
Many swimming micro-organisms are bottom-heavy and so,
although their swimming directions are fairly random, they
naturally tend to swim upwards (negative gravitaxis or
geotaxis). Such creatures tend to aggregate at the upper
boundaries of the fluid and, in sufficiently shallow layers and
at low concentrations, may form a horizontally uniform, top-
heavy equilibrium distribution in which the flux of cells due to
upswimming is balanced by diffusion down cell concentration
gradients, due to a degree of randomness in their swimming
behaviour. If the micro-organisms have a higher density than
the ambient fluid, then aggregations of the cells at the upper
surface can initiate an overturning instability, reminiscent of
thermal or Rayleigh–Bénard convection, and thus produce
spatial concentration patterns. The bulk motion of the fluid
exerts viscous (or frictional) torques on the micro-organisms
and the resulting balance with the gravitational torque is called
gyrotaxis (Kessler, 1984b, 1985a,b). The micro-organisms’
geometry and mass distribution imply that a component of their
swimming velocity is towards regions of downwelling fluid
and away from upwelling fluid. In this way, the micro-
organisms increase the average density of downwelling regions
of fluid and cause them to sink faster. This second ‘gyrotactic’
instability mechanism, together with the overturning
instability, drives complex patterns in suspensions of the
micro-organisms which are termed bioconvection. When
viewed from above, the patterns are characterized by highly
concentrated aggregations of cells in both one- and two-
dimensional structures. Childress et al. (1975) modelled
bioconvection for upswimming cells in the absence of
gyrotaxis and used the model to predict the wavelengths of the
initial instabilities. Their analysis predicted large pattern
wavelengths limited only by the size of the experimental
apparatus. At any point in space, a population of micro-

organisms has a random distribution of possible swimming
directions, characterized by an average swimming direction
and a direction- and flow-dependent diffusivity tensor (Pedley
and Kessler, 1990). A deterministic model for gyrotactic
bioconvection using a constant diffusivity was first analysed in
layers of infinite and finite depth by Pedley et al. (1988) and
Hill et al. (1989), respectively, and more realistic wavelengths
were predicted. This model was further extended in a
completely self-consistent fashion by Pedley and Kessler
(1990) and Bees (1996), who modelled bioconvection using a
probability distribution function for the cell swimming
direction in a stochastic formulation of gyrotaxis. In all these
works, it was found that the gyrotactic instability mechanism
depends on the absolute cell concentration, unlike the
overturning instability which depends on the gradient of the
cell concentration.

The purpose of the present investigation is to attempt to
quantify observations of pattern formation by swimming
micro-organisms in a rational and reproducible manner in order
to compare them with the predictions made from mathematical
models of bioconvection (see Pedley and Kessler, 1990; Bees,
1996; M. A. Bees and N. A. Hill, in preparation). Observations
of pattern formation have been recorded previously by such
authors as Wager (1911), Loeffer and Mefferd (1952), Wille
and Ehret (1968), Levandowsky et al. (1975) and Kessler
(1984b), but the results have tended to be of a qualitative
nature. The present study reports one of the first, controlled
experiments aimed at quantitatively cataloguing aspects of the
bioconvection patterns. Methods will be described that we
have developed for measuring the attributes of these patterns
in suspensions of a particular micro-organism, the alga
Chlamydomonas nivalis. Fourier analysis is used to extract the
dominant unstable wavenumber from the patterns as a function
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Bioconvection occurs as the result of the collective
behaviour of many micro-organisms swimming in a fluid
and is realised as patterns similar to those of thermal
convection which occur when a layer of water is heated
from below. A methodology is developed to record the
bioconvection patterns that are formed by aqueous
cultures of the single-celled alga Chlamydomonas nivalis.

The analysis that is used to quantify the patterns as a
function of cell concentration, suspension depth and time
is described and experimental results are presented.
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of time, cell concentration and suspension depth. It will be
shown that this wavenumber increases with time, not
continuously, but discretely as new modes become unstable on
top of already developed modes. Observations of pattern
development and mode interactions will be discussed.

Materials and methods
Homogeneous cultures of fully motile Chlamydomonas

nivalis (Wille) cells were cultured in Bold’s Basal Medium
to which vitamin B12 (1 µg l−1) was added to encourage
motility (Bold and Wynne, 1978; James, 1978). Subcultures
were taken every 6 weeks and left under two, cool-white
fluorescent tube lights which gave a maximum light intensity
of 500 lx with a 12 h:12 h L:D photoperiod. There is some
evidence to suggest (J. O. Kessler, personal communication)
that the cells are not gyrotactic within the first week after
subculturing, so experiments were conducted on
approximately 4-week-old cultures, at a predetermined time
in the middle of the day when the cells are most active
(Tomson and Demets, 1989). All steps of the breeding and
experimental processes took place at a constant temperature
(25±2 °C) within the laboratory. All the equipment required
for culturing was washed and rinsed in distilled water and
then carefully sterilized (autoclaved at a pressure of 100 kPa
for 15 min) to avoid contamination by bacteria and fungi. C.
nivalis are negatively gravitactic and thus are easy to
concentrate above a plug of absorbent cotton wool placed in
the neck of a flask 1 cm below the surface of the suspension
(Kessler, 1982, 1984a). The concentrated suspension can be
transferred by pipette to a Petri dish. It was found that plastic
Petri dishes were the most regularly shaped (maximum
variation in depth approximately 0.03 mm) and the 5 cm
diameter, circular, sterile variety was generally used. One of
the first reactions of the cells when the suspension is put into
the Petri dish is to stick to the surfaces of the dish. To avoid
this problem, a small amount of clear medium from the
culture flask was put into the Petri dish before the dish was
cleaned and polished with a lens tissue. If the cells still stuck
following this procedure, then the dish and suspension were
left in darkness for 24 h. This usually gave the cells sufficient
time to adapt, and thereafter reproducible patterns were
generally observed.

As well as being gravitactic and gyrotactic, C. nivalis are
phototactic (Foster and Smyth, 1980). The cells also exhibit
a photophobic response to a sharp increase in light intensity:
they stop swimming for a short period before eventually
adjusting their swimming stroke, such that their flagella are
both aligned, and swimming in the reverse direction
(Witman, 1993; Rüffer and Nultsch, 1985). Therefore, a very
low intensity, red light source at wavelengths of
approximately 622–780 nm, to which C. nivalis do not
respond significantly, was used to illuminate them (Foster
and Smyth, 1980). An infrared filter was placed between the
light source and the cells, and a milk glass filter was used
directly under the suspension to create an even, non-

directional light source. The light intensity at the final stage
did not exceed 5 lx, measured using a standard light meter.

Mean concentration measurements were conducted after the
experiments were completed by first killing the cells, using
iodine or by heating them, and then sampling from the well-
mixed suspension using a microslide. When an end of the
microslide is placed in the suspension, fluid and cells are drawn
into it by capillary action. Tests were conducted to ensure that
this method produced a representative sample. The microslides
are hollow tubes of rectangular cross section, 0.2 mm by
approximately 1 mm by 40 mm (depth × width × length) and
thus the volume per unit area, when the slide is flat on a table,
is easily calculated. When the cells are dead, they sink to the
bottom of the slide. Using a Leitz stereo microscope linked to
a Z80-based Seescan (Cambridge) image-processing system,
the number of cells in the picture was counted automatically
and, after calibration using a graticule and manual counts, the
cell concentration was calculated. The microscope was
arranged with a light source directly below the microslide. The
light was adjusted so that it was focused through the spheroidal
cells onto the video lens, producing pinpoints of bright light in
the centres of the cells and thus allowing touching cells to be
counted independently. To measure the depth of the
suspensions, a calibrated microscope was used that was first
focused on the bottom of the Petri dish and then on the surface
of the suspension. The microscope was calibrated using glass
slides of known thickness (measured using a micrometer).
Depths could be measured to within ±0.03 mm.

A video camera was connected directly to the image
processor to capture images of the bioconvection patterns
which were then analysed on a Unix-based workstation. In
general, the suspensions were mixed well, and then pictures
were captured every 10 s. Careful, uniform mixing with little
swirling is very important since, if the initial fluid motion is
too vigorous, it takes a sufficiently long time to decay that it
significantly influences the pattern formation (see Discussion).
Small-amplitude manual oscillations were found to be best for
this purpose. For each of the experiments, nine pictures were
captured and saved on magnetic disks, and these pictures were
then transferred via a PC 286 to the Unix system. The
wavelengths of the patterns in the images were calculated using
two-dimensional Fourier transforms generated using an image-
processing software package, IDL (Research Systems Inc.,
Colorado, USA), on the workstation.

The images consist of 256 pixels × 256 pixels of 128 grey
shades. The sets of nine pictures each contain unwanted
information such as the walls of the dish, reflections and
scratches on the dish, localized or irregular light sources, and
the boundary of the picture. The first three of these can be
eliminated by subtracting the first image, when there is no
bioconvection, from the next eight images. However, the
boundary of the picture becomes important when analysing the
images using Fourier methods. Suitable use of windowing
functions can solve this problem. The two-dimensional Fourier
transform of an image contains all of the information that
existed in the original image but expressed in terms of the
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amplitude, phase and direction of its sinusoidal components.
The Fourier spectrum (or power spectrum) is calculated in
order to provide the sum of the amplitudes of the spectral
components at a particular wavelength in any direction or
phase. Thus, by Fourier-transforming the images and obtaining
their Fourier spectra, it is possible to extract a measure of the
dominant wavelength at a given instance and to investigate
how it changes with time.

We define the wavenumber as the number of complete
sinusoidal waves contained in a length of the same size as the
image’s width. Hence, the wavenumber, k, is related to the
physical wavelength, λ, by:

where Iw is the image width and equals 5.2 cm in our
experiments. We transform the physical image space to a space
consisting of wavenumbers by using the Fourier transform.
The original image consists of a finite number of discrete
pixels, and so we use the Fast Fourier Transform (FFT)
algorithm developed by Cooley and Tukey (1965) (see
Bingham, 1974, for a history of the method) to construct the
discrete Fourier transform of the images. The FFT is an
efficient algorithm for constructing discrete Fourier transforms
that avoids repeating identical algebraic operations. Press et al.
(1992) describe the workings of the FFT succinctly. The
discrete Fourier transform, H(kx, ky), of an image, h(x, y), of
size N2 in two dimensions is given by:

where kx and ky are wavenumbers in the x and y directions,
respectively, and i=√−1. H(kx, ky) is, in general, a complex
two-dimensional array and contains phase and wavenumber
information. A procedure in the graphics package IDL was
used to perform the FFT on the real, two-dimensional image
array. The procedure returns a complex array of the same size.
The number of pixels in the image, N=256, is sufficient to
resolve bioconvection structures in the pictures (and thus
satisfy the Nyquist condition of at least two pixels per
waveform).

The Fourier spectrum is a measure of the spectral
components of an image at varying wavenumbers, irrespective
of their direction, and so is a useful tool for highlighting the
dominant wavenumbers contained in the image. The discrete
Fourier spectrum, Ρn, is defined on N/2 intervals (called bins),
In=(n, n+1) where n=0,...., (N/2)−1, as:

where d(kx, ky)=√(kx2+ky2) is the distance in Fourier space of
(kx, ky) from the origin. If the scales in h space for x and y are
different (depending on the construction of the video camera),

then it will be necessary to scale the distance (i.e. either kx or
ky) in the transform space, H, accordingly. We shall discuss
what we can do with the Fourier spectrum after describing
potential sources of error.

As the two-dimensional FFT is essentially two FFTs
performed in the x and y directions consecutively, we may
consider the errors from the discretisation separately in each
direction. The image has an edge and, hence, we are in effect
multiplying the original infinite image by a square ‘windowing
function’ prior to calculating its Fourier transform. This is
equivalent to finding the convolution of the image Fourier
space with that of the square-window Fourier space. Hence,
there is a certain amount of ‘leakage’ from one bin to the next
due to the windowing function, and it can be shown that it has
a typical fall-off rate of (πk̃)−2, where k̃ is the wavenumber
offset in bins (Press et al. 1992, pp. 545–551). Leakage can
cause many types of error, the most obvious yet least
destructive of which is a loss of detail due to smoothing. The
square of the transformation of the window function
determines the leakage, Λ, where:

where W(x) is the windowing function and 

For a square windowing function,

For Fourier spectrum analyses, it is the oscillatory nature of
the leakage which is undesirable (a manifestation of the Gibbs
phenomenon whereby sharp edges introduce oscillatory
errors). A solution is to use a different windowing function that
does not have the sharp edges of the square windowing
function. The Hann window was chosen (Press et al. 1992, pp.
545–549) as it removes the oscillatory nature of the leakage
and the error rapidly decreases to zero with |k̃ |. The Hann
window is essentially a cosine (plus a constant) about the
centre of the image and reaches a minimum of zero at the
edges. This has the additional benefit of favourably weighting
the information in the centre of the picture. The Hann window
in two dimensions is defined as:

and is multiplied with the image before application of the FFT
algorithm.

In general, the discrete Fourier spectra that were found in
these experiments can be plotted as rather noisy bar charts with
one or more dominant wavenumbers (see Fig. 1). An
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unnormalised double Gaussian distribution was chosen to fit
the spectra where the first Gaussian is fitted to the dominant,
most unstable wavenumber and the second is fitted to the
remainder, which consists of ‘noise’ and the lesser modes. The
unnormalised double Gaussian distribution, Γ– (X=n), is defined
as:

where A1, A2, µ1, µ2, λ1 and λ2 are constants fitted to the data
using the least-squares algorithm. Fig. 1 shows an example of
this curve fitting. µ1 provides a measurement of the
wavenumber of the dominant pattern contained in the image.
It was found that this method proved successful unless two or
more large peaks were present, in which case the dominant
modes were estimated manually.

Results
The results of 39 experiments are summarised in Table 1.

Three examples of bioconvection patterns are shown in
Figs 2–4. Additional images can be found in Bees (1996). Dark
regions indicate a high local cell concentration. Nine frames
are shown for each experiment, the first eight being taken at
regular intervals. The last image shown in each experiment was
recorded after a sufficiently long time such that the pattern
appeared steady (typically 5–10 min). Experiments were
discarded if a long-term pattern did not emerge. In some such
cases, it was found that the cells had begun to stick to the walls
of the dish. It was assumed that the cells were separated during
mixing and were able to swim to the upper surface, whereupon
they promptly stuck back together and sank. This is a natural
part of the cells’ life cycle, in which they vary their
agglutinability during the day in order to mate (Tomson and
Demets, 1989), but is not relevant to the present study.

The wavenumber, k, is related to the physical wavelength,
λ, by equation 1. Fig. 5 describes how the first observation (for
t=20–30 s) of the most unstable (dominant) wavelength varies
with cell concentration and suspension depth. In general, the
wavelength increases with suspension depth and tends to
decrease slightly with increasing concentration. The initial
patterns observed (i.e. those 20–30 s after mixing) can be
divided qualitatively into four groups: lines (L), dots (D),
regular patterns of dots joined by lines in X or Y shapes and
more disordered patterns of mixed modes (M). Fig. 6 shows
how the pattern type varies with cell concentration and
suspension depth. Lines can be seen in picture 4 (i.e. 30 s after
mixing) of Fig. 2 and these are indicative of a two-dimensional
instability. Dots were also observed in some experiments (e.g.
picture 4 of Fig. 3), and these are formed via a three-
dimensional instability. The more disordered or mixed pattern
can be seen in Fig. 4, in which many unstable modes are
present. The mixed-mode points (M in Fig. 6) indicate acute
sensitivity to the initial conditions. However carefully the

suspension is mixed, some residual coherent fluid motion
always remains. Depending on the nature of this motion, the
initial pattern will develop either as dots or as lines. In terms
of the Fourier spectrum, this results in a range of equally
unstable wavelengths and, depending on the initial conditions,
any can dominate the pattern. However, the long-term pattern
appears to be free of any such degeneracy.

The wavelength analysis was also performed on the long-
term patterns and the results are given in Fig. 7. The results
differ from those of the initial disturbance: the wavelength
decreases with increasing cell concentration and there is no
clear variation with suspension depth. The long-term pattern is
independent of the initial conditions, and Fig. 7 shows much
less local variation than Fig. 5. Clear differences could be seen
in the shape of the Fourier spectra of the initial and long-term
patterns. The initial spectra contained harmonics of the
principal wavenumber and competing, unstable wavenumbers,
whereas the long-term spectra contained just one unstable
wavenumber and the patterns were generally characterised by
regular arrays of dots (in either square or hexagonal lattices).
This can be seen clearly in Fig. 4, in which it is also obvious
that the pattern wavenumber increases with time. Irregular
long-term patterns (e.g. Fig. 3) are hard to interpret but, the
Fourier spectra suggest that they are time-dependent mode
interactions of two or more modes. Other transitional types of
pattern are also observed, such as the tori (labelled T in Fig. 6)
seen in Fig. 3.

The wavenumber, k, usually increases from the initial
instability to the final steady state (see Table 1), although it
does not always do so monotonically. Fig. 8 shows results
from three identical experiments performed consecutively
within 10 min of each other in a region of parameter space
where the patterns were sensitive to the initial conditions. It
was observed that the initial instability was dependent on the
type of mixing that was used even though care was taken not
to set up any bulk fluid motion and whatever motion was
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present died away in under a couple of seconds. Whatever the
initial instability, the patterns evolved towards the same long-
term state.

Fig. 9 shows a typical example of how a pattern’s Fourier
spectrum evolves with time. One observation to be made
concerns the oscillatory nature of the amplitude of the Fourier
spectrum. The initial instability increases rapidly in amplitude
until it reaches the bottom of the dish and the cells then have
to swim back up to the surface. During this period, the
amplitude of the unstable mode decreases. Any new instability

that occurs must exist in addition to the recently set up fluid
motion and, in this respect, the patterns that occur have a
discrete set of wavenumbers. The overall amplitude of the
Fourier spectrum thus increases when this new instability
occurs. It can be seen clearly that the initial instability is
composed of a set of distinct competing wavenumbers and that,
as time progresses, larger and larger wavenumbers become
unstable. This can be observed in Fig. 9, in which the
instability peaks are indicated by a set of dark, vertical lines
with constant wavenumber.

Table 1. Table of experimental measurements where the subscript 0 means the first unstable mode to be measured (generally
20–30 s after mixing) and ∞ means the final pattern mode

Expt Cell concentration Suspension depth k0 k∞ λ0 λ∞
no. (cm−3) (cm) per dish per dish (cm) (cm) Notes

1 2.75×106 0.333 14.09 NA 0.369 NA
2 2.07×106 0.396 10.71 NA 0.486 NA
3 6.31×106 0.365 19.47 22.57 0.267 0.230
4 3.06×106 0.444 11.10 17.30 0.468 0.301
5 0.808×106 0.522 10.80 NA 0.481 NA Mixed modes
6 1.02×106 0.729 7.50 NA 0.693 NA Mixed modes
7 0.886×106 0.399 12.48 NA 0.417 NA Mixed modes
8 1.64×106 0.381 15.76 NA 0.330 NA Slow to develop
9 2.30×106 0.456 15.10 NA 0.344 NA Slow to develop
10 1.88×106 0.690 10.00 NA 0.520 NA Slow to develop
11 2.81×106 0.282 15.40 NA 0.338 NA Mixed modes
12 2.47×106 0.528 8.87 19.10 0.586 0.272 Two mixed modes, starts in centre
13 2.15×106 0.645 10.08 18.61 0.516 0.279 Mixed modes, starts in centre
14 1.89×106 0.384 14.96 16.73 0.348 0.311 Images recorded every 30s
15 1.89×106 0.318 14.20 10.64 0.366 0.489 Images recorded every 20 s
16 3.62×106 0.310 17.15 14.54 0.303 0.358
17 1.89×106 0.469 7.34 17.18 0.708 0.303 Two peaks, left dominant
18 1.89×106 0.469 14.70 14.79 0.354 0.352 Two peaks, left dominant
19 1.89×106 0.469 8.63 15.62 0.603 0.333 Two peaks, right dominant
20 1.89×106 0.723 9.97 15.11 0.522 0.344
21 1.89×106 0.384 15.12 15.67 0.344 0.332
22 2.09×106 0.355 14.25 16.66 0.365 0.312
23 4.19×106 0.468 13.87 22.20 0.375 0.234
24 4.19×106 0.291 17.26 20.62 0.301 0.252
25 4.19×106 0.186 27.67 17.48 0.188 0.297
26 4.30×106 0.282 19.66 22.52 0.264 0.231
27 4.30×106 0.282 17.76 21.89 0.293 0.238
28 4.30×106 0.282 15.75 24.19 0.330 0.215
29 4.30×106 0.282 17.45 23.52 0.298 0.221 Images recorded every 20 s
30 11.8×106 0.342 18.08 36.84 0.288 0.141
31 4.00×106 0.297 16.71 28.03 0.311 0.186
32 15.0×106 0.195 28.24 28.02 0.184 0.186
33 11.8×106 0.118 34.84 32.95 0.149 0.158
34 11.8×106 0.168 30.59 32.72 0.170 0.159
35 3.60×106 0.324 15.71 17.30 0.331 0.301
36 11.8×106 0.342 15.70 25.58 0.331 0.203
37 4.30×106 0.228 23.09 34.15 0.225 0.152
38 12.2×106 0.300 28.73 45.19 0.181 0.115
39 12.2×106 0.300 29.86 43.05 0.174 0.121 Images recorded every 30 s

Wavenumbers (normalised to the width of the Petri dish) are indicated by k and the dimensional wavelengths by λ.
NA indicates that the images were not recorded.
One image was recorded every 10 s unless stated otherwise.
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Discussion
Initially, the suspension was agitated until it appeared to be

well-mixed. To establish whether the fluid flow caused by the
initial mixing had indeed diminished, we used an argument
similar to that presented by Hill et al. (1989) and Pedley et al.
(1988). If we assume that the Petri dish and suspension are in
solid body rotation with angular velocity Ω until the container
is instantaneously brought to rest (as in Hill et al. 1989), then
the time for spin-down of the suspension is of order E1/2Ω−1 s,
where E is the Ekman number. Hill et al. (1989) show that if
Ω approximates 1 s−1 then the decay time is approximately
10 s. This is larger than the upper estimate of Pedley et al.

(1988) of a decay time of 5 s when the typical stirring velocity
is 0.1 cm s−1. A value of 10 s is sufficient for the initial
bioconvection patterns to be independent of the mixing (e.g.
Figs 3, 4). However, the patterns formed in certain regions of
parameter space were acutely sensitive to the form of mixing
used (see Figs 2, 8), as shown by Fig. 6 in which many pattern
types occupy the same region in parameter space.

One of the objectives of these experiments was to provide
data which can be compared with future theoretical predictions
from mathematical models of bioconvection. Computer
simulations of bioconvection are currently being developed
and are needed to predict the development of long-term
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Fig. 2. Biconvection in a
suspension of Chlamydomonas
nivalis of concentration
1.89×106 cells cm−1 and depth
4.69 mm. Experiment 19 (see
Table 1). Images were recorded
every 10 s and are numbered in the
sequence in which they were taken.
Image 9 was recorded after 5 min.
Dark regions indicate a high local
cell concentration. Roll patterns
are seen to transform into dot
patterns (see text for further
details).
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patterns because they are caused by nonlinear mechanisms. So
far, mathematical approaches have been limited to predictions
of the onset of pattern formation using linear theory. These
assume that initially there is no bulk flow of the suspension of
micro-organisms and examine the effects of small
perturbations on a specified initial concentration distribution of
cells. It is difficult to achieve such an idealized initial state in
experiments owing to the presence of residual fluid motion
after mixing and the inevitable non-uniformities in cell
concentration. Nevertheless, some comparisons can be made
and used to determine boundaries for some of the parameters
which are difficult to measure accurately. The results from

seven experiments (numbers 2, 4, 7, 17, 18, 19 and 23 in
Table 1) have been selected as a representative sample for
these comparisons and, also, they are of approximately the
same depth, 0.4 cm.

In general, an initial instability is manifest after 20–30 s, and
if the cells swim at approximately 50 µm s−1 (Pedley and
Kessler, 1992; Hill and Häder, 1997), then they travel
1.0–1.5 mm in this time. Since the depth of the whole layer is
of the order of 4 mm, the equilibrium distribution described
above will not have had sufficient time to form fully. Thus, if
the initial patterns are caused essentially by the overturning
instability due to the top-heavy cell concentration profile, only

       1        4        7

       2        5        8

       3        6        9

Fig. 3. Biconvection in a
suspension of C. nivalis of
concentration 1.89×106 cells cm−1

and depth 3.18 mm. Experiment 15
(see Table 1). Images were
recorded every 20 s and and are
numbered in the sequence in which
they were taken. Image 9 was
recorded after 5 min. Dark regions
indicate a high local cell
concentration. Annular or ring-like
patterns are clearly observed in the
final three frames (7–9).
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a small proportion of the cells will be involved and the mean
concentration, c, of cells must be significantly greater than the
minimum, critical concentration at which the equilibrium
profile becomes unstable to small perturbations. The critical
cell concentration depends on a parameter, d, proportional to
the depth of the layer, and is expressed in terms of a
dimensionless parameter called the Rayleigh number, R, which
is proportional to c and d4. Linear theories of the initial
instability predict the critical values of the Rayleigh number,
Rc, and also the initial wavelengths, λ, of the bioconvection
patterns. The theoretical results for the simpler mathematical

model of Pedley et al. (1988) and Hill et al. (1989), in which
the randomness in cell swimming direction was modelled by a
constant cell swimming diffusivity, D, are based on two
possible initial concentration profiles, namely the equilibrium
profile in a layer of finite depth and a uniform profile suitable
for the analysis of relatively deep layers. Using the analysis
and parameter values chosen by Hill et al. (1989; see their
Table 2), we can conclude that the experimental values of R
(Table 2) are approximately five times greater than Rc for the
equilibrium profile (Rc(e)) and of the same order as Rc for the
uniform profile (Rc(u)). This is consistent with the experimental
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Fig. 4. Biconvection in a
suspension of C. nivalis of
concentration 12.2×106 cells cm−1

and depth 3.00 mm. Experiment 39
(see Table 1). Images were
recorded every 30 s and and are
numbered in the sequence in which
they were taken. Dark regions
indicate a high local cell
concentration. Tightly packed,
regular structures are observed on
a variety of scales and there is
some interaction between the
horizontal boundaries whose
influence propagates towards the
centre with time.



1523Wavelengths of bioconvection patterns

observation that the patterns are seen before there is sufficient
time for the equilibrium state to form. Furthermore, from the
equation for Rc(u) in Hill et al. (1989), we obtain an estimate
of 3×10−4 cm s−1 for a lower boundary on the value of the
diffusivity, D. However, the predicted wavelengths for the
most unstable mode are approximately twice as large as the
observed wavelengths. Bees (1996) and M. A. Bees and N. A.
Hill (in preparation) have analysed the linear stability of the

equilibrium state in a layer of finite depth using Pedley and
Kessler’s (1990) more rational, stochastic theory. Two key
parameters in this analysis are a correlation time, τ, which is a
measure of the time scale over which a cell swims in
approximately the same direction, and the gyrotactic
reorientation parameter, B, which is the time scale for

Table 2. Experimental measurements of dominant
wavelengths λ0 of the initial disturbance and corresponding
calculations of d (proportional to suspension depth) and the

Rayleigh number, R, depending on the value of the
correlation time, τ

Experiment λ0
τ=1.3 s τ=5 s

number (cm) d R d R

2 0.486 172 185×106 44.7 3.25×106

4 0.468 193 484×106 50.2 8.50×106

7 0.417 174 82.2×106 45.2 1.44×106

17 0.708 204 393×106 53.07 6.90×106

18 0.354 204 393×106 53.0 6.90×106

19 0.603 204 393×106 53.0 6.90×106

23 0.375 204 863×106 53.0 15.2×106

Theory
τ=1.3 s 0.026 174 4000×106 − −

Theory
τ=5.0 s 0.52 − − 45.2 7.0×106

Seven experiments from Table 1 have been chosen with similar
suspension depths (approximately 0.4 cm) so that they can be
compared with the theoretical predictions. In all cases, the gyrotactic
reorientation time, B, equals 1.25 s. For the theoretical predictions, we
assume that the depth equals 0.4 cm (see text for further details).
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Fig. 5. Dominant wavelengths of the initial disturbance (generally
20–30 s after mixing) from a fully mixed suspension of C. nivalis as
a function of concentration and suspension depth. The diameter of
each circle represents the most unstable (dominant) wavelength. The
centre of each circle represents its position in parameter space.
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Fig. 6. Pattern type of the initial disturbance (generally 20–30 s after
mixing) from a fully mixed suspension of C. nivalis for cell
concentration and suspension depth. The dominant pattern present is
shown: D, dots, L, lines, X, dots joined by lines in X or Y shapes; M,
mixed. Some of the long-term patterns (the stable pattern observed
after 5–10 min) are also shown: the subscript T means that the pattern
evolves through a torus stage and the superscripts H and S indicate
where there was clear evidence of hexagonal or square arrays,
respectively, in the long-term pattern.

Fig. 7. Dominant wavelengths of the long-term pattern observed
(5–10 min after mixing) in a suspension of C. nivalis as a function of
cell concentration and suspension depth. The diameter of each circle
represents the most unstable (dominant) wavelength. The centre of
each circle represents its position in parameter space.
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reorientation of a bottom-heavy cell in the absence of a flow.
On the basis of our experience with the simpler deterministic
model, we expect that, in the stochastic model, Rc(e) will be
less than Rc(u) and, therefore, Rc(e) for the equilibrium state
must still be less than the experimental values of R for which
patterns are seen. This criterion shows that the estimate of
τ=5 s from Pedley and Kessler (1990) gives realistic values for
Rc(e) (see Table 2), unlike their alternative estimate of 1.3 s
which gives values of Rc(e) one order of magnitude greater than
the experimental values. Comparisons between the predicted
and experimental wavelengths suggest that reasonable
agreement is obtained when B≈1.25 s, a value that has been
suggested from direct measurement of individual trajectories
by Hill and Häder (1997).

The first instability to occur tends to consist of sheets or
lines when viewed from above (although dots are also quite
common). The sheet instability usually breaks down to a dot-

type instability or a pattern resembling a lattice of nodes
joined by lines. These patterns break down further into
smaller dots or other connected patterns. Therefore, in
general, two-dimensional patterns become unstable to three-
dimensional patterns via a complicated set of mode
interactions. For example, tori can be formed in the manner
indicated in Fig. 10. Initially the suspension is well-mixed
and the cells swim to the top, thus initiating a
Rayleigh–Bénard-type instability. The initial disturbance is
two-dimensional and in the form of descending sheets of
concentrated suspension (bioconvection rolls). The sheets
quickly break down via a three-dimensional instability to
form descending plumes. As a plume hits the bottom of the
dish, it spreads out, entraining clear fluid in its wake at the
upper surface. It is when the clear fluid reaches the bottom
of the dish that the resulting ring vortex can be seen clearly
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Fig. 8. Variation of the dominant pattern wavenumber k with time
after mixing a suspension of C. nivalis. Results from three identical
experiments (17–19) in which the initial instability (at t=30 s) is highly
dependent on the initial conditions following mixing. The
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with time for experiment 39 (see Table 1). Different modes generally
become unstable to modes of larger wavenumber. Darker regions
denote higher values of Fourier spectrum density indicating a
(dominant) mode with a large amplitude.
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Fig. 10. Illustration to show
how clear fluid can be
entrained in a plume to form
an annulus pattern when
viewed from above. 
(A) Cells swim up to the top
of the medium and the
suspension overturns owing
to a Rayleigh–Bénard
instability. (B) Gyrotaxis
produces thin plumes. 
(C) The plumes hit the
bottom of the dish and spread
out, forming a ring vortex.
(D) Clear fluid is entrained in
the wake of the plume and an
annulus is created.
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as an annulus when viewed from above. The annulus
increases its diameter and forms a closed bioconvection roll.
Eventually, this two-dimensional rotationally invariant roll
becomes unstable to three-dimensional plumes (Fig. 11).
This process has been observed via close inspection of the
structures with a microscope, both from above and obliquely.

To summarize our results, we have developed techniques for
recording bioconvection patterns in a shallow dish as functions
of suspension concentration, depth and time. We used image-
processing techniques to measure the cell concentration and
suspension depth, and used methods for culturing the cells that
ensured that they were always healthy and fully motile. We
refined techniques for processing the images and extracting the
dominant pattern wavenumber using Fourier analysis. Initial
and long-term pattern wavelengths were analysed in detail and
it was found that the initial wavelength increased with
increasing depth but tended to decrease slightly with increasing
concentration. The well-developed wavelength decreased with
concentration and showed little variation with depth. When the
patterns are well developed, gyrotaxis and non-linear effects
become more important in regions of high local concentration
and, thus, suspension depth has a less important role in
determining the pattern wavenumber. Cell concentration, in
contrast, does determine the final non-linear steady state (e.g.
bottom-standing plumes; Pedley and Kessler, 1992). A higher
cell concentration decreases the wavelength through gyrotaxis.
Each of the patterns we observed was categorized, and the
interaction of unstable modes as the pattern evolved with time

was explored. In particular, mechanisms for the existence of
annular patterns were proposed.

An additional phenomenon was observed that deserves to be
reported. When the suspension was very shallow (e.g. 1.86 mm)
and the cell concentration reasonably high (e.g.
4.19×10 cells cm−1), then bioconvection was initiated
throughout the suspension, forming dense squat plumes or
‘blobs’. As time progressed, these plumes emigrated towards
the edge of the dish, leaving a clear patch with no patterns.
Close inspection of these plumes revealed a noticeable
elevation of the upper fluid surface (sufficient to alter visibly
the reflective properties of the fluid surface) directly above
them, and this may have affected their stability. Concentrated
plumes existed for long periods on the edge of the clear patch
but tended to wander and merged with neighbours if they
approached closely. It appears that these conditions may
approximate the critical depth above which bioconvection can
occur, and that the increase in depth at the plumes not only
attracts more cells to the plumes but also decreases the depth in
other regions, thus reducing the possibility of bioconvection
there. The fluid layer is naturally deeper at the boundaries owing
to the meniscus and, over time, this may attract more cells to
the edges. We speculate additionally that a change in surface
tension causes the elevation of the upper surface and also affects
the attraction and merging of plumes. The excess of cells near
the surface may be responsible for this change in surface
tension. This phenomenon deserves further investigation.
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