the difference in effective index
of the single-waveguide modes.

In particular when ���L � k�, the oscillating con-
tribution vanishes and we can get a 50�50 splitter if
� � ��4. Regarding the dP0 contribution we notice
that it is null for � � m��2 and does not feature d�
term. Therefore, to get an insensitive coupler, a con-
venient choice of the coupler parameters must be
made for $ to become negligible.

On the sphere �Fig. 8� dP0 is due to a � change, i.e.,
a change of the rotation axis, while dF is related to a
��� change, i.e., a change of the rotation angle. It is
clear that this asynchronous coupler approaches the
isodia & perpendicular to S1 direction so that, if the
rotation axis does not change, power splitting it is
invariant under ��� changes.

This approach can be generalized by cascading N
asynchronous couplers so that ���

�i�L�i� � k� @i and
¥i�1

N �
�i�N�i � ��4. In Fig. 9 it is shown the case

Fig. 6. Action of an asynchronous coupler.
Fig. 7. 50�50 synchronous coupler.
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�1 � ��8 and �2 � 3��8. Under the hypothesis that
d�1 � d�2, we expect this configuration to solve the
problem of rotation axis changes, as shown in Fig. 10
�in general it will be true for any choice of '�i( so that
¥i�1

N �
�i�Nd�i � 0�.
Another approach may be to find a combination of
� and ���L reaching a point on & that make dP0�P0
and dF�F cancel each other out, instead of setting
each single contribution to zero.

These simple examples show how use of a pictorial
view can help not only to interpret well known results
but also to find better solutions.

Now that we understand the working principle of

the asynchronous coupler, it seems that even better
insensitivity could be obtained if we approached &
descending from points closer to ER. This could be
done with a structure that starts as a pure synchro-
nous coupler and, along propagation, becomes an
almost-pure phase shifter. This is the tapered cou-
pler,7 schematically shown in Fig. 11. The trajec-
tory on the sphere �Fig. 12� can be seen as a
composition of small rotations about different axes
S���z�, 0�, with ��0� � ��2 and ��L� ) 0. Notice that
this structure is tolerant at the beginning �see Eq.
�15�� and at the end, but a dilatation �contraction� in
the middle part of the trajectory �see Eqs. �16� and
�17�� could shift the ending part of the trajectory on
an isodia different by &. So, from a pictorial point of
view, it is not clear whether a tapered coupler may be
better than an asynchronous coupler. The answer
can come only from a numerical study and will de-
pend on the parameters of the specific structure un-
der investigation. A completely different approach

Fig. 8. 50�50 asynchronous coupler.

Fig. 9. 50�50 double-asynchronous coupler.

Fig. 10. Insensitivity of the configuration of Fig. 9.

Fig. 11. Schematic of a tapered coupler.
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is based on an interferometric scheme.8–11 Consider
a synchronous directional coupler so that �at a certain
working wavelength �0� �0� �0L���2 �100% power
transfer�, cascaded with a �-phase shifter and an-
other directional coupler, identical to the first one,
but with half the length �50% power transfer�. At a
generic � will be � � �0 � ��, and the system will be
described by the matrix

M � W�1�2���2 � ���, ��2�V���W���2

� ��, ��2�.

Of course when �� � 0, this is perfectly equivalent to
a 3��4, 50% splitter disregarding the �-value.

When a �noninfinitesimal� fixed value is assigned
to��, our aim is to determine a corresponding � value
that still gives 50�50 power splitting. This means
requiring �M11�2 � 1�2, which gives

cos � �
t�t � 1� � 1�2

1 � t2 , (18)

where t� sin �� and the condition �cos �� � 1 implies
t � 1�2. For small �� we have cos � ) 
1�2 
 t3

1�2 or � 3 �2��3 � 2k�.

This result is easily understood on the sphere �Fig.
13�. Since we have a �� angular shift in the first
coupler and a ���2 angular shift in the second cou-
pler, a 2��3 rotation about S1 �which goes from �0 �
�� to �0 
 ���2� will compensate, at once, the shifts
of both couplers �being the change of the circle rep-
resenting the second coupler a second-order effect�.

Notice that in general the phase shifter will also be
wavelength dependent. In the case of a concen-
trated phase shifter, made of two identical
waveguides of different length and effective index n,
it will be d��� � d�n��n 
 d���. In the case of a
distributed phase shifter, made of two different

waveguides of the same length and a difference �n in
their effective indexes, it will be d��� � d�n��n 

d���. So it may be convenient to set the working
point of the couplers and the working point of the
phase shifter at different wavelengths in the desired
band.

This example shows the power of the geometrical
representation, which becomes apparent especially
when dealing with interferometric schemes.

5. Conclusions

We have cast coupled-mode theory in an operatorial
form. This formalism allows us to solve the equiv-
alent of the usual differential equations as simple
limits. Furthermore, the homomorphism between
the SU�2� group and the SO�3� group allows us to
represent all these transformations on a generalized
Poincaré sphere, which is found to be a powerful tool
in the design and understanding of tolerant 2 	 2
devices, once all parameter dependences are deter-
mined.
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