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Abstract

Classical eduction schemes for turbulent boundary layer bursting processes are

based on the assumption of empirical threshold constants. The wavelet analysis

has been recently considered to be a possible candidate as turbulent structure

detection method, overcoming any empirical approach.

An application of this mathematical tool to a near wall boundary layer velocity

signal is shown. Comparison with classical VITA detection scheme is

presented.

1 Introduction

It is well known that turbulence production in turbulent boundary layers is a

quasi-periodic process which results in energetic production of turbulent energy

termed 'bursting*. A detailed understanding of the bursting process is of great

importance both for dynamic modelling of the turbulence production

mechanisms and for developing methods to control skin friction drag and wall

heat transfer. For this reason, after the pioneer studies of Kline, Reynolds,

Schraub and Runstadler (1967) at Stanford University [1] and Corino and

Brodkey (1969) at Ohio State University [2], a great amount of work has been
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done on the subject. These studies rely heavily on flow visualization and hot

wire measurements and on a combination of the two techniques. A

comprehensive review of the past and recent studies is given in the paper of

Robinson (1991) [3].

A large contribution to the understanding of the bursting process has been

recently given by complete numerical simulation of boundary layer flows [4]

and fully developed turbulent channel flows [5]. It has become increasingly

clear that the underlying mechanisms of turbulent energy (and Reynolds stress)

production are inextricably linked to the dynamics of organized coherent

vortical structures in the wall region. These structures appear in a variety of

repetitive forms and at different scales and levels of activity. More recently

Bernard et al. [6], by analysing a numerically simulated channel flow at

Re=125 based on velocity friction and channel half width, reconstructed the

near wall vortical events suggesting a complete scenario by which vortices

evolve in the turbulent boundary layer, showing capacity for self-replication

and leading to a continual supply of new structures. In this scenario, the

interaction of counter-rotating pairs of vortices appears to be the cause of the

observed bursting process, consisting on ejection and inrush of fluid particles,

events that are responsible of the turbulent energy production.

In spite of the considerable amount of information obtainable by the

complete numerical simulation, the results are restricted to simple flow

configuration and to very low Reynolds numbers, far from most of practical

applications.

The experimental approach is still of great importance to study the dynamical

role of the vortices in producing turbulent energy. Unlikely, in ordinary

turbulent flows, the coherent structures are embedded inside the overall chaotic

behaviour of the turbulence field and are then very difficult to detect. Moreover

the three dimensional nature of the structure makes their eduction a very

complex task, especially for single-point measurements.

Several techniques for detecting bursting events have been developed during

the past twenty years. Each of these detection algorithms is based on a velocity-

signal pattern that is postulated to be a unique characteristics of the bursting

events. These techniques were based on the local variance of the stream wise u

-velocity component [7,8], on the local value of the u -velocity [9] or on its

slope [10], on the sign of the uv product [9], were v is the velocity component
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normal to the wall. All these detection algorithms rely on the assumption of a

threshold, whose value is empirically established, mostly by correlation with

flow visualization results.

The aim of this paper is to show an application of a new developing

technique, the wavelet transform analysis, as a structure eduction method for

turbulence flow, that overcome any empirical approach.

Results obtained with this technique will be compared with results obtained

with the classical variable interval time averaged method (VITA).

2. Wavelet Transform

The most used tool for analysing time series is certainly the Fourier

Transform. This method allows to decompose a signal, or more generally a

function in L- as a superposition of sinusoidal waves. Unfortunately these

oscillate from -<» to <*>, and cannot adequately describe the behaviour of the

signal at a specific time. If we consider as an example, a function f(x) which

is smooth everywhere except for a singularity, and if we take a FFT, we will

end up with a power law spectrum that tells us that the function is globally non

regular: we lost the essential information, that is, f(x) has a local singularity.

Wavelet transform [11,12] provides an alternative way for analysing signals:

the trigonometric functions of the Fourier Transform are now replaced by other

functions, called wavelets, which are localized in physical space. The signal

can then be written as a linear superposition of wavelets at different position

and scale and the coefficients of the expansion give information on the local

behaviour of the signal. Starting from a single analysing function g(r), we

construct by translation and dilatation:

(2.1)

where a is the scale and p(a) is a weighting function. The wavelet transform

of a signal /(r) is defined as

(22)
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In order to perform a wavelet transform it is necessary that the function g(t)

satisfies a number of conditions: it must have a zero mean (admissibility

condition) and it must be localised in physical and in Fourier space. Different

weighting functions can be used. If p(d) = a"* , [13], then each element of the

family of a wavelet contains the same energy, so that the square modulus of the

coefficients of the expansion, |7̂ (0,/o)|~, known as the local wavelet energy

spectrum, gives information about the distribution of energy at different scales

and positions. Another common choice for the weighting function is p(a) = a

[14], [15] which has the effect of intensifying the small scales.Therefore the

role of the weighting function is to accentuate or suppress the desired scales of

the decomposition. Since we look for localized energetic structures, we will

adopt the first choice, p(d) = a~*^.

The scale a is related to the wave number k in the following way: k = c I a ;

the constant c depends on the family of wavelet. For the Mexican hat, which

analytical form is given by the second derivative of a gaussian function (Fig.l),

c is found to be equal to V2 [16].

The wavelet transform is also invertible, the reconstruction formula for the

case of p(d) = a '*'* has the following form:

<»>

where

C/[̂ fdk, (2.4)

with g(k) being the Fourier Transform of g(t).

It can be shown [17] that for Mexican hat the inverse transform formula

simplifies to become

(2-5)
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The exact value of the C is given in reference [17]. For the wavelet transform

the ParsevaTs theorem holds:

(2.6)

The energy distribution among all scales (wavelet power spectrum) is given by

(2.7)

It is also possible to evaluate the distribution of energy as a function of time

(local energy density):

3. VITA Detection Scheme

The VITA technique, devised by Blackwelder and Kaplan [7] is based on the

intermittent character of the short-time variance of a turbulent signal. This

quantity gives a local measure of the turbulent activity. The short-time variance
of a signal u(t) is defined as

var,,(f,n = - \u(s)\~ds-i- \u(s)ds (3.1)
1 C 2 Ir,,(f,7) = — I [w(s)]~(/£-i

*k (

where T is the short time averaging time.

An event is considered to occur when the variance exceeds ku^ , where k is

a chosen threshold level and

(3.2)
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A detection function D(t) is defined as

0 otherwise

Once a reference time for each burst has been determined by the detection

function, it is possible to study the bursting phenomenon by using conditional

averaging techniques:

1 ^

where the quantities tj are the reference times, taken as the midpoints of the

events, TV is the number of events and T is a time coordinate relative to a
reference time tj.

In this paper the VITA technique is simply used as a bursting detection

scheme, assuming a threshold level of k = 1.

4. Experimental Considerations

The experiments were performed on a splitter plate mounted horizontally in

the test section of the 0.70m x 0.50m low speed, open circuit, wind tunnel of

the "Politeenico di Torino". The pressure gradient along the plate was nearly

zero. The transition from laminar to turbulent flow was fixed at the splitter plate

leading edge. The data here analysed were taken at a distance from the leading

edge of 1260mm and at an height from the plate of 20 wall characteristic
lengths, y+=yw,/v=20. This position corresponds to the buffer layer region,

where the maximum production of turbulent energy is expected. The Reynolds
number (Re=w, 0/v, where 0 is the momentum thickness) at the measurement

point was Re=125; the ratio between the friction velocity w, and the external

velocity was 0.04.

Single normal hot wire probe was used for the u -component of the

fluctuating velocity measurements, using a constant temperature Dantec

System. The a. c. part of the hot wire signal, amplified, was acquired by a 12
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bit analog-to-digital converter, at 6 khz sampling rate. The accuracy of the

measurements may be evaluated as less than 2%. The ratio between the r.m.s.

value of the fluctuating velocity and the external velocity was 0.06.

5. Results and Comments

In order to illustrate the variety of information that may be obtained by the

wavelet analysis, grey level plot of the wavelet coefficients ̂ (A/J, where

A = 1 la, are shown in Figure 2. The duration X and the time ^ have been

normalised respect to the wall characteristic time vlu]. Regions where T (A,̂ )

are large indicate high correlation between the data and the wavelet. It is evident

the intermittent nature of the data, where positive and negative values of the

wavelet coefficient show a quasi-alternate behaviour. Peaks with negative

values of 7̂ (A,rJ corresponds to events where the fluctuating u -velocity

shows preferably positive values and positive peaks correspond to wall

activities where the u -velocity tends to be negative. Finally it is evident in the

large amount of scales involved in the phenomenon.

The wavelet power spectrum and its equivalent Fourier power spectrum are

shown in Fig.3. The two spectra have been normalized with respect to the

values of the area under the curves. The scales of the y-axis are arbitrary. The

wavelet method seems to give a smoother representation of the spectrum, as it

was already observed in Ref. [18] for boundary layer velocity signals over the

ocean. A direct comparison between wavelet and VITA analysis is shown in

Figure 4 and 5, for a set of data including 500 sample points, corresponding to

0.08 seconds. The time distribution of the energy integrated over all scales,

E(t), obtained by equation (2.8), is shown in comparison with the VITA

detection function. The y-scale is arbitrary. The VITA detection function in

Figures 4 and 5 has been evaluated using two different values of the short non

dimensional averaging time, respectively T* =10 in Fig. 4 and T* =20 in Fig.

5. It may be observed that events detected with VITA correspond rather well

with instants in which E(t) assumes peak values. Similar results have been

obtained by Benaissa et al. [19]. Looking in detail, one of the higher E(t) peak

in Fig. 4, at f =420, is not detected by VITA method at 7* =10 and

conversely is detected at higher averaging time, Fig. 5. It should be noticed that

the VITA variance is strongly dependent on the value of averaging time
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window, T*, which acts as a filter in the velocity data. Therefore VITA has the

tendency to detect events occurring in a scale comparable with T*. Going

further in details, it may be seen that events corresponding to smaller scales,

detected at about t* = 1365 and t* = 1440 for 7* =10 (Fig. 4) , are not

revealed in the case of T* =20 (Fig. 5).
Two subsets of the previous results are shown in Figures 6 and 7; the

velocity signal is also reported. In order to make a categorisation of the

observed events, attention must be put on the slope of the velocity signal at the

detection time. As it is clearly shown in the velocity sequence,Figures 6 and 7,

events are characterised by either a slow velocity deceleration followed by a

sharp acceleration (accelerated event), or a slow acceleration followed by a

sharp deceleration (decelerated event). This categorization is in line with the

observations in Ref. [20] using hydrogen-bubble visualization-derived data. As

it is reported in Ref. [20], the accelerated event is the one most commonly

accepted time burst-type event, characterized as an ejection of low-momentum

fluid from the surface, followed by a rapid acceleration or "sweep" of high-

momentum fluid. The decelerated events seem to reverse this process and in

most studies they are discounted when attempting to establish "bursting" times,

retaining only the accelerated events.

From the present results, it may be argued that during the decelerated events,

amount of turbulent energy as large as for the accelerated events are involved,

even if the frequency of decelerated events appear to be much lower. Moreover,

referring to the scenario from direct numerical simulation, counter-rotating pairs

of vortices may promote both ejection and inrush of fluid particles. The latter

may explain decelerated events. Beside the single detection events described,

we may expect also sequential and parallel events. The former, detectable by

point measurements, may be defined as events occurring temporally close,

Af* < 20, in probe region. They may have the feature of accelerated or

decelerated events or both. According to this categorization, the two aligned

events in Fig. 6, near the origin, that are separated by an interval of time of

about Af* = 19, may be grouped in only one bursting process and considered

as a multiple type event. Parallel events are supposed to occur at about the same

time, but at different heights above the plate surface. Clearly only one event

may be detected by point measurements, but it is clear also that the influence of
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the parallel event may be present in the probe region, appearing as energy or

scale magnification.

Because of the three-dimensional complexity of scales that are associated

with turbulent boundary layers, an appropriate burst detection approach must

be able to observe variations in scales of both length and time. The former can

not be accomplished by point measurements; particle image velocimetry may be

a good candidate for this task in competition with direct numerical simulations.

For the latter, a contribution may come from the wavelet analysis. In Fig. 8

contour plot of energy are shown as a function of scale and time. Looking at

the iso-lines, regions of concentrated turbulent energy are observed in

correspondence of the time in which bursting activities have been detected, as

reported in Figures. 4 and 5, retaining information about the scales. The results

shown in Fig. 8 appear to be promising for a statistical approach of the scale

problem, leading to the probability distribution of events respect to scales. A

possible statistical analysis may take also into account the characterisation of the

events, distinguishing between decelerated and accelerated events.

6. Conclusions

A near wall turbulent boundary layer fluctuating velocity signal has been

analysed using wavelet transform. It has been confirmed that the wavelet power

spectrum gives a smoother representation respect to the equivalent Fourier

power spectrum. Comparisons between the local wavelet energy density

distribution eduction method and the VITA detection function are in good

agreement, provided that the VITA short averaging time T* window is

properly chosen, according to the scale of the events.

In line with the observations in Ref. [20], the events have been characterised

and interpreted as accelerated events and decelerated events.

A proper statistical approach is under study in order to take into account the

information present in the local wavelet energy spectrum, where events appear

to spread in a wide range of scales.
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Figure 1: Mexican hat wavelet
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Figure 2: Grey level plot of the wavelet coefficients and the respective
time serie.
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Figure 3: Wavelet and Fourier power spectra
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Figure 4: Comparison between wavelet local energy density E(t) and VITA

detection function D(t), with k =1, T = 10
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Figure 5: Comparison between wavelet local energy density E(t) and VITA

detection function D(t), with fc = l, T =20
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Figure 6: Wavelet local energy density E(t), VITA detection function D(t), with

k = 1, T = 10 and u -signal f(t).
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Figure 7: Wavelet local energy density E(t), VITA detection function D(t), with

6=1, T = 10 and u -signal f(t).
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Figure 8: Contour plot of the local wavelet energy spectrum |7̂ (A,fy)[
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