
Abstract. Results obtained using continuous and discrete wave-

let transforms as applied to problems in neurodynamics are

reviewed, with the emphasis on the potential of wavelet analysis

for decoding signal information from neural systems and net-

works. The following areas of application are considered: (1) the

microscopic dynamics of single cells and intracellular processes,

(2) sensory data processing, (3) the group dynamics of neuronal

ensembles, and (4) the macrodynamics of rhythmical brain

activity (using multichannel EEG recordings). The detection

and classification of various oscillatory patterns of brain elec-

trical activity and the development of continuous wavelet-based

brain activity monitoring systems are also discussed as possibi-

lities.

Wavelets are a relatively new discovery in applied

mathematics. The name itself emerged some ten years

ago... . There has been an explosion of interest in them

over the last decade... . Because of their interdisciplin-

ary origin, wavelets appeal to scientists and engineers

of many different backgrounds... .

Ingrid Daubechies (from the Introduction to Ten

Lectures on Wavelets [17]

1. Introduction

Modern neurodynamics constitutes an extensive interdisci-

plinary field of natural sciences, which is closely related to

neurophysiology and wherein basic knowledge about the

principles and mechanisms of the functioning of the nervous

system comes from the joint experience of chemists, biolo-

gists, physicists, mathematicians, and specialists in nonlinear

theory of oscillations and waves [1±3]. Recent progress in

understanding molecular and ionic mechanisms underlying

the activity of individual neurons [4] provided a basis for

further investigations into such essentially physical problems
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as exploration of the functional properties and principles of

information coding, its representation and processing in the

sensory data in the central nervous system (CNS). The

perception and processing of external information are the

main functions of the CNS. Visual, acoustic, tactile, and

gustatory stimuli are transformed by respective receptors into

a sequence of electrical pulses. These nervous pulses propa-

gate through afferent nerve fibers from receptor cells to

`primarily feeling' neurons that carry out the primary

processing of sensory information [5±8]. This sensory

information is then passed through a few relay stations

(brain stem and thalamic nuclei) that transform and con-

volve the information code, before it reaches the cerebral

cortex where an image of the external world is formed [9, 10].

At each subsequent stage of information transfer, the relevant

processes are increasingly more difficult to study. The

question of how the totality of nervous impulses (action

potentials or spikes) generated by single neurons reflect the

all complexity and diversity of the external world remains one

of the biggest challenges for the natural sciences.

Recent years have witnessed considerable progress in the

development of experimental methods for studying the

production and propagation of signals at different stagesÐ

from receptor cells to the cerebral cortex. Noninvasive

methods of recording and analyzing the overall brain

electrical activity, such as electroencephalography (EEG)

with electrodes arranged on the skin of the head, are also

still in use. EEG is frequently utilized to study brain functions

in humans and other animals [11, 12]. There are also invasive

methods employing implanted electrodes, which provide

more detailed information on the electrical activity of small

neuron populations in the cortex and subcortical structures.

Magnetic encephalography (MEG) is finding increasingly

wider application in the last few years due to the higher

quality of signals reflecting brain activity [13].

The technical progress in experimental studies is paral-

leled by the lack of concordance with the mathematical

apparatus applied in neurophysiological research. The over-

whelming majority of the experimental work in this field

makes use of very few statistical methods for treating the data

obtained, e.g., calculation of the mean spike frequency,

construction of various correlation characteristics and dis-

tribution functions, etc. It should be emphasized, without

lessening the importance of statistical methods in biology,

that not infrequently they provide only limited information

about the complicated phenomena encoded in experimental

data. This fact is illustrated by the example of the study of the

response of a sensory neuron to periodic stimulation. If all

neurons similarly reacted to the same external action (e.g., a

short electrical pulse), periodic stimulation by a series of

impulses would induce a periodic sequence of spikes (e.g., 2 or

3 spikes per stimulus). However, experimentalists not infre-

quently encounter time-varying neuron responses due, in

particular, to the adaptation to external factors, which is

attributable to both the intrinsic characteristics of a single cell

and the dynamics of the neural network as awhole [14, 15]. As

is also known, the neuron can even stop responding to the

next stimulus from a certain moment. Figure 1 illustrates the

adaptive response of a neuron of the trigeminal complex to

periodic stimulation. Maximum neuron activity (27 spikes/s)

is observed at the onset of stimulation; it falls to average

10 spikes/s within a few seconds and varies thereafter,

undergoing a slow negative drift. On the one hand, such a

behavior of the living system makes it extremely difficult to

single out characteristic modes of neural activity that could be

associated with the peculiar properties of a given stimulus. On

the other hand, it is clear that the study of sensory data

processing should not be restricted to simple statistical

characteristics; additional specific methods more suitable for

decoding information contained in the processes with time-

varying features are needed. Wavelet analysis [16±19] is one

such method: even first attempts of its application in

neurophysiological research [20±24] has demonstrated the

high potential of wavelets for studying the dynamics of

neural systems.

Wavelet terminology was developed in the 1980s [16, 25].

This mathematical apparatus was initially proposed as an

alternative to classical spectral analysis based on the Fourier

transform. The advent of the wavelet theory is considered to

be a very important event in mathematics in the past decades;

indeed, it appears to be the sole new mathematical concept

that was immediately recognized as a tool for applied research

in practically all natural sciences (first and foremost, in

physics) and many technical fields [26±34]. To recall, the

appearance of the wavelet theory itself was not unexpected,

since it was dictated by the real needs of experimental

investigations. Modern wavelet analysis is essentially a

combination of pre-existing ideas and methods. For exam-

ple, fast wavelet transform algorithms are based on the

subband coding ideology known from radioengineering [35].

Some ideas were borrowed from physics (coherent states [36],

etc.) and mathematics (studies on CaldeÂ ron±Zygmund inte-

gral operators [37]).

Today, wavelets are widely used in work involving the

analysis and synthesis of various signals, image processing

and recognition, the compaction of large volumes of informa-

tion, digital filtration, studying intense turbulence, and the

solution of certain differential equations. This list can

certainly be extended [38±47]. In particular, there are

numerous examples of the application of wavelet analysis in

modern physics, including active and passive radar, radio-

metry, radar technical security devices, communication

systems, cosmology, acoustics, fluid dynamics, turbulence

structure, solid-state physics, processes of multiparticle

production, analysis and diagnostics of structure formation,

chaotic synchronization, geophysics, seismology and so forth

[26, 32±34, 36, 48±60]. The new theory aroused great interest
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Figure 1. An example of the adaptation of neuron firing activity in the rat

trigeminal complex perceiving tactile information from vibrissae in

response to long periodic mechanical stimulation of one of the whiskers

by directed short (50 ms) air puffs. From top to bottom: the beginning and

end of stimulation by the sequence of periodic impulses; neuron-generated

spike train, and dynamics of the mean spike frequency (averaging over a

sliding window of 500 ms duration).
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from the very beginning. According to known estimates [28],

starting in the 1990s the number of publications based on the

study of physical phenomena with the use of wavelets is

growing continuously. The number of references to Internet

sources containing the term `wavelet' amounts to several

million. In the natural sciences, this mathematical apparatus

is most extensively applied to characterize temporally non-

stationary or spatially inhomogeneous complex nonlinear

processes. It is for this reason that wavelet analysis is of

strong interest for structural studies of signals from living

systems, most classical digital data processing methods being

applicable only to processes with time (or space)-constant

parameters. Wavelet analysis long ago became a standard

tool for studying complex processes, and the success achieved

with its help gives reason for optimism. Nevertheless, its

application in biology and medicine is still in its infancy;

hence, the necessity and importance of reviewing such

applications in neurodynamics for the systematization of

various interdisciplinary approaches and the results of

relevant research.

Details of the mathematical apparatus of wavelet analysis

have been described in two comprehensive reviews [32, 33].

The present review is focused on new possibilities provided by

the wavelet analysis for decoding information contained in

the signals from individual neurons and neural networks. The

review layout is as follows. Section 3 is devoted to wavelet

application for the analysis of microscopic dynamics at the

level of single cells or intracellular processes. The problems of

analysis of information contained in the signals of electrical

activity of small neural assemblies are discussed in Section 4.

The use of wavelets for the analysis of electroencephalograms

(EEGs) is described in Section 5. Thismaterial is largely based

on the results of research carried out by the authors in recent

years in close collaboration with practising neurophysiolo-

gists. By and large the wavelet-basedmethods discussed in the

review and their physiological interpretation are good

examples of the application in neurodynamics and neurophy-

siology of modern analytic and diagnostic techniques devel-

oped in physics and nonlinear dynamics. Moreover, the

results obtained with the help of wavelet analysis are

frequently the first steps to understanding the nature of the

phenomena under investigation. Extensive research in this

field can promote interdisciplinary cooperation and further

cross-fertilization of physics, radiophysics, applied mathe-

matics, and neurophysiology.

It should be noted that applications of the approaches to

the analysis of neural systems considered in the framework of

this review are not restricted to neurodynamics and neuro-

physiology. Suffice it to say that distinguishing meaningful

signals from background noise and the modulation, detec-

tion, and diagnostics of temporal and spatial±temporal

structures in nonlinear systems are of paramount importance

for modern radiophysics and nonlinear dynamics. It is these

and similar problems on which the present review is actually

focused. Indeed, the methods used to detect and classify

neuronal spikes are suitable for the recognition of a group of

objects and the determination of distances to them in radar.

Approaches to the recognition of characteristic EEG oscilla-

tory patterns are equally applicable to the discrimination of

voice messages from intense noise, the diagnostics of spatial

structures in plasma-based systems, etc.

Wavelet analysis is a popular research tool increasingly in

demand among specialists interested in both fundamental

and applied problems. We are earnestly convinced that a

wider application of this instrument would significantly

broaden the scope of many theoretical and especially

experimental research avenues in various fields of physics

and related sciences.

2. General information about wavelets

In analogy with the Fourier transform, the wavelet trans-

form of a signal x�t� consists in its expansion on a certain

basis. The difference lies in the choice of a `soliton-like'

function c�t� for the basis function having some character-

istic properties and well-localized in time and frequency

domains; the basis is formed by transition to another scale

of c�t� and its shifts along the time axis. The employment of

localized functions makes possible the analysis of processes

whose characteristics vary with time; also, this provides a

means for the two-dimensional scanning of the signal x�t�, at
which both the time and the frequency are regarded as

independent variables [32].

Wavelet analysis, unlike the classical spectral one, permits

significantly diversifying the choice of the basis on which the

signal is expanded. The harmonic functions applied in the

framework of the Fourier transform are specified on the

interval t 2 �ÿ1;1� and do not permit effectively investigat-

ing local changes in the signal structure.1 Calculation of the

power spectrum density of signal x�t� makes it possible to

determine the frequency composition of the process being

considered and to elucidate characteristic oscillation

rhythms. It allows the presence of oscillations at a definite

frequency to be demonstrated but does not show when these

oscillations occurred (during the entire signal recording time

or within a shorter interval). Infinitely oscillating functions

cannot be used for the purpose of localized spectral analysis

[31]. What, then, are basis functions (wavelets)? If the c�t�
function is to be regarded as a wavelet, it should have a

number of characteristic properties, i.e., be localized in time

and frequency, zero mean, and finite energy [32, 33].

There are discrete and continuous wavelet transforms that

can be regarded as different methods for the analysis of signal

structure. The continuous wavelet transform (CWT) utilizes

functions (`mother' wavelets) infinitely differentiable and

usually having the analytical form.2 Due to this, the

functions exponentially decrease at infinity and the basis

constructed using such wavelets is not strictly orthonormal-

ized. This feature means that the CWT is redundant and the

values of wavelet transform coefficients are strongly corre-

lated. However, the redundancy may prove to be a useful

property allowing one to obtain a more demonstrative and

clearer interpretation of the results of the signal structure

analysis in the form of `skeleton' or `ridge' patterns and

surface level lines of wavelet transform coefficients [31].

Information that can be derived from a continuous wavelet

transform (e.g., about changes in the characteristic frequen-

cies of rhythmic processes and their interaction) is easier to

analyze, such a presentation being reminiscent of the radio-

physical one [63]. When complex functions c�t� are applied,
the CWT permits studying the dynamics of such character-

1 It should be noted that there is a windowed Fourier transformwhich also

permits processing of nonstationary signals. Monograph [29] reviews

advantages and disadvantages of this transform and illustrates the

possibility of a passage from the windowed Fourier transform to wavelets.
2 We note that `mother' wavelets can also be constructed on the basis of

tabulated time-series fragments [61, 62].
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istics as instantaneous amplitudes, frequencies, and phases of

rhythmic processes, which are identified in the structure of the

signal being analyzed. When phases are the study subject, it is

possible to introduce into consideration families of time

signal phases corresponding to various independent spectral

components of the signal [48, 64±66]. Such possibilities make

CWT a highly attractive tool for the solution to many

problems.

Discrete wavelet transform (DWT) is essentially different

from CWT. It can utilize nonorthogonal basis functions

(frames) [17]. However, an orthonormalized (or almost

orthonormalized) basis is usually considered, which makes

possible a more accurate representation of the signal and

significantly simplifies its reconstruction from a set of wavelet

coefficients. Unlike CWT wavelets, DWT wavelets do not

have the analytical recording form (with the exception of the

Haar function [18]). They are given in the form of a table of

numerical coefficients obtained by the solution of certain

equations. In practice, the concrete form of c�t� functions in
the framework of DWT is not considered in the explicit

formÐonly sets of numbers are written out that are used to

specify any given wavelet. This implies a series of elementary

operations with matrices, which makes possible realization of

fast DWT calculation algorithms. The basis is constructed

using the iteration algorithm, making allowance for a change

in the scale and a shift of the unique function. The detailed

description of essential differences between the DWT and

CWT procedures can be found in book [28]. This section is

only confined to the data on the two aforementioned trans-

forms, which will be needed in the following.

2.1 Continuous wavelet transform

The characteristic signs formulated above define a large class

of real-valued and complex wavelets involved in solving a

variety of problems. Specifically, the Morlet wavelet [16] is

most popular among complex functions used in the local

spectral analysis of processes with time-varying character-

istics, being well localized in time and frequency:

c�t� � 1

p1=4

�

exp �i2p f0t� ÿ exp

�

ÿ�2p f0�2
2

��

exp

�

ÿ t 2

2

�

;

�1�

where f0 is the parameter called central frequency, and

i �
�������

ÿ1
p

. The second term in brackets performs a correction

for a wavelet transform of signals with the nonzero mean. It

can be neglected in the case of f0 > 0.

The chosen `mother' waveletc�t� is used to form the basis.

Functionc�t� is localized in time; in order to analyze different

portions of the x�t� signal with the help of this function, a shift
along the t-axis is needed to enable displacement into these

portions. On the other hand, the localized analysis of the

signal structure in a wide scale (frequency) range implies a

transition to another scale. As a result, function c�t� provides
the basis for the construction of the two-parameter wavelet

family

ca; b�t� �
1
���

a
p c

�

tÿ b

a

�

; �2�

where parameter a 2R, a > 0, called the scale of the wavelet

transform, is the scale factor that determines the compression

or extension of the function; b 2R is the shift parameter, with

the help of which the wavelet moves along the signal x�t�
being analyzed, and R is the real number space. Factor 1=

���

a
p

serves to normalize the energy of eachca; b�t� function, so that
its L2 norm is constant: jjca; b�t�jjL2 � jjc�t�jjL2 < 1.

Thus, the continuous wavelet transform of signal x�t�
defined in the time interval ÿ1 < t < 1 has the following

form

W�a; b� � 1
���

a
p

�1

ÿ1
x�t�c �

�

tÿ b

a

�

dt �
�1

ÿ1
x�t�c �

a; b�t� dt ;

�3�

where the superscript `�' denotes a complex conjugation. If

W�a; b� 2R, the result of transformation (3) can be regarded

as a surface in the three-dimensional space.3 There are

different variants of visualization of this surface for the

pictorial representation of peculiar features of the signal

being analyzed. One is consideration of its projection onto

the �a; b� plane and depicting the values of wavelet transform

coefficients in different colors (as on geographic maps). Such

an approach makes it possible to see how signal properties

vary with time on different time scales.4

The so-called wavelet transform ridges are usually

constructed to identify instantaneous characteristics of

rhythmic processes (amplitudes, frequencies, phases) [28].

The ridges are constructed for the signal energy density

surface E�a; b� � jW�a; b�j2; they actually represent lines of

local maxima of such a surface (identified when fixing time

moment b � t� and considering local energy spectra). Not

infrequently, it is more convenient to consider surface E� f; b�
instead of E�a; b�, i.e., to pass to the frequency representation

of the energy spectrum. However, it should be taken into

consideration that the relationship between timescale a and

frequency f depends on both the type of the wavelet function

chosen and its parameters. Specifically, the relation between

the scales of the wavelet transform and the frequencies of the

Fourier spectrum for wavelet (1) takes the form

f � f0

2a
�

������������������������

2� 4�p f0�2
q

4pa
:

This is a very convenient and an easy-to-grasp method for the

analysis of nonstationary multifrequency dynamics, making

it possible to trace the time evolution of each oscillation

rhythm of interest to the researcher. Each point at the ridge

being associatedwith the local energy spectrum, the finding of

instantaneous frequencies of oscillation processes ensures at

the same time the determination of their instantaneous

amplitudes and the instantaneous phase (if a complex

wavelet is utilized):

ja�b� � argW�a; b� : �4�
This variant of analysis will be applied in studies of neural

system dynamics at the microscopic level, and nonstationary

EEG dynamics.

2.2 Multiscale wavelet analysis

It was assumed in the discussion of the continuous wavelet

transform in Section 2.1 that the x�t� signal is expanded in the

basis constructed from one soliton-like function c�t� or

3 It is easy to show that for a large class of x�t� signals (actually, for any
physical processes), W�a; b� 2 C�R�R�, where C is the continuous

function space.
4Note that the range of frequencies being studied is bound by the length L

of the time series � fmin � 1=L� from below, and by discretization

frequency fs � fmax � fs=2� from above.
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`mother' wavelet. The multiple-scale analysis exploiting the

discrete wavelet transform is based on a different ideology.

The orthonormalizedwavelet bases are utilized in thismethod

in order to describe mathematically the `information gain'

needed to pass from a rough approximation to a more

accurate one [18, 19]. This concept emerged for the first time

in the solution to applied problems of image analysis.

In the framework of the multiple-scale analysis, scaling

function j�t�, sometimes called the `paternal' wavelet, is

introduced into the consideration. The following equality is

fulfilled for the scaling function:

�1

ÿ1
j�t� dt � 1 ; �5�

i.e., its mean value is not zero, as in the case of `mother'

wavelet c�t�.
Let us introduce the following notation in analogy with

formula (2):

jj; k�t� �
1

2 j=2
j�2 jtÿ k� : �6�

At different values of the scale transform coefficient and

displacement, corresponding to parameters j and k, the

approximation coefficients can be calculated as follows:

sj; k �
�1

ÿ1
x�t�jj; k�t� dt : �7�

For the chosen resolution level, the coefficients thus obtained

are referred to as discrete approximations of the signal on

scale j. Summation of the scaling functions and the respective

coefficients yields the so-called continuous approximation of

signal x�t� on a given scale or resolution level j [18]:

xj�t� �
X

1

k�ÿ1
sj; kjj; k�t� : �8�

On small scales (large j ), this continuous approximation

approaches the signal x�t� being analyzed. The ideology of

this continuous approximation permits describing the `trend'

of the process of interest on the chosen observation scale;

thereafter, a detailed analysis of fluctuations with respect to

this trend can be undertaken with the help of wavelets.

Any function x�t� 2 L2�R� can be represented at a certain

arbitrary resolution level jn as the series

x�t� �
X

k

sjn ; kjjn ; k�t� �
X

j5 jn

X

k

dj; k cj; k�t� ;
�9�

cj; k�t� � 2 j=2c�2 jtÿ k� ;

where cj; k are the scaled and displaced versions of the mother

wavelet. The expansion coefficients dj; k are defined as

dj; k �
�1

ÿ1
x�t�cj; k�t� dt : �10�

Using approximation (8), it is possible to write out the

expression for the chosen scale (resolution level) jn:

x�t� � xjn�t� �
X

j5 jn

mj�t� ; �11�

where the function

mj�t� �
X

k

dj; k cj; k�t� �12�

characterizes the detailed structure of the signal on the

resolution level j. Using formula (11), it is possible to write

the recurrent expression

xj�1�t� � xj�t� � mj�t� ; �13�

in other words, supplementation of the approximation on an

arbitrary scale j by detalization of signal mj�t�, describing
fluctuations with respect to the trend being approximated,

yields the approximation on the next, more detailed resolu-

tion level j� 1. The reader is referred to review [33] for an

extended description of themultiple-scale analysis (also called

multiscale analysis).

In practice, the value of the scale transform coefficient 2 j

is limited on small and large scales. It is clear that the signal

structure cannot be analyzed on scales smaller than a single

discretization interval Dt (the scale of a resolved structure) or

scales larger than signal duration NDt that is, practically

speaking, finite (and can be comparatively short). This

accounts for the limitation on the variation of j that

determines the confidence level of the conclusions about the

structure of the process being analyzed on one scale or

another (frequencies).

3. Dynamics of individual neurons

After the brief introduction to the theory of wavelet analysis,

we shall consider problems, in the solution of which wavelets

help to gain new information about the dynamics of neural

systems. These problems can be categorized into a few

groups, depending on the mathematical apparatus applied

(DWTor CWT). However, the choice of the transform type is

often unessential. Different mathematical approaches may be

complementary and give a more comprehensive idea about

the functioning of the study objects. For this reason, we

choose another variant, i.e., to differentiate between pro-

blems depending on the study object (single cells, large neural

assemblies, etc.).

3.1 Analysis of intracellular dynamics

Let us start by turning to the microscopic level, i.e., to

intracellular processes, and the application of wavelet

analysis. Neural activity is known to be underlain by a

variety of biochemical processes proceeding on different

time scales at the level of cell membrane and cytoplasm.

Information on the relationship between these processes may

provide a deeper insight into the mechanisms regulating

intracellular dynamics. Traditional experimental techniques

(intracellular recording of membrane potentials, fluorescence

microscopy, etc.) permit studying various processes in a single

neuron, but many of them are highly invasive. As a

consequence, some traditional methods may affect intracel-

lular processes and even cause damage to a cell.

References [67±69] report on dynamic studies of intracel-

lular processes by interference microscopy based on the

measurement of the optical path difference between a laser

beam passed through a given object and then reflected from a

mirror under the object and a beam reflected from the

reference mirror [70]. The measured quantity is normalized
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to the light wavelength in order to obtain the so-called `phase

height' of the object at a concrete point:

F �
f0 ÿ fobj

2p

l

2
ÿ F0 : �14�

Here, f0 is the initial phase, fobj is the phase shift after

passage through the object, l is the laser wavelength, andF0 is

the constant phase shift determined by the choice of the zero

phase reference point. For inhomogeneous objects character-

ized by varying refractive index, the phase height equals

F�x; y� �
� Z

0

ÿ

nobj�x; y; z� ÿ ns
�

dzÿ F0 ; �15�

where ns is the constant value of the refraction index in

physiological saline, and nobj�x; y; z� is the refraction index

at a point on the cell having coordinates x; y at distance z from
the substrate. The integration limit Z is chosen above the

topmost point of the object. Measurements of F�x; y� by

scanning the cell bring forth its phase image or phase height

relief [70].

Various intracellular processes, e.g., organelle motion,

tend to change the phase height. A typical signal recorded in

the framework of the approach under consideration is shown

in Fig. 2a. A few characteristic frequencies can be distin-

guished in the vicinity of 0.1, 0.3, 1.0, and 3.0 Hz in the signal

power spectrum (Fig. 2b). The respective rhythms are caused

by a number of intracellular processes, such as protein

movements, fluctuations of the transmembrane potential,

and subthreshold changes of the membrane potential.

Various processes, having different time characteristics,

interinfluence one another.

Potential effects of their interaction were estimated by

identifying instantaneous frequencies and amplitudes of

oscillation processes based on the continuous wavelet trans-

form (3) with the Morlet basis function (1). Figure 2c

illustrates the typical behavior of instantaneous frequencies

(distinguished by the ridge construction method) at which

oscillation rhythms in the range from 0.1 to 0.3 Hz remain

almost constant throughout the observation period, whereas

instantaneous rhythm frequencies in the range of 1 and 3 Hz

undergo slow oscillations [67]. This means that high-

frequency fluctuations of the cell phase height are modulated

with processes proceeding on longer time scales.5

The presence of modulation effect means that amplitude

A0 and/or frequencyo0 of the fast oscillatory process varies in

timewith a frequency set by the slower process s�t�. In the case
of amplitude modulation (AM), the following amplitude

change may be detected:

A�t� � A0 � DAs�t� ; �16�

where DA is the amplitude deviation. The single-tone

modulated signal

x�t� � A�t� cos �o0t� j0� � A0

ÿ

1�mas�t�
�

cos �o0t� j0�
�17�

contains parameter ma � DA=A0, called the amplitude mod-

ulation coefficient (index).

In the case of frequency modulation (FM), the instanta-

neous frequency varies according to the law

o�t� � o0 � Dos�t� ; �18�

where parameter Do is a deviation (maximum deflection) in

the carrier oscillation frequency. AnMF signal can be written

out as

x�t� � A0 cosC�t� � A0 cos

�
� t

0

o�t� dt� j0

�

� A0 cos

�

o0t� Do

� t

0

s�t� dt� j0

�

: �19�

In the case of a single-tone FM signal, one has

s�t��cos �Ot�F0�, and consequently

x�t� � A0 cos
�

o0t� j0 �mf sin �Ot� F0�
�

: �20�

Parameter mf � Do=O, called the frequency modulation

index, characterizes phase deviation of the FM signal. The

above formulas become even more complicated for multi-

tone oscillations and under conditions of nonstationary

dynamics of objects of an animated nature, when quantities

in the expressions for AM and FM indices are variables.

The authors of Refs [67, 71] proposed considering, for the

quantitative description of nonstationary multitonal modula-

tion effects, distinguished time dependences of instantaneous

frequencies (or amplitudes) of modulated rhythmic processes

as the original signals for one more (secondary) wavelet

transform allowing a detailed analysis of their structure.

Continuous wavelet transform coefficients are calculated,

the energy density surface constructed, its ridges deter-
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Figure 2. Time dependence of the phase height at one of the points (a) and results of its spectral analysis based on a continuous wavelet transform (b, c).

5 We note that modulation of oscillations is well known from biological

system dynamics. It is exemplified by modulation of heartbeats under the

effect of respiratory rhythm manifested as an increase in the pulse rate

during inhalation and its decrease during exhalation.
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mined, and the global energy spectrum computed as before.

Because signals extracted after a single application of trans-

form (3) can be continuous wavelet transformed, this method

is referred to as double wavelet analysis [67, 71, 72]. A similar

idea was forwarded independently for the analysis of

biological processes in Ref. [73], where the term secondary

wavelet transform was adopted. The double wavelet trans-

form method permitted obtaining the time dependences of

amplitude and frequency deviations, as well as modulation

indices that, in general, could vary in time; also, it was

employed to calculate local modulation spectra [74].

Analysis of phase height dynamics allowed slow modula-

tion of the high-frequency oscillation amplitude to be

detected along with FM, as illustrated in Fig. 2c. Over

200 experimental records were treated to gather statistical

information about peculiarities of AM and FM effects in the

dynamics of intracellular processes [67]. The double wavelet

analysis was used to estimate the modulation frequency and

index. It was revealed that rhythmic components in the

vicinity of 1 Hz and 3 Hz are modulated with different

processes; namely, the main contribution to modulation of

the 1 Hz and 3 Hz rhythms comes from processes with a

frequency of 0.1 Hz and higher frequencies, respectively.

Figure 3 illustrates the distribution of the oscillation rhythm

modulation indices for AM and FM cases. The presence of

interaction between slow and fast processes in cell dynamics

in the form of modulation of oscillations was for the first time

demonstrated in Ref. [67] by the double wavelet transform

method; the authors postulated a putative explanation of

physiological mechanisms behind the observed effects. The

approach being considered may provide a deeper insight into

neuron functions and peculiarities of intracellular dynamics,

both under the normal conditions of cell functioning and

under the action of various external factors. This permits

introducing into consideration the quantitative criteria

characterizing the influence of certain intracellular processes

on others and diagnose changes of this influence under the

effect of external factors (see, for instance, Refs [68, 69]).

3.2 Analysis of information coding processes

Decoding information transmitted by neurons has given rise

to great interest in modern neurodynamics. Many unan-

swered questions concerning the principles of coding various

stimuli arise, even at the stages of primary treatment of

sensory information. Wavelets provide an efficacious tool

for gaining insight into the information content of recorded

neural signals.

Let us consider this issue inmore detail with an example of

processing tactile information in rats [75]. These animals

receive main sensory information about the external world

by actively moving their whiskers or vibrissae (from Latin

vibrare, to vibrate). The vibrissae constitute a component of

the highly organized specialized sensory system conveying

information to the upper parts of the brain via the trigeminal

complex [76]. Each vibrissa has a specific set of features such

as length and location (Fig. 4a). The four longest vibrissae

(straddlers) are denoted by letters a, b, g, and d. The

remaining ones arrayed in five rows on the upper lip are

labelled A, B, C, D, and E. The vibrissae within each row are

numbered. The length of vibrissae decreases from 30±50 mm

to 4±5 mm near the nose to ensure simultaneous contact of

their tips with touchable objects and to cover a broad range of

space±time frequencies needed for an accurate and efficacious

perception of the outside world with the help of this sense

organ.
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Signals from receptor cells located in vibrissal follicles

(Fig. 4b) first arrive at the nuclear complex of the trigeminal

nerve [77] composed of the principal sensory (Pr5), oral

(Sp5o), interpolar (Sp5i), and caudal (Sp5c) nuclei. This

nuclear complex performs primary processing of input

sensory information [76, 78]. The majority of the neurons in

the Pr5 and Sp5i nuclei transmit sensory information to the

thalamus, which sends signals to the cerebral cortex, where

tactile images are formed. Neither the Sp5o nor Sp5c nucleus

has functionally significant projection paths to the thalamus.

All four nuclei interact via the internuclear neural network

[79]. When animals palpate objects with their vibrissae,

vibrations of the latter trigger spike generation by the cells;

the spikes serve to code information about the physical

characteristics of an object (e.g., its roughness).

Electrophysiological studies [76] demonstrated that neu-

rons of the trigeminal complex can be divided into 3 groups.

For example, silent (S), low-frequency (LF), and high-

frequency (HF) neurons are distinguished based on their

spontaneous firing activity patterns [mean spike generation

frequency (MSF) in the absence of mechanical stimulation of

the vibrissae]. Another classification makes use of neuron

responsiveness to stimulation. In the framework of this

classification, the responses are categorized into phasic (Ph),

i.e., short bursts of impulses closely associated with the

beginning or end of the stimulus action (Fig. 5a), and tonic

(T), i.e., a sustained train of spikes lasting as long as the

stimulus acts (Fig. 5b).

Ongoing studies involving anaesthetized rats are focused

on the character of responses of trigeminal complex neurons

to the stimulation of the vibrissae by directed short air puffs.

Such stimulation causes the most natural movements of the

vibrissae. The air was conducted to a selected vibrissa and its

neuron responses were recorded when only this single whisker

moved. The first series of experiments was carried out at a

constant frequency (1Hz) of stimulation 10, 50, and 100ms in

duration. Reference [80] presented results of a statistical

analysis of the percentage ratio of tonic-to-phasic responses

in each nucleus, mean spike repetition rate, etc.

The analytic methods used in the study disregard the

dynamics of neural responsiveness, i.e., variations of firing

activity during the entire period of stimulus action. They are

based on the assumption of identical (stereotyped) neuronal

responses to similar stimulation. At the same time, the

experiments revealed that responses frequently deviated

from the stereotype. Therefore, investigation of this effect

might shed light on some underlying dynamic and behavioral

processes.

We applied wavelet analysis for the estimation of stability

of neuron responses to identical stimuli [15]. The database

available for the analysis comprised 95 experimental record-

ings, including 34 files with neuron activation signals from the

principal sensory nucleus (Pr5), and 29 and 32 files with

signals from the oral (Sp5o) and interpolar (Sp5i) nuclei,

respectively. The second series of experiments was carried out

at a fixed impulse duration of 10 ms and variation of

stimulation frequency from 1 to 30 Hz. The frequency of

stimulation was changed randomly every 10 s during each

recording, the overall duration of stimulation at a given

frequency being 50 s. The data obtained in the second

experimental series included 91 recordings (33, 17, and

41 data sets for the neurons of Pr5, Sp5o, and Sp5i nuclei,

respectively).

It was taken into consideration in the study of time±

frequency dynamics of neuron responses that information is

carried by spike generation times, but not shape. Then, it was

possible to represent signals of neuron electrical activity x�t�
in the form of a train of d-pulses (Fig. 6a), with each pulse
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Figure 5.Two characteristic responses of neurons of the trigeminal principal sensory nucleus (Pr5) to mechanical stimulation of a vibrissa. An example of

recording the extracellular potential of neurons exhibiting reactions of two types, phasic (a) and tonic (b), in response to stimulation of a single whisker.

(c, d) The corresponding cumulative post-stimulus histograms characterizing time interval distribution between the moments of stimulation onset and

generation of neural response impulses (the result of averaging over a train of five identical stimuli).
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corresponding to the moment of generation of the next spike

�ti�:

x�t� �
X

i

d�tÿ ti� : �21�

Representation (21) of the initial process furnishes an

opportunity to analytically compute wavelet transform

coefficients using the Morlet wavelet:

W�a; b� � pÿ1=4

���

a
p

X

i

exp

�

ÿi2p f0
ti ÿ b

a

�

exp

�

ÿ�ti ÿ b�2
2a 2

�

:

�22�

Figures 6b, c display the examples of the calculated energy

spectrum of a neuron signal and singled out wavelet

transform ridges that describe the behavior of instanta-

neous frequencies by analogy with the results presented in

Section 3.1. It appears natural from general considerations to

examine neuron responses near the external impact frequency

(1 Hz in the first series of experiments). In the case of

conventional response (when a neuron generates one and

the same characteristic spike sequence per stimulus or

stereotype), the instantaneous rhythm frequency in the

vicinity of 1 Hz is constant (Fig. 7a). For aperiodic response,

such rhythm fluctuates: the stronger the fluctuations, the

greater the difference between neuron responses (Fig. 7b).

Quantity r � 1=s 2
w, where s 2

w is the dispersion of the

instantaneous rhythm frequency in the vicinity of stimula-

tion frequency, was considered as a quantitative character-

istic of response stability. Note that the proposed approach

differs from the simple statistical analysis, e.g., the construc-

tion of cumulative post-stimulus histograms. By way of

example, Fig. 8 shows two spike sequences: (a) periodic

(2 spikes per stimulus), and (b) aperiodic. Integrated spike

distributions in the two sequences being identical (2 spikes per

stimulus on the average), the cumulative post-stimulus

diagrams will be very similar and the proposed characteristic

taking account of time-dependent neuron dynamics will

expose fundamental differences between the two responses.

A peculiar feature of this approach is the analysis of

neuronal responses in the neighborhood of the stimulation

frequency. In the case of multifrequency responses, e.g., the

generation of bundled activity, it allows differentiation

between cell electrical activities in terms of frequency and

investigation into the firing activity depending on the external

stimulus frequency. Let us see what essentially new informa-

tion on neuronal dynamics may be possibly gained by this

approach.

To begin with, we calculated levels of stability r for all

neurons and three types of stimulation. Thereafter, the type of

stimulation (10, 50, or 100 ms) leading to maximum stability

of the response (minimum deviation from stereotype during

the whole stimulation time) was determined for each neuron.

Next we computed the percentage ratio of r50 > r10 to

r50 < r100 neurons to describe qualitative changes in neuro-

nal response stability upon an increase in stimulus duration

(10 ! 50 ! 100 ms). These data are summarized in Table 1.

The maximum stability of responses from the neurons of the

Pr5 nucleus stimulated by medium-length impulses (50 ms)

was documented for 53% of the cells. In 73% of the neurons,

the response to a series of 50-ms stimuli was more stable than

to 10-ms air jets �rPr5
50 > rPr5

10 �. Similar dynamics was

observed for neurons of the Sp5i nucleus where 67% of the

cells responded to 50-ms stimulation with maximum stability,

while only 8% of them exhibited maximum r for responses to
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Figure 6. Representation of a neuron activity in the form of a series of

d-pulses (a) and results of wavelet analysis of this signal: energy spectrum

(b) and distinguished wavelet transform ridges (c).
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10-ms stimulation. In 92% of the cases, the value of r grew as

the stimulus duration increased from 10 to 50 ms. Thus, the

neurons from Pr5 and Spi5 nuclei are characterized by rather

similar responsiveness to variation of the stimulus duration.

A different type of responsiveness was inherent in neurons

of the oral nucleus. The maximum stability of their responses

was obtained at 50 ms durations for only 17% of the cells.

Most neurons (50%) showed the maximally stable response r

to 10 ms stimulation. The value of r increased only in 33% of

the cells as the stimulus duration increased from 10 to 50 ms.

Thus, the proposed method has demonstrated a substantial

difference in the responsiveness of neurons from Pr5, Sp5i,

and Sp5o nuclei to stimulation of varying duration.

The above results give reason to speak about markedly

different dynamics of neuronal responses in the three nuclei of

the trigeminal complex, which is attributable to their

anatomical structure and physiological specialization.

Indeed, the Pr5 and Sp5i nuclei, in contrast to Sp5o, are

characterized by apparent somatotopic organization and

have direct thalamic projections. Moreover, the Pr5 and

Sp5i nuclei process the major portion of tactile information,

whereas the Sp5o nucleus largely transfers painful stimuli

supplemented by space±time information. This fact may

account for the predominant susceptibility of Sp5o neurons

to the shortest (10ms) stimulation, for which the presence of a

stimulus is of greater importance than its characteristics.

This logically suggests that frequency variation of a

periodic external action fst can also influence the stability of

neuronal response. Under slow stimulation (e.g., 1 impulse/s),

a neuron is able to respond to each consecutive stimulus and

recover prior to arriving the next one, thus exhibiting the

simplest stimulus±response dynamics. At a higher frequency

fst, the neuron is likely to miss certain stimuli and have its

dynamics disturbed. Therefore, it might be thought that a rise

in the frequency fst would results in impaired dynamic

stability of the neuronal response. On the other hand, a

stimulus of a definite frequency can be regarded as a whole

associated with the vibration of a vibrissa palpating a rough

surface with the respective spatial frequency. In this case,

fst � fspv, where fsp [cmÿ1] is the spatial frequency, and v
[cm sÿ1] is the speed with which the vibrissa tip palpates the

surface. Hence, a given neuron may be tuned to detect a

definite frequency; in other words, its response will be

maximally stable at this frequency. This assumption is based

on the results of numerous studies (e.g., papers [81±83])

suggesting the importance of the frequency parameter of

vibrissal movements over the surface for the formation of an

adequate tactile image. A sequence of impulses of a given

frequency can be perceived as a single complex stimulus.

There is a sound reason to expect a different optimal

frequency for individual neurons.

Our studies revealed the presence of cells of both types.

The dependence r� fst� may reflect three main variants of

behavior (Fig. 9), viz. (a) the occurrence of the `optimal'

frequency of the external action, (b) a monotonic decrease in

r with growing fst, and (c) a weak dependence of r on the

stimulation frequency. The first variant is especially common:

it was observed in our experiments in 58% of the neurons of

the principal nucleus (Pr5), 59% of the nerve cells in the

interpolar nucleus (Sp5i), and 53% of the neurons in the oral

(Sp5o) nucleus [84]. Type (b) was documented for 33%, 31%,

and 35% of the neurons in Pr5, Sp51, and Sp5o nuclei,

respectively, and type (c) for 9%, 10%, and 12% of the cells

in the respective nuclei. Thus, characteristics of the Sp5o

nucleus are slightly different from those of Pr5 and Sp5i.

Notice that variant (a) may be interpreted as band-pass

filtering of the stimuli, variant (b) as LF filtering, and variant

(c) as the absence of frequency dependence of neuronal

responses on stimulation.

Statistical analysis of the stimulation frequency at which

the maximum dependence r� fst� is observed for neurons of

the first type yielded the following results (mean � standard

and deviation): 5:1� 4:2 Hz (Pr5), 5:2� 3:9 Hz (Sp5i), and

4:0� 3:8 Hz (Sp5o). Thus, the neurons of the two former

nuclei exhibit similar dynamics, whereas the mean frequency

of neuronal response stabilization in the oral nucleus is

slightly lower.

The existence of the preferred form of the neuronal

response to external actions recorded in almost 60% of the

neurons of Pr5 and Sp5i nuclei may be related to presenting

characteristic time scales in the functioning of nerve cells that

we investigated, among other factors, by wavelet analysis in

Refs [67, 68]. The observed frequency characteristics fall into

the oscillation frequency range characteristic of active

palpating movements (4±12 Hz) [85]. Our findings are

supported by the data obtained by measuring the amplitude

of an averaged neuronal response in the somatosensory

cortex (SI), where similar filtration properties were identified

[83]. It may be supposed, therefore, that part of the filtration

characteristics manifested in neuronal responses of the

somatosensory cortex are evoked by an analogous response

of trigeminal neurons. We note that the application of

statistical methods standard for neurodynamics did not

allow discriminating between neuron electrical activities

with different frequency characteristics. Instead, we usually

observed similar dependences of MSF on the stimulation

frequency for the variants presented in Figs 9a, b.

3.3 Wavelet coherence method for the analysis

of neuronal responses to sensory stimulation

As mentioned in Section 3.2, the frequency structure of point

processes, such as spike trains, may be studied using Fourier

a

b

Figure 8. Examples of different responses of two neurons to the same

stimulation for which the cumulative post-stimulus histograms are

virtually indistinguishable, whereas the values of stability characteristic r

allow the differences to be exposed. Dashed lines indicate the onset of each

stimulus.

Table 1. Comparative analysis of the stability of neuronal responses
evoked by sensory stimulation of neurons in the three nuclei.

Maximum r Increase in r

upon 10 ! 50ms

transition

Decrease in r

upon 50 ! 100ms

transition10 ms 50 ms 100 ms

Pr5

Sp5i

Sp5o

20%

8%

50%

53%

67%

17%

27%

25%

33%

73%

92%

33%

73%

75%

67%
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analysis. However, such an approach has a number of

limitations hampering the assessment of neuronal responses

to stimulation [74]. The attraction of a concept of wavelets is

an alternative variant of spectral analysis of neural system

dynamics.

The wavelet spectrum W�a; b� of a spike train can be

computed by formula (22). It is convenient to employ a

variant of energy spectrum normalization taking account of

the mean spike generation frequency r [86]:

E�a; b� � 1
���

p
p

rf0

�

�W�a; b�
�

�

2
: �23�

In this way, the unit energy of a `random' spike sequence (i.e.,

one with a random distribution of interspike intervals) is

obtained uniformly distributed over all scales: hE�a�ib � 1.

The global energy spectrum can be derived by averaging (23)

over time T during which a neuronal response is generated:

E�a� � 1

T

� T

0

E�a; b� db : �24�

When studying the dynamics of two consecutive spikes N

and M, it is possible to introduce in the consideration, by

analogy with the Fourier cross spectrum, the wavelet cross

spectrum

ENM�a; b� � WNW
�
M

f0
�������������

prNrM
p : �25�

In this case, the normalized measure of the interrelationship

between two spike sequences is wavelet coherence [54, 55, 87]

CNM�a; b� �
�

�S
�

ENM�a; b�=a
�
�

�

2

S
�

EN�a; b�=a
�

S
�

EM�a; b�=a
� ; �26�

where S is a certain smoothing operator [87]. A numerical

estimation of measure (26) can yield erroneously high values

of coherence in the case of vanishingly small values of the

energy of one or both signals (i.e., at E�a�; b�� ' 0). In order

to obviate this problem, the value ofCNM is equated to zero if

the current energy value of at least one signal becomes lower

than a certain threshold level.

Two linearly independent spike sequences are character-

ized by the small value of coherence CNM�a; b� ' 0, whereas

CNM�a; b� � 1 corresponds to the strict linear interrelation-

ship between spike trains on scale a at time t � b.When a time

sequence of stimuli is used as one of the spike sequences, the

measure (26) can be employed for the assessment of

functional interdependence between stimulation and neuro-

nal response. In periodic stimulation with frequency f, it is

appropriate to focus attention on time scales a in the vicinity

of the stimulation frequency.

Let us consider an example of the application of the

wavelet coherence concept for the study of neuronal

responses to tactile stimulation in rat experiments. We chose

an experimental recording of a spike sequence containing the

following three regions: IÐ spontaneous neuronal activity;

IIÐcontrol tactile stimulation (32 s) in the sensitive region of

neurons of the nucleus gracilis using a solenoid to perform

periodic pulsed stimulation (31 impulses with a frequency of

1 Hz and of 20 ms duration each), and IIIÐanalogous tactile

stimulation following additional electrical stimulation of the

somatosensory cortex. Figure 10a shows the respective

sequences of the stimuli and neuronal responses. Results of

the wavelet analysis of neuronal signals (using the `mother'

Morlet wavelet) are presented in Fig. 10b depicting irregular

neuronal activity. The spontaneous dynamics mode (no

stimulation, region I) lacks dominant rhythmic processes.
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Region II displays a spectral peak in the vicinity of the

stimulation frequency (within a 0.83±1.16 Hz range), the

boundaries of which are indicated by horizontal dotted

lines. This peak is indicative of a stimulus-induced rhythmic

neuronal response. However, the peak amplitude varies with

time and undergoes low-frequency (below 0.3 Hz) oscilla-

tions, suggesting that neuronal responses to periodic stimula-

tion are not identical in time, i.e., a neuron responds to similar

stimuli by different spike trains with different durations of

spike-to-spike intervals. The spectral peak near the stimuli

frequency becomes more prominent after electrical stimula-

tion of the somatosensory cortex (region III). Slow oscilla-

tions of the peak amplitude become weaker but remain in the

structure of the signal being analyzed. Moreover, the energy

of oscillations of stimulation frequency harmonics increases.

This picture emerges from the results of a qualitative

analysis of the wavelet spectrum of the neuronal response to

stimulation. A quantitative analysis of the repeatability of

neuronal responses to stimulation was performed by calculat-

ing the wavelet coherence (26) of stimulating impulse trains

and neuronal spike sequences. The statistical significance of

the degree of coherence determined in this way was estimated

in a statistical test based on the generation of surrogate spike

sequences by random mixing of interspike intervals (phase

relations for two signals). Figure 10c presents a statistical

significance curve corresponding to level p � 0:05 for the

neuronal response frequency range of interest. The values of

the coherence measure (26) above this curve were considered

statistically significant.

Figure 10d gives the calculated results of wavelet

coherence of tactile stimulating impulses and induced

neuronal responses. Because tactile stimulation is periodic

(contains a single frequency), the analysis of response

coherence must take into account only the frequency range

near the stimulation frequency (indicated by dotted lines in

Fig. 10d). Control stimulation resulted in three regions of

statistically significant coherence in this frequency range

(Fig. 10d, left), reflecting the action±response interrelation-

ship. However, this interrelationship is not constant. The

coherence measure (26) increases considerably after electrical

stimulation of the somatosensory cortex (Fig. 10d, right). A

more detailed study undertaken in Ref. [86] revealed for the

first time two phenomena: (1) the degree of the functional

relationship between the stimulation and the response

increases after electrical stimulation of the somatosensory

cortex, and (2) the coefficient of the functional relationship is

a dynamic characteristic slowly oscillating in time. In certain

regions of experimental recordings the value of this parameter

lies below the statistically significant level, suggesting a

temporary loss of the stimulus±response interrelation for a

single sensory neuron.

The authors of Ref. [86] estimated the probabilities of

different types of changes in neuronal response coherence in

nucleus gracilis under the effect of electrical stimulation of the

somatosensory cortex. In most cases (59%), the stimulation

enhanced the coherence of responses to tactile stimulation.

Neuronal responsiveness remained unaltered in 24% of the

cases, while coherence decreased in 17% of them.

4. Analysis of extracellular electric potentials
and the problem of spike sorting
using wavelet-based methods

Investigations into the principles of coding information by

neurons and their assemblies have been largely confined to

the accumulation of experimental data on the reaction to one

Stimulation

Neuronal response

I II III

1.0

0.5

0

F
re
q
u
en
cy
,
H
z

Frequency, Hz

C
o
h
er
en
ce

F
re
q
u
en
cy
,
H
z

16

8

0

1.0

0.5

0

10 s

10 s

10 s8.0 4.0 2.0 1.0 0.5

8.0

4.0

2.0

1.0

0.5

8.0

4.0

2.0

1.0

0.5

b

c

a

d

Figure 10.An example of wavelet analysis of a neuronal response to stimulation. (a) Three regions corresponding to stimulation and neuronal response:

IÐ spontaneous firing activity; IIÐ control tactile stimulation, and IIIÐ tactile stimulation following additional electrical stimulation of the

somatosensory cortex. (b) Calculated wavelet energy spectra (23) for the respective regions. (c) The level of statistical significance for the calculation of

wavelet coherence reached by surrogate data analysis. (d) Computation of the wavelet coherence measure (26).
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type of stimulus or another. Traditionally, the extracellular

electric potential is recorded to study the dynamics of cell

firing in a certain local region near the microelectrode. The

recorded potential represents an integral electrical activity of

a neuronal assembly. In order to experimentally investigate

the activity of individual neurons, the spikes need to be sorted

on the basis of their shapes.

It is traditionally assumed when addressing the problem

of spike identification (classification or sorting) that each

neuron generates spikes of identical shapes and amplitudes,

and the spike shape is unique for a given neuron, being

predetermined by its morphology and the site of recording

(close to the axon, soma, etc.), while the spike amplitude

depends on the distance between the cell and the microelec-

trode. Such an assumption is not always justified (e.g., for

spikes in a bundle of impulses) but is logical, bearing in mind

that the natural variation of the shape of the action potential

of a single neuron is often inappreciable compared with the

difference between the spikes of the adjacent cells. Therefore,

the issue of spike identification is theoretically reduced to the

extraction of a few sequences of similarly shaped spikes

(supposedly generated by one neuron) from the experimental

data (Fig. 11). Ideally, in the space of characteristics

describing the spike shape, clusters must form corresponding

to the spikes of individual neurons. Given that a number of

clusters are distinguished and separated from one another,

the issue of identification can be regarded as successfully

resolved.

In practice, however, this is technically difficult to

accomplish in the presence of significant background noise

added to the signal and leading to various distortions of the

spike shape. The noise may be of a different nature (e.g.,

formed by the electrical activity of the distant cells or by the

measuring and transmitting equipment), and its spectrum

may overlap the signal spectrum of interest, which signifi-

cantly complicates frequency filtering. Taken together, these

factors inevitably lead to identification errors. The error

level estimated for extracellular electric signals in the

presence of strong background noise may be as high as

50% [88].

Identification of spike sequences is also possible by visual

comparison of their shapes and by manual grouping.

Admittedly, this approach is inefficient because the record-

ings may contain several hundreds (or several thousands) of

spikes, which makes their visual sorting very difficult. Hence,

the necessity of automated sorting of spikes into groups.

4.1 Methods for classification of neuronal spikes

The issue of automated spike identification is dealt with in

numerous publications (see, for instance, Refs [89±93]). The

simplest way to address this issue is to discriminate between

the spikes on the basis of their amplitudes (threshold sorting).

The amplitude (or height) of the action potential decreases

with increasing distance between the cell and the recording

electrode. If this distance is very small, the amplitude of

generated spikes will be much greater than the amplitude of

spikes from remote cells and the background noise. In this

case, at least one type of spikes is possible to identify using a

threshold device (trigger). Impulses having different ampli-

tudes are separated by setting specific threshold levels (see

Fig. 11). An advantage of this approach lays with minimum

hardware and software requirements, real-time performance,

and sufficiently accurate, in a number of cases, information

sought by the experimentalist. An obvious drawback of the

threshold sorting method is far from always adequate group

separation of signals with similar amplitudes. For example,

this method is inapplicable to discriminate between wave-

forms depicted in Fig. 12. Also, instrumental detection does

not allow acceptably accurate differentiation of the signal

from background noise and interference.

The principal component analysis (PCA), a variant of

factor analysis, is considered the most effective tool among

numerous currently available classical methods for auto-

mated spike sorting [88]. It has been successfully applied to

image recognition and compression, noise suppression on

images, reduction of dimensionality in dynamic models

without substantial loss of informative value (e.g., in the

description of turbulence), etc. The idea behind this method is

to search for a set of orthogonal functions characterizing the

most important shape peculiarities of the signal. From the

standpoint of computational mathematics, the problem

reduces to the search for eigenvectors (so-called principal

components) of the covariance matrix constructed on the

base of experimental data, i.e., all impulses whose minima or

maxima occur simultaneously. Each spike x�t� can be

represented as the sum of the principal components with the

corresponding weight coefficients Si. The weight coefficients

are defined as

Si �
X

t

pi�t� x�t� ; �27�

5 ms

A
A

A
A

BB

Figure 11. An example of an extracellular electric potential containing

several spikes differing in shape and amplitude. The spikes labelled by

different letters (A and B) were generated by two different neurons.

Figure 12.An example of waveforms generated by three different neurons.
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where t is discrete time, and pi�t� is the principal component

with number i. The weight (or scaling) factors Si are used as

characteristics in spike sorting. The most important informa-

tion is usually contained in a few first principal components

describing the main peculiarities of the spike shape (they are

utilized to diagnose themain differences between spike types).

The scale coefficients of the first two principal components

ensure much more accurate separation of spikes than simple

threshold methods [88]. The disadvantages of PCA are less

apparent than those of the threshold sorting technique.

A new approach to spike identification based on the

analysis of wavelet transform coefficients has recently come

into use. Its advantages over standard methods have been

demonstrated in a number of studies [22±24]. For example, in

the wavelet-based spike classifier (WSC)method [22], discrete

wavelet transform coefficients obtained in the framework of

the pyramidal algorithm [94] are employed as a quantitative

measure in sorting neuron action potentials. The main

problem with this method is the choice of wavelet transform

coefficients most essential for the separation of different types

of impulses. Maximum mean and mean-root-square devia-

tions of wavelet transform coefficients were used in Ref. [22]

as an appropriate criteria. However, this method is not

strictly substantiated, and there is no universal approach to

the choice of the `right' coefficients. In practice, different

variants of characteristics have to be analyzed with the aim of

using them for the recognition of signal shapes. Formally,

both DWT and CWT can be applied for the purpose. The

former approach appearsmore attractive by virtue of the high

computation speed. The latter method in view of its

redundancy inspires hope that while moving over the scale

parameter with a small step one can study inmore details how

transform coefficients depend on the observation scale at any

instant of time. In this case, more descriptive results can be

obtained at the penalty of a loss in operating speed; they at

least may be used to elaborate practical recommendations for

the choice of characteristics required in recognition of spike

shapes, which could be useful in the future for the application

of a faster algorithm of DWT-based recognition.

Although wavelet analysis is potentially a more powerful

tool than PCA, there are some obstacles to its practical

implementation; the two following are worth mentioning as

among the most important:

(1) Obviously, the results of analysis, i.e., wavelet trans-

form coefficients, depend on the choice of the basis function.

There is no unambiguous answer to the question of how to

choose the wavelet in each concrete case. Thus, the efficacy of

the method depends on the form of the signal obtained in the

experiment. On the other hand, the employment of different

basis functions permits making the signal recognition algo-

rithm more flexible and accurate.

(2) The calculation of wavelet transforms for experimental

data yields a set of coefficients characterizing each action

potential (up to 64 coefficients are usually considered for

neuronal spikes in the case of DWT) [22]. These coefficients

are unsorted, as in PCA: hence, the question of which

coefficients to chose as characteristics for signal identifica-

tion.

The choice of coefficients has a stronger influence on the

results of analysis than the choice of the basis function.

Various procedures have been proposed in the literature,

from the estimation of maximum dispersion, maximummean

value, and multimode distribution to more complicated

approaches based on the theory of information [22±24].

Each of them has specific disadvantages. The maximum

mean value and dispersion testify that a given wavelet

transform coefficient contains important information about

the signal, but it does not guarantee that such an approach

will lead to reliable discrimination between two different

waveforms. The multimode distribution is a necessary

condition for successful spike sorting, but many of the sets

of coefficient values may follow such a distribution, and it is

difficult to decide how to optimally choose between them.

This problem is of special importance when the experimental

data contain impulses of both rather similar and very

different shapes. In the case of the arbitrary choice of

coefficients, markedly different signals can be separated

with a high degree of certainty, but it is very difficult to

discriminate between similar ones. It is due to the wrong

choice of coefficients and the lack of a universal approach to

the optimal choice that the efficacy of wavelet transform-

based methods may prove lower than that of PCA.

Our publications [95, 96] provide examples of successful

and unsuccessful applications of wavelets for addressing the

issue of automated spike separation. It was revealed that the

use of wavelets is especially efficacious in the case of a small-

scale structure, i.e., differences in the waveforms of the spikes

from adjacent neurons manifested on small scales (PCA can

ignore such differences) and at a high level of low-frequency

fluctuations in extracellular recordings of electric potentials.

Nevertheless, the optimal choice of wavelet transform

coefficients for spike sorting remains a challenge that

hampers the recognition of different waveform types.

We proposed the following approach to resolve this

problem. Suppose that standard PCA makes it possible to

obtain clusters in the space of characteristics that are situated

close to one another. It would lead to appearing numerous

identification errors in cluster overlap regions. Figure 13a

illustrates such a situation that emerged from the analysis of

the experimentally recorded extracellular electric potential.

Two clusters correspond to the spikes of two neurons, but

there is no distinct boundary between them because of the

presence of background noise.

In order to reduce the number of identification errors, a

special method was proposed based on a combination of

wavelet analysis and classical PCA [wavelet shape-accounting

classifier (WSAC)]. Such integration ensures a better separa-

tion of clusters than either of the two methods used alone.

The first step of the WSAC algorithm consists in a search

for characteristic signal shapes. To this end, PCAs of all

experimental spikes are utilized. Then, spike shapes are

averaged in the small neighborhood of each cluster's center;

this procedure yields two averaged forms of signals (Fig. 13a,

insets). They are localized in the cluster centers and therefore

may represent `real' spike profiles of two different neurons,

minimally subject to the influence of noise (the greater the

influence, the farther away the point lies from the center).

Step 2 implies the wavelet analysis of the averaged signal

shapes obtained and the search for wavelet transform

coefficients that best of all demonstrate the differences

between them. To this end, an analysis is performed in a

wide range of scales and shifts. Then, the difference between

the respective values of wavelet coefficients is estimated and

maximally different coefficients are chosen. In other words,

we search for wavelet transform coefficients with regard to

individual features of concrete impulse shapes rather than in

an arbitrary fashion. Figure 13b illustrates the scale depen-

dences of the difference between all the values of wavelet
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coefficients for CWT (each curve corresponds to a definite

value of the shift parameter, and the `mother'WAVE-wavelet

constructed based on the first derivative of the Gaussian

function is chosen as the basis function [29, 32]). Two points

corresponding to extrema of these dependences are labelled at

the bottom and top of the figure. It should be emphasized that

in certain cases a few extrema appear on different scales and

the number of characteristics that can be used for identifica-

tion increases. As a result, we will have a set of `optimal'

coefficients reflecting the most important differences between

the averaged signal shapes. This procedure allows a better

separation of clusters than PCA because differences are

sought for concrete impulse shapes rather than from general

considerations.

In the third step of the algorithm, the chosen wavelet

transform coefficients are calculated from experimental data

for all impulses, and the values thus obtained are considered

to be characteristics suitable for identification (Fig. 13c). This

procedure allows the clusters to be better separated from each

other.

Figure 13d depicts point distribution densities in the space

of characteristics for PCA and the proposed method. The

principal maximum of the probability density function for

wavelet analysis shrinks and becomes more conspicuous than

that obtained in PCA. This circumstance makes it possible to

much better separate the two clusters and reduce identifica-

tion errors arising mainly in the intercluster region. In this

case, the arbitrary choice of wavelet transform coefficients (as

recommended in Ref. [22]) does not permit improving

identification vis-�a-viz the PCA.

The proposed approach is applicable both in the case of

CWT, where it yields more descriptive results in the form of

smooth dependences of coefficient differences (Fig. 13b), and

in the case of DWT; the method remains essentially the same,

but the DWT algorithm has an obvious advantage due to the

high computational speed.

The approach proposed was tested utilizing surrogate

data derived from real experimental signals (over 20 record-

ings of extracellular electric potential). Each surrogate signal

was constructed by choosing two experimental records, one

of which contained a group of spikes well separated from the

background noise and other action potentials. These spikes

were artificially `cut out' and added in a random manner to

the second experimental signal. On the one hand, this

preserved all characteristics (noise level and statistics,

intrinsic waveform variations, etc.). On the other hand, we

obtained a priori information on the `added' spikes belonging

to an individual cluster. This a priori information allows

identification errors to be calculated for a given cluster, and

the efficacy of different sorting techniques to be compared.

Figure 13 presents the results for one of the signals

containing 16,568 spikes, including 3069 artificially added
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ones. The employment of three principal components resulted

in 290 sorting errors. Following the recommendations of

Ref. [22] for identification by the WSC algorithm, we chose

wavelet transform coefficients with maximum standard

deviations, maximum values, and bimodal distributions. In

this case, the identification error was greater than with the

PCA (410 falsely identified spikes). This shows once again

that the unjustified choice of wavelet coefficients hampers

automated recognition of neuronal activity signals. The

proposed algorithm reduces here the occurrence of errors to

minimum (there were only 185 misidentified spikes).

Table 2 gives the results of an analysis of four typical

signals obtained with the CWT procedure in the framework

of the proposed method. In examples 1 and 3, PCA proves

superior to WSC, while the proposed WSAC algorithm

ensures minimal error in automated identification of impulse

shapes. The situation reverses in the fourth case: WSC

outperforms PCA and the proposed WSAC approach also

has certain advantages. In example 2, all methods are fraught

with gross errors due to the high level of background noise,

but wavelet approach also proves possible to substantially

reduce the number of misidentified spikes by virtue of the

optimal choice of wavelet transform coefficients.

4.2 Use of wavelets in combination

with methods of artificial neural networks

Another option for devising integrated methods for auto-

mated recognition of signal shapes is based on a combination

of wavelets and artificial neuronal networks. The neuronet-

work technique for signal identification [97±100] has some

peculiar features. The scientific literature contains examples

of the architectonics of neural networks designed for the

above purpose. However, each concrete problem has indivi-

dual peculiarities of its own and requires correction of the

method to be addressed. Not infrequently, the involvement of

an autonomous neural network fails to provide the worked-

out solutions. Therefore, neural networks are usually inte-

grated into multistep systems for data processing, where each

network plays a definite role and thereby contributes to the

final result. Because signals of similar shapes have to be

distinguished in the presence of background noise, an

algorithm is needed that first is sensitive enough to identify

signals, second is efficacious despite the presence of noises

with different statistics, and third has the potential for

modification to operate with concrete experimental data.

The problem of neuronal spike identification can be

addressed using an algorithm integrating wavelet analysis

and the neuronetwork technique. Wavelet transform is an

excellent tool to search for characteristic impulse shapes (i.e.,

for preliminary processing) and to convey this information to

the neural network for further treatment. In the next step, an

image recognition algorithm is employed.

If signals containing a set of characteristic signs of certain

images are sent to the input of amany-layer neuronal network

with direct signal propagation [100], it will be able to sort out

these data provided the learning information is available. The

learning algorithm for such a network suggests the presence

of a training sample and its reference values to be obtained at

the output (a so-called learning algorithm with a teacher). In

other words, impulse shapes unaffected by the noise present

in the experimental recording must be known for the

successful operation of the network and spike identification;

then, the work of the network reduces to spike grouping.

Figure 14 illustrates the structure of the proposedmethod.

A few steps of data processing may be distinguished.

(1) Experimental data are treated by the threshold

method to reveal spikes to be sorted out.

(2) The spike sequence obtained is subjected to discrete

wavelet transformation by the pyramidal algorithm. It gives a

set of wavelet transform coefficients for each spike (in our

calculations it contained 64 points). The Daubechies wavelet

�D8� was used as the `mother' wavelet.

(3) Wavelet transform coefficients characterizing the

noise component of the signal (i.e., those corresponding to

small amplitudes) are eliminated, and the values of the

remaining coefficients are delivered to the input of the neural

network.

(4) After data arriving at the input of the neural network,

it sorts the spikes into groups and constructs their classifica-

tion in the space of characteristics. The logistic function is

used as the network activation function.

In our study, we chose a three-layer neural network with

direct signal propagation (Fig. 14b)Ðone of the many

possible configurations. However, the following needs to be

taken into consideration. The network with direct signal

propagation or multilayer perceptron shown in Fig. 14b [99]

is a well-studied basic one. The choice of the number of

neuronal layers and the number of elements in each of them is

based on the known plasticity±stability dilemma [97].

Evidently, the more complicated the network organization

in terms of the total number of elements, the greater the

adaptive potential of the system. However, adaptivity may

lead to instability. Therefore, structurization of the neural

network must ensure both stability and flexibility of its

performance.

The proposed method was tested to verify its efficacy and,

in particular, assess the influence of background noise

statistics on the quality of automated signal identification by

the proposed algorithm. Two different spike shapes mini-

mally affected by noise (each containing 64 readings) were

extracted from the experimental data (extracellular record-

ings of the activity of small neuron groups). Multiple

repetition of the corresponding impulse shapes produced a
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Figure 14. (a) The structure of the method based on the combination of

wavelet analysis and neural network technique. (b) The structure of a

many-layer neural network with direct propagation of the signal.

Table 2. Spike identification errors in four recordings of neuronal activity
obtained using PCA, WSC [22], and the proposed combined WSAC
algorithm. The values are percentages of the total number of spikes.

Signal 1 Signal 2 Signal 3 Signal 4

PCA

WSC

WSAC

9.5

13.3

5.9

53.4

48.0

34.6

2.7

9.6

2.1

6.3

5.9

5.6
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test surrogate signal composed of 1892 spikes (with

946 impulses of each type). The spike sequence thus obtained

was supplemented by a color noise generated by band-pass

filtering of the normally distributed random process. The

neural network consisted of three layers, with the input layer

containing 64 elements (the number equal to the input vector

size), the second layer 32, and the output layer 2. The network

had to be learned to enable it to identify a spike with a

minimum error after signal decomposition coefficients xi
arrived at the input layer, and to be weakly sensitive to the

influence of noise statistics. An error back-propagation

algorithm was applied for this purpose [97].

The network training sample xi was composed of

100 images in the form of wavelet transform coefficient

values corresponding to the shape of the first impulse, and

100 images corresponding to the shape of the second impulse.

Accordingly, the learning method included 100 stages. The

network was expected to achieve the highest-quality separa-

tion of spike groups in the space of characteristics. To this

effect, the vectors with a set of coordinates in the form of the

respective wavelet coefficients for the first and second impulse

shapes in a given space were specified as the reference output

values yi. Thus, the neural network having received the input

vector containing wavelet coefficients of the first and second

impulse images had to associate it with, say, �0:1; 0:1� and
�0:5; 0:5� coordinate vectors, respectively. Once this procedure

was completed, the neural network was regarded as learned.

The network performance was checked by delivering the

initial sequence of wavelet coefficients of noise-free spikes to

its input. Calculations showed that such a method permits

various forms of action potential to be identified as effectively

as the standard approaches.

Attention should be given to the following important

circumstance. In test experiments with artificially generated

data, noiseless impulse shapes and the number of groups of

signals being identified are known. Due to this, learning

algorithms with a teacher can be successfully used to train

neural networks, with both the training sample and the

reference data to be obtained at the output being available.

The learned neural network capable of classifying impulses

within the scope of a concrete numerical experiment is

brought about on the base of these data. Real neurophysio-

logical data do not usually contain information about noise-

free signals and the number of different kinds of spikes. In this

case, the main obstacle to the application of the integrated

wavelet analysis/neural network method is network learning.

The above reasoning suggests the necessity of modification of

the algorithm under consideration by performing the follow-

ing sequence of actions.

(1) The use of the threshold method to extract spikes for

their subsequent sorting.

(2) Preliminary classification by PCA and WSC, obtain-

ing the clustering picture in the space of characteristics.

(3) Finding regions of enhanced point density in the

clusters obtained and spike shapes corresponding to these

points (closest to noiseless signal shapes).

(4) Wavelet transformation of extracted impulses, obtain-

ing a set of wavelet transform coefficients.

(5) The use of these coefficients as a training sample for

the neural network.

(6) Wavelet transformation for the original signal, and

analysis of experimental data by the learned network.

Thus, training samples for a neural network are composed

of spikes corresponding to the central parts of various

clusters, obtained by different automated identification

methods, such as principal component analysis or standard

wavelet analysis. It is natural to use vectors of coordinates in

the space of characteristics as reference values at the network

output. As the practice implies, the point pattern on the plane

of characteristics obtained by applying automated signal

recognition methods (PCA or wavelet analysis) is sometimes

ambiguous. Clusters on the plane of characteristics, corre-

sponding to diversified groups of spikes, can be situated close

to one another and overlap; as a result, points of one cluster

erroneously occur in another, as illustrated by Fig. 15

showing the results of clusterization by wavelet analysis and

the proposed wavelet transform method added with a

learning neural network. Our studies have shown that this

integrated technique permits reducing identification error due

to an individual approach to a concrete problem, i.e., to

increasing the distance between clusters at the plane of

characteristics (see Fig. 15). The individual approach is

possible because neural network learning is carried out using

a sample that contains spikes extracted directly from the

experimental data available for the analysis.

The efficacy of the combined wavelet analysis/neural

network method under real conditions was estimated from

the analysis of neurophysiological data (experimental record-

ings of trigeminal complex neuron dynamics). The resultant

clustering pictures are presented in Fig. 16.
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Figure 15. An example of clusterization by a combination of the wavelet transform and neural network.
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Figure 16 demonstrates that the use of standard wavelet

analysis for data sorting brings forth an illegible clustering

picture. The experimental sequence contains three groups of

spikes, but clusters are poorly separated and have common

points that can be erroneously referred to a group to which

they do not actually belong. Following the above algorithm,

50 points were chosen from the centers of the clusters

obtained and the resultant sample served to learn the neural

network. When the training was completed, a number of

values of wavelet transform coefficients of the initial impulse

sequence were delivered to the input of the network. The

resultant clustering pictures clearly demonstrate a better

separation of the clusters, i.e., an improvement in automated

signal recognition.

Although this variant of the combined waveform

recognition algorithm sometimes permits significantly redu-

cing errors of automated signal recognition, it is also not free

from drawbacks. On the one hand, it is superior to utilizing

traditional artificial neural networks due to the integration

of efficacious time±frequency analysis of signals (wavelet

transform) into the image recognition algorithm that allows

all the advantages of wavelet analysis to be exploited. In this

context, wavelets constitute a stage of preliminary analysis

designed for a neural network to choose characteristic signs

for better separation of signals from different objects. On the

other hand, the variant of signal identification being

discussed does not envisage a change in wavelet transform

parameters (scale and displacement) at the stage of neural

network learning. For this reason, the efficacy of the method

depends on the initial choice of these parameters, i.e., the

stage of preliminary data processing. This relationship is lost

at network learning stage and the situation cannot be

repaired at the subsequent stages if the unsuccessful

parameters were chosen. It frequently compromises the

final stage of the image recognition procedure because such

factors as the researcher's experience with the choice of the

`needed' wavelet transform coefficients start playing a role.

In order to reduce the influence of the human factor in

automated spike sorting, the classical stage of learning (the

choice of weight coefficients) needs to be extended by

inclusion of an additional tuning of the wavelet transform

parameters depending on the accuracy of the solution to the

classification problem. It is this approach that is applied in

the framework of so-called wavelet neural networks (WNNs)

[53, 101±104].

WNNs are structurally and analytically analogous to

traditional artificial neural networks, where part of the

neurons are substituted by `wavelet nodes'. In this case,

WNN can be treated as an extended perceptron composed of

two parts: the wavelet transform to reveal characteristic

features of the signals, and an artificial neural network to

recognize images on the base of the detected features. The

first part includes `wavelet nodes' in which wavelet functions

(e.g., the Morlet function) are used instead the classical

logistic function. These wavelet functions allow peculiarities

of the signal shape to be determined on different scales. The

first part of the algorithm yields a set of coefficients

reflecting characteristic features of the signals. These coeffi-

cients provide the input signal for the second part of the

algorithm, where images are eventually recognized. An

essential feature of WNNs is the possibility not only of

correcting weights during learning but also of choosing

wavelet transform coefficients for the more reliable classifi-

cation of input signals. A distinctive feature of WNNs is

complete integration of procedures for the choice of

characteristic signs and subsequent signal recognition in the

framework of a single structure. We believe that the

exploitation of wavelet neural networks is currently one of

the most challenging approaches to solving the problem of

image recognition.

5. Analysis of the electroencephalogram
by the methods of continuous wavelet analysis

Let us take the next step in the evaluation of possibilities for

the application of wavelet analysis in neurodynamics and

neurophysiology by moving to the consideration of different

aspects of analysis of oscillatory rhythmic processes in the

brain. It is a most complex structure composed of a huge

number of elementsÐneuronsÐeach with its own compli-

cated oscillatory dynamics integrated into networks with an

intricate topology and numerous interconnections [1, 2, 5,

105±109]. Electroencephalography is a traditional highly

effective method for the study of brain electrical activity. An

electroencephalogram (EEG) makes up the averaged sum of

electric fields generated by synaptic currents of a large group

of neurons in the neighborhood of the recording electrode.

Analysis of an EEG permits revealing the relationships

among various brain regions, elucidating the mechanisms

and peculiarities of formation of different types of rhythmic
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activity, and in the upshot better understanding the principles

of brain functioning as a whole.

An EEG displays a variety of rhythms and periodic

oscillations, the frequency of which is an important char-

acteristic of the functional activity of neural structures [105,

110±113]. The development of methods for the investigation

of various types of rhythmic activity is of great importance for

basic research on brain cognitive functions. It is equally

important for applied studies, specifically for the develop-

ment of new diagnostic methods and analysis of the brain

functional state, monitoring its pathological activity in

medical practice (e.g., in epilepsy or Parkinson's disease),

and the creation of specific brain±computer interfaces [114±

121].

As discussed in Sections 2±4, the mathematical apparatus

of continuous wavelet analysis is well suited for describing

nonstationary signals whose spectral composition and statis-

tical characteristics vary in time. The following important

features are worth mentioning:

(1) it reveals the time-frequency structure of signals, thus

allowing localization of their peculiar features in time and

frequency domains are worth mentioning;

(2) it enables efficacious analysis of short-term time series

containing a small number of characteristic oscillation

periods;

(3) it provides flexibility in the choice of the basis

functions into which a signal is expanded, thus allowing

taking account of peculiarities of the data being analyzed;

(4) it ensures a highly effective analysis of noisy data (i.e.,

signals considered the sum of a meaningful signal and noise).

All these peculiarities need to be taken into consideration

in analyzing EEG signals, bearing in mind the following

properties of EEGs: nonstationarity, oscillatory patterns

with essentially different types of oscillations (which implies

an adaptive approach to the study of various effects on

EEGs), and the high noise level. Moreover, the analysis of

short-term time series data is frequently needed, as dictated

by both data recording conditions and the specific features of

brain processes [113, 122±124].

The apparatus of wavelet analysis is successfully being

applied to studying normal and pathological EEGs of

animals and humans [20, 125±128]. The attention of research-

ers was focused on an analysis of the development of specific

forms of rhythmic activity associated with such functional

states as episodes of epileptic activity, sleep, and wakefulness.

As known, the presence of rhythmic components in EEGs

reflects synchronous activity of the huge number of nerve cells

arranged in assemblies [129±131]. Therefore, the study of

rhythmic activity in cerebral EEG dynamics is closely related

to such problems of importance for radiophysics and non-

linear dynamics as the investigation of the synchronous

behavior in networks with intricate topological connections

[106±108, 132].

5.1 Automated extraction

of spike-wave discharges on prerecorded EEGs

Pathological processes in the CNS may be associated with an

enhanced degree of synchronization among functionally

connected structures. In extreme cases, it can lead to the

appearance of paroxysmal discharges on EEGs. For example,

absence epilepsy (see below) develops against the background

of hypersynchronized neuronal activity in the thalamocorti-

cal network [133, 134]. The interaction processes in the

thalamocortical network associated with the initiation of

absence epilepsy are convenient to study in selectively bred

rat lines genetically predisposed to this form of the disease,

e.g., WAG=Rij [135]. Epileptic seizures in these animals

(similarly to humans) are accompanied by high-amplitude

hypersynchronous spike-wave activity apparent on EEGs

(spike-wave discharges).

Let us consider a portion of an epileptic EEG taken from a

WAG=Rij rat (Fig. 17a). The brain electrical activity was

recorded in conscious rats having electrodes implanted in the

frontal cortex. A few components differing in oscillation

shape and amplitude can be distinguished in the EEG

signal.6 For example, background dynamics corresponding

to the desynchronized behavior of neural assemblies in

cerebral cortex is characterized by a small amplitude

(F regions in Fig. 17a). Oscillatory patterns can be classified

by shape and frequency composition. The first method is

traditionally used in neurophysiology [136, 137] to discrimi-

nate between such oscillatory patterns as sleep spindles

(SS regions in Fig. 17a), bursts of theta-activity (TR),

K-complexes (K), and spike-wave discharges (SWD). The

secondmethod provides amore precise tool for the analysis of

time series and may be applied for automated recognition of

structures in the time domain. The results of continuous

wavelet analysis using the Morlet wavelet are presented in

Fig. 17b showing that various EEG patterns correspond to

different frequency distributions of energy. Specifically, a

spike-wave discharge (an epileptic event on EEGs) possesses

two important features.

First, analysis of a large number of spike-wave discharges

showed [128] that the main spike repetition frequency

6 Inwhat follows, different EEG fragments will be referred to as oscillatory

patterns.
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decreases smoothly during the discharge from the maximum

value at the beginning (11:1� 1:5 Hz; here and hereinafter,�
denotes standard deviation) to 7:4� 0:8Hz at the end, i.e., by

2:8� 0:8 Hz on the average. Second, the appearance of

epileptic (spike-wave) discharges on EEGs was associated

with a sharp power rise within a frequency range from 10 to

100 Hz, with each individual spike entering into the spike-

wave complex being represented in the wavelet spectrum by a

local power burst (see inset to Fig. 17b). These high-frequency

spectral components generated by the regular spike sequence

on EEGs were important diagnostic signs that provided a

basis for the development of an algorithm for automated

recognition of spike-wave discharges [62, 138, 139].

Since a spike-wave discharge is characterized by a rise in

the energy per certain scale range, it is convenient to consider

the integral instantaneous energy in some frequency range:

wFS
�t� �

�

FS

�

�W�t; f �
�

�

2
df ; �28�

where FS � �30; 50� Hz is the frequency range in which

structural differences between spike-wave discharges and

other oscillatory patterns are especially apparent. If a spike-

wave discharge occurs at a certain time moment t, the

following relation holds:

wFS
�t�5Ek ; �29�

where Ek is the threshold energy value determined experi-

mentally. We used threshold sorting for automated diagnos-

tics of epileptic events.

Moments of time at which the value of wFS
(29) exceeded

the threshold level and did not decrease within the next 1 s

were regarded as marking the onset of epileptic activity, and

those when the energy level dropped below the threshold as

the end of discharges. The results of automated extraction of

spike-wave discharges are presented in Table 3, where the

following notations are used: TPÐ the number of rightly

recognized events on the EEG, TNÐthe number of correctly

detected absences of the event of interest (spike-wave

discharge), FPÐ the number of misrecognized events (i.e.,

the number of events identified as spike-wave discharges by

the automated EEG marking system but as some other type

of activity by the expert), and FNÐthe number of missed

spike-wave discharges. The accuracy of recognition of spike-

wave discharges on EEGs by this method amounted to 98±

100%. It should be emphasized that spike-wave discharges

were distinguished by analyzing similar frequency ranges

FS � FSWD 2 �30; 50� Hz (28) and threshold energy values

Ek � 0:5 (29) in wavelet spectra.

In the qualitative analysis of algorithm performance,

the statistical characteristics of taking the `binary' solution

were applied (presence/absence of an epileptic event) based

on a criterion that with a certain degree of probability

could lead to a false result: the confidence level

b � �TP=�TP� FN�� 100%, and the power of a test

d � �TN=�TN� FP�� 100% [140]. The values of b and d are

also presented in Table 3 for each animal. The former

characteristic �b� allows an estimation of sensitivity of the

method, i.e., the percentage of recognized spike-wave dis-

charges out of their total number on the EEG. The latter

characteristic �d� permits estimating percentage of events

correctly identified as spike-wave discharges out of the total

number of events diagnosed as spike-wave discharges [62,

141]. These findings showed that the method for recognition

and identification of EEG oscillatory patterns based on the

wavelet transform significantly surpasses other available

methods in terms of accuracy, simplicity of tuning, and

adaptation to the solution of other problems.

Themost important results of continuous wavelet analysis

of spike-wave discharges include the unique features of the

time-frequency EEG structure observed before the onset of

the epileptic discharge; they can be utilized to predict the

development of epileptiform activity. Our study with the use

of the complexMorlet wavelet showed that the appearance of

spike-wave discharges on EEGs is preceded by a totality of

short rhythmic components with a maximum power in the

delta (3±5 Hz) and theta/alpha (7±11 Hz) frequency ranges

[128]. Low-frequency delta and theta/alpha components

preceded 90% and 92% of the spike-wave discharges,

respectively. The mean duration of the precursors was

roughly half a second. Only 5% of the spike-wave discharges

had no rhythmic precursors on the EEGs. Both components

(delta and theta/alpha) were simultaneously present on the

EEGs prior to spike-wave discharges only in 89% of the

events. Such a situation is not typical of baseline EEGs. A

more detailed discussion of neural mechanisms underlying

the formation of predecessors of epileptiform activity can be

found in our work [128]. It should be emphasized that these

precursor complexes appearing before spike-wave discharges

could be recognized only by time-frequency EEG wavelet

analysis.

5.2 Structure and automated isolation

of sleep spindles on epileptic EEGs

with the use of complex adaptive wavelet bases

Extensive neurophysiological studies are currently under-

way to elucidate the relationship between spike-wave

discharges and normal brain synchronous activity (sleep

spindles) [109, 142, 143] apparent on EEGs in the second

sleep phase (S-sleep) in the form of characteristic spindle-

Table 3. Results of automated extraction of spike-wave discharges (SWDs) with the use of the complex Morlet wavelet � f0 � 1�.

Rat No. Number of SWDs

(expert visual

assessment)

Automated extraction Quality of automated marking

TP TN FP FN Accuracy

rSWD, %

Signiécance

level b, %

Power

of a test d, %

1

2

3

4

5

105

81

249

120

66

105

79

247

117

65

105

80

250

125

67

0

2

1

1

2

0

1

2

3

1

100.0

97.5

99.2

97.5

98.5

100.0

98.8

99.2

97.5

98.5

100.0

97.5

99.6

99.2

97.0

Mean 98:5� 1:1 98:8� 0:9 98:7� 1:3
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shaped oscillations with a frequency of 10±15 Hz and of 0.5±

1.5 s duration with the amplitude initially increasing and

thereafter decreasing. Sleep spindles are regarded as resulting

from the synchronous dynamics of neural networks under

normal conditions. They attracted the attention of research-

ers after the publication of experimental data on the

transformation of sleep spindles into epileptic spike-wave

discharges [144, 145].

The structure of sleep spindles on EEGs was studied

during slow-wave sleep in WAG=Rij rats with the help of

continuous wavelet transform using the complex Morlet

wavelet. Figure 18 shows a characteristic sleep EEG wavelet

spectrumwith extracted spindles, and the corresponding sleep

spindle spectra in the alpha range (from 8 to 14 Hz). Unlike

spike-wave discharges, the spindles differed in shape and

frequency composition [62], which strongly hampered their

identification and automated recognition. For threshold

detection of wavelet power [see formulas (28) and (29)] in

the 8±14Hz frequency range (see Section 5.1), the accuracy of

recognition of sleep spindles onEEGs did not exceed 60%at a

low confidence level and strength of test. Therefore, a novel

approach to the study of the structure of nonstationary

signals was developed based on adaptive wavelet analysis

[62, 146]. The latter uses an arbitrary EEG fragment showing

maximum affinity to the sought EEG pattern as the

`mother' function and serves as a tool for the recognition

and localization of oscillations having a nonstandard

intricate shape on EEGs. This approach is, in fact, a

variant of the known template matching method [147] and

thus can be applied to effectively extract sleep spindles,

standardize the EEG structure, and create a reference base

of EEG patterns.

Special wavelet bases (spindle wavelets [62, 146]) were

constructed from EEG oscillatory patterns containing sleep

spindles to standardize their structure; in other words,

spindles present on real EEGs served as templates for the

construction of a mother spindle wavelet (see Fig. 19 clearly

illustrating the proposed method).

Let us formalize this approach. Let U�t� be a fragment of

the recorded EEG signal containing a sleep spindle. Let us
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further move to a signal with an excluded middle:

g�t� � U�t� ÿ 1

DT

�

DT

U�t� dt ; �30�

and build up the complex function

ĝ�Z� � g�Z� � ig

�

Z� T

4

�

; �31�

where T is the characteristic oscillation timescale during the

spindle occurrence. In order to obtain the local-in-time

wavelet basis, function (31) is modulated with the Gaussian

function [cf. relation (1)]

c S�Z� � Aĝ�Z� exp
�

ÿ Z 2

a

�

; �32�

where a is the fitted coefficient, and parameter A is found

from the normalization condition

A2

�1

ÿ1

�

�

�

�

ĝ

�

2Z

a

��

�

�

�

2

exp �ÿZ 2� dZ � 1 : �33�

Roughly a total of 100 spindles were tested as templates

for the spindle wavelet, and each spindle was used to analyze

the results of the extraction of sleep spindles. As a result, the

universal spindle wavelet shown in Fig. 19a was found to

ensure the best quality of recognition of sleep spindles and

show, accordingly, a high affinity to the maximum number of

sleep spindles on EEGs from all experimental animals. Most

sleep spindles (80±90% in different experiments) had high

affinity to the wavelet basis employed (they were called type 1

spindles). Their shape bore a close resemblance to the

sinusoidal shape and the frequency varied from 8 to 12 Hz.

The remaining spindles (roughly 10±15% of the total) had an

intricate shape and specific individual features (type 2

spindles, see Fig. 19b). That is why new mother wavelets had

to be constructed for their identification, with EEG patterns

assorted for each concrete animal). Thewavelet bases of type 2

spindles had a nonuniform shape with apparent irregular

spikes; their frequency on EEGs varied from 17 to 23 Hz.

The results of automated extraction of type 1 and 2 sleep

spindles are presented separately in Table 4. All notations are

analogous to those in Table 3. Clearly, the approach based on

the construction of adaptive bases allowed substantial

improvement of the quality of recognition of the patterns in

the nonstationary EEG signal.

To recall, the percentage of recognized sleep spindles with

the use of the standard Morlet wavelet as the basis function

was rather small (less than 60%). Combined application of

wavelet bases of type 1 and 2 spindles permitted automatically

recognizing 96±100% of the sleep spindles present on the

EEG (much more than by other methods).

Application of wavelet methods for the automated

analysis and diagnostics of oscillatory patterns (sleep spin-

dles and spike-wave discharges) made it possible to elucidate

the dynamic regularities in their appearance from long-term

(24 hour) EEG recordings [138, 145, 148]. It was revealed, in

particular, that the dynamics of spike-wave discharges and

sleep spindles determined by synchronous dynamics of the

cortical neural network exhibits the on±off intermittent

behavior [149, 150] usually observed at the boundary of

synchronous oscillatory modes of coupled chaotic oscillators

[151±154]. These findings led to important inferences about

common mechanisms of the generation of sleep spindles and

spike-wave discharges in the brain's thalamocortical network

and possible transformation of sleep spindles into epileptic

events [121, 145]. Such studies would be impossible without

automated methods for the diagnostics of oscillatory pat-

terns, bearing in mind large amounts of experimental data for

the elucidation and analysis of relevant statistical regularities.

5.3 Classification of oscillatory patterns appearing

on EEGs with the use of adaptive wavelet bases

As shown in Section 5.2, it is possible to construct different

types of adaptive wavelet bases for the optimal description of

Table 4. Results of automated extraction of sleep spindles with the use of spindle wavelets. Here, NS1 is the number of spindles missed in automated
extraction with the use of a type 1 spindle wavelet.

Type 1 spindle wavelet

Rat No. Number of sleep spindles

(expert visual assessment)

Automated extraction Quality of automated marking

TP FP FN Accuracy rS, % Signiécance

level b, %

Power of a test d,

%

1

2

3

4

5

2341

1381

1491

1305

1598

2130

1132

1312

1096

1422

23

28

30

39

16

281

110

149

104

144

91.1

82.2

87.8

83.9

88.9

88.4

91.2

89.8

91.3

90.8

98.9

97.6

97.8

96.6

98.9

Mean 1623� 416 1418� 419 27� 9 157� 72 86:8� 3:7 90:3� 1:2 97:9� 1:0

Type 2 spindle wavelet

Rat No. NS1 Automated extraction Quality of automated marking

TP TN FP FN rS, % b, % d, %

1

2

3

4

5

211

249

179

209

176

140

110

164

117

112

2154

1215

1327

1175

1454

70

69

30

26

48

22

21

15

18

14

66.3

44.2

91.6

56.0

63.6

96.9

94.6

97.8

97.8

96.8

86.4

84.0

91.6

86.7

88.9

Mean 205� 30 129� 23 1465� 400 48:6� 20:8 18� 6 64:3� 17:5 96:8� 1:3 87:5� 2:9
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the structure of EGG oscillatory patterns (as exemplified by

sleep spindles). Two types of sleep spindles differing in shape,

frequency, and time of onset were distinguished on the EEGs

of WAG=Rij rats.

Type 1 sleep spindles (typical ones) and spike-wave

discharges contained a strong rhythmic component in the

alpha-frequency range (corresponding to the 9±12 Hz fre-

quency range in the Fourier power spectrum [62]). The power

spectrum of spike-wave discharges was characterized by a

narrow local maximum at 9.8 Hz, with the amplitude much in

excess of the remaining part of the spectrum. This suggests

that discharges had a regular periodic structure, while the

oscillation period increased from the beginning to the end of

the spike-wave discharge. The frequency of sleep-spindle

activity significantly changed in the alpha range, as evi-

denced by the wide power spectrum pedestal in the respective

frequency region. These spindles were typical normal spindles

that accounted for over 85% of all observed sleep spindles on

the epileptic EEG. The maximum of the oscillatory energy of

these spindles occurred in the alpha range. The typical shape

of type 1 spindles is illustrated in Fig. 20 (left). It follows from

the Fourier spectrum of the type 1 spindle wavelet that the

main energy is concentrated in the 8±14 Hz range.

Type 2 sleep spindles have a unique shape and character-

istics for each experimental animal; they are extracted by

continuous wavelet transformwith the complex type 2 spindle

wavelet (Fig. 20, right). This type is considered to be an

intermediate form between sleep spindles and pathological

spike-wave discharges [62]. The number of such events on an

epileptic EEG does not, on average, exceed 10±15% of the

total number of observed sleep spindles. A specific feature of

these `proepileptic' EEG patterns is the presence of intense

peaks in both 4±8 Hz and 16±25 Hz regions of the power

spectrum. Typical normal spindles do not produce such

peaks.

5.4 Real-time diagnostics

of oscillatory pattern origin on an epileptic EEG

Of primary importance today is the development of methods

for real-time diagnostics of oscillatory patterns. The solution

to this problem is of interest for designing brain activity

monitoring systems in medicine [141, 155] and efficacious

methods to be employed for creating specific brain±computer

interfaces in the future [117±120]. Real-time diagnostics of

oscillatory patterns is hampered by the similar spectral

composition of topologically different patterns (i.e., struc-

tures belonging to different classes). For this reason, any

method devised for recognizing such structures must, on the

one hand, distinguish between patterns of similar frequency

composition and energy and, on the other hand, ensure quite

efficacious numerical realization for the construction of an

actually operating system. Another difficulty for the real-time

extraction of oscillatory patterns is the impossibility at the

present moment of complete time-dependent realization

needed for implementing transformation (3). Taken

together, these make the development of a universal method

for real-time diagnostics of oscillatory patterns both very

interesting and difficult. We therefore will confine ourselves

to the brief description of the currently accepted approach to

real-time diagnostics of spike-wave discharges [141, 155].

The first problem touched upon in the foregoing can be

resolved by applying the wavelet transform based on the

complex Morlet wavelet selectively separating similar pat-

terns. The second problem relates to a limited time series

when the researcher has to deal with discrete signal amplitude

values obtained starting from the onset of the experiment till a
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Figure 20. Shape variability of sleep spindles on the EEGs of WAG/Rij rats. Most spindles are extracted using type 1 spindle wavelets universally

applicable to all animal species. This type of oscillatory activity is regarded as a typical normal sleep spindle. However, the adaptive wavelet fails to

identify some 10±15%of the spindles; individual wavelet bases for each rat need to be constructed to recognize them. Type 2 spindle wavelets have amore

intricate shape unique for each animal. This type of oscillatory activity is associated with proepileptic activity on EEGs. The bottom of the figure displays

Fourier spectra of type 1 and 2 spindle wavelets (left and right, respectively).
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given moment. This problem can be resolved taking into

account the fact that wavelet function (2) rapidly decreases

with time, i.e., the largest part of the power is concentrated

within a certain time interval; then, expression (1) can be

substituted by the following one, practically without the loss

of accuracy:

W�a; b� �
� b�DT

bÿDT

x�t�c �
�

tÿ b

a

�

dt : �34�

This means that a part of the realization 2DT in duration is

needed in order to calculate the energy per certain scale at a

given instant of time. Importantly, whether a spike-wave

discharge occurred at the moment of time t can be deter-

mined only at moment t� DT. Thus, quantity DT is an

essentially unavoidable delay of automated diagnostics. This

quantity is determined by the type of the mother wavelet and

the time scale a for which the transformation is performed.

For theMorlet mother wavelet, one finds DT � 4a, where a is

the time scale of interest.

Let us consider some peculiarities of the realization of the

real-time diagnostic algorithm for oscillatory patterns on

EEGs [141, 155]. The method is based on the computation

of the wavelet spectrum (34) and the wavelet transform

energy (28) per scale range FS at each instant of time. The

rectangle method was applied for numerical integration when

computing the instantaneous wavelet transform energy (28).

We considered 15 time scales proportional to 15 frequencies

uniformly distributed over the above range. It was shown that

the use of 15 scales leads to a sensible compromise between

the accuracy of calculation of the wavelet spectrum and

computational speed. It should be noted that an EEG may

exhibit isolated bursts of high-frequency activity during the

normal (nonepileptic) period, e.g., K-complexes [106]. Such

events may lead to a sharp rise in the instantaneous

transformation energy and erroneous detection of the

epileptic pattern. Because such energy bursts occurred rather

frequently, the algorithm described in Section 5.1 was

modified to improve the accuracy and reliability of analysis.

For example, we diagnosed the type of oscillations in formula

(29) based on the threshold value of Ek as the criterion taking

not the instantaneous value of the transformation energy (28)

but the value averaged over a certain time interval:




w�t�
�

� 1

K0

�

K0

w�t� dt : �35�

In such a case, the greater the window size K0 over which

averaging is performed, the higher the accuracy of the

diagnostic method, and yet the greater the time needed to

detect a discharge. The following algorithm was developed

for automated diagnostics of a definite type of oscillatory

activity on EEGs with the use of the wavelet transform: at

each instant of discrete time determined by the discretization

frequency of the data collection system, wavelet transforma-

tion is performed for all scales within the specified range,

instantaneous (28) and averaged (35) wavelet energies in the

scale range are calculated, following which condition (29) is

checked. The high reliability of the method is achieved by

individually choosing the threshold value of energy Ek from

an EEG section one hour in duration for each object being

analyzed. Usually, Ek is 2.5±3 times the average energy value

in the same frequency range in the absence of a spike-wave

discharge.

This method was utilized to create a system for real-time

diagnostics of epileptic discharges based on the WinDAQ

data acquisition system.7 The system was employed to realize

bidirectional data exchange with ADC/DAC units. As soon

as the system detected a spike-wave discharge, it sent a

rectangular pulse to a DAC input that could be used both to

record the discharge and to control the operation of an

external device, e.g., an electronic generator acting on the

brain of an experimental animal. The resulting feedback

proved instrumental in substantially extending the possibi-

lities of using the diagnostic system in experimental studies.

Specifically, it allowed the application of external factors to

prevent (eliminate) the development of hypersynchronous

activity (epileptic discharge) in the cerebral cortex.

The results of experimental verification of the method on

EEG 5-h recordings are presented in Table 5. It demonstrates

the highest confidence level b amounting to 100%, mean

power of a test d � 96:9%, and mean time delay needed to

recognize a spike-wave discharge covered 1:00� 0:55 s after

the onset of the event. The last parameter depended in the first

place on the window size over which averaging was

performed, and could be significantly decreased or increased

because the time of performing transformation at the

discretization frequency employed (500 Hz) was much

shorter than the time between two consecutive countings.

The efficacy of the method was estimated in a 24-h-long

experiment (EEG recording). The real-time performance of

the automated recognition system is illustrated in Fig. 21. It

can be seen that the number of erroneously detected and

unrecognized events slightly changed with time due to minor

alterations in the shape of spike-wave discharges in different

7 See http://www.dataq.com/.

Table 5. Results of real-time detection of epileptic patterns.

Rat No. Number of events

(expert visual assessment)

Automated extraction Quality of automated marking

TP FP FN Signiécance

level b, %

Power

of a test d, %

1

2

3

4

5

6

7

8

101

29

43

66

44

66

115

56

101

29

43

66

44

66

115

58

3

0

2

1

2

4

3

2

0

0

0

0

0

0

0

0

100

100

100

100

100

100

100

100

97.1

100

95.6

98.5

95.7

94.3

97.5

96.6

Mean 65� 29 65� 29 2:1� 1:3 0:0� 0:0 100� 0 96:9� 1:8
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phases of the sleep/wakefulness cycle. On the whole, this

number remained small during the entire experiment.

5.5 Artifact suppression by combining wavelets

and independent component analysis

Standard methods of signal structure analysis (e.g., classical

spectral analysis) are not always directly applicable to EEG

studies due to artifacts in the experimental data. The

amplitude of these artifacts, induced by eye movements,

winking, muscular activity, etc, may be much greater than

that of the brain electrical activity of interest for the

researcher. At present, a visual (or semiautomatic) method

for the recognition of artifacts is employed, and frequently

they are removed manually. Usually, oscillatory patterns

(EEG sections) containing an artifact are cut out of the long

recording. This procedure is highly subjective and requires

great caution on the part of the experimentalist; not

infrequently, it significantly reduces the amount of experi-

mental data for further analysis. For example, only a 1-min

long `pure' fragment is sometimes available out of the

10-min EEG recording from a healthy human. In medical

practice, the loss of experimental data may be even greater,

e.g., in the analysis of EEGs of children [156] or patients with

certain diseases [157]. It substantially lowers the efficacy of

diagnostic studies. A reduced sample size along with

segmentation of experimental data (integration of artifact-

free oscillatory patterns) poses a number of questions related

to the stationarity of the process composed of integrated

pieces; hence, the attractiveness of establishing procedures

for the deletion of artifacts other than excision of EEG

sections.

An EEG record from a single electrode can be regarded as

amixture of signals from different brain regions and artifacts.

In the first approximation, neural signals and artifacts may be

regarded as independent processes [158, 159]. An efficacious

method has recently been proposed to suppress artifacts

based on independent component analysis (ICA) [160]. It

was modified in later studies [161±163]. The use of ICA is

actually an attempt to separate a recorded EEG signal into

statistically independent components for the elimination of

those responsible for artifacts. ICA was most frequently

applied to the analysis of EEGs for the efficacious removal

of visual artifacts [161±165]. Currently, ICA is considered to

be a promising tool for the `purification' of EEG signals. A

few remarks are in order in this context.

(1) Identification of components responsible for artifacts

depends on preliminary knowledge of their structure and the

experimentalist skills. Moreover, short oscillatory patterns

(� 10 s) need to be used for efficacious performance of the

algorithm [166].

(2) Despite the known efficacy of ICAas a tool for artifact

elimination from EEGs, there are few quantitative data

demonstrating its advantages and disadvantages. By way of

example, it was argued inRefs [156, 165] that ICAmay lead to

distortions in the power spectrum of the brain's electrical

activity proper.

Worthy of note are numerous examples of wavelet

application to EEG analysis [167±172]. It was shown in a

recent study [173] that the preliminary wavelet-based pur-

ification of an EEG from noise may increase the efficacy of

subsequent ICA. A tighter integration of ICA and wavelet

transform analysis might yield even more interesting results.

One of the authors of the present review proposed a new

approachÐwavelet analysis of independent components

(WAIC) [174]. This method is based on ICA and implies the

employment of wavelets as an intermediate stage of the

integrated artifact suppression algorithm, instead of preli-

minary filtering of experimental data.

ICA approach is based on three main assumptions:

(1) experimental data are a mixture of independent

processes of neuronal activity and artifacts;

(2) superposition of electric potentials from different

brain regions near the electrode is linear, and the signal

propagation time from the source to the electrode is

negligibly small;

(3) the total number of sources of activity (both neuronal

and artifactual) does not exceed the number of electrodes.

Thus, number K of simultaneously recorded EEG signals

X�t� � �x1�t�; . . . ; xK�t��T is a linear combination N �N4K�
of the initially unknown components (sources) S�t� �
�s1�t�; . . . ; sN�t��T describing the processes of neuronal

activity and artifacts:

X�t� � MS�t� ; �36�
where M is the matrix with unknown elements determining

theweighted contribution of each source to the recorded EEG

signal. The purpose of ICA is to find S�t� andM directly from

X�t�. The numerical algorithm for ICA was proposed, in

particular, in Ref. [160] and modified later in Refs [175, 176].

It makes use of neural networksmaximizing joint entropy and

minimizing mutual information from output components of

the neural processor. Other variants of ICA realization can be

used for the purpose of control [177].

The artifact suppression algorithm was tested by stan-

dard EEG recording in healthy humans with open eyes [178].

The application of ICA allowed analyzing the temporal

structure S�t� and topography M of EEG signal compo-

nents. For example, winking-induced visual artifacts largely

affected signals from frontal electrodes; they were accom-

panied by a strong burst roughly 1 s in duration (Fig. 22a). It

was proposed in Ref. [160] that artifact-containing compo-

nents be set to zero when forming a new matrix Ŝ�t�. For
example, if the first component contains artifacts, then

Ŝ�t� � �0; s2�t�; . . . ; sN�t��T. EEG signals purified by ICA

were reconstructed after removal of the artifact sources:

X̂�t� � MŜ�t� : �37�
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Figure 21. Time distribution of events during a 24-hour experiment: 1Ð

rightly recognized spike-wave discharges, 2Ðmisrecognized events erro-

neously identified as spike-wave discharges, and 3Ðmissed spike-wave
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Let us see how the utilization of wavelets permits

improving the efficacy of artifact suppression. Independent

components of EEG signals containing artifact sources may

also include the contribution from neuronal activity by virtue

of the limitation on the maximum number of independent

sources or other causes [166]. The removal of such compo-

nents results in the loss of part of the neuronal activity and,

therefore, in distorted EEG representation [179]. Figure 22

illustrates such a situation (the first independent component

s1�t� contains two winking-driven artifacts). This component

cannot a priori involve other artifacts unrelated to those

induced by eye movements. It can be divided into a high-

amplitude artifactA�t� (Fig. 22b) and a low-amplitude neural

signal n�t� (Fig. 22c):

s1�t� � A�t� � n�t� : �38�

We note that the artifact disappears outside the winking

segments (Fig. 22b), but the original component s1�t�
contains an appreciable contribution from the neural signal.

In the framework of the standard method, component

s1�t� is equated to zero prior to the reconstruction of a

purified EEG signal, with the loss of part of the neuronal

activity:

x̂j�t� � rj�t� ÿmj 1n�t� ; �39�

where rj�t� � xj�t� ÿmj1A�t� is the signal with the removed

artifact, and mj 1 is the corresponding weight coefficient of

matrixM.

Could we extract the neural component of signal n�t� from
s1�t�, it would enable us to correct the reconstruction of the

filtered EEG recording. The expansion of the independent

component s1�t� into two constituents (38) is initially

unknown, but they can be found from the properties of

signals A�t� and n�t�. Thus, the high-power artifact A�t� is

localized in time and frequency, while signal n�t� has a low

amplitude and wider spectrum (see Fig. 22). These features of

the signals make possible their separation in the time±

frequency spectrum of the wavelet transform.

The first independent component s1�t� being the sum of

two terms (38), its wavelet transform is also expressed in the

form of a sum:

Ws�a; b� � WA�a; b� �Wn�a; b� ; �40�

where WA�a; b� and Wn�a; b� are the wavelet transform

coefficients of signals A�t� and n�t�, respectively. As noted

above, the artifactual dynamics are characterized by rela-

tively large coefficient values and localization in the time±

frequency region, whereas the neuronal dynamics are

manifested in a broader scale range and with a much lower

energy. This is clearly seen in Fig. 23 presenting the results of

wavelet transformation of the three signals depicted inFig. 22.

Sections of wavelet spectra dominated by artifact-related

high-amplitude dynamics are apparent. These segments are

short and localized in the large scale region. The neuronal

dynamics are characterized by amore uniform distribution of

coefficients that have rather small values. Due to this,

artifacts can be removed by introducing a filtration threshold

beyond which suprathreshold wavelet coefficients describing

them are set to zero; thereafter, inverse wavelet transform is

accomplished. It should be noted that this procedure is much

easier (and faster) to perform for DWT; however, the use of

CWT gives better results. The procedure for the extraction of

neuronal activity is very similar to wavelet-based noise

filtration [180], but it has an opposite purpose, namely, to

separate a weak broad-band meaningful signal from artifacts

with higher energies.

WAIC proposed for artifact suppression in EEGs implies

the following sequence of actions:

(1) Application of the standard variant of ICA to the

treatment of experimental EEG recordings, derivation of the

weight matrix M and time-dependent dynamics of indepen-

dent components �s1�t�; s2�t�; . . . ; sN�t��T.
(2) Direct wavelet transform of components fsi�t�g to

obtain coefficients fW�a; b�gi.
(3) Empirical introduction of the threshold value of W �

and setting to zero coefficients exceeding the specified thresh-

old level:W�a; b� � 0, if jW�a; b�j > W �.
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Figure 23. Results of wavelet transformation of independent component

s1�t� (a), and its artifactual (b) and neuronal activity (c) constituents

(based on the data shown in Fig. 22).

0 2 4 6 8
t, s

20

s1�t�

ÿ20

0

a

20

A�t�

ÿ20

0

b

5

n�t�

ÿ5

0

c
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representing artifacts and neural activity, respectively [see Eqn (38)]:

(a) independent component s1�t� extracted by ICA and showing two

winking episodes (around 0.8 s and 5.5 s); (b) artifactual component A�t�,
and (c) neuronal activity n�t�.
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(4) Inverse wavelet transform to obtain adjusted compo-

nents reflecting only neural dynamics fni�t�g.
(5) Extraction of the corrected EEG signal: X ��t� �

M�n1�t�; . . . ; nN�t��T.
The choice of the suitable threshold value of W � is of

importance in the framework of the present algorithm.

Approaches to the choice are discussed in Ref. [181] and its

recommendations can be effectively applied in practical

work to adjust the algorithm for the improvement of

artifact suppression. The proposed algorithm allows overall

automation and does not require `manual' identification of

artifacts.

WAIC applications for the suppression of winking and

heartbeat artifacts are illustrated in Ref. [174]. Artifacts of the

former type are seen on EEGs as large-amplitude impulses

well localized in time. Those of the latter type emerge when

the electrode resides close to an artery (the appropriate noise

has the form of short and relatively small-amplitude impulses

with a frequency on the order of 1 Hz). It was shown that

WAIC permits reducing distortions of the electrical potential

by one order of magnitude. Also, it is associated with many

fewer distortions of neural signals beyond the artifact-

containing regions. Some additional advantages of a mod-

ified WAIC are discussed in Ref. [174].

5.6 Analysis of the formation of hypersynchronous brain

states from multichannel EEG recordings in patients

with absence epilepsy by wavelet transform

We would like to conclude this review by referring to one

more novel option available for wavelet application to EEG

processing. Different cerebral cortex regions are known to

operate synchronously under both normal (e.g., cognitive

activity) and pathological (Parkinson's disease, various

forms of epilepsy) conditions [1, 112]. These synchronous

states can be studied by wavelet analysis of multichannel

EEG recordings from different brain regions. By way of

example, we shall address the analysis of the evolvement of

a hypersynchronous epileptic discharge on EEGs from

patients with absence epilepsy, a quite common neurologic

disorder associated with total or partial loss of conscious-

ness. Absence seizures usually last from a few seconds to

tens of seconds; they are accompanied by characteristic

spike±wave complexes on EEGs [182]. Spike-wave dis-

charges recorded during epileptic seizures have a high

amplitude and frequency on the order of 3.0 Hz. As is

known, absence seizures are associated with enhanced

synchronization between spacious brain regions and the

appearance of hypersynchronous spike-wave discharges on

EEGs. The source of epileptic activity and synchronization

dynamics during spike-wave discharges remain to be

elucidated and raise concerns among researchers and

clinicians [13, 183].

One of the promising applications of wavelets in this

context is the diagnostics of synchronous activity in compli-

cated multifrequency signals of different natures. The general

principle of synchronization diagnostics using a continuous

wavelet transform with a complex basis (time scale synchro-

nization) was developed and tested in Refs [48, 64, 65, 184].

The concept of time scale synchronization (see papers [48, 64]

for details of themethod) is underlain by the dynamic analysis

of phase difference families, ja1�t� and ja2�t�, obtained by

continuous wavelet transform [see formula (4)] with the

`mother' Morlet wavelet of signals x1�t� and x2�t�. This

approach reveals synchronization of the selected spectral

component of signals from two sources on a time interval

DT, provided the phase difference in this interval is limited by

a certain constant:

�

�ja1�t� ÿ ja2�t�
�

� < const : �41�

Because phase familiesja1�t� andja2�t� of the EEG signals of

interest are introduced with the help of the wavelet transform,

this method proves resistant to noises, the intricate shape and

nonstationarity of the signal being analyzed. Thanks to these

circumstances it provides the possibility of comprehensively

describing peculiar features of temporal and spatial synchro-

nization of electrical activity between different brain regions

in normal and paroxysmal states.

Let us consider as an example the formation of a

hypersynchronous state on an EEG during a seizure in a

patient with severe absence epilepsy. The EEGswere recorded

in a diagnostic clinic using the standard 10±20 system of

electrode arrangement on the head [185]. Figure 24 shows the

position of electrodes and a typical section of an EEG

recording with a spike-wave discharge.

The source of spike-wave discharge was localized based

on the study of pairwise time scale synchronization (41)

between all EEG channels shown in Fig. 24. The dynamic

analysis involved instantaneous phases in a narrow fre-

quency range of 3±4 Hz, into which the largest fraction of
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synchronization analysis. (b) An example of a typical multichannel EEG showing a spike-wave discharge.
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wavelet spectrum energy of spike-wave discharges fell. The

results of searching for the source (focus) of epileptic activity

and the temporal dynamics of hypersynchronous state

formation are presented in Fig. 25. The lines connect pairs

of channels between which synchronization occurred at an

instant of time indicated by an appropriate arrow on the

EEG. Evidently, synchronization starts a few seconds before

the appearance of a spike-wave discharge on the EEG

(diagram corresponding to synchronization at moment A in

Fig. 25). As the spike-wave discharge evolves, the primarily

synchronized part of the frontal cortex in the right hemi-

sphere extends to the adjacent regions and the occipital

region (time moment B). The epileptic focus (synchroniza-

tion region prior to discharge) is localized in the frontal

cortex, in good conformity with the known data [13, 183].

The development of the epileptic discharge is accompanied

by the further extension of the synchronization region (time

moments B and C). In this manner, the epileptic activity

extends over the entire cerebral cortex. Evidently, the

increasingly larger number of brain regions becomes

involved in the synchronization process as the epileptic

discharge develops; virtually all of them generate synchro-

nized low-frequency oscillations by the middle of the spike-

wave discharge (time moment D). By its end, the brain

regions depart from the synchronous state (time moments

E and F), which is reflected in the diagrams.

Thus, the time scale synchronization method based on the

application of continuous wavelet analysis with the complex

basis was successfully utilized for the description of space±

time synchronization of brain electrical activity. Analysis of

multichannel EEG recordings by this method allowed

efficient localization of the source of epileptic activity and

revealed its distribution patterns. These approaches may find

application to the solution of other problems pertaining to the

detection of links between different brain regions, searching

for high-frequency brain activity related to cognitive abilities

[186, 187], etc.

6. Conclusions

Wavelet analysis remains a somewhat exotic method in

modern neurodynamics. As is known, any new method,

even one providing a broader range of possibilities than

traditional approaches, needs time to be converted into a

convenient tool for routine application. It is especially true of

the medico-biological sciences, where novel tools require a

thorough checkup, adaptation, and verification to be

accepted. In this context, it should be emphasized that

wavelet analysis not only permits exposing new structural

features of complicated neurophysiological signals, but also

allows integration into combined algorithms for experimental

data processing to enhance the efficacy of the existing

methods widely applied in neurophysiological research. We

believe that it is this evolutionary principle that will

eventually turn wavelet analysis into a standard method for

signal processing, not only in physics and mathematics, but

also in biology and medicine. This implies not so much the

replacement of conventional neurophysiological techniques

by new ones, as the improvement of existing approaches to

make wavelet analysis more popular among experimenting

neurophysiologists.

Neurodynamics and neurophysiology make up an exten-

sive area of the natural sciences. We were able to address only

a very narrow set of problems in the present work. However,

even this brief review demonstrates manifold possibilities and

prospects for the application of wavelet analysis in

neurophysiological research. The use of powerful tools of

physicomathematical analysis of neural systems at the micro-

and macrolevels of the central nervous system makes it

possible to study at present the most complicated mechan-

isms underlying numerous brain functions. At the same time,

interpretation of the results of such investigations in the

context of neurophysiology is sometimes not a trivial task,

due to the unprecedented complexity of the object under

study (the nervous system of living organisms), on the one

hand, and difficulties encountered in the interpretation of the

results obtained by sophisticated neurophysiological meth-

ods. There ismuch truth in the remarkmadebyAMIvanitskii

and A I Lebedev in their paper on the scientific legacy of

M N Livanov that ``the integration of mathematics and

physiology gives the best result when the application of one

mathematical transformation or another is underlain by a

fruitful physiological idea'' [188]. Indeed, a recipe for success

of novel data processing technologies in the framework of

interdisciplinary research in modern neurophysiology is the

generation of new ideas and proper goal-setting.

There is little doubt that the number of neurodynamic

studies using wavelets will continue to grow, because the

solution to such challenging problems as the principles of

information coding, presentation, and treatment in CNS

requires not only the development of research and trial

facilities (where considerable progress was made in the last

few decades), but also new methods for decoding neural

signals. The extreme complexity and many-sidedness of

brain processes make it impossible to decipher neural signals

only by the methods of statistical analysis. Adaptation of

living organisms (including neural systems) to the environ-

ment is accompanied by changes in their dynamics, and the

data of neurophysiological studies should be interpreted

rather as resulting from nonstationary processes generated

by dynamical systems with a very large number of degrees of

freedom. Disregard of this fact reduces the possibility of
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Figure 25. Dynamics of spike-wave discharge from the perspective of

synchronization of different brain regionsÐ the number of synchronized

regions increases as the discharge develops; almost all cortical regions

prove synchronized by the end of the event. Diagrams correspond to

different instants of time indicated by arrows AÿD on the bipolar EEG

recording from the frontal region (electrodes F4ÿA2; see Fig. 24).
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acquiring important information about neural systems,

whereas understanding adaptation processes facilitates inves-

tigation into the underlying behavioral mechanisms. Wavelet

analysis viewed as a sort of `mathematical microscope' makes

it possible under appropriate tuning to expose dynamic

features unseen by the naked (or ill-equipped) eye; hence,

the great (yet hidden) potential of this research tool. The

present review was designed not only to describe some

modifications of the analysis of experimental data (allowing

us to address a number of problems pertaining to neural

system dynamics), but also to instill the readers with our

confidence in the promising prospects for the use of wavelets

in neurodynamic applications. In the coming years, wavelet

transform analysis can and must become an efficacious

research tool for the improvement of research quality in the

field of neurodynamics. To conclude, it should be emphasized

that the newly proposedmethods for the analysis of biological

signals may find wide application in many areas of physics

and technology.
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