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Abstract: This study presents a new approach to detecting and classifying voltage disturbances in electrical distribution
systems based on wavelet transform and artificial immune algorithm. This proposal unifies the negative selection
artificial immune algorithm with the discrete wavelet transform concept. Thus, the measurements obtained in a
distribution substation by the supervisory control and data acquisition acquisition system are transformed into the
wavelet domain. Afterward, a negative selection artificial immune system realises the diagnosis, identifying and
classifying the abnormalities. The principal application of this tool is to aid the system operation during faults as well
as to supervise the protection system. To evaluate the performance of the proposed method, two distribution systems
were modelled in EMTP software: an 84-bus test system and a 134-bus real system. The results show a good
performance, emphasising the precision of the diagnosis.
1 Introduction

Recently, the electrical power companies have been modernising
distribution equipment and automating the operations process, which
reduces the cost [1]. The investments are intended to satisfy the
rules that are imposed by the regulator agencies and to increase the
reliability, security and efficiency of the system. To accomplish
these goals, two technologies are employed: digital technology and
information technology [2]. With these technologies, it is possible
to develop integrated systems that combine acquisition, analysis
and data processing techniques with control and decision making [3].

Failure diagnosis is commonly based on visual inspection of the
oscillograph. Expert operators aid in the decision making.
However, they cannot identify every fault, and the process can be
inefficient and insecure. Therefore intelligent techniques are a
good alternative for solving the diagnosis problem. Several
techniques based on this concept are used to aid the operators to
execute the routines, providing security, efficiency and velocity to
corrective actions. Some of the relevant studies that are available
in the literature are described below.

The study in [4] presents a system for recognising voltage
disturbances in distribution electrical systems in the wavelet
transform domain. The Dempster–Shafer evidence theory [5] is
used to integrate the output of a neural network set that classifies
the disturbances. The work of [6] presents a new approach to
power quality disturbance diagnosis, using a wavelet transform
and the Kohonen neural network. In [7], the authors develop and
use a voltage disturbance diagnosis based on neural networks,
fuzzy logic and wavelets. The study in [8] presents a methodology
that is based on wavelets and entropy norms with a perceptron
multilayer neural network that is trained by back propagation [9]
to classify voltage disturbances. A hybrid system with a wavelet
transform and an artificial neural network is used to detect, locate
and classify electrical power quality disturbances in [10].

The study in [11] presents a method for detecting and classifying
power quality disturbances using the discrete wavelet transform
(DWT) and a wavelet neural network. The wavelet transform is
used to extract characteristics that will be analysed by the wavelet
neural network and to classify the signal.

The work proposed in [12] presents a real-time power quality
disturbance classification method. This method used the discrete
Fourier transform to extract signals from a decision tree based on
rules (rule-based decision tree) to classify the disturbances. The
study in [13] presents a method for performing a voltage
disturbance diagnosis in electrical distribution systems. The
wavelet transform is used to extract the characteristics from the
voltage oscillograph, and the information is joined by the entropy
concept into a fuzzy-ARTMAP neural network, which classifies
the disturbances.

The study in [14] proposes a new approach to voltage disturbance
diagnosis by using a negative selection immune system. This
approach uses proper/no proper discrimination to differentiate the
signals. The resulting diagnosis system presented excellent results.
And in the paper [15] was presented a methodology for optimal
database storage of disturbances in electrical distribution systems
using artificial immune systems (AISs).

In the specialised literature, there is no publication that is related to
voltage disturbances in electrical distribution systems using AISs
and wavelet transforms. Therefore the proposal of this work aims
to contribute to this area by presenting a new algorithm for voltage
disturbance diagnosis that uses AISs and wavelet transforms. The
AISs were originally proposed to solve computational security
problems, and they produced good results. Owing to the good
results in other areas, this work proposes a new approach to
performing failure diagnosis in electrical energy systems.

The AISs are promising algorithms in artificial intelligence (AI);
the concept is based on biological immune systems (BISs) and
aims to computationally reproduce its principal characteristics,
properties and abilities [16]. As emphasised in [17], the AIS is
adequate tools to be applied in failure diagnosis of electrical
systems due to the natural characteristics of diagnoses. These
characteristics are related to biological inspiration. The AIS was
inspired in the BIS, which have natural characteristics of
diagnosing of disease in the human organism.

The wavelet transform is a mathematical tool for signals analysis
through decomposition or breakage of the constituent parts, allowing
to analyse the data in different levels of frequency with the resolution
of each component in its range. In summary, the wavelet transform
allows you to view the approximation of the discontinuous data in
functions, that is, view the abnormalities in the signals, so
becomes an important tool in the analysis and diagnosis of
abnormality in the electrical system. The use of a wavelet
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transform provides, to the diagnosis system, a sensitivity that allows
the system to easily identify abnormalities in the signals.

Therefore this paper presents a new approach to performing
voltage disturbance diagnosis in electrical distribution systems by
using a wavelet-AIS. This immune-wavelet proposal aims at
robustness and efficiency (precision) in the diagnosis process. To
evaluate the performance, tests were conducted with two electrical
distribution systems: one system was a test system with 84-bus,
and the other system was a real system with 134-bus.

This paper is organised as follows: Section 2 presents the negative
selection algorithm (NSA). Section 3 describes the wavelet
transform. The modelling and simulation is presented in Section
4. Section 5 presents the proposed methodology. Finally, the
results and conclusions are presented, respectively, in Sections 6
and 7.
2 Negative selection algorithm

The NSA, which was proposed in [18] to detect changes in systems,
is based on the negative selection of T lymphocytes over time. This
process works on the discrimination of proper against non-proper
cells. The algorithm is executed in two phases, according to the
following description [16, 19]:

1. Censor

(a) Define a set of proper chains (S) to be protected.
(b) Generate random chains and evaluate the affinity (match)
between each chain and the proper chains. If the affinity is
greater than a predefined value, then reject the chain.
Otherwise, file the chain into a detector set (R).

2. Monitor

(a) Given a set of chains to be protected (protected chains),
evaluate the affinity with each chain and the detector set. If the
affinity is superior to a predefined value, then a non-proper
element is identified.

The censor-phase of the NSA primarily consists of generating a
detector set from the data that were randomly chosen and verifying
which data can recognise a non-proper pattern. The detectors are
similar to mature T cells, which can recognise pathogenic agents
[20].

The monitoring phase consists of monitoring a system to identify a
change in the behaviour; thus, this phase classifies the change using
the detector set that was created in the censor-phase. The
censor-phase occurs offline, and the monitoring-phase occurs in
real time [16, 20].

The antigen (Ag) is the signal to be analysed in the NSA and can
be represented by expression (1). The detectors represent the
antibodies (Ab) and are expressed according to expression (2) [14,
19]

Ag = Ag1, Ag2, Ag3, Ag4, . . . , AgL (1)

Ab = Ab1, Ab2, Ab3, Ab4, . . . , AbL (2)

where L is the dimension of the space of the antigen and the
antibody.

2.1 Matching criterion

To evaluate the affinity with the chains and to prove that they are
similar, the matching criterion is used, which has the same
meaning as the combination. The matching can be perfect or
partial [21].

The matching is perfect when the two analysed chains have the
same value in every position, and the matching is partial when the
patterns have only one identical position value to confirm the
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matching, which is previously defined [14, 15]. This quantity is
known as the affinity rate. The affinity rate represents that there is
a similar grade for matching to occur between two analysed chains
[20]. Bradley and Tyrrell [21] defines the affinity rate according to
the following equation

TAf =
An

At

( )
∗100 (3)

where TAf is the affinity rate; An is the quantity of normal rates in the
problem (proper rates); and At is the total number of chains in the
problem (proper and non-proper chains).

Equation (3) allows the precise calculation of the affinity rate for
the proposed problem and represents the statistical analysis with the
samples of the problem.

To dynamically improve the diagnosis, a deflection is proposed
that is attached to the antibody (detector pattern-Ab), that is, a
tolerance with which it is possible to accept the combination with
the patterns. This tolerance is defined according to (4) [17]. This
deflection acts individually in each position i of vector (Ab),
allowing verification of the matching in each position

Abi ≤ Agi ≤ Abi (4)

where Agi is the nominal value of position i of the antigen (pattern
under analysis); Abi is the nominal value of position i except for
the deflection adopted at the antibody (detector pattern); and Abi
is the nominal value of position i plus the deflection adopted at the
antibody (detector pattern).

In this way, if the value of position i of antigen (Ag) is in the
interval expressed in (4), then the position is considered to match.
Thus, it is possible to quantify the affinity using the patterns,
analysing position-by-position (point-by-point).

Expression (5) represents the method for quantifying the total
affinity with the analysed patterns [21]

AfT =
∑L

i=1 Pci
L

∗100 (5)

where AfT is the % of the affinity with the patterns analysed; L is the
total quantity of positions; Pc is the matched position; and

∑L
i=1 Pc is

the sum (quantity) of the matched positions.
Thus, if AfT is greater than TAf, then the combination/matching

with the patterns occurs, that is, the patterns are considered to be
equal/similar. Otherwise, there is no matching with the patterns.
3 Wavelet transform

The wavelet functions are mathematical transforms that can
decompose the functions, which allows these functions to be
re-written in more detail, that is, with a global vision. Thus, it is
possible to differentiate the local characteristics of a signal with
different sizes (resolutions) and to analyse all of the signals by
translations. Owing to most of the wavelets have compact support,
they are useful in analysing non-stationary signals. In this way, the
wavelet analysis is better than the Fourier analysis [22].

There are several wavelet families. This work considers the
orthonormal family functions and the Daubechies discrete family
[23] because of having faster computational algorithms [22].

3.1 Discrete wavelet transform

Define a signal y[t] = (y0, …, yn − 1, yn), which represents a discrete
vector; then, it can be represented by a wavelet series, as follows [22]

y[t] =
∑NJ

k=0

cJ ,kfJ ,k (t)+
∑1
j=J

∑Nj

l=0

d j,ky j,k (t), ∇t [ [0, N0] (6)
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Fig. 1 Flowchart of the algorithm for DWT

Table 1 Quantity of simulations executed

Voltage disturbance System

84-bus 134-bus

outage 48 48
harmonic 144 144
swell 72 72
sag 72 72
swell with harmonic 96 96
sag with harmonic 96 96
oscillatory transient 96 96
total 624 624
where J represents the resolution level, Nj = (N/2)− 1 represents the
quantity of points in each new vector obtained by transformation; fj,

k(t) and nj, k(t) are the wavelet and scale functions that perform the
transformation; j is the scale (dilation); and k is the position
(translation).

The DWT, when applied directly to a signal to generate a set of
coefficients, is calculated by several entrances into a G filter (low
pass) and H filter (high pass), which are known as resolution levels.
The filters G and H are vectors that have constants that are already
calculated and that provide an orthogonal base that is related to the
scale and wavelet functions, respectively. This process is known as
the Mallat Pyramidal algorithm [22] and is shown in Fig. 1.

In Fig. 1, C0 corresponds to the original discrete signal (C0 = y[t]),
and H and G represent the low-pass and high-pass filters,
respectively. The parameters d1, d2 and d3 are the wavelet
coefficients or the details at each resolution level and C3 is
the scale coefficients or approximations at the last level of the
transform. These coefficients are obtained by a convolution of the
constants with the filters by the following equations [22]

Cj+1,k =
∑D−1

l=0

hlC j,2k+l (7)

d j+1,k =
∑D−1

l=0

glC j,2k+l (8)

where k = [0, …, (N/2j)− 1] and D is the number of constants in the
filter. Thus, the coefficient Cj,k represents the average local media,
and the wavelet coefficient dj,k represents the complementary
information or the details that depart from the average media.
Therefore, the transform coefficients, when ordered by scale ( j)
and position (k), are represented as follows [22]

c = (CJ ,k )
NJ
k=0, (d j,k )

NJ
k=0

( )1
j=J

( )
(9)

such that c is a finite representation in terms of the coefficients of the
signal decomposition in (6). Fig. 2 shows the decomposition process
of a signal at two resolution levels. Observe that at each
transformation level, the size of the vectors is reduced by half (N/
Fig. 2 Pyramidal algorithm for DWT
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2J). This figure represents an adaptation of the figure that
represents the pyramidal algorithm for DWT.
4 Modelling and simulation

In this section is presented the modelling and simulation performed
in this work. Was necessary perform modelling and simulation
because of the absence of a set of real data provided by any
distribution company. So, in the paper aided by model routines
[24] in EMTP software [25], two electrical distribution systems
were modelled, which were a test system with 84-bus and a real
system with 134-bus. The sample frequency is 15.36 kHz, which
corresponds to 256 samples per cycle. The simulation time is 200
ms.

In this paper, it is simulated the voltage disturbances using the
theoretical model proposed by Abdel-Galil et al. [26]. With this
model, each disturbance is generated by varying the parameters in
the equations that represent the wave form of the disturbance (e.g.
outage, swell, sag etc.). This type of disturbance is introduced on
EMTP simulator [25] using the routine models [24].

A total of 1248 simulations was performed, with 624 for each
electrical system. The simulations consider the phase in which the
disturbance occurs, the loadings of 50–120% and the parameters
of the theoretical model. Table 1 presents the quantity of
simulations that are executed for each disturbance class.
5 Proposed methodology

The wavelet immune algorithm proposed in this work to detect and
classify voltage disturbances is based on the negative selection
principle, and the phases are presented as follows.

5.1 Censor-phase

This phase generates the proper detectors and the disturbance
detector set. The detector sets are used by the diagnosis system
during the monitoring process. The detectors are generated for
each electrical system phase.

The proper detectors represent the normal operation characteristics
of the electrical system; therefore, they are placed in oscillograph
windows (256 points) that represent the normal operation. Once a
proper detector is generated, it is possible to generate the
disturbance detectors. This process is illustrated in Fig. 3.

Next, the procedure is divided into three modules: the reading of
the signals to create the detectors, the wavelet module that
decomposes the signals using a DWT with four resolution levels
and the censor module with which the signals are randomly
chosen and that verify the matching in relation to the proper
detector set. If the affinity criterion is satisfied, the signals are
rejected because they have proper characteristics. Otherwise, the
signals are placed in the disturbance detector set.

The quantity of detectors that are used is determined by the
operator. However, it is recommended to use 30% of the available
data. The matching criterion is proposed in [21], which uses a
deviate of 3%.
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 11, pp. 1104–1111
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Fig. 3 Flowchart of the censor-phase
5.2 Monitoring-phase

The monitoring-phase is divided into five modules: the input or the
reading of the signals (by the SCADA acquisition data system [27]),
the wavelet module that decomposes the signals into four resolution
levels, the detector module, which performs the discrimination of
proper/non-proper, and the extraction module, which extracts the
non-proper signals that are detected and, finally, the classification
module to classify the disturbances. Fig. 4 illustrates the
monitoring-phase.

The wavelet module is executed after the signal is acquired and
decomposes the signals, transforming the signals to the wavelet
domain. Afterward, the detector module compares the signals that
are under analysis with the proper detectors to identify the match
with the signals. This module performs the diagnosis of the
analysed signals into proper and non-proper categories.

When an abnormality is detected, the abnormal signal is extracted
and the classification module is executed. The classification module
compares the abnormal signal to the disturbance detector set, and the
matching is verified. Thus, the abnormal signal is classified
according to the detector class that the signal matches.

This phase uses the partial matching criterion proposed in [21],
adopting a deviation of 3% in the detectors.
Fig. 4 Processing steps of the example
5.3 Wavelet decomposition module

The wavelet decomposition module is important to extract and
emphasise the signal characteristics, which are easily detected in
the wavelet world.

In this paper, were used four levels of decomposition for the
DWT. It was decided to use four levels of decomposition, because
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 11, pp. 1104–1111
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with an approximation of four levels in the components of the
DWT, the abnormalities in the signals are presented more easily.
Table 2 is presented the frequency ranges for each level of
resolution in the DWT used in this paper.

Fig. 5 illustrates a signal that has a transient oscillatory disturbance
in phase A. This signal is presented at the input of the wavelet
decomposition module. After processing the signal, it appears
according to Fig. 6.

These figures show the importance of wavelet decomposition for
the diagnosis system. The abnormality at phase A is emphasised
when the signal is decomposed in the wavelet world. Thus, the
1107



Table 2 Frequency ranges for each level of resolution in the DWT

Resolution levels Parameter Frequency range, kHz

1 D1 component 7.68–3.84
2 D2 component 3.84–1.92
3 D3 component 1.92–0.96
4 D4 component 0.96–0.48
4 C4 component 0.00–0.48
wavelet module contributes to the NSA because it is sensitive when
analysing patterns and allows for easy recognition of any
abnormality.
6 Results

This section presents the results that are obtained with the proposed
method with the test systems. Every simulation is executed with a PC
Intel Core 2 Duo 1.9 GHz, 2 GB of Memory RAM (Random-Access
Memory), and an operational system Windows 7 Ultimate 32 bits.
The algorithm was developed in MATLAB® [28]. The proposed
algorithm is applied to the distribution systems that have 84 and
134-buses [29, 30].
Fig. 6 Wavelet decomposition signal

Fig. 5 Signal with a transient oscillatory disturbance at phase A
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6.1 84-bus system

The 84-bus system is a test system that has 83-bus of loads, one
substation and 83 circuits. The base voltage is 11.4 kV. The
conditions of the active and reactive loads are 28.350 kW and
20.700 kVAr, respectively [29]. Fig. 7 shows the topology of the
system.

Table 3 presents the results that were obtained with the systems of
voltage disturbance diagnosis for the 84-bus system [29].
6.2 Real system of 134-bus

This system is a real distribution system that has the following
characteristics: aerial, three phase, several branches, composed of
134-bus, 13.8 kV, 7.065 MVA, mutually coupled and the power
factor is equal to 0.92 [30]. This electrical system represents part
of the distribution system of the hydroelectric power plant Jupiá in
Três Lagoas city, São Paulo, Brazil. Fig. 8 shows the topology of
the system.

Table 4 presents the results that were obtained with the systems of
voltage disturbances diagnosis for the 134-bus system [30].

The results show the correct percentage in identifying the voltage
disturbances in relation to the quantity of patterns used on the tests.

It should be noted especially that the WAIS is executed in <90 ms.
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 11, pp. 1104–1111
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Fig. 7 System of 84-bus line flow
With the introduction of the wavelet module in the method, was
obtained an easy identification of the abnormalities, because when
in the wavelet domain the detailed coefficients of the signals are
disarranged, which indicates the presence of abnormalities in the
signal.

6.3 Comparative study

Table 5 presents a comparative study that uses matching according to
the proposed method and the principal references that are available in
the literature.

The proposed method presents a matching index and a precision
that is superior to other similar works that are available in the
Table 3 Results for the 84-bus system

Diagnosis 84-bus

Tested patterns Match,%

swell 72 100.00
sag 72 100.00
outage 48 100.00
harmonic 144 100.00
swell with harmonic 96 100.00
sag with harmonic 96 100.00
oscillatory transient 96 100.00
total 624 100.00
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literature. It should be emphasised that the use of the wavelet
transform changes the sensitivity of the voltage disturbance
diagnosis and can detect any abnormality; therefore good results
are presented.

Although the results present an accuracy of 100% for simulated
cases in EMTP, with real data probably the result would be
different (with less accuracy). However, the methodology
proposed in this paper could be implemented in practice, providing
efficiency and robustness for the system.
7 Conclusions

This paper presents a new approach to detect and classify voltage
disturbances in electrical distribution systems using WAIS
algorithm. The EMTP software is used to simulate the
disturbances, generating a data set. The proposed algorithm
presents good results, with matches very close to 100% in
detecting and classifying the abnormalities tested. The generating
detector phase is executed offline with no prejudice for the
algorithm. The monitoring-phase quickly executes in a total time
of <90 ms, which allows for it to be used in real time to aid the
decision making. The combination of the wavelet transform with
the NSA provides more precision to the diagnosis because of the
high resolution level in decomposing signals, making it easy to
identify the abnormalities. Thus, the wavelet immune algorithm
1109



Fig. 8 Real system of 134-bus line flow

Table 5 Comparative study

References Electrical system/
theoretical model

Software used Total
match, %

[8] [26] MATLAB 96.21
[12] not specified MATLAB/

Simulink
99.00

[14] 134-bus ATP/EMTP 99.11
[10] 138/13.8 kV ATP 99.31
[13] 134-bus ATP/EMTP 99.66
[17] 134-bus ATP/EMTP 99.72
this work 84-bus ATP/EMTP 100.00
this work 134-bus ATP/EMTP 100.00

Table 4 Results for the 134-bus system

Diagnosis 134-bus

Tested patterns Match,%

swell 72 100.00
sag 72 100.00
outage 48 100.00
harmonic 144 100.00
swell with harmonic 96 100.00
sag with harmonic 96 100.00
oscillatory transient 96 100.00
total 624 100.00
that is proposed is precise, robust and efficient and is allowed in
several applications, principally in a smart grid environment.
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