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Abstract: The Yangtze River has been the primary support of the resources and transportation of
China. The Three Gorges Dam and Reservoir on the Yangtze River is one of the world’s largest
dams. The influence caused by the dam and reservoir on the river system has been overwhelming
and destructive. For better water resource use and flood-prevention planning, more understanding
is needed regarding the dam’s impact on river discharge, regional precipitation, and frequency of
extreme rainfall events. This study aims to analyze the changes in river discharge and regional
precipitation records before and after the construction of the Three Gorges Dam. This research
examines temporal correlations among these data by collecting daily dam injection and dam discharge
records, the precipitation from ground stations, and river discharge. The time series are analyzed
with the wavelet analysis. The precipitation datasets decrease in wavelet magnitude after 1998 when
the dam was built in the wavelet analysis. The annual cycle, shown as a bright year line through
the time range, still exists in the analysis result after 1998, but the magnitude of the annual cycle
has reduced. The river discharge shows a decrease of wavelet magnitude at the three downstream
locations. The possible explanation of this pattern could be the human-controlled dam discharge.
The constant water level maintained in the reservoir by human control would slow down the flow
speed and stabilize it.

Keywords: Three Gorges Dam; the Yangtze River; precipitation; dam and reservoir; wavelet analysis

1. Introduction

Determined by the Yangtze River Basin’s structure and functions, water resources,
aquatic ecology, water environment, and flooding disasters reflect the interactions among
the environmental changes [1]. The Yangtze River Basin sits in the subtropical monsoon
region. It originates from the high mountain plateau terrain in Southwest China and
connects the East China Sea on the east coast, where the terrain is low and flat. Therefore,
the climatic and topographical conditions in the Yangtze River basin vary greatly. The
river’s upper reaches are mainly glacial ice/snow meltwater, and the water volume is small
and seasonal. In the lower reaches, flooding events caused by storms and heavy rainfall are
the major threats related to the river. Rainwater generally accounts for 70–80% of annual
runoff [2,3]. In addition, storm surges and some tsunamis from the coast sometimes put
excessive water into the interior land, causing coastal flooding [4,5].

Along with the essential functions provided for local communities and the economy,
the Yangtze River is also well known for its long history of flooding disasters that are
destructive to lives and the economy [6]. As a result, around 50,000 dams have been built
in the Yangtze River basin since the 1960s for flood control and prevention, including the
Three Gorges Dam (TGD) [7].
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Among all the dams, the Three Gorges Dam is the largest and most impactful dam in
China because of its enormous capacity and size [8]. Since the Three Gorges Reservoir’s
completion in 2002, the storage increased from 10 billion tons to 20 billion tons in 2003. It
further increased to 30 billion tons in 2006 and reached 39.3 billion tons of water in 2008.
The water storage increased by about 10 billion tons during each water injection in one to
two months. After each significant water storage increase, the reservoir started a cyclical
fluctuation period. Water was stored to a high level through autumn and winter, drained
to a low level to free up flood capacity in spring, and maintained to a low level for flood
protection in summer. The average water level difference between the autumn–winter and
spring–summer periods is around 30 m. The impacts of this super dam reservoir on the
local level around the reservoir, on the river system and river condition, and the ecosystem
and soil condition along the Yangtze River, both upstream and downstream, have been
explored and discussed in other studies [9–17].

However, the dam’s influence on the weather pattern downstream at a mesoscale (5 km
to 100 km) or larger scales has not been meticulously discussed. During the discharging
season, there will be a discharge of around 8 billion tons of water in 20 to 30 days, which
may lead to a massive disruption of the hydro cycle and precipitation pattern [18]. It could
cause significant city flooding in those large cities along the Yangtze River. The dam’s
influence on the river basin’s seasonal and monthly precipitation should be brought to
light [19].

Previous studies of the Three Gorges Dam could be summarized into three types by
their focus on different impacts on (1) meteorological characteristics around the reservoir;
(2) the biodiversity and ecosystem in the reservoir and river system; and (3) resilience of
the dam to climate change and extreme disasters.

Over the years, human activities, such as dam construction and engineering, industrial
and agricultural pollution, overfishing, waterway regulation, bank slope hardening, sand
excavation, and quarrying, have severely degraded the Yangtze River Basin’s ecosystem.
Notably, the fast economic and population growth have compromised biodiversity, fishery
resource conservation, water quality, air quality, and sediment load [20–23]. Overgrazing
of alpine meadows, excessive vegetation reclamation, invasive exotic fish species, and
other ecological disasters have been observed in recent decades. At the same time, human
constructions of large projects and the destruction of vegetation cover caused severe
degradation of various ecosystems [24–26]. Densely constructed hydropower stations in
the upper reaches of the Yangtze River have changed flow velocity and sediment transport
of the river, which have a profound impact on the migration and habitats of some rare
and endemic fish species [13,14,20]. The ecosystems in desertification areas are particularly
vulnerable. The Yangtze River’s middle reaches are densely distributed with rivers and
lakes and rich in water resources, but unreasonable reclamation has caused the lake wetland
area to shrink dramatically [25,27]. The lower reaches of the Yangtze River are from Hukou
to the estuary, with polluting enterprises scattered along the river, and the water ecology
and water environment have deteriorated [28].

For better water resource use and flood-prevention planning, it is needed to under-
stand more about the dam’s impact on river discharge, regional precipitation, and frequency
of extreme rainfall events. This study aims to analyze the changes in river discharge and
regional precipitation records before and after the construction of the Three Gorges Dam.
By considering the river system as a whole and the coastal end, this study will examine
the impact of a super dam on a continental scale, which has not been discussed before.
This research examines strong temporal correlations among these data by collecting daily
records of the dam injection and discharge, the precipitation from gauge stations, and river
discharge in the river system. The time-series data are analyzed with the wavelet analy-
sis, which decomposes the data to different frequencies s. The frequency decomposition
examines any correlation/coherence among these three datasets in time.

The work of this paper is as follows:
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1. In this study, three datasets related to the Three Gorges Dam and Reservoir were
explored using wavelet analysis.

2. The basic periodic pattern and characteristics are presented and discussed.
3. This study states several essential results and conclusions that would be interesting to

the academic society and future studies.

2. Materials and Methods
2.1. Data Sources

This section summarizes and analyzes the three different data types using their basic
statistic properties and descriptions. The Ground Level Station Measurement of Daily
Precipitation between 1975 to 2020 from the China Meteorological Data Service Center was
collected as the primary source. The precipitation data were collected from the Climate Data
Online of the National Oceanic and Atmospheric Administration (NOAA). The selected
data are the daily summary data from 6 different stations (YiBin, ChongQing, YiChang,
WuHan, AnQing, and NanJing Station). Among these 6 stations, 2 (the YiBin Station and
the ChongQing Station) are upstream from the Three Gorges Dam, and 3 of them (the
WuHan Station, the AnQing Station, and the NanJing Station) are downstream from the
Three Gorges Dam. The YiChang Station is next to the dam reservoir (Figure 1).
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Figure 1. The Three Gorges Dam and Selected Precipitation Stations.

The data range is from 1 January 1975 until 31 July 2020. The primary data prop-
erties and descriptions are presented in this section. In order to estimate and testify the
possible relationship between the station precipitation and the dam discharge, three differ-
ent stations were selected because they are the closest to the Yangtze River. The ground
precipitation data cover the year from 1975 to 2020. To examine the possible influence of
the dam construction, the year 1998, when the dam construction was finished and started
injection, was selected as a separator for data grouping. Since it has been 23 years after
the injection, the dataset was separated into two groups with the same 23-year time span.
The precipitation data are from 1975–1987 and 1988–2020, so the dam’s influence on the
long-term precipitation could be easily identified.
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The second dataset is the river discharge raster data. The river discharge was col-
lected from the Global Flood Awareness System (GloFAS), which is part of the Copernicus
Emergency Management Service (CEMS) (DOI: 10.24381/cds.a4fdd6b9). This raster data
contains data from 1 January 1993 until 31 December 2018, with a 0.1 × 0.1-degree latitude-
longitude resolution. The hydrological river routing model simulates this dataset with
modeled gridded runoff data. The dataset’s data value is the volume rate of water flow in
the river channel averaged over a time step through a cross-section. The value is an average
of over 24 h. According to the 6 ground stations’ latitude and longitude, the data were
sampled to demonstrate the dataset’s fundamental characteristics and examined against the
precipitation data. The discussion and distribution of the data description will correspond
with and use the name of the ground stations.

According to the selected locations’ overall statistic descriptions, there is a definite
increase in general river discharge and variation. Among the 6 locations, the 2 most
upstream locations, the YiBin and ChongQing station, and the 2 most downstream locations,
the AnQing and Nanjing, show high similarity (Figure 2).
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Figure 2. The Overall Statistic Descriptions for the River Discharge Near the Six Stations.

The third dataset is the dam operation data, which contains the dam’s basic informa-
tion, including the amount of water injected into the reservoir and the amount of water
discharged from the dam gate (Figure 3). The basic information on the Three Gorges Dam
was collected from the China Three Gorges Corporation. The selected data are the average
dam injection speed from 1998 to 2018 and the discharge speed from 2003 to 2018.
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Figure 3. Water Level and Monthly Average Dam Injection and Discharge of the Three Gorges Dam.

2.2. Wavelet Analysis

Wavelet analysis is a tool for studying multi-scale frequency characteristics in time
series. Decomposing the time series to different scales can reveal the main variability
patterns and frequency of change and how these patterns and frequencies change over
time. Wavelet analysis has been widely used in science, engineering, and mathematics,
especially in geophysics, remote sensing [29–32], and signal analysis [33,34].

Compared with the Fourier transform, wavelet analysis can better deal with non-
stationary changes at different frequencies [32,35]. The wavelet function is suitable for
the sharply changing area of non-stationary signals. It can extract the local stationary
characteristics of the signal and obtain periodic changes under a specific ratio.

Due to the time-frequency characteristics of wavelets, wavelets are mainly used for
time-frequency and time-scale analysis. The changes in precipitation and river flow are
combined frequencies from daily to seasonal. Therefore, the wavelet can decompose these
frequencies to various scales and enables them to be analyzed separately.

Wavelet transform has two types: continuous wavelet transform (CWT) and discrete
wavelet transform (DWT). Continuous wavelet transform has better signal feature extrac-
tion ability, so it is widely used in geophysical research to extract time series intermittent
wave features [33–35]. In this study, the continuous wavelet transforms (CWT) with the
Morlet wavelet as the mother wavelet is the primary method. The reason for using Morlet
as the mother wavelet in this study is that the Morlet can identify the sinusoidal signal
from the time series, both sudden and constant. The CWT process is as follows:

Wn(s) =
N−1

∑
n′=0

xn′ψ∗
[
(n′ − n)δt

s

]
.

where Wn is the power spectra; xn′ represents the time series for analysis; ψ represents the
mother wavelet, which is the Morlet wavelet in this study; and δt is the sampling interval.
n′ represents the translational value, n is the local time index, s represents the wavelet scale,
∗ represents a complex conjugation, N is the localized time index, and δt represents the
selected constant time spacing.
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3. Results
3.1. The Wavelet Analysis Results of the Station Precipitation

Precipitation datasets from all periods show an annual cycle (continuous yellow hori-
zontal line at the half-height of the y-axis) in the wavelet analysis. However, the upstream
stations have more noticeable and persistent annual cycles than those downstream stations.
Figures 4 and 5 show that the upstream stations, including the ChongQing station and
YiBin station, show an outstanding annual cycle. Moreover, both show a more robust cycle
in 1975–1997 than in 1998–2020. In the 1975–1997 period, this station shows a decrease in
annual periodicity after 1992 (after 15 on the x-axis). In the 1998–2020 period, the station
increased annual periodicity after 2014 (after 15 on the x-axis). The ChongQing station has
the most constant annual cycle in the 1975–1997 period, while the 1998–2020 period also
has the least robust annual cycle.
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Figure 5. The wavelet analysis result for monthly precipitation at ChongQing Station.

The YiChang Station, located near the reservoir, shows the most robust annual cycle in
the monthly precipitation (Figure 6). In addition, the number of bright spots decreases in
the 1998–2020 period on the lower half of the graphs. For the first period (1975–1997), the
wavelet analysis figures have a clear annual cycle with a bright yellow color, representing a
robust wavelet magnitude over 1. This robust annual magnitude represents the constant
seasonal change every year, and the change will be gradual and be a bell shape. These two
figures also have several bright spots in the area with a cycle smaller than annual. These
bright yellow lines on the annual cycle and the bright spots below the annual line are not
shown in the last period. This changing color from yellow to green shows that the seasonal
change amplitude becomes smaller and more sudden and angular in the last period.

The downstream stations are more complicated compared with the upstream stations. The
WuHan station shows a decrease in periodicity on the annual scale and cycles with a period
smaller than one year from the first to the last period (Figure 7). The WuHan station had a
bright spot in 1998 at the beginning of the 1998–2016 period with a small seasonal (1/4 of a year)
period. It also has a relatively bright spot in 2016 at the end of the 1998–2016 period.

Overall, this station has the least wavelet magnitude in the second period. In the
wavelet analysis graph of 1998–2016, the annual cycle appears as a green line, which
indicates a weak annual cycle. In the bottom half of this figure, where the period is smaller
than one year, The wavelet magnitude is relatively small, shown as bright blue and dark
blue, but these stripes with bright blue and dark blue color form a scattered pattern seasonal
level (1/4 year).

The AnQing station (Figure 8) also shows decreased wavelet magnitude for the annual
cycle. This station has several bright spots on the seasonal and half-year cycles besides the
annual cycle. The brightest spot is in 1999, with a seasonal cycle (0.25 years). There is a
bright vertical line around the 13 on the x-axis, with three bright spots with the seasonal
cycle in 2014, 2016, and 2017. There are also two bright spots with a half-year cycle in 2015
and 2017. The NanJing station shows a different trend compared to the other five stations.
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The NanJing station (Figure 9) shows an increase of wavelet magnitude at the annual level
from 1975–1997 till 1998–2020.
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The brightness and the amount of the bright spot with a period smaller than annual
also increase. This increase has been further developed from 1975–1997 to 1998–2020. The
1998–2020 period analysis has three very bright spots around 2016. There is a bright spot
from 2015 to 2017 on the annual level. There are two bright spots on the seasonal level in
2015 and 2016. The bright spot in 2016 may correlate with the same year’s bright spot at
the WuHan station and AnQing station.

3.2. The Analysis Results of the River Discharge near Station

Since the river discharge data are raster, the wavelet analysis uses the time series
extracted from the raster pixel at the latitude and longitude of the six ground-level precipi-
tation stations from 1998. Overall, all the six selected locations’ monthly river discharge
analysis results show a steady and concentrated annual cycle. The results from different
locations (Figure 10) have different bright spots along the line, representing high wavelet
magnitude at the annual cycle. For example, the YiChang station, located next to the
reservoir, shows a bright spot at the beginning of the time scale. The downstream stations
have similar bright spots corresponding to the start of reservoir injection.
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With the idea to identify other possible porotic characteristics in the river discharge
other than the annual cycle, the wavelet analysis was performed on the six times series
after removing their 23-year average annual trend to identify more detailed patterns.

The wavelet analysis result of the river discharge near YiBin station after removing
the annual cycle (Figure 11A) shows a scattered green and dark blue pattern at the seasonal
(1/4 year) level with four bright spots at 1998, 2002, 2003, and 2009. This shows a relatively
higher wavelet magnitude at the green spots than dark blue. There are also several bright
spots on the half-year period level in 2006 and 2012. Besides these high magnitudes at the
high-frequency level, there is a bright spot at the period scale above the annual line in 2012.

For the river discharge near ChongQing station (Figure 11B), the wavelet analysis
result also shows a scattered green pattern on the seasonal period level with bright spots
in years 1998, 2002, 2003, and 2009, which are the same years that the YiBin station shows
a high wavelet magnitude with a seasonal period. In addition, the river discharge near
ChongQing station also shows a high magnitude in 2006 and 2012 at the half-year scale
and a bright spot in 2012 with a period greater than one year.
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After removing the annual cycle, the river discharge analysis near the YiChang station
(Figure 11C) shows a scattered green and blue pattern at the seasonal period level. The
bright spot in the first year with a periodic cycle from seasonal (1/4) to one year also shows
a high wavelet magnitude after removing the annual cycle. This station’s overall magnitude
is lower than the previous station even though wavelet magnitude change patterns over
time are similar. The bright spots in 2002, 2003, and 2009 are still visible yet with a much
smaller magnitude.

The analysis result of the river discharge near WuHan station after removing the
monthly average (Figure 11D) shows a less scattered pattern on the seasonal level than the
previous three locations. The locations of the bright spot are also not the same. There are
bright spots in 1999, 2003, 2005, and 2017 at the seasonal level (y = 0.25) and 2000 and 2008
at the annual level (y = 1). The precipitation data from this station also show seasonal solid
and annual patterns at the beginning of the time scale.

The wavelet analysis result of the river discharge near the AnQing station after re-
moving the monthly average (Figure 11E) shows a less obvious scattered pattern on the
seasonal period level with fewer bright spots. There are two noticeable bright spots with a
seasonal period in 2005 and 2019. These are the same years when the WuHan station has
its bright spots. Besides the bright spots on the seasonal level, there is still a bright spot
at 2008 on the annual level. At the beginning of the period, the bright spot covers from
seasonal to annual level shows a smaller magnitude than the previous stations.

For the river discharge near the NanJing station, the dataset’s wavelet analysis result
(Figure 11F) shows a similar scattered pattern as the rest of the stations. A less noticeable
color change from one year to the next. There are still bright spots in 2005 and 2017 at the
seasonal level (y = 0.25) and 2008 at the annual level (y = 1).

3.3. The Analysis Results of the Dam Injection and Discharge

The dam injection and discharge (Figure 12A,B) display a clear and steady annual
cycle with no noticeable bright spots in the analysis result. Therefore, the wavelet analysis
was also performed on the dataset after removing the monthly average to remove the
annual cycle’s influence and identify other periods with a high wavelet magnitude. After
removing the annual cycle (Figure 12C), the wavelet analysis results for the dam discharge
have several bright spots along the scale with a seasonal period (1/4 year).

Besides the bright spots with a yellow color, there is a definite scattered color change
on the seasonal scale, while the number of the change corresponds to the number of years
in the time scale. This scattered pattern is not noticeable in the analysis results before
removing the annual cycle. This scattered pattern could also be found in the dam injection
(Figure 12D) after removing the annual cycle. Besides the scattered change on the seasonal
level, the dam injection data also had a bright spot on the half-year scale at the beginning
of the dataset in 1998.
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4. Discussion

The studies around the Three Gorges Dam have been focused on its local
impact [18,23,36], the sediment transportation [17,24,26,28], ecologic damage [13,14,20,36–38],
and thermal impact [10,39,40]. The disturbances the dam could cause on the river dynamic
and system are underestimated. Most believe that the dam’s effects are limited due to the
self-regulation of the river system [23]. However, the same rule could be applied to the
other side: that the impact is magnified if the impact is large enough to break the river’s
regulation limit. Since the current beliefs of how large the impact area is still within a local
and limited range, the possible damages may be larger than expected. This study compared
the data’s wavelet decompositions from different stations. A possible explanation of the
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stations’ differences and similarities was also inferred regarding the Three Gorges Dam
reservoir impact.

All precipitation datasets from the different stations show a scattered pattern at the
seasonal level, indicating that one or two seasons have more periodic characteristics than
other seasons. The light green to dark blue change indicates that there is a periodical to
none-periodical change in the data. It means some months of the year would display a
periodic change, while others appear more random. There is one deviation from systematic
to random every year. Besides the generally scattered pattern, the bright spots at the
seasonal level are coherent in all the stations.

When comparing the analysis results of precipitations with the dam discharge result, it
is clear that the pattern of dam discharge from Figure 12C is similar to the seasonal patterns
in the precipitations results and the river discharge results. However, the similarity is less
when comparing the precipitation and river discharge results with the dam injection result.
This difference proves that the dam discharge impacts the precipitation and river flow
instead of the other way around. If the precipitation was the factor that caused dam water
level rise, which led to an increase in dam discharge, then the dam injection should share a
similar pattern with the precipitation. This idea also applies to whether the dam, the river,
and the precipitation are all influenced by climate change. If they are all impacted by a
common factor, the dam injection should be more similar to the river and precipitation
since they have less manual control.

The precipitation results also show a more evident difference between before and
after dam construction at the upstream locations than downstream locations. This pattern
is likely influenced by the distance from the dam and the oceanic influence [23,39]. The
weather pattern would have a heavier oceanic and monsoon influence closer to the coast.
Therefore, the influence of the dam is very minimal for the last two stations. However, the
similarity between the results from the two coastal stations and the dam discharge shows
that the dam still has enough impact on them.

The wavelet magnitude of the river charges declines from upstream to downstream
beside the seasonal changes each year. Furthermore, the bright spots coincide in the graph
for different years, indicating the inter-connected river discharge between upstream and
downstream. The three downstream stations are under the East Asian monsoon’s influence,
during which heavy precipitations influence the local river discharge [4,5]. Despite the
monsoon’s influence, the river discharge patterns show substantial spatial similarity from
upstream to downstream after removing the monthly average from the dataset. The river
system’s interconnection and coherent nature would be the primary factor in why the
dam’s estimated area should be larger than the proposed 100-km radius [18]. Even when
the East Asian monsoon has a dominant influence on the coast of China, the river discharge
determined by the dam would still have enough force to alter the coast weather.

The dam injection and discharge wavelet analysis display human manipulation of
water storage in the reservoir. The discharge data shows a higher magnitude at the annual
cycle than the injection data. After the annual cycles were removed, the discharge data has
more bright spots in the wavelet decomposition graph than the injection. The reservoir
water level is managed through dam discharge control for water use and flood prevention.
Therefore, there is more seasonality in the discharge data than the injection. This pattern
also proves that the similarity between the dam discharge and other datasets could be
taken as proof that the dam impacts the precipitation and river. Since the dam discharge
is very manually controlled, the pattern is not natural compared to the injection pattern.
However, the river and precipitation are more similar to dam discharge than dam injection.

The precipitation results from stations near the dam are cohesive with previous studies
that aim at the same super dam and reservoir [40,41]. Therefore, the dam and reservoir have
changed the surrounding area’s climate condition. However, there has been no discussion
on its influence on the far end of the river system and with the coastal monsoon [18]. This
paper’s results clearly show that the dam and reservoir have also impacted the precipitation
patterns on the far end of the Yangtze River, both upstream and downstream. The impact
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on climate could be a combination of multiple factors, including the temperature change
caused by the land cover [42] and the river velocity and discharge impact by the dam
discharge [2,21,25,40,41].

5. Conclusions

In this study, three datasets related to the Three Gorges Dam and Reservoir were ex-
plored. The dataset’s basic periodic pattern and characteristics are presented and discussed.
There are serval essential results and conclusions that would be interesting to the academic
society and future studies.

In the general statistical analysis, the changing pattern on the precipitation after the
dam and reservoir construction shows a high possibility that the reservoir changed the land-
scape and climate condition, causing the precipitation to change along the whole river basin.
The vast water of the reservoir may change the heat and water exchange pattern nearby.
The river discharge datasets show similarities at different locations downstream of the
reservoir. Despite the seasonal impact by the East Asian monsoon in the downstream area,
such changes in the precipitation by the dam’s construction are unexpectedly significant.

The precipitation datasets decreased wavelet magnitude after 1998 when the dam was
built in the wavelet analysis. The annual cycle, shown as a bright year line through the
time range, still exists in the analysis result after 1998, but the magnitude of the annual
cycle has reduced. The river discharge shows a decrease of wavelet magnitude at the
three downstream locations. The possible explanation of this pattern could be the human-
controlled dam discharge. The constant water level maintained in the reservoir by human
control would slow down the flow speed and stabilize it.

In short, this study confirms the significant influence of the Three Gorges Dam and
Reservoir on the Yangtze River basin through analyses of the correlation pattern of precip-
itation and river discharge from different locations along the river. It also finds that the
dam’s influence on the climate is more significant than expected and reported in previous
studies. Of course, with the limitation of data type and source and the complexity of the
weather dynamic, the proposed conclusions are just assumptions made based on previous
literature and the result of this study. Its purpose is to raise the question and discussion
around the influence of a super dam. Based on this study’s result and conclusion, the
research on other dams and using other climate parameters could be further discussed.
Furthermore, more parameters shall be added in future studies, such as soil moisture,
groundwater table, and air humidity.
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